linux/include/linux/slub_def.h
<<
>>
Prefs
   1#ifndef _LINUX_SLUB_DEF_H
   2#define _LINUX_SLUB_DEF_H
   3
   4/*
   5 * SLUB : A Slab allocator without object queues.
   6 *
   7 * (C) 2007 SGI, Christoph Lameter
   8 */
   9#include <linux/types.h>
  10#include <linux/gfp.h>
  11#include <linux/workqueue.h>
  12#include <linux/kobject.h>
  13
  14#include <linux/kmemleak.h>
  15
  16enum stat_item {
  17        ALLOC_FASTPATH,         /* Allocation from cpu slab */
  18        ALLOC_SLOWPATH,         /* Allocation by getting a new cpu slab */
  19        FREE_FASTPATH,          /* Free to cpu slub */
  20        FREE_SLOWPATH,          /* Freeing not to cpu slab */
  21        FREE_FROZEN,            /* Freeing to frozen slab */
  22        FREE_ADD_PARTIAL,       /* Freeing moves slab to partial list */
  23        FREE_REMOVE_PARTIAL,    /* Freeing removes last object */
  24        ALLOC_FROM_PARTIAL,     /* Cpu slab acquired from partial list */
  25        ALLOC_SLAB,             /* Cpu slab acquired from page allocator */
  26        ALLOC_REFILL,           /* Refill cpu slab from slab freelist */
  27        FREE_SLAB,              /* Slab freed to the page allocator */
  28        CPUSLAB_FLUSH,          /* Abandoning of the cpu slab */
  29        DEACTIVATE_FULL,        /* Cpu slab was full when deactivated */
  30        DEACTIVATE_EMPTY,       /* Cpu slab was empty when deactivated */
  31        DEACTIVATE_TO_HEAD,     /* Cpu slab was moved to the head of partials */
  32        DEACTIVATE_TO_TAIL,     /* Cpu slab was moved to the tail of partials */
  33        DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  34        ORDER_FALLBACK,         /* Number of times fallback was necessary */
  35        NR_SLUB_STAT_ITEMS };
  36
  37struct kmem_cache_cpu {
  38        void **freelist;        /* Pointer to first free per cpu object */
  39        struct page *page;      /* The slab from which we are allocating */
  40        int node;               /* The node of the page (or -1 for debug) */
  41#ifdef CONFIG_SLUB_STATS
  42        unsigned stat[NR_SLUB_STAT_ITEMS];
  43#endif
  44};
  45
  46struct kmem_cache_node {
  47        spinlock_t list_lock;   /* Protect partial list and nr_partial */
  48        unsigned long nr_partial;
  49        struct list_head partial;
  50#ifdef CONFIG_SLUB_DEBUG
  51        atomic_long_t nr_slabs;
  52        atomic_long_t total_objects;
  53        struct list_head full;
  54#endif
  55};
  56
  57/*
  58 * Word size structure that can be atomically updated or read and that
  59 * contains both the order and the number of objects that a slab of the
  60 * given order would contain.
  61 */
  62struct kmem_cache_order_objects {
  63        unsigned long x;
  64};
  65
  66/*
  67 * Slab cache management.
  68 */
  69struct kmem_cache {
  70        struct kmem_cache_cpu __percpu *cpu_slab;
  71        /* Used for retriving partial slabs etc */
  72        unsigned long flags;
  73        int size;               /* The size of an object including meta data */
  74        int objsize;            /* The size of an object without meta data */
  75        int offset;             /* Free pointer offset. */
  76        struct kmem_cache_order_objects oo;
  77
  78        /* Allocation and freeing of slabs */
  79        struct kmem_cache_order_objects max;
  80        struct kmem_cache_order_objects min;
  81        gfp_t allocflags;       /* gfp flags to use on each alloc */
  82        int refcount;           /* Refcount for slab cache destroy */
  83        void (*ctor)(void *);
  84        int inuse;              /* Offset to metadata */
  85        int align;              /* Alignment */
  86        unsigned long min_partial;
  87        const char *name;       /* Name (only for display!) */
  88        struct list_head list;  /* List of slab caches */
  89#ifdef CONFIG_SYSFS
  90        struct kobject kobj;    /* For sysfs */
  91#endif
  92
  93#ifdef CONFIG_NUMA
  94        /*
  95         * Defragmentation by allocating from a remote node.
  96         */
  97        int remote_node_defrag_ratio;
  98#endif
  99        struct kmem_cache_node *node[MAX_NUMNODES];
 100};
 101
 102/*
 103 * Kmalloc subsystem.
 104 */
 105#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 106#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 107#else
 108#define KMALLOC_MIN_SIZE 8
 109#endif
 110
 111#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
 112
 113#ifdef ARCH_DMA_MINALIGN
 114#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 115#else
 116#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 117#endif
 118
 119#ifndef ARCH_SLAB_MINALIGN
 120#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 121#endif
 122
 123/*
 124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
 125 * are passed through to the page allocator. The page allocator "fastpath"
 126 * is relatively slow so we need this value sufficiently high so that
 127 * performance critical objects are allocated through the SLUB fastpath.
