linux/kernel/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#include <linux/cgroup.h>
  30#include <linux/ctype.h>
  31#include <linux/errno.h>
  32#include <linux/fs.h>
  33#include <linux/kernel.h>
  34#include <linux/list.h>
  35#include <linux/mm.h>
  36#include <linux/mutex.h>
  37#include <linux/mount.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/rcupdate.h>
  41#include <linux/sched.h>
  42#include <linux/backing-dev.h>
  43#include <linux/seq_file.h>
  44#include <linux/slab.h>
  45#include <linux/magic.h>
  46#include <linux/spinlock.h>
  47#include <linux/string.h>
  48#include <linux/sort.h>
  49#include <linux/kmod.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/cgroupstats.h>
  53#include <linux/hash.h>
  54#include <linux/namei.h>
  55#include <linux/pid_namespace.h>
  56#include <linux/idr.h>
  57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58#include <linux/eventfd.h>
  59#include <linux/poll.h>
  60
  61#include <asm/atomic.h>
  62
  63static DEFINE_MUTEX(cgroup_mutex);
  64
  65/*
  66 * Generate an array of cgroup subsystem pointers. At boot time, this is
  67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  68 * registered after that. The mutable section of this array is protected by
  69 * cgroup_mutex.
  70 */
  71#define SUBSYS(_x) &_x ## _subsys,
  72static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  73#include <linux/cgroup_subsys.h>
  74};
  75
  76#define MAX_CGROUP_ROOT_NAMELEN 64
  77
  78/*
  79 * A cgroupfs_root represents the root of a cgroup hierarchy,
  80 * and may be associated with a superblock to form an active
  81 * hierarchy
  82 */
  83struct cgroupfs_root {
  84        struct super_block *sb;
  85
  86        /*
  87         * The bitmask of subsystems intended to be attached to this
  88         * hierarchy
  89         */
  90        unsigned long subsys_bits;
  91
  92        /* Unique id for this hierarchy. */
  93        int hierarchy_id;
  94
  95        /* The bitmask of subsystems currently attached to this hierarchy */
  96        unsigned long actual_subsys_bits;
  97
  98        /* A list running through the attached subsystems */
  99        struct list_head subsys_list;
 100
 101        /* The root cgroup for this hierarchy */
 102        struct cgroup top_cgroup;
 103
 104        /* Tracks how many cgroups are currently defined in hierarchy.*/
 105        int number_of_cgroups;
 106
 107        /* A list running through the active hierarchies */
 108        struct list_head root_list;
 109
 110        /* Hierarchy-specific flags */
 111        unsigned long flags;
 112
 113        /* The path to use for release notifications. */
 114        char release_agent_path[PATH_MAX];
 115
 116        /* The name for this hierarchy - may be empty */
 117        char name[MAX_CGROUP_ROOT_NAMELEN];
 118};
 119
 120/*
 121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 122 * subsystems that are otherwise unattached - it never has more than a
 123 * single cgroup, and all tasks are part of that cgroup.
 124 */
 125static struct cgroupfs_root rootnode;
 126
 127/*
 128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 129 * cgroup_subsys->use_id != 0.
 130 */
 131#define CSS_ID_MAX      (65535)
 132struct css_id {
 133        /*
 134         * The css to which this ID points. This pointer is set to valid value
 135         * after cgroup is populated. If cgroup is removed, this will be NULL.
 136         * This pointer is expected to be RCU-safe because destroy()
 137         * is called after synchronize_rcu(). But for safe use, css_is_removed()
 138         * css_tryget() should be used for avoiding race.
 139         */
 140        struct cgroup_subsys_state __rcu *css;
 141        /*
 142         * ID of this css.
 143         */
 144        unsigned short id;
 145        /*
 146         * Depth in hierarchy which this ID belongs to.
 147         */
 148        unsigned short depth;
 149        /*
 150         * ID is freed by RCU. (and lookup routine is RCU safe.)
 151         */
 152        struct rcu_head rcu_head;
 153        /*
 154         * Hierarchy of CSS ID belongs to.
 155         */
 156        unsigned short stack[0]; /* Array of Length (depth+1) */
 157};
 158
 159/*
 160 * cgroup_event represents events which userspace want to recieve.
 161 */
 162struct cgroup_event {
 163        /*
 164         * Cgroup which the event belongs to.
 165         */
 166        struct cgroup *cgrp;
 167        /*
 168         * Control file which the event associated.
 169         */
 170        struct cftype *cft;
 171        /*
 172         * eventfd to signal userspace about the event.
 173         */
 174        struct eventfd_ctx *eventfd;
 175        /*
 176         * Each of these stored in a list by the cgroup.
 177         */
 178        struct list_head list;
 179        /*
 180         * All fields below needed to unregister event when
 181         * userspace closes eventfd.
 182         */
 183        poll_table pt;
 184        wait_queue_head_t *wqh;
 185        wait_queue_t wait;
 186        struct work_struct remove;
 187};
 188
 189/* The list of hierarchy roots */
 190
 191static LIST_HEAD(roots);
 192static int root_count;
 193
 194static DEFINE_IDA(hierarchy_ida);
 195static int next_hierarchy_id;
 196static DEFINE_SPINLOCK(hierarchy_id_lock);
 197
 198/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 199#define dummytop (&rootnode.top_cgroup)
 200
 201/* This flag indicates whether tasks in the fork and exit paths should
 202 * check for fork/exit handlers to call. This avoids us having to do
 203 * extra work in the fork/exit path if none of the subsystems need to
 204 * be called.
 205 */
 206static int need_forkexit_callback __read_mostly;
 207
 208#ifdef CONFIG_PROVE_LOCKING
 209int cgroup_lock_is_held(void)
 210{
 211        return lockdep_is_held(&cgroup_mutex);
 212}
 213#else /* #ifdef CONFIG_PROVE_LOCKING */
 214int cgroup_lock_is_held(void)
 215{
 216        return mutex_is_locked(&cgroup_mutex);
 217}
 218#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
 219
 220EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
 221
 222/* convenient tests for these bits */
 223inline int cgroup_is_removed(const struct cgroup *cgrp)
 224{
 225        return test_bit(CGRP_REMOVED, &cgrp->flags);
 226}
 227
 228/* bits in struct cgroupfs_root flags field */
 229enum {
 230        ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 231};
 232
 233static int cgroup_is_releasable(const struct cgroup *cgrp)
 234{
 235        const int bits =
 236                (1 << CGRP_RELEASABLE) |
 237                (1 << CGRP_NOTIFY_ON_RELEASE);
 238        return (cgrp->flags & bits) == bits;
 239}
 240
 241static int notify_on_release(const struct cgroup *cgrp)
 242{
 243        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 244}
 245
 246static int clone_children(const struct cgroup *cgrp)
 247{
 248        return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 249}
 250
 251/*
 252 * for_each_subsys() allows you to iterate on each subsystem attached to
 253 * an active hierarchy
 254 */
 255#define for_each_subsys(_root, _ss) \
 256list_for_each_entry(_ss, &_root->subsys_list, sibling)
 257
 258/* for_each_active_root() allows you to iterate across the active hierarchies */
 259#define for_each_active_root(_root) \
 260list_for_each_entry(_root, &roots, root_list)
 261
 262/* the list of cgroups eligible for automatic release. Protected by
 263 * release_list_lock */
 264static LIST_HEAD(release_list);
 265static DEFINE_SPINLOCK(release_list_lock);
 266static void cgroup_release_agent(struct work_struct *work);
 267static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 268static void check_for_release(struct cgroup *cgrp);
 269
 270/* Link structure for associating css_set objects with cgroups */
 271struct cg_cgroup_link {
 272        /*
 273         * List running through cg_cgroup_links associated with a
 274         * cgroup, anchored on cgroup->css_sets
 275         */
 276        struct list_head cgrp_link_list;
 277        struct cgroup *cgrp;
 278        /*
 279         * List running through cg_cgroup_links pointing at a
 280         * single css_set object, anchored on css_set->cg_links
 281         */
 282        struct list_head cg_link_list;
 283        struct css_set *cg;
 284};
 285
 286/* The default css_set - used by init and its children prior to any
 287 * hierarchies being mounted. It contains a pointer to the root state
 288 * for each subsystem. Also used to anchor the list of css_sets. Not
 289 * reference-counted, to improve performance when child cgroups
 290 * haven't been created.
 291 */
 292
 293static struct css_set init_css_set;
 294static struct cg_cgroup_link init_css_set_link;
 295
 296static int cgroup_init_idr(struct cgroup_subsys *ss,
 297                           struct cgroup_subsys_state *css);
 298
 299/* css_set_lock protects the list of css_set objects, and the
 300 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 301 * due to cgroup_iter_start() */
 302static DEFINE_RWLOCK(css_set_lock);
 303static int css_set_count;
 304
 305/*
 306 * hash table for cgroup groups. This improves the performance to find
 307 * an existing css_set. This hash doesn't (currently) take into
 308 * account cgroups in empty hierarchies.
 309 */
 310#define CSS_SET_HASH_BITS       7
 311#define CSS_SET_TABLE_SIZE      (1 << CSS_SET_HASH_BITS)
 312static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
 313
 314static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
 315{
 316        int i;
 317        int index;
 318        unsigned long tmp = 0UL;
 319
 320        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
 321                tmp += (unsigned long)css[i];
 322        tmp = (tmp >> 16) ^ tmp;
 323
 324        index = hash_long(tmp, CSS_SET_HASH_BITS);
 325
 326        return &css_set_table[index];
 327}
 328
 329static void free_css_set_rcu(struct rcu_head *obj)
 330{
 331        struct css_set *cg = container_of(obj, struct css_set, rcu_head);
 332        kfree(cg);
 333}
 334
 335/* We don't maintain the lists running through each css_set to its
 336 * task until after the first call to cgroup_iter_start(). This
 337 * reduces the fork()/exit() overhead for people who have cgroups
 338 * compiled into their kernel but not actually in use */
 339static int use_task_css_set_links __read_mostly;
 340
 341static void __put_css_set(struct css_set *cg, int taskexit)
 342{
 343        struct cg_cgroup_link *link;
 344        struct cg_cgroup_link *saved_link;
 345        /*
 346         * Ensure that the refcount doesn't hit zero while any readers
 347         * can see it. Similar to atomic_dec_and_lock(), but for an
 348         * rwlock
 349         */
 350        if (atomic_add_unless(&cg->refcount, -1, 1))
 351                return;
 352        write_lock(&css_set_lock);
 353        if (!atomic_dec_and_test(&cg->refcount)) {
 354                write_unlock(&css_set_lock);
 355                return;
 356        }
 357
 358        /* This css_set is dead. unlink it and release cgroup refcounts */
 359        hlist_del(&cg->hlist);
 360        css_set_count--;
 361
 362        list_for_each_entry_safe(link, saved_link, &cg->cg_links,
 363                                 cg_link_list) {
 364                struct cgroup *cgrp = link->cgrp;
 365                list_del(&link->cg_link_list);
 366                list_del(&link->cgrp_link_list);
 367                if (atomic_dec_and_test(&cgrp->count) &&
 368                    notify_on_release(cgrp)) {
 369                        if (taskexit)
 370                                set_bit(CGRP_RELEASABLE, &cgrp->flags);
 371                        check_for_release(cgrp);
 372                }
 373
 374                kfree(link);
 375        }
 376
 377        write_unlock(&css_set_lock);
 378        call_rcu(&cg->rcu_head, free_css_set_rcu);
 379}
 380
 381/*
 382 * refcounted get/put for css_set objects
 383 */
 384static inline void get_css_set(struct css_set *cg)
 385{
 386        atomic_inc(&cg->refcount);
 387}
 388
 389static inline void put_css_set(struct css_set *cg)
 390{
 391        __put_css_set(cg, 0);
 392}
 393
 394static inline void put_css_set_taskexit(struct css_set *cg)
 395{
 396        __put_css_set(cg, 1);
 397}
 398
 399/*
 400 * compare_css_sets - helper function for find_existing_css_set().
 401 * @cg: candidate css_set being tested
 402 * @old_cg: existing css_set for a task
 403 * @new_cgrp: cgroup that's being entered by the task
 404 * @template: desired set of css pointers in css_set (pre-calculated)
 405 *
 406 * Returns true if "cg" matches "old_cg" except for the hierarchy
 407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 408 */
 409static bool compare_css_sets(struct css_set *cg,
 410                             struct css_set *old_cg,
 411                             struct cgroup *new_cgrp,
 412                             struct cgroup_subsys_state *template[])
 413{
 414        struct list_head *l1, *l2;
 415
 416        if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 417                /* Not all subsystems matched */
 418                return false;
 419        }
 420
 421        /*
 422         * Compare cgroup pointers in order to distinguish between
 423         * different cgroups in heirarchies with no subsystems. We
 424         * could get by with just this check alone (and skip the
 425         * memcmp above) but on most setups the memcmp check will
 426         * avoid the need for this more expensive check on almost all
 427         * candidates.
 428         */
 429
 430        l1 = &cg->cg_links;
 431        l2 = &old_cg->cg_links;
 432        while (1) {
 433                struct cg_cgroup_link *cgl1, *cgl2;
 434                struct cgroup *cg1, *cg2;
 435
 436                l1 = l1->next;
 437                l2 = l2->next;
 438                /* See if we reached the end - both lists are equal length. */
 439                if (l1 == &cg->cg_links) {
 440                        BUG_ON(l2 != &old_cg->cg_links);
 441                        break;
 442                } else {
 443                        BUG_ON(l2 == &old_cg->cg_links);
 444                }
 445                /* Locate the cgroups associated with these links. */
 446                cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
 447                cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
 448                cg1 = cgl1->cgrp;
 449                cg2 = cgl2->cgrp;
 450                /* Hierarchies should be linked in the same order. */
 451                BUG_ON(cg1->root != cg2->root);
 452
 453                /*
 454                 * If this hierarchy is the hierarchy of the cgroup
 455                 * that's changing, then we need to check that this
 456                 * css_set points to the new cgroup; if it's any other
 457                 * hierarchy, then this css_set should point to the
 458                 * same cgroup as the old css_set.
 459                 */
 460                if (cg1->root == new_cgrp->root) {
 461                        if (cg1 != new_cgrp)
 462                                return false;
 463                } else {
 464                        if (cg1 != cg2)
 465                                return false;
 466                }
 467        }
 468        return true;
 469}
 470
 471/*
 472 * find_existing_css_set() is a helper for
 473 * find_css_set(), and checks to see whether an existing
 474 * css_set is suitable.
 475 *
 476 * oldcg: the cgroup group that we're using before the cgroup
 477 * transition
 478 *
 479 * cgrp: the cgroup that we're moving into
 480 *
 481 * template: location in which to build the desired set of subsystem
 482 * state objects for the new cgroup group
 483 */
 484static struct css_set *find_existing_css_set(
 485        struct css_set *oldcg,
 486        struct cgroup *cgrp,
 487        struct cgroup_subsys_state *template[])
 488{
 489        int i;
 490        struct cgroupfs_root *root = cgrp->root;
 491        struct hlist_head *hhead;
 492        struct hlist_node *node;
 493        struct css_set *cg;
 494
 495        /*
 496         * Build the set of subsystem state objects that we want to see in the
 497         * new css_set. while subsystems can change globally, the entries here
 498         * won't change, so no need for locking.
