linux/include/linux/percpu.h
<<
>>
Prefs
   1#ifndef __LINUX_PERCPU_H
   2#define __LINUX_PERCPU_H
   3
   4#include <linux/preempt.h>
   5#include <linux/smp.h>
   6#include <linux/cpumask.h>
   7#include <linux/pfn.h>
   8#include <linux/init.h>
   9
  10#include <asm/percpu.h>
  11
  12/* enough to cover all DEFINE_PER_CPUs in modules */
  13#ifdef CONFIG_MODULES
  14#define PERCPU_MODULE_RESERVE           (8 << 10)
  15#else
  16#define PERCPU_MODULE_RESERVE           0
  17#endif
  18
  19#ifndef PERCPU_ENOUGH_ROOM
  20#define PERCPU_ENOUGH_ROOM                                              \
  21        (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +      \
  22         PERCPU_MODULE_RESERVE)
  23#endif
  24
  25/*
  26 * Must be an lvalue. Since @var must be a simple identifier,
  27 * we force a syntax error here if it isn't.
  28 */
  29#define get_cpu_var(var) (*({                           \
  30        preempt_disable();                              \
  31        &__get_cpu_var(var); }))
  32
  33/*
  34 * The weird & is necessary because sparse considers (void)(var) to be
  35 * a direct dereference of percpu variable (var).
  36 */
  37#define put_cpu_var(var) do {                           \
  38        (void)&(var);                                   \
  39        preempt_enable();                               \
  40} while (0)
  41
  42#define get_cpu_ptr(var) ({                             \
  43        preempt_disable();                              \
  44        this_cpu_ptr(var); })
  45
  46#define put_cpu_ptr(var) do {                           \
  47        (void)(var);                                    \
  48        preempt_enable();                               \
  49} while (0)
  50
  51/* minimum unit size, also is the maximum supported allocation size */
  52#define PCPU_MIN_UNIT_SIZE              PFN_ALIGN(32 << 10)
  53
  54/*
  55 * Percpu allocator can serve percpu allocations before slab is
  56 * initialized which allows slab to depend on the percpu allocator.
  57 * The following two parameters decide how much resource to
  58 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
  59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
  60 */
  61#define PERCPU_DYNAMIC_EARLY_SLOTS      128
  62#define PERCPU_DYNAMIC_EARLY_SIZE       (12 << 10)
  63
  64/*
  65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
  66 * back on the first chunk for dynamic percpu allocation if arch is
  67 * manually allocating and mapping it for faster access (as a part of
  68 * large page mapping for example).
  69 *
  70 * The following values give between one and two pages of free space
  71 * after typical minimal boot (2-way SMP, single disk and NIC) with
  72 * both defconfig and a distro config on x86_64 and 32.  More
  73 * intelligent way to determine this would be nice.
