linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/gfp.h>
   9#include <linux/list.h>
  10#include <linux/mmzone.h>
  11#include <linux/rbtree.h>
  12#include <linux/prio_tree.h>
  13#include <linux/debug_locks.h>
  14#include <linux/mm_types.h>
  15#include <linux/range.h>
  16#include <linux/pfn.h>
  17#include <linux/bit_spinlock.h>
  18
  19struct mempolicy;
  20struct anon_vma;
  21struct file_ra_state;
  22struct user_struct;
  23struct writeback_control;
  24
  25#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
  26extern unsigned long max_mapnr;
  27#endif
  28
  29extern unsigned long num_physpages;
  30extern unsigned long totalram_pages;
  31extern void * high_memory;
  32extern int page_cluster;
  33
  34#ifdef CONFIG_SYSCTL
  35extern int sysctl_legacy_va_layout;
  36#else
  37#define sysctl_legacy_va_layout 0
  38#endif
  39
  40#include <asm/page.h>
  41#include <asm/pgtable.h>
  42#include <asm/processor.h>
  43
  44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  45
  46/* to align the pointer to the (next) page boundary */
  47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  48
  49/*
  50 * Linux kernel virtual memory manager primitives.
  51 * The idea being to have a "virtual" mm in the same way
  52 * we have a virtual fs - giving a cleaner interface to the
  53 * mm details, and allowing different kinds of memory mappings
  54 * (from shared memory to executable loading to arbitrary
  55 * mmap() functions).
  56 */
  57
  58extern struct kmem_cache *vm_area_cachep;
  59
  60#ifndef CONFIG_MMU
  61extern struct rb_root nommu_region_tree;
  62extern struct rw_semaphore nommu_region_sem;
  63
  64extern unsigned int kobjsize(const void *objp);
  65#endif
  66
  67/*
  68 * vm_flags in vm_area_struct, see mm_types.h.
  69 */
  70#define VM_READ         0x00000001      /* currently active flags */
  71#define VM_WRITE        0x00000002
  72#define VM_EXEC         0x00000004
  73#define VM_SHARED       0x00000008
  74
  75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  76#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
  77#define VM_MAYWRITE     0x00000020
  78#define VM_MAYEXEC      0x00000040
  79#define VM_MAYSHARE     0x00000080
  80
  81#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
  82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  83#define VM_GROWSUP      0x00000200
  84#else
  85#define VM_GROWSUP      0x00000000
  86#define VM_NOHUGEPAGE   0x00000200      /* MADV_NOHUGEPAGE marked this vma */
  87#endif
  88#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
  89#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
  90
  91#define VM_EXECUTABLE   0x00001000
  92#define VM_LOCKED       0x00002000
  93#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
  94
  95                                        /* Used by sys_madvise() */
  96#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
  97#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
  98
  99#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 100#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 101#define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
 102#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 103#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 104#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 105#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 107#define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */
 108#else
 109#define VM_HUGEPAGE     0x01000000      /* MADV_HUGEPAGE marked this vma */
 110#endif
 111#define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */
 112#define VM_ALWAYSDUMP   0x04000000      /* Always include in core dumps */
 113
 114#define VM_CAN_NONLINEAR 0x08000000     /* Has ->fault & does nonlinear pages */
 115#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 116#define VM_SAO          0x20000000      /* Strong Access Ordering (powerpc) */
 117#define VM_PFN_AT_MMAP  0x40000000      /* PFNMAP vma that is fully mapped at mmap time */
 118#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 119
 120/* Bits set in the VMA until the stack is in its final location */
 121#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 122
 123#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 125#endif
 126
 127#ifdef CONFIG_STACK_GROWSUP
 128#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 129#else
 130#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 131#endif
 132
 133#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
 134#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
 135#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
 136#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
 137#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
 138
 139/*
 140 * special vmas that are non-mergable, non-mlock()able
 141 */
 142#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
 143
 144/*
 145 * mapping from the currently active vm_flags protection bits (the
 146 * low four bits) to a page protection mask..
 147 */
 148extern pgprot_t protection_map[16];
 149
 150#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 151#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
 152#define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
 153#define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
 154
 155/*
 156 * This interface is used by x86 PAT code to identify a pfn mapping that is
 157 * linear over entire vma. This is to optimize PAT code that deals with
 158 * marking the physical region with a particular prot. This is not for generic
 159 * mm use. Note also that this check will not work if the pfn mapping is
 160 * linear for a vma starting at physical address 0. In which case PAT code
 161 * falls back to slow path of reserving physical range page by page.
 162 */
 163static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
 164{
 165        return (vma->vm_flags & VM_PFN_AT_MMAP);
 166}
 167
 168static inline int is_pfn_mapping(struct vm_area_struct *vma)
 169{
 170        return (vma->vm_flags & VM_PFNMAP);
 171}
 172
 173/*
 174 * vm_fault is filled by the the pagefault handler and passed to the vma's
 175 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 176 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 177 *
 178 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 179 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
 180 * mapping support.
 181 */
 182struct vm_fault {
 183        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 184        pgoff_t pgoff;                  /* Logical page offset based on vma */
 185        void __user *virtual_address;   /* Faulting virtual address */
 186
 187        struct page *page;              /* ->fault handlers should return a
 188                                         * page here, unless VM_FAULT_NOPAGE
 189                                         * is set (which is also implied by
 190                                         * VM_FAULT_ERROR).
 191                                         */
 192};
 193
 194/*
 195 * These are the virtual MM functions - opening of an area, closing and
 196 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 197 * to the functions called when a no-page or a wp-page exception occurs. 
 198 */
 199struct vm_operations_struct {
 200        void (*open)(struct vm_area_struct * area);
 201        void (*close)(struct vm_area_struct * area);
 202        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 203
 204        /* notification that a previously read-only page is about to become
 205         * writable, if an error is returned it will cause a SIGBUS */
 206        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 207
 208        /* called by access_process_vm when get_user_pages() fails, typically
 209         * for use by special VMAs that can switch between memory and hardware
 210         */
 211        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 212                      void *buf, int len, int write);
 213#ifdef CONFIG_NUMA
 214        /*
 215         * set_policy() op must add a reference to any non-NULL @new mempolicy
 216         * to hold the policy upon return.  Caller should pass NULL @new to
 217         * remove a policy and fall back to surrounding context--i.e. do not
 218         * install a MPOL_DEFAULT policy, nor the task or system default
 219         * mempolicy.