 499         */
 500        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 501                if (root->subsys_bits & (1UL << i)) {
 502                        /* Subsystem is in this hierarchy. So we want
 503                         * the subsystem state from the new
 504                         * cgroup */
 505                        template[i] = cgrp->subsys[i];
 506                } else {
 507                        /* Subsystem is not in this hierarchy, so we
 508                         * don't want to change the subsystem state */
 509                        template[i] = oldcg->subsys[i];
 510                }
 511        }
 512
 513        hhead = css_set_hash(template);
 514        hlist_for_each_entry(cg, node, hhead, hlist) {
 515                if (!compare_css_sets(cg, oldcg, cgrp, template))
 516                        continue;
 517
 518                /* This css_set matches what we need */
 519                return cg;
 520        }
 521
 522        /* No existing cgroup group matched */
 523        return NULL;
 524}
 525
 526static void free_cg_links(struct list_head *tmp)
 527{
 528        struct cg_cgroup_link *link;
 529        struct cg_cgroup_link *saved_link;
 530
 531        list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
 532                list_del(&link->cgrp_link_list);
 533                kfree(link);
 534        }
 535}
 536
 537/*
 538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
 539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 540 * success or a negative error
 541 */
 542static int allocate_cg_links(int count, struct list_head *tmp)
 543{
 544        struct cg_cgroup_link *link;
 545        int i;
 546        INIT_LIST_HEAD(tmp);
 547        for (i = 0; i < count; i++) {
 548                link = kmalloc(sizeof(*link), GFP_KERNEL);
 549                if (!link) {
 550                        free_cg_links(tmp);
 551                        return -ENOMEM;
 552                }
 553                list_add(&link->cgrp_link_list, tmp);
 554        }
 555        return 0;
 556}
 557
 558/**
 559 * link_css_set - a helper function to link a css_set to a cgroup
 560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 561 * @cg: the css_set to be linked
 562 * @cgrp: the destination cgroup
 563 */
 564static void link_css_set(struct list_head *tmp_cg_links,
 565                         struct css_set *cg, struct cgroup *cgrp)
 566{
 567        struct cg_cgroup_link *link;
 568
 569        BUG_ON(list_empty(tmp_cg_links));
 570        link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
 571                                cgrp_link_list);
 572        link->cg = cg;
 573        link->cgrp = cgrp;
 574        atomic_inc(&cgrp->count);
 575        list_move(&link->cgrp_link_list, &cgrp->css_sets);
 576        /*
 577         * Always add links to the tail of the list so that the list
 578         * is sorted by order of hierarchy creation
 579         */
 580        list_add_tail(&link->cg_link_list, &cg->cg_links);
 581}
 582
 583/*
 584 * find_css_set() takes an existing cgroup group and a
 585 * cgroup object, and returns a css_set object that's
 586 * equivalent to the old group, but with the given cgroup
 587 * substituted into the appropriate hierarchy. Must be called with
 588 * cgroup_mutex held
 589 */
 590static struct css_set *find_css_set(
 591        struct css_set *oldcg, struct cgroup *cgrp)
 592{
 593        struct css_set *res;
 594        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 595
 596        struct list_head tmp_cg_links;
 597
 598        struct hlist_head *hhead;
 599        struct cg_cgroup_link *link;
 600
 601        /* First see if we already have a cgroup group that matches
 602         * the desired set */
 603        read_lock(&css_set_lock);
 604        res = find_existing_css_set(oldcg, cgrp, template);
 605        if (res)
 606                get_css_set(res);
 607        read_unlock(&css_set_lock);
 608
 609        if (res)
 610                return res;
 611
 612        res = kmalloc(sizeof(*res), GFP_KERNEL);
 613        if (!res)
 614                return NULL;
 615
 616        /* Allocate all the cg_cgroup_link objects that we'll need */
 617        if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 618                kfree(res);
 619                return NULL;
 620        }
 621
 622        atomic_set(&res->refcount, 1);
 623        INIT_LIST_HEAD(&res->cg_links);
 624        INIT_LIST_HEAD(&res->tasks);
 625        INIT_HLIST_NODE(&res->hlist);
 626
 627        /* Copy the set of subsystem state objects generated in
 628         * find_existing_css_set() */
 629        memcpy(res->subsys, template, sizeof(res->subsys));
 630
 631        write_lock(&css_set_lock);
 632        /* Add reference counts and links from the new css_set. */
 633        list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
 634                struct cgroup *c = link->cgrp;
 635                if (c->root == cgrp->root)
 636                        c = cgrp;
 637                link_css_set(&tmp_cg_links, res, c);
 638        }
 639
 640        BUG_ON(!list_empty(&tmp_cg_links));
 641
 642        css_set_count++;
 643
 644        /* Add this cgroup group to the hash table */
 645        hhead = css_set_hash(res->subsys);
 646        hlist_add_head(&res->hlist, hhead);
 647
 648        write_unlock(&css_set_lock);
 649
 650        return res;
 651}
 652
 653/*
 654 * Return the cgroup for "task" from the given hierarchy. Must be
 655 * called with cgroup_mutex held.
 656 */
 657static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 658                                            struct cgroupfs_root *root)
 659{
 660        struct css_set *css;
 661        struct cgroup *res = NULL;
 662
 663        BUG_ON(!mutex_is_locked(&cgroup_mutex));
 664        read_lock(&css_set_lock);
 665        /*
 666         * No need to lock the task - since we hold cgroup_mutex the
 667         * task can't change groups, so the only thing that can happen
 668         * is that it exits and its css is set back to init_css_set.
 669         */
 670        css = task->cgroups;
 671        if (css == &init_css_set) {
 672                res = &root->top_cgroup;
 673        } else {
 674                struct cg_cgroup_link *link;
 675                list_for_each_entry(link, &css->cg_links, cg_link_list) {
 676                        struct cgroup *c = link->cgrp;
 677                        if (c->root == root) {
 678                                res = c;
 679                                break;
 680                        }
 681                }
 682        }
 683        read_unlock(&css_set_lock);
 684        BUG_ON(!res);
 685        return res;
 686}
 687
 688/*
 689 * There is one global cgroup mutex. We also require taking
 690 * task_lock() when dereferencing a task's cgroup subsys pointers.
 691 * See "The task_lock() exception", at the end of this comment.
 692 *
 693 * A task must hold cgroup_mutex to modify cgroups.
 694 *
 695 * Any task can increment and decrement the count field without lock.
 696 * So in general, code holding cgroup_mutex can't rely on the count
 697 * field not changing.  However, if the count goes to zero, then only
 698 * cgroup_attach_task() can increment it again.  Because a count of zero
 699 * means that no tasks are currently attached, therefore there is no
 700 * way a task attached to that cgroup can fork (the other way to
 701 * increment the count).  So code holding cgroup_mutex can safely
 702 * assume that if the count is zero, it will stay zero. Similarly, if
 703 * a task holds cgroup_mutex on a cgroup with zero count, it
 704 * knows that the cgroup won't be removed, as cgroup_rmdir()
 705 * needs that mutex.
 706 *
 707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 708 * (usually) take cgroup_mutex.  These are the two most performance
 709 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 710 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 711 * is taken, and if the cgroup count is zero, a usermode call made
 712 * to the release agent with the name of the cgroup (path relative to
 713 * the root of cgroup file system) as the argument.
 714 *
 715 * A cgroup can only be deleted if both its 'count' of using tasks
 716 * is zero, and its list of 'children' cgroups is empty.  Since all
 717 * tasks in the system use _some_ cgroup, and since there is always at
 718 * least one task in the system (init, pid == 1), therefore, top_cgroup
 719 * always has either children cgroups and/or using tasks.  So we don't
 720 * need a special hack to ensure that top_cgroup cannot be deleted.
 721 *
 722 *      The task_lock() exception
 723 *
 724 * The need for this exception arises from the action of
 725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 726 * another.  It does so using cgroup_mutex, however there are
 727 * several performance critical places that need to reference
 728 * task->cgroup without the expense of grabbing a system global
 729 * mutex.  Therefore except as noted below, when dereferencing or, as
 730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
 731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 732 * the task_struct routinely used for such matters.
 733 *
 734 * P.S.  One more locking exception.  RCU is used to guard the
 735 * update of a tasks cgroup pointer by cgroup_attach_task()
 736 */
 737
 738/**
 739 * cgroup_lock - lock out any changes to cgroup structures
 740 *
 741 */
 742void cgroup_lock(void)
 743{
 744        mutex_lock(&cgroup_mutex);
 745}
 746EXPORT_SYMBOL_GPL(cgroup_lock);
 747
 748/**
 749 * cgroup_unlock - release lock on cgroup changes
 750 *
 751 * Undo the lock taken in a previous cgroup_lock() call.
 752 */
 753void cgroup_unlock(void)
 754{
 755        mutex_unlock(&cgroup_mutex);
 756}
 757EXPORT_SYMBOL_GPL(cgroup_unlock);
 758
 759/*
 760 * A couple of forward declarations required, due to cyclic reference loop:
 761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 763 * -> cgroup_mkdir.
 764 */
 765
 766static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
 767static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
 768static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 769static int cgroup_populate_dir(struct cgroup *cgrp);
 770static const struct inode_operations cgroup_dir_inode_operations;
 771static const struct file_operations proc_cgroupstats_operations;
 772
 773static struct backing_dev_info cgroup_backing_dev_info = {
 774        .name           = "cgroup",
 775        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
 776};
 777
 778static int alloc_css_id(struct cgroup_subsys *ss,
 779                        struct cgroup *parent, struct cgroup *child);
 780
 781static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
 782{
 783        struct inode *inode = new_inode(sb);
 784
 785        if (inode) {
 786                inode->i_ino = get_next_ino();
 787                inode->i_mode = mode;
 788                inode->i_uid = current_fsuid();
 789                inode->i_gid = current_fsgid();
 790                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 791                inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 792        }
 793        return inode;
 794}
 795
 796/*
 797 * Call subsys's pre_destroy handler.
 798 * This is called before css refcnt check.
 799 */
 800static int cgroup_call_pre_destroy(struct cgroup *cgrp)
 801{
 802        struct cgroup_subsys *ss;
 803        int ret = 0;
 804
 805        for_each_subsys(cgrp->root, ss)
 806                if (ss->pre_destroy) {
 807                        ret = ss->pre_destroy(ss, cgrp);
 808                        if (ret)
 809                                break;
 810                }
 811
 812        return ret;
 813}
 814
 815static void free_cgroup_rcu(struct rcu_head *obj)
 816{
 817        struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
 818
 819        kfree(cgrp);
 820}
 821
 822static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 823{
 824        /* is dentry a directory ? if so, kfree() associated cgroup */
 825        if (S_ISDIR(inode->i_mode)) {
 826                struct cgroup *cgrp = dentry->d_fsdata;
 827                struct cgroup_subsys *ss;
 828                BUG_ON(!(cgroup_is_removed(cgrp)));
 829                /* It's possible for external users to be holding css
 830                 * reference counts on a cgroup; css_put() needs to
 831                 * be able to access the cgroup after decrementing
 832                 * the reference count in order to know if it needs to
 833                 * queue the cgroup to be handled by the release
 834                 * agent */
 835                synchronize_rcu();
 836
 837                mutex_lock(&cgroup_mutex);
 838                /*
 839                 * Release the subsystem state objects.
 840                 */
 841                for_each_subsys(cgrp->root, ss)
 842                        ss->destroy(ss, cgrp);
 843
 844                cgrp->root->number_of_cgroups--;
 845                mutex_unlock(&cgroup_mutex);
 846
 847                /*
 848                 * Drop the active superblock reference that we took when we
 849                 * created the cgroup
 850                 */
 851                deactivate_super(cgrp->root->sb);
 852
 853                /*
 854                 * if we're getting rid of the cgroup, refcount should ensure
 855                 * that there are no pidlists left.
 856                 */
 857                BUG_ON(!list_empty(&cgrp->pidlists));
 858
 859                call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
 860        }
 861        iput(inode);
 862}
 863
 864static int cgroup_delete(const struct dentry *d)
 865{
 866        return 1;
 867}
 868
 869static void remove_dir(struct dentry *d)
 870{
 871        struct dentry *parent = dget(d->d_parent);
 872
 873        d_delete(d);
 874        simple_rmdir(parent->d_inode, d);
 875        dput(parent);
 876}
 877
 878static void cgroup_clear_directory(struct dentry *dentry)
 879{
 880        struct list_head *node;
 881
 882        BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
 883        spin_lock(&dentry->d_lock);
 884        node = dentry->d_subdirs.next;
 885        while (node != &dentry->d_subdirs) {
 886                struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
 887
 888                spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 889                list_del_init(node);
 890                if (d->d_inode) {
 891                        /* This should never be called on a cgroup
 892                         * directory with child cgroups */
 893                        BUG_ON(d->d_inode->i_mode & S_IFDIR);
 894                        dget_dlock(d);
 895                        spin_unlock(&d->d_lock);
 896                        spin_unlock(&dentry->d_lock);
 897                        d_delete(d);
 898                        simple_unlink(dentry->d_inode, d);
 899                        dput(d);
 900                        spin_lock(&dentry->d_lock);
 901                } else
 902                        spin_unlock(&d->d_lock);
 903                node = dentry->d_subdirs.next;
 904        }
 905        spin_unlock(&dentry->d_lock);
 906}
 907
 908/*
 909 * NOTE : the dentry must have been dget()'ed
 910 */
 911static void cgroup_d_remove_dir(struct dentry *dentry)
 912{
 913        struct dentry *parent;
 914
 915        cgroup_clear_directory(dentry);
 916
 917        parent = dentry->d_parent;
 918        spin_lock(&parent->d_lock);
 919        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 920        list_del_init(&dentry->d_u.d_child);
 921        spin_unlock(&dentry->d_lock);
 922        spin_unlock(&parent->d_lock);
 923        remove_dir(dentry);
 924}
 925
 926/*
 927 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 928 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 929 * reference to css->refcnt. In general, this refcnt is expected to goes down
 930 * to zero, soon.
 931 *
 932 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
 933 */
 934DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
 935
 936static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
 937{
 938        if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
 939                wake_up_all(&cgroup_rmdir_waitq);
 940}
 941
 942void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
 943{
 944        css_get(css);
 945}
 946
 947void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
 948{
 949        cgroup_wakeup_rmdir_waiter(css->cgroup);
 950        css_put(css);
 951}
 952
 953/*
 954 * Call with cgroup_mutex held. Drops reference counts on modules, including
 955 * any duplicate ones that parse_cgroupfs_options took. If this function
 956 * returns an error, no reference counts are touched.
 957 */
 958static int rebind_subsystems(struct cgroupfs_root *root,
 959                              unsigned long final_bits)
 960{
 961        unsigned long added_bits, removed_bits;
 962        struct cgroup *cgrp = &root->top_cgroup;
 963        int i;
 964
 965        BUG_ON(!mutex_is_locked(&cgroup_mutex));
 966
 967        removed_bits = root->actual_subsys_bits & ~final_bits;
 968        added_bits = final_bits & ~root->actual_subsys_bits;
 969        /* Check that any added subsystems are currently free */
 970        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 971                unsigned long bit = 1UL << i;
 972                struct cgroup_subsys *ss = subsys[i];
 973                if (!(bit & added_bits))
 974                        continue;
 975                /*
 976                 * Nobody should tell us to do a subsys that doesn't exist:
 977                 * parse_cgroupfs_options should catch that case and refcounts
 978                 * ensure that subsystems won't disappear once selected.