  74 */
  75#if BITS_PER_LONG > 32
  76#define PERCPU_DYNAMIC_RESERVE          (20 << 10)
  77#else
  78#define PERCPU_DYNAMIC_RESERVE          (12 << 10)
  79#endif
  80
  81extern void *pcpu_base_addr;
  82extern const unsigned long *pcpu_unit_offsets;
  83
  84struct pcpu_group_info {
  85        int                     nr_units;       /* aligned # of units */
  86        unsigned long           base_offset;    /* base address offset */
  87        unsigned int            *cpu_map;       /* unit->cpu map, empty
  88                                                 * entries contain NR_CPUS */
  89};
  90
  91struct pcpu_alloc_info {
  92        size_t                  static_size;
  93        size_t                  reserved_size;
  94        size_t                  dyn_size;
  95        size_t                  unit_size;
  96        size_t                  atom_size;
  97        size_t                  alloc_size;
  98        size_t                  __ai_size;      /* internal, don't use */
  99        int                     nr_groups;      /* 0 if grouping unnecessary */
 100        struct pcpu_group_info  groups[];
 101};
 102
 103enum pcpu_fc {
 104        PCPU_FC_AUTO,
 105        PCPU_FC_EMBED,
 106        PCPU_FC_PAGE,
 107
 108        PCPU_FC_NR,
 109};
 110extern const char *pcpu_fc_names[PCPU_FC_NR];
 111
 112extern enum pcpu_fc pcpu_chosen_fc;
 113
 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
 115                                     size_t align);
 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
 119
 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
 121                                                             int nr_units);
 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
 123
 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
 125                                         void *base_addr);
 126
 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
 129                                size_t atom_size,
 130                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
 131                                pcpu_fc_alloc_fn_t alloc_fn,
 132                                pcpu_fc_free_fn_t free_fn);
 133#endif
 134
 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
 136extern int __init pcpu_page_first_chunk(size_t reserved_size,
 137                                pcpu_fc_alloc_fn_t alloc_fn,
 138                                pcpu_fc_free_fn_t free_fn,
 139                                pcpu_fc_populate_pte_fn_t populate_pte_fn);
 140#endif
 141
 142/*
 143 * Use this to get to a cpu's version of the per-cpu object
 144 * dynamically allocated. Non-atomic access to the current CPU's
 145 * version should probably be combined with get_cpu()/put_cpu().
 146 */
 147#ifdef CONFIG_SMP
 148#define per_cpu_ptr(ptr, cpu)   SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
 149#else
 150#define per_cpu_ptr(ptr, cpu)   ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
 151#endif
 152
 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
 154extern bool is_kernel_percpu_address(unsigned long addr);
 155
 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
 157extern void __init setup_per_cpu_areas(void);
 158#endif
 159extern void __init percpu_init_late(void);
 160
 161extern void __percpu *__alloc_percpu(size_t size, size_t align);
 162extern void free_percpu(void __percpu *__pdata);
 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
 164
 165#define alloc_percpu(type)      \
 166        (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
 167
 168/*
 169 * Optional methods for optimized non-lvalue per-cpu variable access.
 170 *
 171 * @var can be a percpu variable or a field of it and its size should
 172 * equal char, int or long.  percpu_read() evaluates to a lvalue and
 173 * all others to void.
 174 *
 175 * These operations are guaranteed to be atomic w.r.t. preemption.
 176 * The generic versions use plain get/put_cpu_var().  Archs are
 177 * encouraged to implement single-instruction alternatives which don't
 178 * require preemption protection.
 179 */
 180#ifndef percpu_read
 181# define percpu_read(var)                                               \
 182  ({                                                                    \
 183        typeof(var) *pr_ptr__ = &(var);                                 \
 184        typeof(var) pr_ret__;                                           \
 185        pr_ret__ = get_cpu_var(*pr_ptr__);                              \
 186        put_cpu_var(*pr_ptr__);                                         \
 187        pr_ret__;                                                       \
 188  })
 189#endif
 190
 191#define __percpu_generic_to_op(var, val, op)                            \
 192do {                                                                    \
 193        typeof(var) *pgto_ptr__ = &(var);                               \
 194        get_cpu_var(*pgto_ptr__) op val;                                \
 195        put_cpu_var(*pgto_ptr__);                                       \
 196} while (0)
 197
 198#ifndef percpu_write
 199# define percpu_write(var, val)         __percpu_generic_to_op(var, (val), =)
 200#endif
 201
 202#ifndef percpu_add
 203# define percpu_add(var, val)           __percpu_generic_to_op(var, (val), +=)
 204#endif
 205
 206#ifndef percpu_sub
 207# define percpu_sub(var, val)           __percpu_generic_to_op(var, (val), -=)
 208#endif
 209
 210#ifndef percpu_and
 211# define percpu_and(var, val)           __percpu_generic_to_op(var, (val), &=)
 212#endif
 213
 214#ifndef percpu_or
 215# define percpu_or(var, val)            __percpu_generic_to_op(var, (val), |=)
 216#endif
 217
 218#ifndef percpu_xor
 219# define percpu_xor(var, val)           __percpu_generic_to_op(var, (val), ^=)
 220#endif
 221
 222/*
 223 * Branching function to split up a function into a set of functions that
 224 * are called for different scalar sizes of the objects handled.