 220         */
 221        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 222
 223        /*
 224         * get_policy() op must add reference [mpol_get()] to any policy at
 225         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 226         * in mm/mempolicy.c will do this automatically.
 227         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 228         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 229         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 230         * must return NULL--i.e., do not "fallback" to task or system default
 231         * policy.
 232         */
 233        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 234                                        unsigned long addr);
 235        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
 236                const nodemask_t *to, unsigned long flags);
 237#endif
 238};
 239
 240struct mmu_gather;
 241struct inode;
 242
 243#define page_private(page)              ((page)->private)
 244#define set_page_private(page, v)       ((page)->private = (v))
 245
 246/*
 247 * FIXME: take this include out, include page-flags.h in
 248 * files which need it (119 of them)
 249 */
 250#include <linux/page-flags.h>
 251#include <linux/huge_mm.h>
 252
 253/*
 254 * Methods to modify the page usage count.
 255 *
 256 * What counts for a page usage:
 257 * - cache mapping   (page->mapping)
 258 * - private data    (page->private)
 259 * - page mapped in a task's page tables, each mapping
 260 *   is counted separately
 261 *
 262 * Also, many kernel routines increase the page count before a critical
 263 * routine so they can be sure the page doesn't go away from under them.
 264 */
 265
 266/*
 267 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 268 */
 269static inline int put_page_testzero(struct page *page)
 270{
 271        VM_BUG_ON(atomic_read(&page->_count) == 0);
 272        return atomic_dec_and_test(&page->_count);
 273}
 274
 275/*
 276 * Try to grab a ref unless the page has a refcount of zero, return false if
 277 * that is the case.
 278 */
 279static inline int get_page_unless_zero(struct page *page)
 280{
 281        return atomic_inc_not_zero(&page->_count);
 282}
 283
 284extern int page_is_ram(unsigned long pfn);
 285
 286/* Support for virtually mapped pages */
 287struct page *vmalloc_to_page(const void *addr);
 288unsigned long vmalloc_to_pfn(const void *addr);
 289
 290/*
 291 * Determine if an address is within the vmalloc range
 292 *
 293 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 294 * is no special casing required.
 295 */
 296static inline int is_vmalloc_addr(const void *x)
 297{
 298#ifdef CONFIG_MMU
 299        unsigned long addr = (unsigned long)x;
 300
 301        return addr >= VMALLOC_START && addr < VMALLOC_END;
 302#else
 303        return 0;
 304#endif
 305}
 306#ifdef CONFIG_MMU
 307extern int is_vmalloc_or_module_addr(const void *x);
 308#else
 309static inline int is_vmalloc_or_module_addr(const void *x)
 310{
 311        return 0;
 312}
 313#endif
 314
 315static inline void compound_lock(struct page *page)
 316{
 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 318        bit_spin_lock(PG_compound_lock, &page->flags);
 319#endif
 320}
 321
 322static inline void compound_unlock(struct page *page)
 323{
 324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 325        bit_spin_unlock(PG_compound_lock, &page->flags);
 326#endif
 327}
 328
 329static inline unsigned long compound_lock_irqsave(struct page *page)
 330{
 331        unsigned long uninitialized_var(flags);
 332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 333        local_irq_save(flags);
 334        compound_lock(page);
 335#endif
 336        return flags;
 337}
 338
 339static inline void compound_unlock_irqrestore(struct page *page,
 340                                              unsigned long flags)
 341{
 342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 343        compound_unlock(page);
 344        local_irq_restore(flags);
 345#endif
 346}
 347
 348static inline struct page *compound_head(struct page *page)
 349{
 350        if (unlikely(PageTail(page)))
 351                return page->first_page;
 352        return page;
 353}
 354
 355static inline int page_count(struct page *page)
 356{
 357        return atomic_read(&compound_head(page)->_count);
 358}
 359
 360static inline void get_page(struct page *page)
 361{
 362        /*
 363         * Getting a normal page or the head of a compound page
 364         * requires to already have an elevated page->_count. Only if
 365         * we're getting a tail page, the elevated page->_count is
 366         * required only in the head page, so for tail pages the
 367         * bugcheck only verifies that the page->_count isn't
 368         * negative.
 369         */
 370        VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
 371        atomic_inc(&page->_count);
 372        /*
 373         * Getting a tail page will elevate both the head and tail
 374         * page->_count(s).
 375         */
 376        if (unlikely(PageTail(page))) {
 377                /*
 378                 * This is safe only because
 379                 * __split_huge_page_refcount can't run under
 380                 * get_page().
 381                 */
 382                VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
 383                atomic_inc(&page->first_page->_count);
 384        }
 385}
 386
 387static inline struct page *virt_to_head_page(const void *x)
 388{
 389        struct page *page = virt_to_page(x);
 390        return compound_head(page);
 391}
 392
 393/*
 394 * Setup the page count before being freed into the page allocator for
 395 * the first time (boot or memory hotplug)
 396 */
 397static inline void init_page_count(struct page *page)
 398{
 399        atomic_set(&page->_count, 1);
 400}
 401
 402/*
 403 * PageBuddy() indicate that the page is free and in the buddy system
 404 * (see mm/page_alloc.c).
 405 */
 406static inline int PageBuddy(struct page *page)
 407{
 408        return atomic_read(&page->_mapcount) == -2;
 409}
 410
 411static inline void __SetPageBuddy(struct page *page)
 412{
 413        VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
 414        atomic_set(&page->_mapcount, -2);
 415}
 416
 417static inline void __ClearPageBuddy(struct page *page)
 418{
 419        VM_BUG_ON(!PageBuddy(page));
 420        atomic_set(&page->_mapcount, -1);
 421}
 422
 423void put_page(struct page *page);
 424void put_pages_list(struct list_head *pages);
 425
 426void split_page(struct page *page, unsigned int order);
 427int split_free_page(struct page *page);
 428
 429/*
 430 * Compound pages have a destructor function.  Provide a
 431 * prototype for that function and accessor functions.
 432 * These are _only_ valid on the head of a PG_compound page.