 979                 */
 980                BUG_ON(ss == NULL);
 981                if (ss->root != &rootnode) {
 982                        /* Subsystem isn't free */
 983                        return -EBUSY;
 984                }
 985        }
 986
 987        /* Currently we don't handle adding/removing subsystems when
 988         * any child cgroups exist. This is theoretically supportable
 989         * but involves complex error handling, so it's being left until
 990         * later */
 991        if (root->number_of_cgroups > 1)
 992                return -EBUSY;
 993
 994        /* Process each subsystem */
 995        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 996                struct cgroup_subsys *ss = subsys[i];
 997                unsigned long bit = 1UL << i;
 998                if (bit & added_bits) {
 999                        /* We're binding this subsystem to this hierarchy */
1000                        BUG_ON(ss == NULL);
1001                        BUG_ON(cgrp->subsys[i]);
1002                        BUG_ON(!dummytop->subsys[i]);
1003                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1004                        mutex_lock(&ss->hierarchy_mutex);
1005                        cgrp->subsys[i] = dummytop->subsys[i];
1006                        cgrp->subsys[i]->cgroup = cgrp;
1007                        list_move(&ss->sibling, &root->subsys_list);
1008                        ss->root = root;
1009                        if (ss->bind)
1010                                ss->bind(ss, cgrp);
1011                        mutex_unlock(&ss->hierarchy_mutex);
1012                        /* refcount was already taken, and we're keeping it */
1013                } else if (bit & removed_bits) {
1014                        /* We're removing this subsystem */
1015                        BUG_ON(ss == NULL);
1016                        BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1017                        BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1018                        mutex_lock(&ss->hierarchy_mutex);
1019                        if (ss->bind)
1020                                ss->bind(ss, dummytop);
1021                        dummytop->subsys[i]->cgroup = dummytop;
1022                        cgrp->subsys[i] = NULL;
1023                        subsys[i]->root = &rootnode;
1024                        list_move(&ss->sibling, &rootnode.subsys_list);
1025                        mutex_unlock(&ss->hierarchy_mutex);
1026                        /* subsystem is now free - drop reference on module */
1027                        module_put(ss->module);
1028                } else if (bit & final_bits) {
1029                        /* Subsystem state should already exist */
1030                        BUG_ON(ss == NULL);
1031                        BUG_ON(!cgrp->subsys[i]);
1032                        /*
1033                         * a refcount was taken, but we already had one, so
1034                         * drop the extra reference.
1035                         */
1036                        module_put(ss->module);
1037#ifdef CONFIG_MODULE_UNLOAD
1038                        BUG_ON(ss->module && !module_refcount(ss->module));
1039#endif
1040                } else {
1041                        /* Subsystem state shouldn't exist */
1042                        BUG_ON(cgrp->subsys[i]);
1043                }
1044        }
1045        root->subsys_bits = root->actual_subsys_bits = final_bits;
1046        synchronize_rcu();
1047
1048        return 0;
1049}
1050
1051static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1052{
1053        struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1054        struct cgroup_subsys *ss;
1055
1056        mutex_lock(&cgroup_mutex);
1057        for_each_subsys(root, ss)
1058                seq_printf(seq, ",%s", ss->name);
1059        if (test_bit(ROOT_NOPREFIX, &root->flags))
1060                seq_puts(seq, ",noprefix");
1061        if (strlen(root->release_agent_path))
1062                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1063        if (clone_children(&root->top_cgroup))
1064                seq_puts(seq, ",clone_children");
1065        if (strlen(root->name))
1066                seq_printf(seq, ",name=%s", root->name);
1067        mutex_unlock(&cgroup_mutex);
1068        return 0;
1069}
1070
1071struct cgroup_sb_opts {
1072        unsigned long subsys_bits;
1073        unsigned long flags;
1074        char *release_agent;
1075        bool clone_children;
1076        char *name;
1077        /* User explicitly requested empty subsystem */
1078        bool none;
1079
1080        struct cgroupfs_root *new_root;
1081
1082};
1083
1084/*
1085 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1086 * with cgroup_mutex held to protect the subsys[] array. This function takes
1087 * refcounts on subsystems to be used, unless it returns error, in which case
1088 * no refcounts are taken.
1089 */
1090static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1091{
1092        char *token, *o = data;
1093        bool all_ss = false, one_ss = false;
1094        unsigned long mask = (unsigned long)-1;
1095        int i;
1096        bool module_pin_failed = false;
1097
1098        BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099
1100#ifdef CONFIG_CPUSETS
1101        mask = ~(1UL << cpuset_subsys_id);
1102#endif
1103
1104        memset(opts, 0, sizeof(*opts));
1105
1106        while ((token = strsep(&o, ",")) != NULL) {
1107                if (!*token)
1108                        return -EINVAL;
1109                if (!strcmp(token, "none")) {
1110                        /* Explicitly have no subsystems */
1111                        opts->none = true;
1112                        continue;
1113                }
1114                if (!strcmp(token, "all")) {
1115                        /* Mutually exclusive option 'all' + subsystem name */
1116                        if (one_ss)
1117                                return -EINVAL;
1118                        all_ss = true;
1119                        continue;
1120                }
1121                if (!strcmp(token, "noprefix")) {
1122                        set_bit(ROOT_NOPREFIX, &opts->flags);
1123                        continue;
1124                }
1125                if (!strcmp(token, "clone_children")) {
1126                        opts->clone_children = true;
1127                        continue;
1128                }
1129                if (!strncmp(token, "release_agent=", 14)) {
1130                        /* Specifying two release agents is forbidden */
1131                        if (opts->release_agent)
1132                                return -EINVAL;
1133                        opts->release_agent =
1134                                kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1135                        if (!opts->release_agent)
1136                                return -ENOMEM;
1137                        continue;
1138                }
1139                if (!strncmp(token, "name=", 5)) {
1140                        const char *name = token + 5;
1141                        /* Can't specify an empty name */
1142                        if (!strlen(name))
1143                                return -EINVAL;
1144                        /* Must match [\w.-]+ */
1145                        for (i = 0; i < strlen(name); i++) {
1146                                char c = name[i];
1147                                if (isalnum(c))
1148                                        continue;
1149                                if ((c == '.') || (c == '-') || (c == '_'))
1150                                        continue;
1151                                return -EINVAL;
1152                        }
1153                        /* Specifying two names is forbidden */
1154                        if (opts->name)
1155                                return -EINVAL;
1156                        opts->name = kstrndup(name,
1157                                              MAX_CGROUP_ROOT_NAMELEN - 1,
1158                                              GFP_KERNEL);
1159                        if (!opts->name)
1160                                return -ENOMEM;
1161
1162                        continue;
1163                }
1164
1165                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1166                        struct cgroup_subsys *ss = subsys[i];
1167                        if (ss == NULL)
1168                                continue;
1169                        if (strcmp(token, ss->name))
1170                                continue;
1171                        if (ss->disabled)
1172                                continue;
1173
1174                        /* Mutually exclusive option 'all' + subsystem name */
1175                        if (all_ss)
1176                                return -EINVAL;
1177                        set_bit(i, &opts->subsys_bits);
1178                        one_ss = true;
1179
1180                        break;
1181                }
1182                if (i == CGROUP_SUBSYS_COUNT)
1183                        return -ENOENT;
1184        }
1185
1186        /*
1187         * If the 'all' option was specified select all the subsystems,
1188         * otherwise 'all, 'none' and a subsystem name options were not
1189         * specified, let's default to 'all'
1190         */
1191        if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1192                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1193                        struct cgroup_subsys *ss = subsys[i];
1194                        if (ss == NULL)
1195                                continue;
1196                        if (ss->disabled)
1197                                continue;
1198                        set_bit(i, &opts->subsys_bits);
1199                }
1200        }
1201
1202        /* Consistency checks */
1203
1204        /*
1205         * Option noprefix was introduced just for backward compatibility
1206         * with the old cpuset, so we allow noprefix only if mounting just
1207         * the cpuset subsystem.
1208         */
1209        if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1210            (opts->subsys_bits & mask))
1211                return -EINVAL;
1212
1213
1214        /* Can't specify "none" and some subsystems */
1215        if (opts->subsys_bits && opts->none)
1216                return -EINVAL;
1217
1218        /*
1219         * We either have to specify by name or by subsystems. (So all
1220         * empty hierarchies must have a name).
1221         */
1222        if (!opts->subsys_bits && !opts->name)
1223                return -EINVAL;
1224
1225        /*
1226         * Grab references on all the modules we'll need, so the subsystems
1227         * don't dance around before rebind_subsystems attaches them. This may
1228         * take duplicate reference counts on a subsystem that's already used,
1229         * but rebind_subsystems handles this case.
1230         */
1231        for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1232                unsigned long bit = 1UL << i;
1233
1234                if (!(bit & opts->subsys_bits))
1235                        continue;
1236                if (!try_module_get(subsys[i]->module)) {
1237                        module_pin_failed = true;
1238                        break;
1239                }
1240        }
1241        if (module_pin_failed) {
1242                /*
1243                 * oops, one of the modules was going away. this means that we
1244                 * raced with a module_delete call, and to the user this is
1245                 * essentially a "subsystem doesn't exist" case.
1246                 */
1247                for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1248                        /* drop refcounts only on the ones we took */
1249                        unsigned long bit = 1UL << i;
1250
1251                        if (!(bit & opts->subsys_bits))
1252                                continue;
1253                        module_put(subsys[i]->module);
1254                }
1255                return -ENOENT;
1256        }
1257
1258        return 0;
1259}
1260
1261static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1262{
1263        int i;
1264        for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1265                unsigned long bit = 1UL << i;
1266
1267                if (!(bit & subsys_bits))
1268                        continue;
1269                module_put(subsys[i]->module);
1270        }
1271}
1272
1273static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1274{
1275        int ret = 0;
1276        struct cgroupfs_root *root = sb->s_fs_info;
1277        struct cgroup *cgrp = &root->top_cgroup;
1278        struct cgroup_sb_opts opts;
1279
1280        mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1281        mutex_lock(&cgroup_mutex);
1282
1283        /* See what subsystems are wanted */
1284        ret = parse_cgroupfs_options(data, &opts);
1285        if (ret)
1286                goto out_unlock;
1287
1288        /* Don't allow flags or name to change at remount */
1289        if (opts.flags != root->flags ||
1290            (opts.name && strcmp(opts.name, root->name))) {
1291                ret = -EINVAL;
1292                drop_parsed_module_refcounts(opts.subsys_bits);
1293                goto out_unlock;
1294        }
1295
1296        ret = rebind_subsystems(root, opts.subsys_bits);
1297        if (ret) {
1298                drop_parsed_module_refcounts(opts.subsys_bits);
1299                goto out_unlock;
1300        }
1301
1302        /* (re)populate subsystem files */
1303        cgroup_populate_dir(cgrp);
1304
1305        if (opts.release_agent)
1306                strcpy(root->release_agent_path, opts.release_agent);
1307 out_unlock:
1308        kfree(opts.release_agent);
1309        kfree(opts.name);
1310        mutex_unlock(&cgroup_mutex);
1311        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1312        return ret;
1313}
1314
1315static const struct super_operations cgroup_ops = {
1316        .statfs = simple_statfs,
1317        .drop_inode = generic_delete_inode,
1318        .show_options = cgroup_show_options,
1319        .remount_fs = cgroup_remount,
1320};
1321
1322static void init_cgroup_housekeeping(struct cgroup *cgrp)
1323{
1324        INIT_LIST_HEAD(&cgrp->sibling);
1325        INIT_LIST_HEAD(&cgrp->children);
1326        INIT_LIST_HEAD(&cgrp->css_sets);
1327        INIT_LIST_HEAD(&cgrp->release_list);
1328        INIT_LIST_HEAD(&cgrp->pidlists);
1329        mutex_init(&cgrp->pidlist_mutex);
1330        INIT_LIST_HEAD(&cgrp->event_list);
1331        spin_lock_init(&cgrp->event_list_lock);
1332}
1333
1334static void init_cgroup_root(struct cgroupfs_root *root)
1335{
1336        struct cgroup *cgrp = &root->top_cgroup;
1337        INIT_LIST_HEAD(&root->subsys_list);
1338        INIT_LIST_HEAD(&root->root_list);
1339        root->number_of_cgroups = 1;
1340        cgrp->root = root;
1341        cgrp->top_cgroup = cgrp;
1342        init_cgroup_housekeeping(cgrp);
1343}
1344
1345static bool init_root_id(struct cgroupfs_root *root)
1346{
1347        int ret = 0;
1348
1349        do {
1350                if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1351                        return false;
1352                spin_lock(&hierarchy_id_lock);
1353                /* Try to allocate the next unused ID */
1354                ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1355                                        &root->hierarchy_id);
1356                if (ret == -ENOSPC)
1357                        /* Try again starting from 0 */
1358                        ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1359                if (!ret) {
1360                        next_hierarchy_id = root->hierarchy_id + 1;
1361                } else if (ret != -EAGAIN) {
1362                        /* Can only get here if the 31-bit IDR is full ... */
1363                        BUG_ON(ret);
1364                }
1365                spin_unlock(&hierarchy_id_lock);
1366        } while (ret);
1367        return true;
1368}
1369
1370static int cgroup_test_super(struct super_block *sb, void *data)
1371{
1372        struct cgroup_sb_opts *opts = data;
1373        struct cgroupfs_root *root = sb->s_fs_info;
1374
1375        /* If we asked for a name then it must match */
1376        if (opts->name && strcmp(opts->name, root->name))
1377                return 0;
1378
1379        /*
1380         * If we asked for subsystems (or explicitly for no
1381         * subsystems) then they must match
1382         */
1383        if ((opts->subsys_bits || opts->none)
1384            && (opts->subsys_bits != root->subsys_bits))
1385                return 0;
1386
1387        return 1;
1388}
1389
1390static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1391{
1392        struct cgroupfs_root *root;
1393
1394        if (!opts->subsys_bits && !opts->none)
1395                return NULL;
1396
1397        root = kzalloc(sizeof(*root), GFP_KERNEL);
1398        if (!root)
1399                return ERR_PTR(-ENOMEM);
1400
1401        if (!init_root_id(root)) {
1402                kfree(root);
1403                return ERR_PTR(-ENOMEM);
1404        }
1405        init_cgroup_root(root);
1406
1407        root->subsys_bits = opts->subsys_bits;
1408        root->flags = opts->flags;
1409        if (opts->release_agent)
1410                strcpy(root->release_agent_path, opts->release_agent);
1411        if (opts->name)
1412                strcpy(root->name, opts->name);
1413        if (opts->clone_children)
1414                set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1415        return root;
1416}
1417
1418static void cgroup_drop_root(struct cgroupfs_root *root)
1419{
1420        if (!root)
1421                return;
1422
1423        BUG_ON(!root->hierarchy_id);
1424        spin_lock(&hierarchy_id_lock);
1425        ida_remove(&hierarchy_ida, root->hierarchy_id);
1426        spin_unlock(&hierarchy_id_lock);
1427        kfree(root);
1428}
1429
1430static int cgroup_set_super(struct super_block *sb, void *data)
1431{
1432        int ret;
1433        struct cgroup_sb_opts *opts = data;
1434
1435        /* If we don't have a new root, we can't set up a new sb */
1436        if (!opts->new_root)
1437                return -EINVAL;
1438
1439        BUG_ON(!opts->subsys_bits && !opts->none);
1440
1441        ret = set_anon_super(sb, NULL);
1442        if (ret)
1443                return ret;
1444
1445        sb->s_fs_info = opts->new_root;
1446        opts->new_root->sb = sb;
1447
1448        sb->s_blocksize = PAGE_CACHE_SIZE;
1449        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1450        sb->s_magic = CGROUP_SUPER_MAGIC;
1451        sb->s_op = &cgroup_ops;
1452
1453        return 0;
1454}
1455
1456static int cgroup_get_rootdir(struct super_block *sb)
1457{
1458        static const struct dentry_operations cgroup_dops = {
1459                .d_iput = cgroup_diput,
1460                .d_delete = cgroup_delete,
1461        };
1462
1463        struct inode *inode =
1464                cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1465        struct dentry *dentry;
1466
1467        if (!inode)
1468                return -ENOMEM;
1469
1470        inode->i_fop = &simple_dir_operations;
1471        inode->i_op = &cgroup_dir_inode_operations;
1472        /* directories start off with i_nlink == 2 (for "." entry) */
1473        inc_nlink(inode);
1474        dentry = d_alloc_root(inode);
1475        if (!dentry) {
1476                iput(inode);
1477                return -ENOMEM;
1478        }
1479        sb->s_root = dentry;
1480        /* for everything else we want ->d_op set */
1481        sb->s_d_op = &cgroup_dops;
1482        return 0;
1483}
1484
1485static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1486                         int flags, const char *unused_dev_name,
1487                         void *data)
1488{
1489        struct cgroup_sb_opts opts;
1490        struct cgroupfs_root *root;
1491        int ret = 0;
1492        struct super_block *sb;
1493        struct cgroupfs_root *new_root;
1494
1495        /* First find the desired set of subsystems */
1496        mutex_lock(&cgroup_mutex);
1497        ret = parse_cgroupfs_options(data, &opts);
1498        mutex_unlock(&cgroup_mutex);
1499        if (ret)
1500                goto out_err;
1501
1502        /*
1503         * Allocate a new cgroup root. We may not need it if we're
1504         * reusing an existing hierarchy.