 225 */
 226
 227extern void __bad_size_call_parameter(void);
 228
 229#define __pcpu_size_call_return(stem, variable)                         \
 230({      typeof(variable) pscr_ret__;                                    \
 231        __verify_pcpu_ptr(&(variable));                                 \
 232        switch(sizeof(variable)) {                                      \
 233        case 1: pscr_ret__ = stem##1(variable);break;                   \
 234        case 2: pscr_ret__ = stem##2(variable);break;                   \
 235        case 4: pscr_ret__ = stem##4(variable);break;                   \
 236        case 8: pscr_ret__ = stem##8(variable);break;                   \
 237        default:                                                        \
 238                __bad_size_call_parameter();break;                      \
 239        }                                                               \
 240        pscr_ret__;                                                     \
 241})
 242
 243#define __pcpu_size_call_return2(stem, variable, ...)                   \
 244({                                                                      \
 245        typeof(variable) pscr2_ret__;                                   \
 246        __verify_pcpu_ptr(&(variable));                                 \
 247        switch(sizeof(variable)) {                                      \
 248        case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;    \
 249        case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;    \
 250        case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;    \
 251        case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;    \
 252        default:                                                        \
 253                __bad_size_call_parameter(); break;                     \
 254        }                                                               \
 255        pscr2_ret__;                                                    \
 256})
 257
 258#define __pcpu_size_call(stem, variable, ...)                           \
 259do {                                                                    \
 260        __verify_pcpu_ptr(&(variable));                                 \
 261        switch(sizeof(variable)) {                                      \
 262                case 1: stem##1(variable, __VA_ARGS__);break;           \
 263                case 2: stem##2(variable, __VA_ARGS__);break;           \
 264                case 4: stem##4(variable, __VA_ARGS__);break;           \
 265                case 8: stem##8(variable, __VA_ARGS__);break;           \
 266                default:                                                \
 267                        __bad_size_call_parameter();break;              \
 268        }                                                               \
 269} while (0)
 270
 271/*
 272 * Optimized manipulation for memory allocated through the per cpu
 273 * allocator or for addresses of per cpu variables.
 274 *
 275 * These operation guarantee exclusivity of access for other operations
 276 * on the *same* processor. The assumption is that per cpu data is only
 277 * accessed by a single processor instance (the current one).
 278 *
 279 * The first group is used for accesses that must be done in a
 280 * preemption safe way since we know that the context is not preempt
 281 * safe. Interrupts may occur. If the interrupt modifies the variable
 282 * too then RMW actions will not be reliable.
 283 *
 284 * The arch code can provide optimized functions in two ways:
 285 *
 286 * 1. Override the function completely. F.e. define this_cpu_add().
 287 *    The arch must then ensure that the various scalar format passed
 288 *    are handled correctly.
 289 *
 290 * 2. Provide functions for certain scalar sizes. F.e. provide
 291 *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
 292 *    sized RMW actions. If arch code does not provide operations for
 293 *    a scalar size then the fallback in the generic code will be
 294 *    used.