 433 */
 434typedef void compound_page_dtor(struct page *);
 435
 436static inline void set_compound_page_dtor(struct page *page,
 437                                                compound_page_dtor *dtor)
 438{
 439        page[1].lru.next = (void *)dtor;
 440}
 441
 442static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 443{
 444        return (compound_page_dtor *)page[1].lru.next;
 445}
 446
 447static inline int compound_order(struct page *page)
 448{
 449        if (!PageHead(page))
 450                return 0;
 451        return (unsigned long)page[1].lru.prev;
 452}
 453
 454static inline int compound_trans_order(struct page *page)
 455{
 456        int order;
 457        unsigned long flags;
 458
 459        if (!PageHead(page))
 460                return 0;
 461
 462        flags = compound_lock_irqsave(page);
 463        order = compound_order(page);
 464        compound_unlock_irqrestore(page, flags);
 465        return order;
 466}
 467
 468static inline void set_compound_order(struct page *page, unsigned long order)
 469{
 470        page[1].lru.prev = (void *)order;
 471}
 472
 473#ifdef CONFIG_MMU
 474/*
 475 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 476 * servicing faults for write access.  In the normal case, do always want
 477 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 478 * that do not have writing enabled, when used by access_process_vm.
 479 */
 480static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 481{
 482        if (likely(vma->vm_flags & VM_WRITE))
 483                pte = pte_mkwrite(pte);
 484        return pte;
 485}
 486#endif
 487
 488/*
 489 * Multiple processes may "see" the same page. E.g. for untouched
 490 * mappings of /dev/null, all processes see the same page full of
 491 * zeroes, and text pages of executables and shared libraries have
 492 * only one copy in memory, at most, normally.
 493 *
 494 * For the non-reserved pages, page_count(page) denotes a reference count.
 495 *   page_count() == 0 means the page is free. page->lru is then used for
 496 *   freelist management in the buddy allocator.
 497 *   page_count() > 0  means the page has been allocated.
 498 *
 499 * Pages are allocated by the slab allocator in order to provide memory
 500 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 501 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 502 * unless a particular usage is carefully commented. (the responsibility of
 503 * freeing the kmalloc memory is the caller's, of course).
 504 *
 505 * A page may be used by anyone else who does a __get_free_page().
 506 * In this case, page_count still tracks the references, and should only
 507 * be used through the normal accessor functions. The top bits of page->flags
 508 * and page->virtual store page management information, but all other fields
 509 * are unused and could be used privately, carefully. The management of this
 510 * page is the responsibility of the one who allocated it, and those who have
 511 * subsequently been given references to it.
 512 *
 513 * The other pages (we may call them "pagecache pages") are completely
 514 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 515 * The following discussion applies only to them.
 516 *
 517 * A pagecache page contains an opaque `private' member, which belongs to the
 518 * page's address_space. Usually, this is the address of a circular list of
 519 * the page's disk buffers. PG_private must be set to tell the VM to call
 520 * into the filesystem to release these pages.
 521 *
 522 * A page may belong to an inode's memory mapping. In this case, page->mapping
 523 * is the pointer to the inode, and page->index is the file offset of the page,
 524 * in units of PAGE_CACHE_SIZE.
 525 *
 526 * If pagecache pages are not associated with an inode, they are said to be
 527 * anonymous pages. These may become associated with the swapcache, and in that
 528 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 529 *
 530 * In either case (swapcache or inode backed), the pagecache itself holds one
 531 * reference to the page. Setting PG_private should also increment the
 532 * refcount. The each user mapping also has a reference to the page.
 533 *
 534 * The pagecache pages are stored in a per-mapping radix tree, which is
 535 * rooted at mapping->page_tree, and indexed by offset.
 536 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 537 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 538 *
 539 * All pagecache pages may be subject to I/O:
 540 * - inode pages may need to be read from disk,
 541 * - inode pages which have been modified and are MAP_SHARED may need
 542 *   to be written back to the inode on disk,
 543 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 544 *   modified may need to be swapped out to swap space and (later) to be read
 545 *   back into memory.
 546 */
 547
 548/*
 549 * The zone field is never updated after free_area_init_core()
 550 * sets it, so none of the operations on it need to be atomic.
 551 */
 552
 553
 554/*
 555 * page->flags layout:
 556 *
 557 * There are three possibilities for how page->flags get
 558 * laid out.  The first is for the normal case, without
 559 * sparsemem.  The second is for sparsemem when there is
 560 * plenty of space for node and section.  The last is when
 561 * we have run out of space and have to fall back to an
 562 * alternate (slower) way of determining the node.
 563 *
 564 * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
 565 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
 566 * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
 567 */
 568#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 569#define SECTIONS_WIDTH          SECTIONS_SHIFT
 570#else
 571#define SECTIONS_WIDTH          0
 572#endif
 573
 574#define ZONES_WIDTH             ZONES_SHIFT
 575
 576#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
 577#define NODES_WIDTH             NODES_SHIFT
 578#else
 579#ifdef CONFIG_SPARSEMEM_VMEMMAP
 580#error "Vmemmap: No space for nodes field in page flags"
 581#endif
 582#define NODES_WIDTH             0
 583#endif
 584
 585/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
 586#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 587#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 588#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 589
 590/*
 591 * We are going to use the flags for the page to node mapping if its in
 592 * there.  This includes the case where there is no node, so it is implicit.
 593 */
 594#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
 595#define NODE_NOT_IN_PAGE_FLAGS
 596#endif
 597
 598#ifndef PFN_SECTION_SHIFT
 599#define PFN_SECTION_SHIFT 0
 600#endif
 601
 602/*
 603 * Define the bit shifts to access each section.  For non-existant
 604 * sections we define the shift as 0; that plus a 0 mask ensures
 605 * the compiler will optimise away reference to them.
 606 */
 607#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 608#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 609#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 610
 611/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 612#ifdef NODE_NOT_IN_PAGE_FLAGS
 613#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 614#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 615                                                SECTIONS_PGOFF : ZONES_PGOFF)
 616#else
 617#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 618#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 619                                                NODES_PGOFF : ZONES_PGOFF)
 620#endif
 621
 622#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 623
 624#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 625#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 626#endif
 627
 628#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 629#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 630#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 631#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 632
 633static inline enum zone_type page_zonenum(struct page *page)
 634{
 635        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 636}
 637
 638/*
 639 * The identification function is only used by the buddy allocator for
 640 * determining if two pages could be buddies. We are not really
 641 * identifying a zone since we could be using a the section number
 642 * id if we have not node id available in page flags.