1505         */
1506        new_root = cgroup_root_from_opts(&opts);
1507        if (IS_ERR(new_root)) {
1508                ret = PTR_ERR(new_root);
1509                goto drop_modules;
1510        }
1511        opts.new_root = new_root;
1512
1513        /* Locate an existing or new sb for this hierarchy */
1514        sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1515        if (IS_ERR(sb)) {
1516                ret = PTR_ERR(sb);
1517                cgroup_drop_root(opts.new_root);
1518                goto drop_modules;
1519        }
1520
1521        root = sb->s_fs_info;
1522        BUG_ON(!root);
1523        if (root == opts.new_root) {
1524                /* We used the new root structure, so this is a new hierarchy */
1525                struct list_head tmp_cg_links;
1526                struct cgroup *root_cgrp = &root->top_cgroup;
1527                struct inode *inode;
1528                struct cgroupfs_root *existing_root;
1529                int i;
1530
1531                BUG_ON(sb->s_root != NULL);
1532
1533                ret = cgroup_get_rootdir(sb);
1534                if (ret)
1535                        goto drop_new_super;
1536                inode = sb->s_root->d_inode;
1537
1538                mutex_lock(&inode->i_mutex);
1539                mutex_lock(&cgroup_mutex);
1540
1541                if (strlen(root->name)) {
1542                        /* Check for name clashes with existing mounts */
1543                        for_each_active_root(existing_root) {
1544                                if (!strcmp(existing_root->name, root->name)) {
1545                                        ret = -EBUSY;
1546                                        mutex_unlock(&cgroup_mutex);
1547                                        mutex_unlock(&inode->i_mutex);
1548                                        goto drop_new_super;
1549                                }
1550                        }
1551                }
1552
1553                /*
1554                 * We're accessing css_set_count without locking
1555                 * css_set_lock here, but that's OK - it can only be
1556                 * increased by someone holding cgroup_lock, and
1557                 * that's us. The worst that can happen is that we
1558                 * have some link structures left over
1559                 */
1560                ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1561                if (ret) {
1562                        mutex_unlock(&cgroup_mutex);
1563                        mutex_unlock(&inode->i_mutex);
1564                        goto drop_new_super;
1565                }
1566
1567                ret = rebind_subsystems(root, root->subsys_bits);
1568                if (ret == -EBUSY) {
1569                        mutex_unlock(&cgroup_mutex);
1570                        mutex_unlock(&inode->i_mutex);
1571                        free_cg_links(&tmp_cg_links);
1572                        goto drop_new_super;
1573                }
1574                /*
1575                 * There must be no failure case after here, since rebinding
1576                 * takes care of subsystems' refcounts, which are explicitly
1577                 * dropped in the failure exit path.
1578                 */
1579
1580                /* EBUSY should be the only error here */
1581                BUG_ON(ret);
1582
1583                list_add(&root->root_list, &roots);
1584                root_count++;
1585
1586                sb->s_root->d_fsdata = root_cgrp;
1587                root->top_cgroup.dentry = sb->s_root;
1588
1589                /* Link the top cgroup in this hierarchy into all
1590                 * the css_set objects */
1591                write_lock(&css_set_lock);
1592                for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1593                        struct hlist_head *hhead = &css_set_table[i];
1594                        struct hlist_node *node;
1595                        struct css_set *cg;
1596
1597                        hlist_for_each_entry(cg, node, hhead, hlist)
1598                                link_css_set(&tmp_cg_links, cg, root_cgrp);
1599                }
1600                write_unlock(&css_set_lock);
1601
1602                free_cg_links(&tmp_cg_links);
1603
1604                BUG_ON(!list_empty(&root_cgrp->sibling));
1605                BUG_ON(!list_empty(&root_cgrp->children));
1606                BUG_ON(root->number_of_cgroups != 1);
1607
1608                cgroup_populate_dir(root_cgrp);
1609                mutex_unlock(&cgroup_mutex);
1610                mutex_unlock(&inode->i_mutex);
1611        } else {
1612                /*
1613                 * We re-used an existing hierarchy - the new root (if
1614                 * any) is not needed
1615                 */
1616                cgroup_drop_root(opts.new_root);
1617                /* no subsys rebinding, so refcounts don't change */
1618                drop_parsed_module_refcounts(opts.subsys_bits);
1619        }
1620
1621        kfree(opts.release_agent);
1622        kfree(opts.name);
1623        return dget(sb->s_root);
1624
1625 drop_new_super:
1626        deactivate_locked_super(sb);
1627 drop_modules:
1628        drop_parsed_module_refcounts(opts.subsys_bits);
1629 out_err:
1630        kfree(opts.release_agent);
1631        kfree(opts.name);
1632        return ERR_PTR(ret);
1633}
1634
1635static void cgroup_kill_sb(struct super_block *sb) {
1636        struct cgroupfs_root *root = sb->s_fs_info;
1637        struct cgroup *cgrp = &root->top_cgroup;
1638        int ret;
1639        struct cg_cgroup_link *link;
1640        struct cg_cgroup_link *saved_link;
1641
1642        BUG_ON(!root);
1643
1644        BUG_ON(root->number_of_cgroups != 1);
1645        BUG_ON(!list_empty(&cgrp->children));
1646        BUG_ON(!list_empty(&cgrp->sibling));
1647
1648        mutex_lock(&cgroup_mutex);
1649
1650        /* Rebind all subsystems back to the default hierarchy */
1651        ret = rebind_subsystems(root, 0);
1652        /* Shouldn't be able to fail ... */
1653        BUG_ON(ret);
1654
1655        /*
1656         * Release all the links from css_sets to this hierarchy's
1657         * root cgroup
1658         */
1659        write_lock(&css_set_lock);
1660
1661        list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1662                                 cgrp_link_list) {
1663                list_del(&link->cg_link_list);
1664                list_del(&link->cgrp_link_list);
1665                kfree(link);
1666        }
1667        write_unlock(&css_set_lock);
1668
1669        if (!list_empty(&root->root_list)) {
1670                list_del(&root->root_list);
1671                root_count--;
1672        }
1673
1674        mutex_unlock(&cgroup_mutex);
1675
1676        kill_litter_super(sb);
1677        cgroup_drop_root(root);
1678}
1679
1680static struct file_system_type cgroup_fs_type = {
1681        .name = "cgroup",
1682        .mount = cgroup_mount,
1683        .kill_sb = cgroup_kill_sb,
1684};
1685
1686static struct kobject *cgroup_kobj;
1687
1688static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1689{
1690        return dentry->d_fsdata;
1691}
1692
1693static inline struct cftype *__d_cft(struct dentry *dentry)
1694{
1695        return dentry->d_fsdata;
1696}
1697
1698/**
1699 * cgroup_path - generate the path of a cgroup
1700 * @cgrp: the cgroup in question
1701 * @buf: the buffer to write the path into
1702 * @buflen: the length of the buffer
1703 *
1704 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1705 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1706 * -errno on error.
1707 */
1708int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1709{
1710        char *start;
1711        struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1712                                                      rcu_read_lock_held() ||
1713                                                      cgroup_lock_is_held());
1714
1715        if (!dentry || cgrp == dummytop) {
1716                /*
1717                 * Inactive subsystems have no dentry for their root
1718                 * cgroup
1719                 */
1720                strcpy(buf, "/");
1721                return 0;
1722        }
1723
1724        start = buf + buflen;
1725
1726        *--start = '\0';
1727        for (;;) {
1728                int len = dentry->d_name.len;
1729
1730                if ((start -= len) < buf)
1731                        return -ENAMETOOLONG;
1732                memcpy(start, dentry->d_name.name, len);
1733                cgrp = cgrp->parent;
1734                if (!cgrp)
1735                        break;
1736
1737                dentry = rcu_dereference_check(cgrp->dentry,
1738                                               rcu_read_lock_held() ||
1739                                               cgroup_lock_is_held());
1740                if (!cgrp->parent)
1741                        continue;
1742                if (--start < buf)
1743                        return -ENAMETOOLONG;
1744                *start = '/';
1745        }
1746        memmove(buf, start, buf + buflen - start);
1747        return 0;
1748}
1749EXPORT_SYMBOL_GPL(cgroup_path);
1750
1751/**
1752 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1753 * @cgrp: the cgroup the task is attaching to
1754 * @tsk: the task to be attached
1755 *
1756 * Call holding cgroup_mutex. May take task_lock of
1757 * the task 'tsk' during call.
1758 */
1759int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1760{
1761        int retval = 0;
1762        struct cgroup_subsys *ss, *failed_ss = NULL;
1763        struct cgroup *oldcgrp;
1764        struct css_set *cg;
1765        struct css_set *newcg;
1766        struct cgroupfs_root *root = cgrp->root;
1767
1768        /* Nothing to do if the task is already in that cgroup */
1769        oldcgrp = task_cgroup_from_root(tsk, root);
1770        if (cgrp == oldcgrp)
1771                return 0;
1772
1773        for_each_subsys(root, ss) {
1774                if (ss->can_attach) {
1775                        retval = ss->can_attach(ss, cgrp, tsk, false);
1776                        if (retval) {
1777                                /*
1778                                 * Remember on which subsystem the can_attach()
1779                                 * failed, so that we only call cancel_attach()
1780                                 * against the subsystems whose can_attach()
1781                                 * succeeded. (See below)
1782                                 */
1783                                failed_ss = ss;
1784                                goto out;
1785                        }
1786                }
1787        }
1788
1789        task_lock(tsk);
1790        cg = tsk->cgroups;
1791        get_css_set(cg);
1792        task_unlock(tsk);
1793        /*
1794         * Locate or allocate a new css_set for this task,
1795         * based on its final set of cgroups
1796         */
1797        newcg = find_css_set(cg, cgrp);
1798        put_css_set(cg);
1799        if (!newcg) {
1800                retval = -ENOMEM;
1801                goto out;
1802        }
1803
1804        task_lock(tsk);
1805        if (tsk->flags & PF_EXITING) {
1806                task_unlock(tsk);
1807                put_css_set(newcg);
1808                retval = -ESRCH;
1809                goto out;
1810        }
1811        rcu_assign_pointer(tsk->cgroups, newcg);
1812        task_unlock(tsk);
1813
1814        /* Update the css_set linked lists if we're using them */
1815        write_lock(&css_set_lock);
1816        if (!list_empty(&tsk->cg_list)) {
1817                list_del(&tsk->cg_list);
1818                list_add(&tsk->cg_list, &newcg->tasks);
1819        }
1820        write_unlock(&css_set_lock);
1821
1822        for_each_subsys(root, ss) {
1823                if (ss->attach)
1824                        ss->attach(ss, cgrp, oldcgrp, tsk, false);
1825        }
1826        set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1827        synchronize_rcu();
1828        put_css_set(cg);
1829
1830        /*
1831         * wake up rmdir() waiter. the rmdir should fail since the cgroup
1832         * is no longer empty.
1833         */
1834        cgroup_wakeup_rmdir_waiter(cgrp);
1835out:
1836        if (retval) {
1837                for_each_subsys(root, ss) {
1838                        if (ss == failed_ss)
1839                                /*
1840                                 * This subsystem was the one that failed the
1841                                 * can_attach() check earlier, so we don't need
1842                                 * to call cancel_attach() against it or any
1843                                 * remaining subsystems.
1844                                 */
1845                                break;
1846                        if (ss->cancel_attach)
1847                                ss->cancel_attach(ss, cgrp, tsk, false);
1848                }
1849        }
1850        return retval;
1851}
1852
1853/**
1854 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1855 * @from: attach to all cgroups of a given task
1856 * @tsk: the task to be attached
1857 */
1858int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1859{
1860        struct cgroupfs_root *root;
1861        int retval = 0;
1862
1863        cgroup_lock();
1864        for_each_active_root(root) {
1865                struct cgroup *from_cg = task_cgroup_from_root(from, root);
1866
1867                retval = cgroup_attach_task(from_cg, tsk);
1868                if (retval)
1869                        break;
1870        }
1871        cgroup_unlock();
1872
1873        return retval;
1874}
1875EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1876
1877/*
1878 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1879 * held. May take task_lock of task
1880 */
1881static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1882{
1883        struct task_struct *tsk;
1884        const struct cred *cred = current_cred(), *tcred;
1885        int ret;
1886
1887        if (pid) {
1888                rcu_read_lock();
1889                tsk = find_task_by_vpid(pid);
1890                if (!tsk || tsk->flags & PF_EXITING) {
1891                        rcu_read_unlock();
1892                        return -ESRCH;
1893                }
1894
1895                tcred = __task_cred(tsk);
1896                if (cred->euid &&
1897                    cred->euid != tcred->uid &&
1898                    cred->euid != tcred->suid) {
1899                        rcu_read_unlock();
1900                        return -EACCES;
1901                }
1902                get_task_struct(tsk);
1903                rcu_read_unlock();
1904        } else {
1905                tsk = current;
1906                get_task_struct(tsk);
1907        }
1908
1909        ret = cgroup_attach_task(cgrp, tsk);
1910        put_task_struct(tsk);
1911        return ret;
1912}
1913
1914static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1915{
1916        int ret;
1917        if (!cgroup_lock_live_group(cgrp))
1918                return -ENODEV;
1919        ret = attach_task_by_pid(cgrp, pid);
1920        cgroup_unlock();
1921        return ret;
1922}
1923
1924/**
1925 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1926 * @cgrp: the cgroup to be checked for liveness
1927 *
1928 * On success, returns true; the lock should be later released with
1929 * cgroup_unlock(). On failure returns false with no lock held.