 295 */
 296
 297#define _this_cpu_generic_read(pcp)                                     \
 298({      typeof(pcp) ret__;                                              \
 299        preempt_disable();                                              \
 300        ret__ = *this_cpu_ptr(&(pcp));                                  \
 301        preempt_enable();                                               \
 302        ret__;                                                          \
 303})
 304
 305#ifndef this_cpu_read
 306# ifndef this_cpu_read_1
 307#  define this_cpu_read_1(pcp)  _this_cpu_generic_read(pcp)
 308# endif
 309# ifndef this_cpu_read_2
 310#  define this_cpu_read_2(pcp)  _this_cpu_generic_read(pcp)
 311# endif
 312# ifndef this_cpu_read_4
 313#  define this_cpu_read_4(pcp)  _this_cpu_generic_read(pcp)
 314# endif
 315# ifndef this_cpu_read_8
 316#  define this_cpu_read_8(pcp)  _this_cpu_generic_read(pcp)
 317# endif
 318# define this_cpu_read(pcp)     __pcpu_size_call_return(this_cpu_read_, (pcp))
 319#endif
 320
 321#define _this_cpu_generic_to_op(pcp, val, op)                           \
 322do {                                                                    \
 323        preempt_disable();                                              \
 324        *__this_cpu_ptr(&(pcp)) op val;                                 \
 325        preempt_enable();                                               \
 326} while (0)
 327
 328#ifndef this_cpu_write
 329# ifndef this_cpu_write_1
 330#  define this_cpu_write_1(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 331# endif
 332# ifndef this_cpu_write_2
 333#  define this_cpu_write_2(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 334# endif
 335# ifndef this_cpu_write_4
 336#  define this_cpu_write_4(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 337# endif
 338# ifndef this_cpu_write_8
 339#  define this_cpu_write_8(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 340# endif
 341# define this_cpu_write(pcp, val)       __pcpu_size_call(this_cpu_write_, (pcp), (val))
 342#endif
 343
 344#ifndef this_cpu_add
 345# ifndef this_cpu_add_1
 346#  define this_cpu_add_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 347# endif
 348# ifndef this_cpu_add_2
 349#  define this_cpu_add_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 350# endif
 351# ifndef this_cpu_add_4
 352#  define this_cpu_add_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 353# endif
 354# ifndef this_cpu_add_8
 355#  define this_cpu_add_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 356# endif
 357# define this_cpu_add(pcp, val)         __pcpu_size_call(this_cpu_add_, (pcp), (val))
 358#endif
 359
 360#ifndef this_cpu_sub
 361# define this_cpu_sub(pcp, val)         this_cpu_add((pcp), -(val))
 362#endif
 363
 364#ifndef this_cpu_inc
 365# define this_cpu_inc(pcp)              this_cpu_add((pcp), 1)
 366#endif
 367
 368#ifndef this_cpu_dec
 369# define this_cpu_dec(pcp)              this_cpu_sub((pcp), 1)
 370#endif
 371
 372#ifndef this_cpu_and
 373# ifndef this_cpu_and_1
 374#  define this_cpu_and_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 375# endif
 376# ifndef this_cpu_and_2
 377#  define this_cpu_and_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 378# endif
 379# ifndef this_cpu_and_4
 380#  define this_cpu_and_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 381# endif
 382# ifndef this_cpu_and_8
 383#  define this_cpu_and_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 384# endif
 385# define this_cpu_and(pcp, val)         __pcpu_size_call(this_cpu_and_, (pcp), (val))
 386#endif
 387
 388#ifndef this_cpu_or
 389# ifndef this_cpu_or_1
 390#  define this_cpu_or_1(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 391# endif
 392# ifndef this_cpu_or_2
 393#  define this_cpu_or_2(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 394# endif
 395# ifndef this_cpu_or_4
 396#  define this_cpu_or_4(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 397# endif
 398# ifndef this_cpu_or_8
 399#  define this_cpu_or_8(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 400# endif
 401# define this_cpu_or(pcp, val)          __pcpu_size_call(this_cpu_or_, (pcp), (val))
 402#endif
 403
 404#ifndef this_cpu_xor
 405# ifndef this_cpu_xor_1
 406#  define this_cpu_xor_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
 407# endif
 408# ifndef this_cpu_xor_2
 409#  define this_cpu_xor_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
 410# endif
 411# ifndef this_cpu_xor_4
 412#  define this_cpu_xor_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
 413# endif
 414# ifndef this_cpu_xor_8
 415#  define this_cpu_xor_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
 416# endif
 417# define this_cpu_xor(pcp, val)         __pcpu_size_call(this_cpu_or_, (pcp), (val))