 643 * We guarantee only that it will return the same value for two
 644 * combinable pages in a zone.
 645 */
 646static inline int page_zone_id(struct page *page)
 647{
 648        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 649}
 650
 651static inline int zone_to_nid(struct zone *zone)
 652{
 653#ifdef CONFIG_NUMA
 654        return zone->node;
 655#else
 656        return 0;
 657#endif
 658}
 659
 660#ifdef NODE_NOT_IN_PAGE_FLAGS
 661extern int page_to_nid(struct page *page);
 662#else
 663static inline int page_to_nid(struct page *page)
 664{
 665        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 666}
 667#endif
 668
 669static inline struct zone *page_zone(struct page *page)
 670{
 671        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 672}
 673
 674#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 675static inline unsigned long page_to_section(struct page *page)
 676{
 677        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 678}
 679#endif
 680
 681static inline void set_page_zone(struct page *page, enum zone_type zone)
 682{
 683        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 684        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 685}
 686
 687static inline void set_page_node(struct page *page, unsigned long node)
 688{
 689        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 690        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 691}
 692
 693static inline void set_page_section(struct page *page, unsigned long section)
 694{
 695        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 696        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 697}
 698
 699static inline void set_page_links(struct page *page, enum zone_type zone,
 700        unsigned long node, unsigned long pfn)
 701{
 702        set_page_zone(page, zone);
 703        set_page_node(page, node);
 704        set_page_section(page, pfn_to_section_nr(pfn));
 705}
 706
 707/*
 708 * Some inline functions in vmstat.h depend on page_zone()
 709 */
 710#include <linux/vmstat.h>
 711
 712static __always_inline void *lowmem_page_address(struct page *page)
 713{
 714        return __va(PFN_PHYS(page_to_pfn(page)));
 715}
 716
 717#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 718#define HASHED_PAGE_VIRTUAL
 719#endif
 720
 721#if defined(WANT_PAGE_VIRTUAL)
 722#define page_address(page) ((page)->virtual)
 723#define set_page_address(page, address)                 \
 724        do {                                            \
 725                (page)->virtual = (address);            \
 726        } while(0)
 727#define page_address_init()  do { } while(0)
 728#endif
 729
 730#if defined(HASHED_PAGE_VIRTUAL)
 731void *page_address(struct page *page);
 732void set_page_address(struct page *page, void *virtual);
 733void page_address_init(void);
 734#endif
 735
 736#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 737#define page_address(page) lowmem_page_address(page)
 738#define set_page_address(page, address)  do { } while(0)
 739#define page_address_init()  do { } while(0)
 740#endif
 741
 742/*
 743 * On an anonymous page mapped into a user virtual memory area,
 744 * page->mapping points to its anon_vma, not to a struct address_space;
 745 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 746 *
 747 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 748 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 749 * and then page->mapping points, not to an anon_vma, but to a private
 750 * structure which KSM associates with that merged page.  See ksm.h.
 751 *
 752 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 753 *
 754 * Please note that, confusingly, "page_mapping" refers to the inode
 755 * address_space which maps the page from disk; whereas "page_mapped"
 756 * refers to user virtual address space into which the page is mapped.
 757 */
 758#define PAGE_MAPPING_ANON       1
 759#define PAGE_MAPPING_KSM        2
 760#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
 761
 762extern struct address_space swapper_space;
 763static inline struct address_space *page_mapping(struct page *page)
 764{
 765        struct address_space *mapping = page->mapping;
 766
 767        VM_BUG_ON(PageSlab(page));
 768        if (unlikely(PageSwapCache(page)))
 769                mapping = &swapper_space;
 770        else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 771                mapping = NULL;
 772        return mapping;
 773}
 774
 775/* Neutral page->mapping pointer to address_space or anon_vma or other */
 776static inline void *page_rmapping(struct page *page)
 777{
 778        return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
 779}
 780
 781static inline int PageAnon(struct page *page)
 782{
 783        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 784}
 785
 786/*
 787 * Return the pagecache index of the passed page.  Regular pagecache pages
 788 * use ->index whereas swapcache pages use ->private
 789 */
 790static inline pgoff_t page_index(struct page *page)
 791{
 792        if (unlikely(PageSwapCache(page)))
 793                return page_private(page);
 794        return page->index;
 795}
 796
 797/*
 798 * The atomic page->_mapcount, like _count, starts from -1:
 799 * so that transitions both from it and to it can be tracked,
 800 * using atomic_inc_and_test and atomic_add_negative(-1).
 801 */
 802static inline void reset_page_mapcount(struct page *page)
 803{
 804        atomic_set(&(page)->_mapcount, -1);
 805}
 806
 807static inline int page_mapcount(struct page *page)
 808{
 809        return atomic_read(&(page)->_mapcount) + 1;
 810}
 811
 812/*
 813 * Return true if this page is mapped into pagetables.
 814 */
 815static inline int page_mapped(struct page *page)
 816{
 817        return atomic_read(&(page)->_mapcount) >= 0;
 818}
 819
 820/*
 821 * Different kinds of faults, as returned by handle_mm_fault().
 822 * Used to decide whether a process gets delivered SIGBUS or
 823 * just gets major/minor fault counters bumped up.
 824 */
 825
 826#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
 827
 828#define VM_FAULT_OOM    0x0001
 829#define VM_FAULT_SIGBUS 0x0002
 830#define VM_FAULT_MAJOR  0x0004
 831#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
 832#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
 833#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
 834
 835#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
 836#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
 837#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
 838
 839#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
 840
 841#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
 842                         VM_FAULT_HWPOISON_LARGE)
 843
 844/* Encode hstate index for a hwpoisoned large page */
 845#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
 846#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
 847
 848/*
 849 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 850 */
 851extern void pagefault_out_of_memory(void);
 852
 853#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
 854
 855extern void show_free_areas(void);
 856
 857int shmem_lock(struct file *file, int lock, struct user_struct *user);
 858struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
 859int shmem_zero_setup(struct vm_area_struct *);
 860
 861#ifndef CONFIG_MMU
 862extern unsigned long shmem_get_unmapped_area(struct file *file,
 863                                             unsigned long addr,
 864                                             unsigned long len,
 865                                             unsigned long pgoff,
 866                                             unsigned long flags);
 867#endif
 868
 869extern int can_do_mlock(void);
 870extern int user_shm_lock(size_t, struct user_struct *);
 871extern void user_shm_unlock(size_t, struct user_struct *);
 872
 873/*
 874 * Parameter block passed down to zap_pte_range in exceptional cases.