1930 */
1931bool cgroup_lock_live_group(struct cgroup *cgrp)
1932{
1933        mutex_lock(&cgroup_mutex);
1934        if (cgroup_is_removed(cgrp)) {
1935                mutex_unlock(&cgroup_mutex);
1936                return false;
1937        }
1938        return true;
1939}
1940EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1941
1942static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1943                                      const char *buffer)
1944{
1945        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1946        if (strlen(buffer) >= PATH_MAX)
1947                return -EINVAL;
1948        if (!cgroup_lock_live_group(cgrp))
1949                return -ENODEV;
1950        strcpy(cgrp->root->release_agent_path, buffer);
1951        cgroup_unlock();
1952        return 0;
1953}
1954
1955static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1956                                     struct seq_file *seq)
1957{
1958        if (!cgroup_lock_live_group(cgrp))
1959                return -ENODEV;
1960        seq_puts(seq, cgrp->root->release_agent_path);
1961        seq_putc(seq, '\n');
1962        cgroup_unlock();
1963        return 0;
1964}
1965
1966/* A buffer size big enough for numbers or short strings */
1967#define CGROUP_LOCAL_BUFFER_SIZE 64
1968
1969static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1970                                struct file *file,
1971                                const char __user *userbuf,
1972                                size_t nbytes, loff_t *unused_ppos)
1973{
1974        char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1975        int retval = 0;
1976        char *end;
1977
1978        if (!nbytes)
1979                return -EINVAL;
1980        if (nbytes >= sizeof(buffer))
1981                return -E2BIG;
1982        if (copy_from_user(buffer, userbuf, nbytes))
1983                return -EFAULT;
1984
1985        buffer[nbytes] = 0;     /* nul-terminate */
1986        if (cft->write_u64) {
1987                u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1988                if (*end)
1989                        return -EINVAL;
1990                retval = cft->write_u64(cgrp, cft, val);
1991        } else {
1992                s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1993                if (*end)
1994                        return -EINVAL;
1995                retval = cft->write_s64(cgrp, cft, val);
1996        }
1997        if (!retval)
1998                retval = nbytes;
1999        return retval;
2000}
2001
2002static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2003                                   struct file *file,
2004                                   const char __user *userbuf,
2005                                   size_t nbytes, loff_t *unused_ppos)
2006{
2007        char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2008        int retval = 0;
2009        size_t max_bytes = cft->max_write_len;
2010        char *buffer = local_buffer;
2011
2012        if (!max_bytes)
2013                max_bytes = sizeof(local_buffer) - 1;
2014        if (nbytes >= max_bytes)
2015                return -E2BIG;
2016        /* Allocate a dynamic buffer if we need one */
2017        if (nbytes >= sizeof(local_buffer)) {
2018                buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2019                if (buffer == NULL)
2020                        return -ENOMEM;
2021        }
2022        if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2023                retval = -EFAULT;
2024                goto out;
2025        }
2026
2027        buffer[nbytes] = 0;     /* nul-terminate */
2028        retval = cft->write_string(cgrp, cft, strstrip(buffer));
2029        if (!retval)
2030                retval = nbytes;
2031out:
2032        if (buffer != local_buffer)
2033                kfree(buffer);
2034        return retval;
2035}
2036
2037static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2038                                                size_t nbytes, loff_t *ppos)
2039{
2040        struct cftype *cft = __d_cft(file->f_dentry);
2041        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2042
2043        if (cgroup_is_removed(cgrp))
2044                return -ENODEV;
2045        if (cft->write)
2046                return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2047        if (cft->write_u64 || cft->write_s64)
2048                return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2049        if (cft->write_string)
2050                return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2051        if (cft->trigger) {
2052                int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2053                return ret ? ret : nbytes;
2054        }
2055        return -EINVAL;
2056}
2057
2058static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2059                               struct file *file,
2060                               char __user *buf, size_t nbytes,
2061                               loff_t *ppos)
2062{
2063        char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2064        u64 val = cft->read_u64(cgrp, cft);
2065        int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2066
2067        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2068}
2069
2070static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2071                               struct file *file,
2072                               char __user *buf, size_t nbytes,
2073                               loff_t *ppos)
2074{
2075        char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2076        s64 val = cft->read_s64(cgrp, cft);
2077        int len = sprintf(tmp, "%lld\n", (long long) val);
2078
2079        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2080}
2081
2082static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2083                                   size_t nbytes, loff_t *ppos)
2084{
2085        struct cftype *cft = __d_cft(file->f_dentry);
2086        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2087
2088        if (cgroup_is_removed(cgrp))
2089                return -ENODEV;
2090
2091        if (cft->read)
2092                return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2093        if (cft->read_u64)
2094                return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2095        if (cft->read_s64)
2096                return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2097        return -EINVAL;
2098}
2099
2100/*
2101 * seqfile ops/methods for returning structured data. Currently just
2102 * supports string->u64 maps, but can be extended in future.
2103 */
2104
2105struct cgroup_seqfile_state {
2106        struct cftype *cft;
2107        struct cgroup *cgroup;
2108};
2109
2110static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2111{
2112        struct seq_file *sf = cb->state;
2113        return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2114}
2115
2116static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2117{
2118        struct cgroup_seqfile_state *state = m->private;
2119        struct cftype *cft = state->cft;
2120        if (cft->read_map) {
2121                struct cgroup_map_cb cb = {
2122                        .fill = cgroup_map_add,
2123                        .state = m,
2124                };
2125                return cft->read_map(state->cgroup, cft, &cb);
2126        }
2127        return cft->read_seq_string(state->cgroup, cft, m);
2128}
2129
2130static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2131{
2132        struct seq_file *seq = file->private_data;
2133        kfree(seq->private);
2134        return single_release(inode, file);
2135}
2136
2137static const struct file_operations cgroup_seqfile_operations = {
2138        .read = seq_read,
2139        .write = cgroup_file_write,
2140        .llseek = seq_lseek,
2141        .release = cgroup_seqfile_release,
2142};
2143
2144static int cgroup_file_open(struct inode *inode, struct file *file)
2145{
2146        int err;
2147        struct cftype *cft;
2148
2149        err = generic_file_open(inode, file);
2150        if (err)
2151                return err;
2152        cft = __d_cft(file->f_dentry);
2153
2154        if (cft->read_map || cft->read_seq_string) {
2155                struct cgroup_seqfile_state *state =
2156                        kzalloc(sizeof(*state), GFP_USER);
2157                if (!state)
2158                        return -ENOMEM;
2159                state->cft = cft;
2160                state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2161                file->f_op = &cgroup_seqfile_operations;
2162                err = single_open(file, cgroup_seqfile_show, state);
2163                if (err < 0)
2164                        kfree(state);
2165        } else if (cft->open)
2166                err = cft->open(inode, file);
2167        else
2168                err = 0;
2169
2170        return err;
2171}
2172
2173static int cgroup_file_release(struct inode *inode, struct file *file)
2174{
2175        struct cftype *cft = __d_cft(file->f_dentry);
2176        if (cft->release)
2177                return cft->release(inode, file);
2178        return 0;
2179}
2180
2181/*
2182 * cgroup_rename - Only allow simple rename of directories in place.
2183 */
2184static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2185                            struct inode *new_dir, struct dentry *new_dentry)
2186{
2187        if (!S_ISDIR(old_dentry->d_inode->i_mode))
2188                return -ENOTDIR;
2189        if (new_dentry->d_inode)
2190                return -EEXIST;
2191        if (old_dir != new_dir)
2192                return -EIO;
2193        return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2194}
2195
2196static const struct file_operations cgroup_file_operations = {
2197        .read = cgroup_file_read,
2198        .write = cgroup_file_write,
2199        .llseek = generic_file_llseek,
2200        .open = cgroup_file_open,
2201        .release = cgroup_file_release,
2202};
2203
2204static const struct inode_operations cgroup_dir_inode_operations = {
2205        .lookup = cgroup_lookup,
2206        .mkdir = cgroup_mkdir,
2207        .rmdir = cgroup_rmdir,
2208        .rename = cgroup_rename,
2209};
2210
2211static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2212{
2213        if (dentry->d_name.len > NAME_MAX)
2214                return ERR_PTR(-ENAMETOOLONG);
2215        d_add(dentry, NULL);
2216        return NULL;
2217}
2218
2219/*
2220 * Check if a file is a control file
2221 */
2222static inline struct cftype *__file_cft(struct file *file)
2223{
2224        if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2225                return ERR_PTR(-EINVAL);
2226        return __d_cft(file->f_dentry);
2227}
2228
2229static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2230                                struct super_block *sb)
2231{
2232        struct inode *inode;
2233
2234        if (!dentry)
2235                return -ENOENT;
2236        if (dentry->d_inode)
2237                return -EEXIST;
2238
2239        inode = cgroup_new_inode(mode, sb);
2240        if (!inode)
2241                return -ENOMEM;
2242
2243        if (S_ISDIR(mode)) {
2244                inode->i_op = &cgroup_dir_inode_operations;
2245                inode->i_fop = &simple_dir_operations;
2246
2247                /* start off with i_nlink == 2 (for "." entry) */
2248                inc_nlink(inode);
2249
2250                /* start with the directory inode held, so that we can
2251                 * populate it without racing with another mkdir */
2252                mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2253        } else if (S_ISREG(mode)) {
2254                inode->i_size = 0;
2255                inode->i_fop = &cgroup_file_operations;
2256        }
2257        d_instantiate(dentry, inode);
2258        dget(dentry);   /* Extra count - pin the dentry in core */
2259        return 0;
2260}
2261
2262/*
2263 * cgroup_create_dir - create a directory for an object.
2264 * @cgrp: the cgroup we create the directory for. It must have a valid
2265 *        ->parent field. And we are going to fill its ->dentry field.
2266 * @dentry: dentry of the new cgroup
2267 * @mode: mode to set on new directory.
2268 */
2269static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2270                                mode_t mode)
2271{
2272        struct dentry *parent;
2273        int error = 0;
2274
2275        parent = cgrp->parent->dentry;
2276        error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2277        if (!error) {
2278                dentry->d_fsdata = cgrp;
2279                inc_nlink(parent->d_inode);
2280                rcu_assign_pointer(cgrp->dentry, dentry);
2281                dget(dentry);
2282        }
2283        dput(dentry);
2284
2285        return error;
2286}
2287
2288/**
2289 * cgroup_file_mode - deduce file mode of a control file
2290 * @cft: the control file in question
2291 *
2292 * returns cft->mode if ->mode is not 0
2293 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2294 * returns S_IRUGO if it has only a read handler
2295 * returns S_IWUSR if it has only a write hander
2296 */
2297static mode_t cgroup_file_mode(const struct cftype *cft)
2298{
2299        mode_t mode = 0;
2300
2301        if (cft->mode)
2302                return cft->mode;
2303
2304        if (cft->read || cft->read_u64 || cft->read_s64 ||
2305            cft->read_map || cft->read_seq_string)
2306                mode |= S_IRUGO;
2307
2308        if (cft->write || cft->write_u64 || cft->write_s64 ||
2309            cft->write_string || cft->trigger)
2310                mode |= S_IWUSR;
2311
2312        return mode;
2313}
2314
2315int cgroup_add_file(struct cgroup *cgrp,
2316                       struct cgroup_subsys *subsys,
2317                       const struct cftype *cft)
2318{
2319        struct dentry *dir = cgrp->dentry;
2320        struct dentry *dentry;
2321        int error;
2322        mode_t mode;
2323
2324        char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2325        if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2326                strcpy(name, subsys->name);
2327                strcat(name, ".");
2328        }
2329        strcat(name, cft->name);
2330        BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2331        dentry = lookup_one_len(name, dir, strlen(name));
2332        if (!IS_ERR(dentry)) {
2333                mode = cgroup_file_mode(cft);
2334                error = cgroup_create_file(dentry, mode | S_IFREG,
2335                                                cgrp->root->sb);
2336                if (!error)
2337                        dentry->d_fsdata = (void *)cft;
2338                dput(dentry);
2339        } else
2340                error = PTR_ERR(dentry);
2341        return error;
2342}
2343EXPORT_SYMBOL_GPL(cgroup_add_file);
2344
2345int cgroup_add_files(struct cgroup *cgrp,
2346                        struct cgroup_subsys *subsys,
2347                        const struct cftype cft[],
2348                        int count)
2349{
2350        int i, err;
2351        for (i = 0; i < count; i++) {
2352                err = cgroup_add_file(cgrp, subsys, &cft[i]);
2353                if (err)
2354                        return err;
2355        }
2356        return 0;
2357}
2358EXPORT_SYMBOL_GPL(cgroup_add_files);
2359
2360/**
2361 * cgroup_task_count - count the number of tasks in a cgroup.
2362 * @cgrp: the cgroup in question
2363 *
2364 * Return the number of tasks in the cgroup.
2365 */
2366int cgroup_task_count(const struct cgroup *cgrp)
2367{
2368        int count = 0;
2369        struct cg_cgroup_link *link;
2370
2371        read_lock(&css_set_lock);
2372        list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2373                count += atomic_read(&link->cg->refcount);
2374        }
2375        read_unlock(&css_set_lock);
2376        return count;
2377}
2378
2379/*
2380 * Advance a list_head iterator.  The iterator should be positioned at
2381 * the start of a css_set
2382 */
2383static void cgroup_advance_iter(struct cgroup *cgrp,
2384                                struct cgroup_iter *it)
2385{
2386        struct list_head *l = it->cg_link;
2387        struct cg_cgroup_link *link;
2388        struct css_set *cg;
2389
2390        /* Advance to the next non-empty css_set */
2391        do {
2392                l = l->next;
2393                if (l == &cgrp->css_sets) {
2394                        it->cg_link = NULL;
2395                        return;
2396                }
2397                link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2398                cg = link->cg;
2399        } while (list_empty(&cg->tasks));
2400        it->cg_link = l;
2401        it->task = cg->tasks.next;
2402}
2403
2404/*
2405 * To reduce the fork() overhead for systems that are not actually
2406 * using their cgroups capability, we don't maintain the lists running
2407 * through each css_set to its tasks until we see the list actually
2408 * used - in other words after the first call to cgroup_iter_start().
2409 *
2410 * The tasklist_lock is not held here, as do_each_thread() and
2411 * while_each_thread() are protected by RCU.
2412 */
2413static void cgroup_enable_task_cg_lists(void)
2414{
2415        struct task_struct *p, *g;
2416        write_lock(&css_set_lock);
2417        use_task_css_set_links = 1;
2418        do_each_thread(g, p) {
2419                task_lock(p);
2420                /*
2421                 * We should check if the process is exiting, otherwise
2422                 * it will race with cgroup_exit() in that the list
2423                 * entry won't be deleted though the process has exited.