 418#endif
 419
 420#define _this_cpu_generic_add_return(pcp, val)                          \
 421({                                                                      \
 422        typeof(pcp) ret__;                                              \
 423        preempt_disable();                                              \
 424        __this_cpu_add(pcp, val);                                       \
 425        ret__ = __this_cpu_read(pcp);                                   \
 426        preempt_enable();                                               \
 427        ret__;                                                          \
 428})
 429
 430#ifndef this_cpu_add_return
 431# ifndef this_cpu_add_return_1
 432#  define this_cpu_add_return_1(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 433# endif
 434# ifndef this_cpu_add_return_2
 435#  define this_cpu_add_return_2(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 436# endif
 437# ifndef this_cpu_add_return_4
 438#  define this_cpu_add_return_4(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 439# endif
 440# ifndef this_cpu_add_return_8
 441#  define this_cpu_add_return_8(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 442# endif
 443# define this_cpu_add_return(pcp, val)  __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
 444#endif
 445
 446#define this_cpu_sub_return(pcp, val)   this_cpu_add_return(pcp, -(val))
 447#define this_cpu_inc_return(pcp)        this_cpu_add_return(pcp, 1)
 448#define this_cpu_dec_return(pcp)        this_cpu_add_return(pcp, -1)
 449
 450#define _this_cpu_generic_xchg(pcp, nval)                               \
 451({      typeof(pcp) ret__;                                              \
 452        preempt_disable();                                              \
 453        ret__ = __this_cpu_read(pcp);                                   \
 454        __this_cpu_write(pcp, nval);                                    \
 455        preempt_enable();                                               \
 456        ret__;                                                          \
 457})
 458
 459#ifndef this_cpu_xchg
 460# ifndef this_cpu_xchg_1
 461#  define this_cpu_xchg_1(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 462# endif
 463# ifndef this_cpu_xchg_2
 464#  define this_cpu_xchg_2(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 465# endif
 466# ifndef this_cpu_xchg_4
 467#  define this_cpu_xchg_4(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 468# endif
 469# ifndef this_cpu_xchg_8
 470#  define this_cpu_xchg_8(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 471# endif
 472# define this_cpu_xchg(pcp, nval)       \
 473        __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
 474#endif
 475
 476#define _this_cpu_generic_cmpxchg(pcp, oval, nval)                      \
 477({      typeof(pcp) ret__;                                              \
 478        preempt_disable();                                              \
 479        ret__ = __this_cpu_read(pcp);                                   \
 480        if (ret__ == (oval))                                            \
 481                __this_cpu_write(pcp, nval);                            \
 482        preempt_enable();                                               \
 483        ret__;                                                          \
 484})
 485
 486#ifndef this_cpu_cmpxchg
 487# ifndef this_cpu_cmpxchg_1
 488#  define this_cpu_cmpxchg_1(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 489# endif
 490# ifndef this_cpu_cmpxchg_2
 491#  define this_cpu_cmpxchg_2(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 492# endif
 493# ifndef this_cpu_cmpxchg_4
 494#  define this_cpu_cmpxchg_4(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 495# endif
 496# ifndef this_cpu_cmpxchg_8
 497#  define this_cpu_cmpxchg_8(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 498# endif
 499# define this_cpu_cmpxchg(pcp, oval, nval)      \
 500        __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
 501#endif
 502
 503/*
 504 * Generic percpu operations that do not require preemption handling.
 505 * Either we do not care about races or the caller has the
 506 * responsibility of handling preemptions issues. Arch code can still
 507 * override these instructions since the arch per cpu code may be more
 508 * efficient and may actually get race freeness for free (that is the
 509 * case for x86 for example).
 510 *
 511 * If there is no other protection through preempt disable and/or
 512 * disabling interupts then one of these RMW operations can show unexpected
 513 * behavior because the execution thread was rescheduled on another processor
 514 * or an interrupt occurred and the same percpu variable was modified from
 515 * the interrupt context.