 875 */
 876struct zap_details {
 877        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
 878        struct address_space *check_mapping;    /* Check page->mapping if set */
 879        pgoff_t first_index;                    /* Lowest page->index to unmap */
 880        pgoff_t last_index;                     /* Highest page->index to unmap */
 881        spinlock_t *i_mmap_lock;                /* For unmap_mapping_range: */
 882        unsigned long truncate_count;           /* Compare vm_truncate_count */
 883};
 884
 885struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 886                pte_t pte);
 887
 888int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 889                unsigned long size);
 890unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
 891                unsigned long size, struct zap_details *);
 892unsigned long unmap_vmas(struct mmu_gather **tlb,
 893                struct vm_area_struct *start_vma, unsigned long start_addr,
 894                unsigned long end_addr, unsigned long *nr_accounted,
 895                struct zap_details *);
 896
 897/**
 898 * mm_walk - callbacks for walk_page_range
 899 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 900 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 901 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 902 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 903 * @pte_hole: if set, called for each hole at all levels
 904 * @hugetlb_entry: if set, called for each hugetlb entry
 905 *
 906 * (see walk_page_range for more details)
 907 */
 908struct mm_walk {
 909        int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
 910        int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
 911        int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
 912        int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
 913        int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
 914        int (*hugetlb_entry)(pte_t *, unsigned long,
 915                             unsigned long, unsigned long, struct mm_walk *);
 916        struct mm_struct *mm;
 917        void *private;
 918};
 919
 920int walk_page_range(unsigned long addr, unsigned long end,
 921                struct mm_walk *walk);
 922void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 923                unsigned long end, unsigned long floor, unsigned long ceiling);
 924int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
 925                        struct vm_area_struct *vma);
 926void unmap_mapping_range(struct address_space *mapping,
 927                loff_t const holebegin, loff_t const holelen, int even_cows);
 928int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 929        unsigned long *pfn);
 930int follow_phys(struct vm_area_struct *vma, unsigned long address,
 931                unsigned int flags, unsigned long *prot, resource_size_t *phys);
 932int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 933                        void *buf, int len, int write);
 934
 935static inline void unmap_shared_mapping_range(struct address_space *mapping,
 936                loff_t const holebegin, loff_t const holelen)
 937{
 938        unmap_mapping_range(mapping, holebegin, holelen, 0);
 939}
 940
 941extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
 942extern void truncate_setsize(struct inode *inode, loff_t newsize);
 943extern int vmtruncate(struct inode *inode, loff_t offset);
 944extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
 945
 946int truncate_inode_page(struct address_space *mapping, struct page *page);
 947int generic_error_remove_page(struct address_space *mapping, struct page *page);
 948
 949int invalidate_inode_page(struct page *page);
 950
 951#ifdef CONFIG_MMU
 952extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 953                        unsigned long address, unsigned int flags);
 954#else
 955static inline int handle_mm_fault(struct mm_struct *mm,
 956                        struct vm_area_struct *vma, unsigned long address,
 957                        unsigned int flags)
 958{
 959        /* should never happen if there's no MMU */
 960        BUG();
 961        return VM_FAULT_SIGBUS;
 962}
 963#endif
 964
 965extern int make_pages_present(unsigned long addr, unsigned long end);
 966extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
 967
 968int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 969                        unsigned long start, int nr_pages, int write, int force,
 970                        struct page **pages, struct vm_area_struct **vmas);
 971int get_user_pages_fast(unsigned long start, int nr_pages, int write,
 972                        struct page **pages);
 973struct page *get_dump_page(unsigned long addr);
 974
 975extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
 976extern void do_invalidatepage(struct page *page, unsigned long offset);
 977
 978int __set_page_dirty_nobuffers(struct page *page);
 979int __set_page_dirty_no_writeback(struct page *page);
 980int redirty_page_for_writepage(struct writeback_control *wbc,
 981                                struct page *page);
 982void account_page_dirtied(struct page *page, struct address_space *mapping);
 983void account_page_writeback(struct page *page);
 984int set_page_dirty(struct page *page);
 985int set_page_dirty_lock(struct page *page);
 986int clear_page_dirty_for_io(struct page *page);
 987
 988/* Is the vma a continuation of the stack vma above it? */
 989static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
 990{
 991        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
 992}
 993
 994extern unsigned long move_page_tables(struct vm_area_struct *vma,
 995                unsigned long old_addr, struct vm_area_struct *new_vma,
 996                unsigned long new_addr, unsigned long len);
 997extern unsigned long do_mremap(unsigned long addr,
 998                               unsigned long old_len, unsigned long new_len,
 999                               unsigned long flags, unsigned long new_addr);
1000extern int mprotect_fixup(struct vm_area_struct *vma,
1001                          struct vm_area_struct **pprev, unsigned long start,
1002                          unsigned long end, unsigned long newflags);
1003
1004/*
1005 * doesn't attempt to fault and will return short.
1006 */
1007int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1008                          struct page **pages);
1009/*
1010 * per-process(per-mm_struct) statistics.
1011 */
1012#if defined(SPLIT_RSS_COUNTING)
1013/*
1014 * The mm counters are not protected by its page_table_lock,
1015 * so must be incremented atomically.
1016 */
1017static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1018{
1019        atomic_long_set(&mm->rss_stat.count[member], value);
1020}
1021
1022unsigned long get_mm_counter(struct mm_struct *mm, int member);
1023
1024static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1025{
1026        atomic_long_add(value, &mm->rss_stat.count[member]);
1027}
1028
1029static inline void inc_mm_counter(struct mm_struct *mm, int member)
1030{
1031        atomic_long_inc(&mm->rss_stat.count[member]);
1032}
1033
1034static inline void dec_mm_counter(struct mm_struct *mm, int member)
1035{
1036        atomic_long_dec(&mm->rss_stat.count[member]);
1037}
1038
1039#else  /* !USE_SPLIT_PTLOCKS */
1040/*
1041 * The mm counters are protected by its page_table_lock,
1042 * so can be incremented directly.