2424                 */
2425                if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2426                        list_add(&p->cg_list, &p->cgroups->tasks);
2427                task_unlock(p);
2428        } while_each_thread(g, p);
2429        write_unlock(&css_set_lock);
2430}
2431
2432void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2433{
2434        /*
2435         * The first time anyone tries to iterate across a cgroup,
2436         * we need to enable the list linking each css_set to its
2437         * tasks, and fix up all existing tasks.
2438         */
2439        if (!use_task_css_set_links)
2440                cgroup_enable_task_cg_lists();
2441
2442        read_lock(&css_set_lock);
2443        it->cg_link = &cgrp->css_sets;
2444        cgroup_advance_iter(cgrp, it);
2445}
2446
2447struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2448                                        struct cgroup_iter *it)
2449{
2450        struct task_struct *res;
2451        struct list_head *l = it->task;
2452        struct cg_cgroup_link *link;
2453
2454        /* If the iterator cg is NULL, we have no tasks */
2455        if (!it->cg_link)
2456                return NULL;
2457        res = list_entry(l, struct task_struct, cg_list);
2458        /* Advance iterator to find next entry */
2459        l = l->next;
2460        link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2461        if (l == &link->cg->tasks) {
2462                /* We reached the end of this task list - move on to
2463                 * the next cg_cgroup_link */
2464                cgroup_advance_iter(cgrp, it);
2465        } else {
2466                it->task = l;
2467        }
2468        return res;
2469}
2470
2471void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2472{
2473        read_unlock(&css_set_lock);
2474}
2475
2476static inline int started_after_time(struct task_struct *t1,
2477                                     struct timespec *time,
2478                                     struct task_struct *t2)
2479{
2480        int start_diff = timespec_compare(&t1->start_time, time);
2481        if (start_diff > 0) {
2482                return 1;
2483        } else if (start_diff < 0) {
2484                return 0;
2485        } else {
2486                /*
2487                 * Arbitrarily, if two processes started at the same
2488                 * time, we'll say that the lower pointer value
2489                 * started first. Note that t2 may have exited by now
2490                 * so this may not be a valid pointer any longer, but
2491                 * that's fine - it still serves to distinguish
2492                 * between two tasks started (effectively) simultaneously.
2493                 */
2494                return t1 > t2;
2495        }
2496}
2497
2498/*
2499 * This function is a callback from heap_insert() and is used to order
2500 * the heap.
2501 * In this case we order the heap in descending task start time.
2502 */
2503static inline int started_after(void *p1, void *p2)
2504{
2505        struct task_struct *t1 = p1;
2506        struct task_struct *t2 = p2;
2507        return started_after_time(t1, &t2->start_time, t2);
2508}
2509
2510/**
2511 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2512 * @scan: struct cgroup_scanner containing arguments for the scan
2513 *
2514 * Arguments include pointers to callback functions test_task() and
2515 * process_task().
2516 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2517 * and if it returns true, call process_task() for it also.
2518 * The test_task pointer may be NULL, meaning always true (select all tasks).
2519 * Effectively duplicates cgroup_iter_{start,next,end}()
2520 * but does not lock css_set_lock for the call to process_task().
2521 * The struct cgroup_scanner may be embedded in any structure of the caller's
2522 * creation.
2523 * It is guaranteed that process_task() will act on every task that
2524 * is a member of the cgroup for the duration of this call. This
2525 * function may or may not call process_task() for tasks that exit
2526 * or move to a different cgroup during the call, or are forked or
2527 * move into the cgroup during the call.
2528 *
2529 * Note that test_task() may be called with locks held, and may in some
2530 * situations be called multiple times for the same task, so it should
2531 * be cheap.
2532 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2533 * pre-allocated and will be used for heap operations (and its "gt" member will
2534 * be overwritten), else a temporary heap will be used (allocation of which
2535 * may cause this function to fail).
2536 */
2537int cgroup_scan_tasks(struct cgroup_scanner *scan)
2538{
2539        int retval, i;
2540        struct cgroup_iter it;
2541        struct task_struct *p, *dropped;
2542        /* Never dereference latest_task, since it's not refcounted */
2543        struct task_struct *latest_task = NULL;
2544        struct ptr_heap tmp_heap;
2545        struct ptr_heap *heap;
2546        struct timespec latest_time = { 0, 0 };
2547
2548        if (scan->heap) {
2549                /* The caller supplied our heap and pre-allocated its memory */
2550                heap = scan->heap;
2551                heap->gt = &started_after;
2552        } else {
2553                /* We need to allocate our own heap memory */
2554                heap = &tmp_heap;
2555                retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2556                if (retval)
2557                        /* cannot allocate the heap */
2558                        return retval;
2559        }
2560
2561 again:
2562        /*
2563         * Scan tasks in the cgroup, using the scanner's "test_task" callback
2564         * to determine which are of interest, and using the scanner's
2565         * "process_task" callback to process any of them that need an update.
2566         * Since we don't want to hold any locks during the task updates,
2567         * gather tasks to be processed in a heap structure.
2568         * The heap is sorted by descending task start time.
2569         * If the statically-sized heap fills up, we overflow tasks that
2570         * started later, and in future iterations only consider tasks that
2571         * started after the latest task in the previous pass. This
2572         * guarantees forward progress and that we don't miss any tasks.
2573         */
2574        heap->size = 0;
2575        cgroup_iter_start(scan->cg, &it);
2576        while ((p = cgroup_iter_next(scan->cg, &it))) {
2577                /*
2578                 * Only affect tasks that qualify per the caller's callback,
2579                 * if he provided one
2580                 */
2581                if (scan->test_task && !scan->test_task(p, scan))
2582                        continue;
2583                /*
2584                 * Only process tasks that started after the last task
2585                 * we processed
2586                 */
2587                if (!started_after_time(p, &latest_time, latest_task))
2588                        continue;
2589                dropped = heap_insert(heap, p);
2590                if (dropped == NULL) {
2591                        /*
2592                         * The new task was inserted; the heap wasn't
2593                         * previously full
2594                         */
2595                        get_task_struct(p);
2596                } else if (dropped != p) {
2597                        /*
2598                         * The new task was inserted, and pushed out a
2599                         * different task
2600                         */
2601                        get_task_struct(p);
2602                        put_task_struct(dropped);
2603                }
2604                /*
2605                 * Else the new task was newer than anything already in
2606                 * the heap and wasn't inserted
2607                 */
2608        }
2609        cgroup_iter_end(scan->cg, &it);
2610
2611        if (heap->size) {
2612                for (i = 0; i < heap->size; i++) {
2613                        struct task_struct *q = heap->ptrs[i];
2614                        if (i == 0) {
2615                                latest_time = q->start_time;
2616                                latest_task = q;
2617                        }
2618                        /* Process the task per the caller's callback */
2619                        scan->process_task(q, scan);
2620                        put_task_struct(q);
2621                }
2622                /*
2623                 * If we had to process any tasks at all, scan again
2624                 * in case some of them were in the middle of forking
2625                 * children that didn't get processed.
2626                 * Not the most efficient way to do it, but it avoids
2627                 * having to take callback_mutex in the fork path
2628                 */
2629                goto again;
2630        }
2631        if (heap == &tmp_heap)
2632                heap_free(&tmp_heap);
2633        return 0;
2634}
2635
2636/*
2637 * Stuff for reading the 'tasks'/'procs' files.
2638 *
2639 * Reading this file can return large amounts of data if a cgroup has
2640 * *lots* of attached tasks. So it may need several calls to read(),
2641 * but we cannot guarantee that the information we produce is correct
2642 * unless we produce it entirely atomically.
2643 *
2644 */
2645
2646/*
2647 * The following two functions "fix" the issue where there are more pids
2648 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2649 * TODO: replace with a kernel-wide solution to this problem
2650 */
2651#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2652static void *pidlist_allocate(int count)
2653{
2654        if (PIDLIST_TOO_LARGE(count))
2655                return vmalloc(count * sizeof(pid_t));
2656        else
2657                return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2658}
2659static void pidlist_free(void *p)
2660{
2661        if (is_vmalloc_addr(p))
2662                vfree(p);
2663        else
2664                kfree(p);
2665}
2666static void *pidlist_resize(void *p, int newcount)
2667{
2668        void *newlist;
2669        /* note: if new alloc fails, old p will still be valid either way */
2670        if (is_vmalloc_addr(p)) {
2671                newlist = vmalloc(newcount * sizeof(pid_t));
2672                if (!newlist)
2673                        return NULL;
2674                memcpy(newlist, p, newcount * sizeof(pid_t));
2675                vfree(p);
2676        } else {
2677                newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2678        }
2679        return newlist;
2680}
2681
2682/*
2683 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2684 * If the new stripped list is sufficiently smaller and there's enough memory
2685 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2686 * number of unique elements.
2687 */
2688/* is the size difference enough that we should re-allocate the array? */
2689#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2690static int pidlist_uniq(pid_t **p, int length)
2691{
2692        int src, dest = 1;
2693        pid_t *list = *p;
2694        pid_t *newlist;
2695
2696        /*
2697         * we presume the 0th element is unique, so i starts at 1. trivial
2698         * edge cases first; no work needs to be done for either
2699         */
2700        if (length == 0 || length == 1)
2701                return length;
2702        /* src and dest walk down the list; dest counts unique elements */
2703        for (src = 1; src < length; src++) {
2704                /* find next unique element */
2705                while (list[src] == list[src-1]) {
2706                        src++;
2707                        if (src == length)
2708                                goto after;
2709                }
2710                /* dest always points to where the next unique element goes */
2711                list[dest] = list[src];
2712                dest++;
2713        }
2714after:
2715        /*
2716         * if the length difference is large enough, we want to allocate a
2717         * smaller buffer to save memory. if this fails due to out of memory,
2718         * we'll just stay with what we've got.
2719         */
2720        if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2721                newlist = pidlist_resize(list, dest);
2722                if (newlist)
2723                        *p = newlist;
2724        }
2725        return dest;
2726}
2727
2728static int cmppid(const void *a, const void *b)
2729{
2730        return *(pid_t *)a - *(pid_t *)b;
2731}
2732
2733/*
2734 * find the appropriate pidlist for our purpose (given procs vs tasks)
2735 * returns with the lock on that pidlist already held, and takes care
2736 * of the use count, or returns NULL with no locks held if we're out of
2737 * memory.
2738 */
2739static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2740                                                  enum cgroup_filetype type)
2741{
2742        struct cgroup_pidlist *l;
2743        /* don't need task_nsproxy() if we're looking at ourself */
2744        struct pid_namespace *ns = current->nsproxy->pid_ns;
2745
2746        /*
2747         * We can't drop the pidlist_mutex before taking the l->mutex in case
2748         * the last ref-holder is trying to remove l from the list at the same
2749         * time. Holding the pidlist_mutex precludes somebody taking whichever
2750         * list we find out from under us - compare release_pid_array().
2751         */
2752        mutex_lock(&cgrp->pidlist_mutex);
2753        list_for_each_entry(l, &cgrp->pidlists, links) {
2754                if (l->key.type == type && l->key.ns == ns) {
2755                        /* make sure l doesn't vanish out from under us */
2756                        down_write(&l->mutex);
2757                        mutex_unlock(&cgrp->pidlist_mutex);
2758                        return l;
2759                }
2760        }
2761        /* entry not found; create a new one */
2762        l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2763        if (!l) {
2764                mutex_unlock(&cgrp->pidlist_mutex);
2765                return l;
2766        }
2767        init_rwsem(&l->mutex);
2768        down_write(&l->mutex);
2769        l->key.type = type;
2770        l->key.ns = get_pid_ns(ns);
2771        l->use_count = 0; /* don't increment here */
2772        l->list = NULL;
2773        l->owner = cgrp;
2774        list_add(&l->links, &cgrp->pidlists);
2775        mutex_unlock(&cgrp->pidlist_mutex);
2776        return l;
2777}
2778
2779/*
2780 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2781 */
2782static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2783                              struct cgroup_pidlist **lp)
2784{
2785        pid_t *array;
2786        int length;
2787        int pid, n = 0; /* used for populating the array */
2788        struct cgroup_iter it;
2789        struct task_struct *tsk;
2790        struct cgroup_pidlist *l;
2791
2792        /*
2793         * If cgroup gets more users after we read count, we won't have
2794         * enough space - tough.  This race is indistinguishable to the
2795         * caller from the case that the additional cgroup users didn't
2796         * show up until sometime later on.
2797         */
2798        length = cgroup_task_count(cgrp);
2799        array = pidlist_allocate(length);
2800        if (!array)
2801                return -ENOMEM;
2802        /* now, populate the array */
2803        cgroup_iter_start(cgrp, &it);
2804        while ((tsk = cgroup_iter_next(cgrp, &it))) {
2805                if (unlikely(n == length))
2806                        break;
2807                /* get tgid or pid for procs or tasks file respectively */
2808                if (type == CGROUP_FILE_PROCS)
2809                        pid = task_tgid_vnr(tsk);
2810                else
2811                        pid = task_pid_vnr(tsk);
2812                if (pid > 0) /* make sure to only use valid results */
2813                        array[n++] = pid;
2814        }
2815        cgroup_iter_end(cgrp, &it);
2816        length = n;
2817        /* now sort & (if procs) strip out duplicates */
2818        sort(array, length, sizeof(pid_t), cmppid, NULL);
2819        if (type == CGROUP_FILE_PROCS)
2820                length = pidlist_uniq(&array, length);
2821        l = cgroup_pidlist_find(cgrp, type);
2822        if (!l) {
2823                pidlist_free(array);
2824                return -ENOMEM;
2825        }
2826        /* store array, freeing old if necessary - lock already held */
2827        pidlist_free(l->list);
2828        l->list = array;
2829        l->length = length;
2830        l->use_count++;
2831        up_write(&l->mutex);
2832        *lp = l;
2833        return 0;
2834}
2835
2836/**
2837 * cgroupstats_build - build and fill cgroupstats
2838 * @stats: cgroupstats to fill information into
2839 * @dentry: A dentry entry belonging to the cgroup for which stats have
2840 * been requested.
2841 *
2842 * Build and fill cgroupstats so that taskstats can export it to user
2843 * space.
2844 */
2845int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2846{
2847        int ret = -EINVAL;
2848        struct cgroup *cgrp;
2849        struct cgroup_iter it;
2850        struct task_struct *tsk;
2851
2852        /*
2853         * Validate dentry by checking the superblock operations,
2854         * and make sure it's a directory.
2855         */
2856        if (dentry->d_sb->s_op != &cgroup_ops ||
2857            !S_ISDIR(dentry->d_inode->i_mode))
2858                 goto err;
2859
2860        ret = 0;
2861        cgrp = dentry->d_fsdata;
2862
2863        cgroup_iter_start(cgrp, &it);
2864        while ((tsk = cgroup_iter_next(cgrp, &it))) {
2865                switch (tsk->state) {
2866                case TASK_RUNNING:
2867                        stats->nr_running++;
2868                        break;
2869                case TASK_INTERRUPTIBLE:
2870                        stats->nr_sleeping++;
2871                        break;
2872                case TASK_UNINTERRUPTIBLE:
2873                        stats->nr_uninterruptible++;
2874                        break;
2875                case TASK_STOPPED:
2876                        stats->nr_stopped++;
2877                        break;
2878                default:
2879                        if (delayacct_is_task_waiting_on_io(tsk))
2880                                stats->nr_io_wait++;
2881                        break;
2882                }
2883        }
2884        cgroup_iter_end(cgrp, &it);
2885
2886err:
2887        return ret;
2888}
2889
2890
2891/*
2892 * seq_file methods for the tasks/procs files. The seq_file position is the
2893 * next pid to display; the seq_file iterator is a pointer to the pid
2894 * in the cgroup->l->list array.