 516 */
 517#ifndef __this_cpu_read
 518# ifndef __this_cpu_read_1
 519#  define __this_cpu_read_1(pcp)        (*__this_cpu_ptr(&(pcp)))
 520# endif
 521# ifndef __this_cpu_read_2
 522#  define __this_cpu_read_2(pcp)        (*__this_cpu_ptr(&(pcp)))
 523# endif
 524# ifndef __this_cpu_read_4
 525#  define __this_cpu_read_4(pcp)        (*__this_cpu_ptr(&(pcp)))
 526# endif
 527# ifndef __this_cpu_read_8
 528#  define __this_cpu_read_8(pcp)        (*__this_cpu_ptr(&(pcp)))
 529# endif
 530# define __this_cpu_read(pcp)   __pcpu_size_call_return(__this_cpu_read_, (pcp))
 531#endif
 532
 533#define __this_cpu_generic_to_op(pcp, val, op)                          \
 534do {                                                                    \
 535        *__this_cpu_ptr(&(pcp)) op val;                                 \
 536} while (0)
 537
 538#ifndef __this_cpu_write
 539# ifndef __this_cpu_write_1
 540#  define __this_cpu_write_1(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
 541# endif
 542# ifndef __this_cpu_write_2
 543#  define __this_cpu_write_2(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
 544# endif
 545# ifndef __this_cpu_write_4
 546#  define __this_cpu_write_4(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
 547# endif
 548# ifndef __this_cpu_write_8
 549#  define __this_cpu_write_8(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
 550# endif
 551# define __this_cpu_write(pcp, val)     __pcpu_size_call(__this_cpu_write_, (pcp), (val))
 552#endif
 553
 554#ifndef __this_cpu_add
 555# ifndef __this_cpu_add_1
 556#  define __this_cpu_add_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
 557# endif
 558# ifndef __this_cpu_add_2
 559#  define __this_cpu_add_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
 560# endif
 561# ifndef __this_cpu_add_4
 562#  define __this_cpu_add_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
 563# endif
 564# ifndef __this_cpu_add_8
 565#  define __this_cpu_add_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
 566# endif
 567# define __this_cpu_add(pcp, val)       __pcpu_size_call(__this_cpu_add_, (pcp), (val))
 568#endif
 569
 570#ifndef __this_cpu_sub
 571# define __this_cpu_sub(pcp, val)       __this_cpu_add((pcp), -(val))
 572#endif
 573
 574#ifndef __this_cpu_inc
 575# define __this_cpu_inc(pcp)            __this_cpu_add((pcp), 1)
 576#endif
 577
 578#ifndef __this_cpu_dec
 579# define __this_cpu_dec(pcp)            __this_cpu_sub((pcp), 1)
 580#endif
 581
 582#ifndef __this_cpu_and
 583# ifndef __this_cpu_and_1
 584#  define __this_cpu_and_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
 585# endif
 586# ifndef __this_cpu_and_2
 587#  define __this_cpu_and_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
 588# endif
 589# ifndef __this_cpu_and_4
 590#  define __this_cpu_and_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
 591# endif
 592# ifndef __this_cpu_and_8
 593#  define __this_cpu_and_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
 594# endif
 595# define __this_cpu_and(pcp, val)       __pcpu_size_call(__this_cpu_and_, (pcp), (val))
 596#endif
 597
 598#ifndef __this_cpu_or
 599# ifndef __this_cpu_or_1
 600#  define __this_cpu_or_1(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
 601# endif
 602# ifndef __this_cpu_or_2
 603#  define __this_cpu_or_2(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
 604# endif
 605# ifndef __this_cpu_or_4
 606#  define __this_cpu_or_4(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
 607# endif
 608# ifndef __this_cpu_or_8
 609#  define __this_cpu_or_8(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
 610# endif
 611# define __this_cpu_or(pcp, val)        __pcpu_size_call(__this_cpu_or_, (pcp), (val))
 612#endif
 613
 614#ifndef __this_cpu_xor
 615# ifndef __this_cpu_xor_1
 616#  define __this_cpu_xor_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
 617# endif
 618# ifndef __this_cpu_xor_2
 619#  define __this_cpu_xor_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
 620# endif
 621# ifndef __this_cpu_xor_4
 622#  define __this_cpu_xor_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