1043 */
1044static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1045{
1046        mm->rss_stat.count[member] = value;
1047}
1048
1049static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1050{
1051        return mm->rss_stat.count[member];
1052}
1053
1054static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1055{
1056        mm->rss_stat.count[member] += value;
1057}
1058
1059static inline void inc_mm_counter(struct mm_struct *mm, int member)
1060{
1061        mm->rss_stat.count[member]++;
1062}
1063
1064static inline void dec_mm_counter(struct mm_struct *mm, int member)
1065{
1066        mm->rss_stat.count[member]--;
1067}
1068
1069#endif /* !USE_SPLIT_PTLOCKS */
1070
1071static inline unsigned long get_mm_rss(struct mm_struct *mm)
1072{
1073        return get_mm_counter(mm, MM_FILEPAGES) +
1074                get_mm_counter(mm, MM_ANONPAGES);
1075}
1076
1077static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1078{
1079        return max(mm->hiwater_rss, get_mm_rss(mm));
1080}
1081
1082static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1083{
1084        return max(mm->hiwater_vm, mm->total_vm);
1085}
1086
1087static inline void update_hiwater_rss(struct mm_struct *mm)
1088{
1089        unsigned long _rss = get_mm_rss(mm);
1090
1091        if ((mm)->hiwater_rss < _rss)
1092                (mm)->hiwater_rss = _rss;
1093}
1094
1095static inline void update_hiwater_vm(struct mm_struct *mm)
1096{
1097        if (mm->hiwater_vm < mm->total_vm)
1098                mm->hiwater_vm = mm->total_vm;
1099}
1100
1101static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1102                                         struct mm_struct *mm)
1103{
1104        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1105
1106        if (*maxrss < hiwater_rss)
1107                *maxrss = hiwater_rss;
1108}
1109
1110#if defined(SPLIT_RSS_COUNTING)
1111void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1112#else
1113static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1114{
1115}
1116#endif
1117
1118/*
1119 * A callback you can register to apply pressure to ageable caches.
1120 *
1121 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
1122 * look through the least-recently-used 'nr_to_scan' entries and
1123 * attempt to free them up.  It should return the number of objects
1124 * which remain in the cache.  If it returns -1, it means it cannot do
1125 * any scanning at this time (eg. there is a risk of deadlock).
1126 *
1127 * The 'gfpmask' refers to the allocation we are currently trying to
1128 * fulfil.
1129 *
1130 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1131 * querying the cache size, so a fastpath for that case is appropriate.
1132 */
1133struct shrinker {
1134        int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1135        int seeks;      /* seeks to recreate an obj */
1136
1137        /* These are for internal use */
1138        struct list_head list;
1139        long nr;        /* objs pending delete */
1140};
1141#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1142extern void register_shrinker(struct shrinker *);
1143extern void unregister_shrinker(struct shrinker *);
1144
1145int vma_wants_writenotify(struct vm_area_struct *vma);
1146
1147extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1148                               spinlock_t **ptl);
1149static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1150                                    spinlock_t **ptl)
1151{
1152        pte_t *ptep;
1153        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1154        return ptep;
1155}
1156
1157#ifdef __PAGETABLE_PUD_FOLDED
1158static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1159                                                unsigned long address)
1160{
1161        return 0;
1162}
1163#else
1164int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1165#endif
1166
1167#ifdef __PAGETABLE_PMD_FOLDED
1168static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1169                                                unsigned long address)
1170{
1171        return 0;
1172}
1173#else
1174int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1175#endif
1176
1177int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1178                pmd_t *pmd, unsigned long address);
1179int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1180
1181/*
1182 * The following ifdef needed to get the 4level-fixup.h header to work.
1183 * Remove it when 4level-fixup.h has been removed.
1184 */
1185#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1186static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1187{
1188        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1189                NULL: pud_offset(pgd, address);
1190}
1191
1192static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1193{
1194        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1195                NULL: pmd_offset(pud, address);
1196}
1197#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1198
1199#if USE_SPLIT_PTLOCKS
1200/*
1201 * We tuck a spinlock to guard each pagetable page into its struct page,
1202 * at page->private, with BUILD_BUG_ON to make sure that this will not
1203 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1204 * When freeing, reset page->mapping so free_pages_check won't complain.
1205 */
1206#define __pte_lockptr(page)     &((page)->ptl)
1207#define pte_lock_init(_page)    do {                                    \
1208        spin_lock_init(__pte_lockptr(_page));                           \
1209} while (0)
1210#define pte_lock_deinit(page)   ((page)->mapping = NULL)
1211#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1212#else   /* !USE_SPLIT_PTLOCKS */
1213/*
1214 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1215 */
1216#define pte_lock_init(page)     do {} while (0)
1217#define pte_lock_deinit(page)   do {} while (0)
1218#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1219#endif /* USE_SPLIT_PTLOCKS */
1220
1221static inline void pgtable_page_ctor(struct page *page)
1222{
1223        pte_lock_init(page);
1224        inc_zone_page_state(page, NR_PAGETABLE);
1225}
1226
1227static inline void pgtable_page_dtor(struct page *page)
1228{
1229        pte_lock_deinit(page);
1230        dec_zone_page_state(page, NR_PAGETABLE);
1231}
1232
1233#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1234({                                                      \
1235        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1236        pte_t *__pte = pte_offset_map(pmd, address);    \
1237        *(ptlp) = __ptl;                                \
1238        spin_lock(__ptl);                               \
1239        __pte;                                          \
1240})
1241
1242#define pte_unmap_unlock(pte, ptl)      do {            \
1243        spin_unlock(ptl);                               \
1244        pte_unmap(pte);                                 \
1245} while (0)
1246
1247#define pte_alloc_map(mm, vma, pmd, address)                            \
1248        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1249                                                        pmd, address))? \
1250         NULL: pte_offset_map(pmd, address))
1251
1252#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1253        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1254                                                        pmd, address))? \
1255                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1256
1257#define pte_alloc_kernel(pmd, address)                  \
1258        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1259                NULL: pte_offset_kernel(pmd, address))
1260
1261extern void free_area_init(unsigned long * zones_size);
1262extern void free_area_init_node(int nid, unsigned long * zones_size,
1263                unsigned long zone_start_pfn, unsigned long *zholes_size);
1264#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1265/*
1266 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1267 * zones, allocate the backing mem_map and account for memory holes in a more
1268 * architecture independent manner. This is a substitute for creating the
1269 * zone_sizes[] and zholes_size[] arrays and passing them to
1270 * free_area_init_node()
1271 *
1272 * An architecture is expected to register range of page frames backed by
1273 * physical memory with add_active_range() before calling
1274 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1275 * usage, an architecture is expected to do something like
1276 *
1277 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1278 *                                                       max_highmem_pfn};
1279 * for_each_valid_physical_page_range()
1280 *      add_active_range(node_id, start_pfn, end_pfn)
1281 * free_area_init_nodes(max_zone_pfns);
1282 *
1283 * If the architecture guarantees that there are no holes in the ranges
1284 * registered with add_active_range(), free_bootmem_active_regions()
1285 * will call free_bootmem_node() for each registered physical page range.