 128 *
 129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
 130 * "fastpath" becomes competitive with the slab allocator fastpaths.
 131 */
 132#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
 133
 134#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
 135
 136#ifdef CONFIG_ZONE_DMA
 137#define SLUB_DMA __GFP_DMA
 138#else
 139/* Disable DMA functionality */
 140#define SLUB_DMA (__force gfp_t)0
 141#endif
 142
 143/*
 144 * We keep the general caches in an array of slab caches that are used for
 145 * 2^x bytes of allocations.
 146 */
 147extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
 148
 149/*
 150 * Sorry that the following has to be that ugly but some versions of GCC
 151 * have trouble with constant propagation and loops.
 152 */
 153static __always_inline int kmalloc_index(size_t size)
 154{
 155        if (!size)
 156                return 0;
 157
 158        if (size <= KMALLOC_MIN_SIZE)
 159                return KMALLOC_SHIFT_LOW;
 160
 161        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 162                return 1;
 163        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 164                return 2;
 165        if (size <=          8) return 3;
 166        if (size <=         16) return 4;
 167        if (size <=         32) return 5;
 168        if (size <=         64) return 6;
 169        if (size <=        128) return 7;
 170        if (size <=        256) return 8;
 171        if (size <=        512) return 9;
 172        if (size <=       1024) return 10;
 173        if (size <=   2 * 1024) return 11;
 174        if (size <=   4 * 1024) return 12;
 175/*
 176 * The following is only needed to support architectures with a larger page
 177 * size than 4k.
 178 */
 179        if (size <=   8 * 1024) return 13;
 180        if (size <=  16 * 1024) return 14;
 181        if (size <=  32 * 1024) return 15;
 182        if (size <=  64 * 1024) return 16;
 183        if (size <= 128 * 1024) return 17;
 184        if (size <= 256 * 1024) return 18;
 185        if (size <= 512 * 1024) return 19;
 186        if (size <= 1024 * 1024) return 20;
 187        if (size <=  2 * 1024 * 1024) return 21;
 188        return -1;
 189
 190/*
 191 * What we really wanted to do and cannot do because of compiler issues is:
 192 *      int i;
 193 *      for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
 194 *              if (size <= (1 << i))
 195 *                      return i;
 196 */
 197}
 198
 199/*
 200 * Find the slab cache for a given combination of allocation flags and size.
 201 *
 202 * This ought to end up with a global pointer to the right cache
 203 * in kmalloc_caches.
 204 */
 205static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
 206{
 207        int index = kmalloc_index(size);
 208
 209        if (index == 0)
 210                return NULL;
 211
 212        return kmalloc_caches[index];
 213}
 214
 215void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 216void *__kmalloc(size_t size, gfp_t flags);
 217
 218static __always_inline void *
 219kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 220{
 221        void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
 222        kmemleak_alloc(ret, size, 1, flags);
 223        return ret;
 224}
 225
 226#ifdef CONFIG_TRACING
 227extern void *
 228kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
 229extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
 230#else
 231static __always_inline void *
 232kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
 233{
 234        return kmem_cache_alloc(s, gfpflags);
 235}
 236
 237static __always_inline void *
 238kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 239{
 240        return kmalloc_order(size, flags, order);
 241}
 242#endif
 243
 244static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
 245{
 246        unsigned int order = get_order(size);
 247        return kmalloc_order_trace(size, flags, order);
 248}
 249
 250static __always_inline void *kmalloc(size_t size, gfp_t flags)
 251{
 252        if (__builtin_constant_p(size)) {
 253                if (size > SLUB_MAX_SIZE)
 254                        return kmalloc_large(size, flags);
 255
 256                if (!(flags & SLUB_DMA)) {
 257                        struct kmem_cache *s = kmalloc_slab(size);
 258
 259                        if (!s)
 260                                return ZERO_SIZE_PTR;
 261
 262                        return kmem_cache_alloc_trace(s, flags, size);
 263                }
 264        }
 265        return __kmalloc(size, flags);
 266}
 267
 268#ifdef CONFIG_NUMA
 269void *__kmalloc_node(size_t size, gfp_t flags, int node);
 270void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
 271
 272#ifdef CONFIG_TRACING
 273extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
 274                                           gfp_t gfpflags,
 275                                           int node, size_t size);
 276#else
 277static __always_inline void *
 278kmem_cache_alloc_node_trace(struct kmem_cache *s,
 279                              gfp_t gfpflags,
 280                              int node, size_t size)
 281{
 282        return kmem_cache_alloc_node(s, gfpflags, node);
 283}
 284#endif
 285
 286static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 287{
 288        if (__builtin_constant_p(size) &&
 289                size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
 290                        struct kmem_cache *s = kmalloc_slab(size);
 291
 292                if (!s)
 293                        return ZERO_SIZE_PTR;
 294
 295                return kmem_cache_alloc_node_trace(s, flags, node, size);
 296        }
 297        return __kmalloc_node(size, flags, node);
 298}
 299#endif
 300
 301#endif /* _LINUX_SLUB_DEF_H */
 302