 623# endif
 624# ifndef __this_cpu_xor_8
 625#  define __this_cpu_xor_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
 626# endif
 627# define __this_cpu_xor(pcp, val)       __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
 628#endif
 629
 630#define __this_cpu_generic_add_return(pcp, val)                         \
 631({                                                                      \
 632        __this_cpu_add(pcp, val);                                       \
 633        __this_cpu_read(pcp);                                           \
 634})
 635
 636#ifndef __this_cpu_add_return
 637# ifndef __this_cpu_add_return_1
 638#  define __this_cpu_add_return_1(pcp, val)     __this_cpu_generic_add_return(pcp, val)
 639# endif
 640# ifndef __this_cpu_add_return_2
 641#  define __this_cpu_add_return_2(pcp, val)     __this_cpu_generic_add_return(pcp, val)
 642# endif
 643# ifndef __this_cpu_add_return_4
 644#  define __this_cpu_add_return_4(pcp, val)     __this_cpu_generic_add_return(pcp, val)
 645# endif
 646# ifndef __this_cpu_add_return_8
 647#  define __this_cpu_add_return_8(pcp, val)     __this_cpu_generic_add_return(pcp, val)
 648# endif
 649# define __this_cpu_add_return(pcp, val)        __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
 650#endif
 651
 652#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
 653#define __this_cpu_inc_return(pcp)      this_cpu_add_return(pcp, 1)
 654#define __this_cpu_dec_return(pcp)      this_cpu_add_return(pcp, -1)
 655
 656#define __this_cpu_generic_xchg(pcp, nval)                              \
 657({      typeof(pcp) ret__;                                              \
 658        ret__ = __this_cpu_read(pcp);                                   \
 659        __this_cpu_write(pcp, nval);                                    \
 660        ret__;                                                          \
 661})
 662
 663#ifndef __this_cpu_xchg
 664# ifndef __this_cpu_xchg_1
 665#  define __this_cpu_xchg_1(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
 666# endif
 667# ifndef __this_cpu_xchg_2
 668#  define __this_cpu_xchg_2(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
 669# endif
 670# ifndef __this_cpu_xchg_4
 671#  define __this_cpu_xchg_4(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
 672# endif
 673# ifndef __this_cpu_xchg_8
 674#  define __this_cpu_xchg_8(pcp, nval)  __this_cpu_generic_xchg(pcp, nval)
 675# endif
 676# define __this_cpu_xchg(pcp, nval)     \
 677        __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
 678#endif
 679
 680#define __this_cpu_generic_cmpxchg(pcp, oval, nval)                     \
 681({                                                                      \
 682        typeof(pcp) ret__;                                              \
 683        ret__ = __this_cpu_read(pcp);                                   \
 684        if (ret__ == (oval))                                            \
 685                __this_cpu_write(pcp, nval);                            \
 686        ret__;                                                          \
 687})
 688
 689#ifndef __this_cpu_cmpxchg
 690# ifndef __this_cpu_cmpxchg_1
 691#  define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
 692# endif
 693# ifndef __this_cpu_cmpxchg_2
 694#  define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
 695# endif
 696# ifndef __this_cpu_cmpxchg_4
 697#  define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
 698# endif
 699# ifndef __this_cpu_cmpxchg_8
 700#  define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
 701# endif
 702# define __this_cpu_cmpxchg(pcp, oval, nval)    \
 703        __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
 704#endif
 705
 706/*
 707 * IRQ safe versions of the per cpu RMW operations. Note that these operations
 708 * are *not* safe against modification of the same variable from another
 709 * processors (which one gets when using regular atomic operations)
 710 * They are guaranteed to be atomic vs. local interrupts and
 711 * preemption only.