2895 */
2896
2897static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2898{
2899        /*
2900         * Initially we receive a position value that corresponds to
2901         * one more than the last pid shown (or 0 on the first call or
2902         * after a seek to the start). Use a binary-search to find the
2903         * next pid to display, if any
2904         */
2905        struct cgroup_pidlist *l = s->private;
2906        int index = 0, pid = *pos;
2907        int *iter;
2908
2909        down_read(&l->mutex);
2910        if (pid) {
2911                int end = l->length;
2912
2913                while (index < end) {
2914                        int mid = (index + end) / 2;
2915                        if (l->list[mid] == pid) {
2916                                index = mid;
2917                                break;
2918                        } else if (l->list[mid] <= pid)
2919                                index = mid + 1;
2920                        else
2921                                end = mid;
2922                }
2923        }
2924        /* If we're off the end of the array, we're done */
2925        if (index >= l->length)
2926                return NULL;
2927        /* Update the abstract position to be the actual pid that we found */
2928        iter = l->list + index;
2929        *pos = *iter;
2930        return iter;
2931}
2932
2933static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2934{
2935        struct cgroup_pidlist *l = s->private;
2936        up_read(&l->mutex);
2937}
2938
2939static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2940{
2941        struct cgroup_pidlist *l = s->private;
2942        pid_t *p = v;
2943        pid_t *end = l->list + l->length;
2944        /*
2945         * Advance to the next pid in the array. If this goes off the
2946         * end, we're done
2947         */
2948        p++;
2949        if (p >= end) {
2950                return NULL;
2951        } else {
2952                *pos = *p;
2953                return p;
2954        }
2955}
2956
2957static int cgroup_pidlist_show(struct seq_file *s, void *v)
2958{
2959        return seq_printf(s, "%d\n", *(int *)v);
2960}
2961
2962/*
2963 * seq_operations functions for iterating on pidlists through seq_file -
2964 * independent of whether it's tasks or procs
2965 */
2966static const struct seq_operations cgroup_pidlist_seq_operations = {
2967        .start = cgroup_pidlist_start,
2968        .stop = cgroup_pidlist_stop,
2969        .next = cgroup_pidlist_next,
2970        .show = cgroup_pidlist_show,
2971};
2972
2973static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2974{
2975        /*
2976         * the case where we're the last user of this particular pidlist will
2977         * have us remove it from the cgroup's list, which entails taking the
2978         * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2979         * pidlist_mutex, we have to take pidlist_mutex first.
2980         */
2981        mutex_lock(&l->owner->pidlist_mutex);
2982        down_write(&l->mutex);
2983        BUG_ON(!l->use_count);
2984        if (!--l->use_count) {
2985                /* we're the last user if refcount is 0; remove and free */
2986                list_del(&l->links);
2987                mutex_unlock(&l->owner->pidlist_mutex);
2988                pidlist_free(l->list);
2989                put_pid_ns(l->key.ns);
2990                up_write(&l->mutex);
2991                kfree(l);
2992                return;
2993        }
2994        mutex_unlock(&l->owner->pidlist_mutex);
2995        up_write(&l->mutex);
2996}
2997
2998static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2999{
3000        struct cgroup_pidlist *l;
3001        if (!(file->f_mode & FMODE_READ))
3002                return 0;
3003        /*
3004         * the seq_file will only be initialized if the file was opened for
3005         * reading; hence we check if it's not null only in that case.
3006         */
3007        l = ((struct seq_file *)file->private_data)->private;
3008        cgroup_release_pid_array(l);
3009        return seq_release(inode, file);
3010}
3011
3012static const struct file_operations cgroup_pidlist_operations = {
3013        .read = seq_read,
3014        .llseek = seq_lseek,
3015        .write = cgroup_file_write,
3016        .release = cgroup_pidlist_release,
3017};
3018
3019/*
3020 * The following functions handle opens on a file that displays a pidlist
3021 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3022 * in the cgroup.
3023 */
3024/* helper function for the two below it */
3025static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3026{
3027        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3028        struct cgroup_pidlist *l;
3029        int retval;
3030
3031        /* Nothing to do for write-only files */
3032        if (!(file->f_mode & FMODE_READ))
3033                return 0;
3034
3035        /* have the array populated */
3036        retval = pidlist_array_load(cgrp, type, &l);
3037        if (retval)
3038                return retval;
3039        /* configure file information */
3040        file->f_op = &cgroup_pidlist_operations;
3041
3042        retval = seq_open(file, &cgroup_pidlist_seq_operations);
3043        if (retval) {
3044                cgroup_release_pid_array(l);
3045                return retval;
3046        }
3047        ((struct seq_file *)file->private_data)->private = l;
3048        return 0;
3049}
3050static int cgroup_tasks_open(struct inode *unused, struct file *file)
3051{
3052        return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3053}
3054static int cgroup_procs_open(struct inode *unused, struct file *file)
3055{
3056        return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3057}
3058
3059static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3060                                            struct cftype *cft)
3061{
3062        return notify_on_release(cgrp);
3063}
3064
3065static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3066                                          struct cftype *cft,
3067                                          u64 val)
3068{
3069        clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3070        if (val)
3071                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3072        else
3073                clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3074        return 0;
3075}
3076
3077/*
3078 * Unregister event and free resources.
3079 *
3080 * Gets called from workqueue.
3081 */
3082static void cgroup_event_remove(struct work_struct *work)
3083{
3084        struct cgroup_event *event = container_of(work, struct cgroup_event,
3085                        remove);
3086        struct cgroup *cgrp = event->cgrp;
3087
3088        event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3089
3090        eventfd_ctx_put(event->eventfd);
3091        kfree(event);
3092        dput(cgrp->dentry);
3093}
3094
3095/*
3096 * Gets called on POLLHUP on eventfd when user closes it.
3097 *
3098 * Called with wqh->lock held and interrupts disabled.
3099 */
3100static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3101                int sync, void *key)
3102{
3103        struct cgroup_event *event = container_of(wait,
3104                        struct cgroup_event, wait);
3105        struct cgroup *cgrp = event->cgrp;
3106        unsigned long flags = (unsigned long)key;
3107
3108        if (flags & POLLHUP) {
3109                __remove_wait_queue(event->wqh, &event->wait);
3110                spin_lock(&cgrp->event_list_lock);
3111                list_del(&event->list);
3112                spin_unlock(&cgrp->event_list_lock);
3113                /*
3114                 * We are in atomic context, but cgroup_event_remove() may
3115                 * sleep, so we have to call it in workqueue.
3116                 */
3117                schedule_work(&event->remove);
3118        }
3119
3120        return 0;
3121}
3122
3123static void cgroup_event_ptable_queue_proc(struct file *file,
3124                wait_queue_head_t *wqh, poll_table *pt)
3125{
3126        struct cgroup_event *event = container_of(pt,
3127                        struct cgroup_event, pt);
3128
3129        event->wqh = wqh;
3130        add_wait_queue(wqh, &event->wait);
3131}
3132
3133/*
3134 * Parse input and register new cgroup event handler.
3135 *
3136 * Input must be in format '<event_fd> <control_fd> <args>'.
3137 * Interpretation of args is defined by control file implementation.
3138 */
3139static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3140                                      const char *buffer)
3141{
3142        struct cgroup_event *event = NULL;
3143        unsigned int efd, cfd;
3144        struct file *efile = NULL;
3145        struct file *cfile = NULL;
3146        char *endp;
3147        int ret;
3148
3149        efd = simple_strtoul(buffer, &endp, 10);
3150        if (*endp != ' ')
3151                return -EINVAL;
3152        buffer = endp + 1;
3153
3154        cfd = simple_strtoul(buffer, &endp, 10);
3155        if ((*endp != ' ') && (*endp != '\0'))
3156                return -EINVAL;
3157        buffer = endp + 1;
3158
3159        event = kzalloc(sizeof(*event), GFP_KERNEL);
3160        if (!event)
3161                return -ENOMEM;
3162        event->cgrp = cgrp;
3163        INIT_LIST_HEAD(&event->list);
3164        init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3165        init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3166        INIT_WORK(&event->remove, cgroup_event_remove);
3167
3168        efile = eventfd_fget(efd);
3169        if (IS_ERR(efile)) {
3170                ret = PTR_ERR(efile);
3171                goto fail;
3172        }
3173
3174        event->eventfd = eventfd_ctx_fileget(efile);
3175        if (IS_ERR(event->eventfd)) {
3176                ret = PTR_ERR(event->eventfd);
3177                goto fail;
3178        }
3179
3180        cfile = fget(cfd);
3181        if (!cfile) {
3182                ret = -EBADF;
3183                goto fail;
3184        }
3185
3186        /* the process need read permission on control file */
3187        ret = file_permission(cfile, MAY_READ);
3188        if (ret < 0)
3189                goto fail;
3190
3191        event->cft = __file_cft(cfile);
3192        if (IS_ERR(event->cft)) {
3193                ret = PTR_ERR(event->cft);
3194                goto fail;
3195        }
3196
3197        if (!event->cft->register_event || !event->cft->unregister_event) {
3198                ret = -EINVAL;
3199                goto fail;
3200        }
3201
3202        ret = event->cft->register_event(cgrp, event->cft,
3203                        event->eventfd, buffer);
3204        if (ret)
3205                goto fail;
3206
3207        if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3208                event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3209                ret = 0;
3210                goto fail;
3211        }
3212
3213        /*
3214         * Events should be removed after rmdir of cgroup directory, but before
3215         * destroying subsystem state objects. Let's take reference to cgroup
3216         * directory dentry to do that.
3217         */
3218        dget(cgrp->dentry);
3219
3220        spin_lock(&cgrp->event_list_lock);
3221        list_add(&event->list, &cgrp->event_list);
3222        spin_unlock(&cgrp->event_list_lock);
3223
3224        fput(cfile);
3225        fput(efile);
3226
3227        return 0;
3228
3229fail:
3230        if (cfile)
3231                fput(cfile);
3232
3233        if (event && event->eventfd && !IS_ERR(event->eventfd))
3234                eventfd_ctx_put(event->eventfd);
3235
3236        if (!IS_ERR_OR_NULL(efile))
3237                fput(efile);
3238
3239        kfree(event);
3240
3241        return ret;
3242}
3243
3244static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3245                                    struct cftype *cft)
3246{
3247        return clone_children(cgrp);
3248}
3249
3250static int cgroup_clone_children_write(struct cgroup *cgrp,
3251                                     struct cftype *cft,
3252                                     u64 val)
3253{
3254        if (val)
3255                set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3256        else
3257                clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3258        return 0;
3259}
3260
3261/*
3262 * for the common functions, 'private' gives the type of file
3263 */
3264/* for hysterical raisins, we can't put this on the older files */
3265#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3266static struct cftype files[] = {
3267        {
3268                .name = "tasks",
3269                .open = cgroup_tasks_open,
3270                .write_u64 = cgroup_tasks_write,
3271                .release = cgroup_pidlist_release,
3272                .mode = S_IRUGO | S_IWUSR,
3273        },
3274        {
3275                .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3276                .open = cgroup_procs_open,
3277                /* .write_u64 = cgroup_procs_write, TODO */
3278                .release = cgroup_pidlist_release,
3279                .mode = S_IRUGO,
3280        },
3281        {
3282                .name = "notify_on_release",
3283                .read_u64 = cgroup_read_notify_on_release,
3284                .write_u64 = cgroup_write_notify_on_release,
3285        },
3286        {
3287                .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3288                .write_string = cgroup_write_event_control,
3289                .mode = S_IWUGO,
3290        },
3291        {
3292                .name = "cgroup.clone_children",
3293                .read_u64 = cgroup_clone_children_read,
3294                .write_u64 = cgroup_clone_children_write,
3295        },
3296};
3297
3298static struct cftype cft_release_agent = {
3299        .name = "release_agent",
3300        .read_seq_string = cgroup_release_agent_show,
3301        .write_string = cgroup_release_agent_write,
3302        .max_write_len = PATH_MAX,
3303};
3304
3305static int cgroup_populate_dir(struct cgroup *cgrp)
3306{
3307        int err;
3308        struct cgroup_subsys *ss;
3309
3310        /* First clear out any existing files */
3311        cgroup_clear_directory(cgrp->dentry);
3312
3313        err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3314        if (err < 0)
3315                return err;
3316
3317        if (cgrp == cgrp->top_cgroup) {
3318                if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3319                        return err;
3320        }
3321
3322        for_each_subsys(cgrp->root, ss) {
3323                if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3324                        return err;
3325        }
3326        /* This cgroup is ready now */
3327        for_each_subsys(cgrp->root, ss) {
3328                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3329                /*
3330                 * Update id->css pointer and make this css visible from
3331                 * CSS ID functions. This pointer will be dereferened
3332                 * from RCU-read-side without locks.
3333                 */
3334                if (css->id)
3335                        rcu_assign_pointer(css->id->css, css);
3336        }
3337
3338        return 0;
3339}
3340
3341static void init_cgroup_css(struct cgroup_subsys_state *css,
3342                               struct cgroup_subsys *ss,
3343                               struct cgroup *cgrp)
3344{
3345        css->cgroup = cgrp;
3346        atomic_set(&css->refcnt, 1);
3347        css->flags = 0;
3348        css->id = NULL;
3349        if (cgrp == dummytop)
3350                set_bit(CSS_ROOT, &css->flags);
3351        BUG_ON(cgrp->subsys[ss->subsys_id]);
3352        cgrp->subsys[ss->subsys_id] = css;
3353}
3354
3355static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3356{
3357        /* We need to take each hierarchy_mutex in a consistent order */
3358        int i;
3359
3360        /*
3361         * No worry about a race with rebind_subsystems that might mess up the
3362         * locking order, since both parties are under cgroup_mutex.