1286 * Similarly sparse_memory_present_with_active_regions() calls
1287 * memory_present() for each range when SPARSEMEM is enabled.
1288 *
1289 * See mm/page_alloc.c for more information on each function exposed by
1290 * CONFIG_ARCH_POPULATES_NODE_MAP
1291 */
1292extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1293extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1294                                        unsigned long end_pfn);
1295extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1296                                        unsigned long end_pfn);
1297extern void remove_all_active_ranges(void);
1298void sort_node_map(void);
1299unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1300                                                unsigned long end_pfn);
1301extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1302                                                unsigned long end_pfn);
1303extern void get_pfn_range_for_nid(unsigned int nid,
1304                        unsigned long *start_pfn, unsigned long *end_pfn);
1305extern unsigned long find_min_pfn_with_active_regions(void);
1306extern void free_bootmem_with_active_regions(int nid,
1307                                                unsigned long max_low_pfn);
1308int add_from_early_node_map(struct range *range, int az,
1309                                   int nr_range, int nid);
1310u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1311                                        u64 goal, u64 limit);
1312void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1313                                 u64 goal, u64 limit);
1314typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1315extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1316extern void sparse_memory_present_with_active_regions(int nid);
1317#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1318
1319#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1320    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1321static inline int __early_pfn_to_nid(unsigned long pfn)
1322{
1323        return 0;
1324}
1325#else
1326/* please see mm/page_alloc.c */
1327extern int __meminit early_pfn_to_nid(unsigned long pfn);
1328#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1329/* there is a per-arch backend function. */
1330extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1331#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1332#endif
1333
1334extern void set_dma_reserve(unsigned long new_dma_reserve);
1335extern void memmap_init_zone(unsigned long, int, unsigned long,
1336                                unsigned long, enum memmap_context);
1337extern void setup_per_zone_wmarks(void);
1338extern void calculate_zone_inactive_ratio(struct zone *zone);
1339extern void mem_init(void);
1340extern void __init mmap_init(void);
1341extern void show_mem(void);
1342extern void si_meminfo(struct sysinfo * val);
1343extern void si_meminfo_node(struct sysinfo *val, int nid);
1344extern int after_bootmem;
1345
1346extern void setup_per_cpu_pageset(void);
1347
1348extern void zone_pcp_update(struct zone *zone);
1349
1350/* nommu.c */
1351extern atomic_long_t mmap_pages_allocated;
1352extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1353
1354/* prio_tree.c */
1355void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1356void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1357void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1358struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1359        struct prio_tree_iter *iter);
1360
1361#define vma_prio_tree_foreach(vma, iter, root, begin, end)      \
1362        for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   \
1363                (vma = vma_prio_tree_next(vma, iter)); )
1364
1365static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1366                                        struct list_head *list)
1367{
1368        vma->shared.vm_set.parent = NULL;
1369        list_add_tail(&vma->shared.vm_set.list, list);
1370}
1371
1372/* mmap.c */
1373extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1374extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1375        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1376extern struct vm_area_struct *vma_merge(struct mm_struct *,
1377        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1378        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1379        struct mempolicy *);
1380extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1381extern int split_vma(struct mm_struct *,
1382        struct vm_area_struct *, unsigned long addr, int new_below);
1383extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1384extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1385        struct rb_node **, struct rb_node *);
1386extern void unlink_file_vma(struct vm_area_struct *);
1387extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1388        unsigned long addr, unsigned long len, pgoff_t pgoff);
1389extern void exit_mmap(struct mm_struct *);
1390
1391extern int mm_take_all_locks(struct mm_struct *mm);
1392extern void mm_drop_all_locks(struct mm_struct *mm);
1393
1394#ifdef CONFIG_PROC_FS
1395/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1396extern void added_exe_file_vma(struct mm_struct *mm);
1397extern void removed_exe_file_vma(struct mm_struct *mm);
1398#else
1399static inline void added_exe_file_vma(struct mm_struct *mm)
1400{}
1401
1402static inline void removed_exe_file_vma(struct mm_struct *mm)
1403{}
1404#endif /* CONFIG_PROC_FS */
1405
1406extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1407extern int install_special_mapping(struct mm_struct *mm,
1408                                   unsigned long addr, unsigned long len,
1409                                   unsigned long flags, struct page **pages);
1410
1411extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1412
1413extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1414        unsigned long len, unsigned long prot,
1415        unsigned long flag, unsigned long pgoff);
1416extern unsigned long mmap_region(struct file *file, unsigned long addr,
1417        unsigned long len, unsigned long flags,
1418        unsigned int vm_flags, unsigned long pgoff);
1419
1420static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1421        unsigned long len, unsigned long prot,
1422        unsigned long flag, unsigned long offset)
1423{
1424        unsigned long ret = -EINVAL;
1425        if ((offset + PAGE_ALIGN(len)) < offset)
1426                goto out;
1427        if (!(offset & ~PAGE_MASK))
1428                ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1429out:
1430        return ret;
1431}
1432
1433extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1434
1435extern unsigned long do_brk(unsigned long, unsigned long);
1436
1437/* filemap.c */
1438extern unsigned long page_unuse(struct page *);
1439extern void truncate_inode_pages(struct address_space *, loff_t);
1440extern void truncate_inode_pages_range(struct address_space *,
1441                                       loff_t lstart, loff_t lend);
1442
1443/* generic vm_area_ops exported for stackable file systems */
1444extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1445
1446/* mm/page-writeback.c */
1447int write_one_page(struct page *page, int wait);
1448void task_dirty_inc(struct task_struct *tsk);
1449
1450/* readahead.c */
1451#define VM_MAX_READAHEAD        128     /* kbytes */
1452#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1453
1454int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1455                        pgoff_t offset, unsigned long nr_to_read);
1456
1457void page_cache_sync_readahead(struct address_space *mapping,