 712 */
 713#define irqsafe_cpu_generic_to_op(pcp, val, op)                         \
 714do {                                                                    \
 715        unsigned long flags;                                            \
 716        local_irq_save(flags);                                          \
 717        *__this_cpu_ptr(&(pcp)) op val;                                 \
 718        local_irq_restore(flags);                                       \
 719} while (0)
 720
 721#ifndef irqsafe_cpu_add
 722# ifndef irqsafe_cpu_add_1
 723#  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
 724# endif
 725# ifndef irqsafe_cpu_add_2
 726#  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
 727# endif
 728# ifndef irqsafe_cpu_add_4
 729#  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
 730# endif
 731# ifndef irqsafe_cpu_add_8
 732#  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
 733# endif
 734# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
 735#endif
 736
 737#ifndef irqsafe_cpu_sub
 738# define irqsafe_cpu_sub(pcp, val)      irqsafe_cpu_add((pcp), -(val))
 739#endif
 740
 741#ifndef irqsafe_cpu_inc
 742# define irqsafe_cpu_inc(pcp)   irqsafe_cpu_add((pcp), 1)
 743#endif
 744
 745#ifndef irqsafe_cpu_dec
 746# define irqsafe_cpu_dec(pcp)   irqsafe_cpu_sub((pcp), 1)
 747#endif
 748
 749#ifndef irqsafe_cpu_and
 750# ifndef irqsafe_cpu_and_1
 751#  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
 752# endif
 753# ifndef irqsafe_cpu_and_2
 754#  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
 755# endif
 756# ifndef irqsafe_cpu_and_4
 757#  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
 758# endif
 759# ifndef irqsafe_cpu_and_8
 760#  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
 761# endif
 762# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
 763#endif
 764
 765#ifndef irqsafe_cpu_or
 766# ifndef irqsafe_cpu_or_1
 767#  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
 768# endif
 769# ifndef irqsafe_cpu_or_2
 770#  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
 771# endif
 772# ifndef irqsafe_cpu_or_4
 773#  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
 774# endif
 775# ifndef irqsafe_cpu_or_8
 776#  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
 777# endif
 778# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
 779#endif
 780
 781#ifndef irqsafe_cpu_xor
 782# ifndef irqsafe_cpu_xor_1
 783#  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
 784# endif
 785# ifndef irqsafe_cpu_xor_2
 786#  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
 787# endif
 788# ifndef irqsafe_cpu_xor_4
 789#  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
 790# endif
 791# ifndef irqsafe_cpu_xor_8
 792#  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
 793# endif
 794# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
 795#endif
 796
 797#define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)                    \
 798({                                                                      \
 799        typeof(pcp) ret__;                                              \
 800        unsigned long flags;                                            \
 801        local_irq_save(flags);                                          \
 802        ret__ = __this_cpu_read(pcp);                                   \
 803        if (ret__ == (oval))                                            \
 804                __this_cpu_write(pcp, nval);                            \
 805        local_irq_restore(flags);                                       \
 806        ret__;                                                          \
 807})
 808
 809#ifndef irqsafe_cpu_cmpxchg
 810# ifndef irqsafe_cpu_cmpxchg_1
 811#  define irqsafe_cpu_cmpxchg_1(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
 812# endif
 813# ifndef irqsafe_cpu_cmpxchg_2
 814#  define irqsafe_cpu_cmpxchg_2(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
 815# endif
 816# ifndef irqsafe_cpu_cmpxchg_4
 817#  define irqsafe_cpu_cmpxchg_4(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
 818# endif
 819# ifndef irqsafe_cpu_cmpxchg_8
 820#  define irqsafe_cpu_cmpxchg_8(pcp, oval, nval)        irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
 821# endif
 822# define irqsafe_cpu_cmpxchg(pcp, oval, nval)           \
 823        __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval)
 824#endif
 825
 826#endif /* __LINUX_PERCPU_H */
 827