1458                               struct file_ra_state *ra,
1459                               struct file *filp,
1460                               pgoff_t offset,
1461                               unsigned long size);
1462
1463void page_cache_async_readahead(struct address_space *mapping,
1464                                struct file_ra_state *ra,
1465                                struct file *filp,
1466                                struct page *pg,
1467                                pgoff_t offset,
1468                                unsigned long size);
1469
1470unsigned long max_sane_readahead(unsigned long nr);
1471unsigned long ra_submit(struct file_ra_state *ra,
1472                        struct address_space *mapping,
1473                        struct file *filp);
1474
1475/* Do stack extension */
1476extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1477#if VM_GROWSUP
1478extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1479#else
1480  #define expand_upwards(vma, address) do { } while (0)
1481#endif
1482extern int expand_stack_downwards(struct vm_area_struct *vma,
1483                                  unsigned long address);
1484
1485/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1486extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1487extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1488                                             struct vm_area_struct **pprev);
1489
1490/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1491   NULL if none.  Assume start_addr < end_addr. */
1492static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1493{
1494        struct vm_area_struct * vma = find_vma(mm,start_addr);
1495
1496        if (vma && end_addr <= vma->vm_start)
1497                vma = NULL;
1498        return vma;
1499}
1500
1501static inline unsigned long vma_pages(struct vm_area_struct *vma)
1502{
1503        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1504}
1505
1506#ifdef CONFIG_MMU
1507pgprot_t vm_get_page_prot(unsigned long vm_flags);
1508#else
1509static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1510{
1511        return __pgprot(0);
1512}
1513#endif
1514
1515struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1516int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1517                        unsigned long pfn, unsigned long size, pgprot_t);
1518int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1519int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520                        unsigned long pfn);
1521int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1522                        unsigned long pfn);
1523
1524struct page *follow_page(struct vm_area_struct *, unsigned long address,
1525                        unsigned int foll_flags);
1526#define FOLL_WRITE      0x01    /* check pte is writable */
1527#define FOLL_TOUCH      0x02    /* mark page accessed */
1528#define FOLL_GET        0x04    /* do get_page on page */
1529#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1530#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1531#define FOLL_MLOCK      0x40    /* mark page as mlocked */
1532#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1533
1534typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1535                        void *data);
1536extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1537                               unsigned long size, pte_fn_t fn, void *data);
1538
1539#ifdef CONFIG_PROC_FS
1540void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1541#else
1542static inline void vm_stat_account(struct mm_struct *mm,
1543                        unsigned long flags, struct file *file, long pages)
1544{
1545}
1546#endif /* CONFIG_PROC_FS */
1547
1548#ifdef CONFIG_DEBUG_PAGEALLOC
1549extern int debug_pagealloc_enabled;
1550
1551extern void kernel_map_pages(struct page *page, int numpages, int enable);
1552
1553static inline void enable_debug_pagealloc(void)
1554{
1555        debug_pagealloc_enabled = 1;
1556}
1557#ifdef CONFIG_HIBERNATION
1558extern bool kernel_page_present(struct page *page);
1559#endif /* CONFIG_HIBERNATION */
1560#else
1561static inline void
1562kernel_map_pages(struct page *page, int numpages, int enable) {}
1563static inline void enable_debug_pagealloc(void)
1564{
1565}
1566#ifdef CONFIG_HIBERNATION
1567static inline bool kernel_page_present(struct page *page) { return true; }
1568#endif /* CONFIG_HIBERNATION */
1569#endif
1570
1571extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1572#ifdef  __HAVE_ARCH_GATE_AREA
1573int in_gate_area_no_task(unsigned long addr);
1574int in_gate_area(struct task_struct *task, unsigned long addr);
1575#else
1576int in_gate_area_no_task(unsigned long addr);
1577#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1578#endif  /* __HAVE_ARCH_GATE_AREA */
1579
1580int drop_caches_sysctl_handler(struct ctl_table *, int,
1581                                        void __user *, size_t *, loff_t *);
1582unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1583                        unsigned long lru_pages);
1584
1585#ifndef CONFIG_MMU
1586#define randomize_va_space 0
1587#else
1588extern int randomize_va_space;
1589#endif
1590
1591const char * arch_vma_name(struct vm_area_struct *vma);
1592void print_vma_addr(char *prefix, unsigned long rip);
1593
1594void sparse_mem_maps_populate_node(struct page **map_map,
1595                                   unsigned long pnum_begin,
1596                                   unsigned long pnum_end,
1597                                   unsigned long map_count,
1598                                   int nodeid);
1599
1600struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1601pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1602pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1603pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1604pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1605void *vmemmap_alloc_block(unsigned long size, int node);
1606void *vmemmap_alloc_block_buf(unsigned long size, int node);
1607void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1608int vmemmap_populate_basepages(struct page *start_page,
1609                                                unsigned long pages, int node);
1610int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1611void vmemmap_populate_print_last(void);
1612
1613
1614enum mf_flags {
1615        MF_COUNT_INCREASED = 1 << 0,
1616};
1617extern void memory_failure(unsigned long pfn, int trapno);
1618extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1619extern int unpoison_memory(unsigned long pfn);
1620extern int sysctl_memory_failure_early_kill;
1621extern int sysctl_memory_failure_recovery;
1622extern void shake_page(struct page *p, int access);
1623extern atomic_long_t mce_bad_pages;
1624extern int soft_offline_page(struct page *page, int flags);
1625#ifdef CONFIG_MEMORY_FAILURE
1626int is_hwpoison_address(unsigned long addr);
1627#else
1628static inline int is_hwpoison_address(unsigned long addr)
1629{
1630        return 0;
1631}
1632#endif
1633
1634extern void dump_page(struct page *page);
1635
1636#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1637extern void clear_huge_page(struct page *page,
1638                            unsigned long addr,
1639                            unsigned int pages_per_huge_page);
1640extern void copy_user_huge_page(struct page *dst, struct page *src,
1641                                unsigned long addr, struct vm_area_struct *vma,
1642                                unsigned int pages_per_huge_page);
1643#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1644
1645#endif /* __KERNEL__ */
1646#endif /* _LINUX_MM_H */
1647