3363         */
3364        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3365                struct cgroup_subsys *ss = subsys[i];
3366                if (ss == NULL)
3367                        continue;
3368                if (ss->root == root)
3369                        mutex_lock(&ss->hierarchy_mutex);
3370        }
3371}
3372
3373static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3374{
3375        int i;
3376
3377        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3378                struct cgroup_subsys *ss = subsys[i];
3379                if (ss == NULL)
3380                        continue;
3381                if (ss->root == root)
3382                        mutex_unlock(&ss->hierarchy_mutex);
3383        }
3384}
3385
3386/*
3387 * cgroup_create - create a cgroup
3388 * @parent: cgroup that will be parent of the new cgroup
3389 * @dentry: dentry of the new cgroup
3390 * @mode: mode to set on new inode
3391 *
3392 * Must be called with the mutex on the parent inode held
3393 */
3394static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3395                             mode_t mode)
3396{
3397        struct cgroup *cgrp;
3398        struct cgroupfs_root *root = parent->root;
3399        int err = 0;
3400        struct cgroup_subsys *ss;
3401        struct super_block *sb = root->sb;
3402
3403        cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3404        if (!cgrp)
3405                return -ENOMEM;
3406
3407        /* Grab a reference on the superblock so the hierarchy doesn't
3408         * get deleted on unmount if there are child cgroups.  This
3409         * can be done outside cgroup_mutex, since the sb can't
3410         * disappear while someone has an open control file on the
3411         * fs */
3412        atomic_inc(&sb->s_active);
3413
3414        mutex_lock(&cgroup_mutex);
3415
3416        init_cgroup_housekeeping(cgrp);
3417
3418        cgrp->parent = parent;
3419        cgrp->root = parent->root;
3420        cgrp->top_cgroup = parent->top_cgroup;
3421
3422        if (notify_on_release(parent))
3423                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3424
3425        if (clone_children(parent))
3426                set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3427
3428        for_each_subsys(root, ss) {
3429                struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3430
3431                if (IS_ERR(css)) {
3432                        err = PTR_ERR(css);
3433                        goto err_destroy;
3434                }
3435                init_cgroup_css(css, ss, cgrp);
3436                if (ss->use_id) {
3437                        err = alloc_css_id(ss, parent, cgrp);
3438                        if (err)
3439                                goto err_destroy;
3440                }
3441                /* At error, ->destroy() callback has to free assigned ID. */
3442                if (clone_children(parent) && ss->post_clone)
3443                        ss->post_clone(ss, cgrp);
3444        }
3445
3446        cgroup_lock_hierarchy(root);
3447        list_add(&cgrp->sibling, &cgrp->parent->children);
3448        cgroup_unlock_hierarchy(root);
3449        root->number_of_cgroups++;
3450
3451        err = cgroup_create_dir(cgrp, dentry, mode);
3452        if (err < 0)
3453                goto err_remove;
3454
3455        /* The cgroup directory was pre-locked for us */
3456        BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3457
3458        err = cgroup_populate_dir(cgrp);
3459        /* If err < 0, we have a half-filled directory - oh well ;) */
3460
3461        mutex_unlock(&cgroup_mutex);
3462        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3463
3464        return 0;
3465
3466 err_remove:
3467
3468        cgroup_lock_hierarchy(root);
3469        list_del(&cgrp->sibling);
3470        cgroup_unlock_hierarchy(root);
3471        root->number_of_cgroups--;
3472
3473 err_destroy:
3474
3475        for_each_subsys(root, ss) {
3476                if (cgrp->subsys[ss->subsys_id])
3477                        ss->destroy(ss, cgrp);
3478        }
3479
3480        mutex_unlock(&cgroup_mutex);
3481
3482        /* Release the reference count that we took on the superblock */
3483        deactivate_super(sb);
3484
3485        kfree(cgrp);
3486        return err;
3487}
3488
3489static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3490{
3491        struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3492
3493        /* the vfs holds inode->i_mutex already */
3494        return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3495}
3496
3497static int cgroup_has_css_refs(struct cgroup *cgrp)
3498{
3499        /* Check the reference count on each subsystem. Since we
3500         * already established that there are no tasks in the
3501         * cgroup, if the css refcount is also 1, then there should
3502         * be no outstanding references, so the subsystem is safe to
3503         * destroy. We scan across all subsystems rather than using
3504         * the per-hierarchy linked list of mounted subsystems since
3505         * we can be called via check_for_release() with no
3506         * synchronization other than RCU, and the subsystem linked
3507         * list isn't RCU-safe */
3508        int i;
3509        /*
3510         * We won't need to lock the subsys array, because the subsystems
3511         * we're concerned about aren't going anywhere since our cgroup root
3512         * has a reference on them.
3513         */
3514        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3515                struct cgroup_subsys *ss = subsys[i];
3516                struct cgroup_subsys_state *css;
3517                /* Skip subsystems not present or not in this hierarchy */
3518                if (ss == NULL || ss->root != cgrp->root)
3519                        continue;
3520                css = cgrp->subsys[ss->subsys_id];
3521                /* When called from check_for_release() it's possible
3522                 * that by this point the cgroup has been removed
3523                 * and the css deleted. But a false-positive doesn't
3524                 * matter, since it can only happen if the cgroup
3525                 * has been deleted and hence no longer needs the
3526                 * release agent to be called anyway. */
3527                if (css && (atomic_read(&css->refcnt) > 1))
3528                        return 1;
3529        }
3530        return 0;
3531}
3532
3533/*
3534 * Atomically mark all (or else none) of the cgroup's CSS objects as
3535 * CSS_REMOVED. Return true on success, or false if the cgroup has
3536 * busy subsystems. Call with cgroup_mutex held
3537 */
3538
3539static int cgroup_clear_css_refs(struct cgroup *cgrp)
3540{
3541        struct cgroup_subsys *ss;
3542        unsigned long flags;
3543        bool failed = false;
3544        local_irq_save(flags);
3545        for_each_subsys(cgrp->root, ss) {
3546                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3547                int refcnt;
3548                while (1) {
3549                        /* We can only remove a CSS with a refcnt==1 */
3550                        refcnt = atomic_read(&css->refcnt);
3551                        if (refcnt > 1) {
3552                                failed = true;
3553                                goto done;
3554                        }
3555                        BUG_ON(!refcnt);
3556                        /*
3557                         * Drop the refcnt to 0 while we check other
3558                         * subsystems. This will cause any racing
3559                         * css_tryget() to spin until we set the
3560                         * CSS_REMOVED bits or abort
3561                         */
3562                        if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3563                                break;
3564                        cpu_relax();
3565                }
3566        }
3567 done:
3568        for_each_subsys(cgrp->root, ss) {
3569                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3570                if (failed) {
3571                        /*
3572                         * Restore old refcnt if we previously managed
3573                         * to clear it from 1 to 0
3574                         */
3575                        if (!atomic_read(&css->refcnt))
3576                                atomic_set(&css->refcnt, 1);
3577                } else {
3578                        /* Commit the fact that the CSS is removed */
3579                        set_bit(CSS_REMOVED, &css->flags);
3580                }
3581        }
3582        local_irq_restore(flags);
3583        return !failed;
3584}
3585
3586static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3587{
3588        struct cgroup *cgrp = dentry->d_fsdata;
3589        struct dentry *d;
3590        struct cgroup *parent;
3591        DEFINE_WAIT(wait);
3592        struct cgroup_event *event, *tmp;
3593        int ret;
3594
3595        /* the vfs holds both inode->i_mutex already */
3596again:
3597        mutex_lock(&cgroup_mutex);
3598        if (atomic_read(&cgrp->count) != 0) {
3599                mutex_unlock(&cgroup_mutex);
3600                return -EBUSY;
3601        }
3602        if (!list_empty(&cgrp->children)) {
3603                mutex_unlock(&cgroup_mutex);
3604                return -EBUSY;
3605        }
3606        mutex_unlock(&cgroup_mutex);
3607
3608        /*
3609         * In general, subsystem has no css->refcnt after pre_destroy(). But
3610         * in racy cases, subsystem may have to get css->refcnt after
3611         * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3612         * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3613         * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3614         * and subsystem's reference count handling. Please see css_get/put
3615         * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3616         */
3617        set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3618
3619        /*
3620         * Call pre_destroy handlers of subsys. Notify subsystems
3621         * that rmdir() request comes.
3622         */
3623        ret = cgroup_call_pre_destroy(cgrp);
3624        if (ret) {
3625                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3626                return ret;
3627        }
3628
3629        mutex_lock(&cgroup_mutex);
3630        parent = cgrp->parent;
3631        if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3632                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3633                mutex_unlock(&cgroup_mutex);
3634                return -EBUSY;
3635        }
3636        prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3637        if (!cgroup_clear_css_refs(cgrp)) {
3638                mutex_unlock(&cgroup_mutex);
3639                /*
3640                 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3641                 * prepare_to_wait(), we need to check this flag.
3642                 */
3643                if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3644                        schedule();
3645                finish_wait(&cgroup_rmdir_waitq, &wait);
3646                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3647                if (signal_pending(current))
3648                        return -EINTR;
3649                goto again;
3650        }
3651        /* NO css_tryget() can success after here. */
3652        finish_wait(&cgroup_rmdir_waitq, &wait);
3653        clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3654
3655        spin_lock(&release_list_lock);
3656        set_bit(CGRP_REMOVED, &cgrp->flags);
3657        if (!list_empty(&cgrp->release_list))
3658                list_del(&cgrp->release_list);
3659        spin_unlock(&release_list_lock);
3660
3661        cgroup_lock_hierarchy(cgrp->root);
3662        /* delete this cgroup from parent->children */
3663        list_del(&cgrp->sibling);
3664        cgroup_unlock_hierarchy(cgrp->root);
3665
3666        d = dget(cgrp->dentry);
3667
3668        cgroup_d_remove_dir(d);
3669        dput(d);
3670
3671        set_bit(CGRP_RELEASABLE, &parent->flags);
3672        check_for_release(parent);
3673
3674        /*
3675         * Unregister events and notify userspace.
3676         * Notify userspace about cgroup removing only after rmdir of cgroup
3677         * directory to avoid race between userspace and kernelspace
3678         */
3679        spin_lock(&cgrp->event_list_lock);
3680        list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3681                list_del(&event->list);
3682                remove_wait_queue(event->wqh, &event->wait);
3683                eventfd_signal(event->eventfd, 1);
3684                schedule_work(&event->remove);
3685        }
3686        spin_unlock(&cgrp->event_list_lock);
3687
3688        mutex_unlock(&cgroup_mutex);
3689        return 0;
3690}
3691
3692static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3693{
3694        struct cgroup_subsys_state *css;
3695
3696        printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3697
3698        /* Create the top cgroup state for this subsystem */
3699        list_add(&ss->sibling, &rootnode.subsys_list);
3700        ss->root = &rootnode;
3701        css = ss->create(ss, dummytop);
3702        /* We don't handle early failures gracefully */
3703        BUG_ON(IS_ERR(css));
3704        init_cgroup_css(css, ss, dummytop);
3705
3706        /* Update the init_css_set to contain a subsys
3707         * pointer to this state - since the subsystem is
3708         * newly registered, all tasks and hence the
3709         * init_css_set is in the subsystem's top cgroup. */
3710        init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3711
3712        need_forkexit_callback |= ss->fork || ss->exit;
3713
3714        /* At system boot, before all subsystems have been
3715         * registered, no tasks have been forked, so we don't
3716         * need to invoke fork callbacks here. */
3717        BUG_ON(!list_empty(&init_task.tasks));
3718
3719        mutex_init(&ss->hierarchy_mutex);
3720        lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3721        ss->active = 1;
3722
3723        /* this function shouldn't be used with modular subsystems, since they
3724         * need to register a subsys_id, among other things */
3725        BUG_ON(ss->module);
3726}
3727
3728/**
3729 * cgroup_load_subsys: load and register a modular subsystem at runtime
3730 * @ss: the subsystem to load
3731 *
3732 * This function should be called in a modular subsystem's initcall. If the
3733 * subsystem is built as a module, it will be assigned a new subsys_id and set
3734 * up for use. If the subsystem is built-in anyway, work is delegated to the
3735 * simpler cgroup_init_subsys.
3736 */
3737int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3738{
3739        int i;
3740        struct cgroup_subsys_state *css;
3741
3742        /* check name and function validity */
3743        if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3744            ss->create == NULL || ss->destroy == NULL)
3745                return -EINVAL;
3746
3747        /*
3748         * we don't support callbacks in modular subsystems. this check is
3749         * before the ss->module check for consistency; a subsystem that could
3750         * be a module should still have no callbacks even if the user isn't
3751         * compiling it as one.
3752         */
3753        if (ss->fork || ss->exit)
3754                return -EINVAL;
3755
3756        /*
3757         * an optionally modular subsystem is built-in: we want to do nothing,
3758         * since cgroup_init_subsys will have already taken care of it.
3759         */
3760        if (ss->module == NULL) {
3761                /* a few sanity checks */
3762                BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3763                BUG_ON(subsys[ss->subsys_id] != ss);
3764                return 0;
3765        }
3766
3767        /*
3768         * need to register a subsys id before anything else - for example,
3769         * init_cgroup_css needs it.
3770         */
3771        mutex_lock(&cgroup_mutex);
3772        /* find the first empty slot in the array */
3773        for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3774                if (subsys[i] == NULL)
3775                        break;
3776        }
3777        if (i == CGROUP_SUBSYS_COUNT) {
3778                /* maximum number of subsystems already registered! */
3779                mutex_unlock(&cgroup_mutex);
3780                return -EBUSY;
3781        }
3782        /* assign ourselves the subsys_id */
3783        ss->subsys_id = i;
3784        subsys[i] = ss;
3785
3786        /*
3787         * no ss->create seems to need anything important in the ss struct, so
3788         * this can happen first (i.e. before the rootnode attachment).
3789         */
3790        css = ss->create(ss, dummytop);
3791        if (IS_ERR(css)) {
3792                /* failure case - need to deassign the subsys[] slot. */
3793                subsys[i] = NULL;
3794                mutex_unlock(&cgroup_mutex);
3795                return PTR_ERR(css);
3796        }
3797
3798        list_add(&ss->sibling, &rootnode.subsys_list);
3799        ss->root = &rootnode;
3800
3801        /* our new subsystem will be attached to the dummy hierarchy. */
3802        init_cgroup_css(css, ss, dummytop);
3803        /* init_idr must be after init_cgroup_css because it sets css->id. */
3804        if (ss->use_id) {
3805                int ret = cgroup_init_idr(ss, css);
3806                if (ret) {
3807                        dummytop->subsys[ss->subsys_id] = NULL;
3808                        ss->destroy(ss, dummytop);
3809                        subsys[i] = NULL;
3810                        mutex_unlock(&cgroup_mutex);
3811                        return ret;
3812                }
3813        }
3814
3815        /*
3816         * Now we need to entangle the css into the existing css_sets. unlike
3817         * in cgroup_init_subsys, there are now multiple css_sets, so each one
3818         * will need a new pointer to it; done by iterating the css_set_table.
3819         * furthermore, modifying the existing css_sets will corrupt the hash
3820         * table state, so each changed css_set will need its hash recomputed.
3821         * this is all done under the css_set_lock.
3822         */
3823        write_lock(&css_set_lock);
3824        for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3825                struct css_set *cg;
3826                struct hlist_node *node, *tmp;
3827                struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3828
3829                hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3830                        /* skip entries that we already rehashed */
3831                        if (cg->subsys[ss->subsys_id])
3832                                continue;
3833                        /* remove existing entry */
3834                        hlist_del(&cg->hlist);
3835                        /* set new value */
3836                        cg->subsys[ss->subsys_id] = css;
3837                        /* recompute hash and restore entry */
3838                        new_bucket = css_set_hash(cg->subsys);
3839                        hlist_add_head(&cg->hlist, new_bucket);
3840                }
3841        }
3842        write_unlock(&css_set_lock);
3843
3844        mutex_init(&ss->hierarchy_mutex);
3845        lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3846        ss->active = 1;
3847
3848        /* success! */
3849        mutex_unlock(&cgroup_mutex);
3850        return 0;
3851}
3852EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3853
3854/**
3855 * cgroup_unload_subsys: unload a modular subsystem
3856 * @ss: the subsystem to unload
3857 *
3858 * This function should be called in a modular subsystem's exitcall. When this
3859 * function is invoked, the refcount on the subsystem's module will be 0, so
3860 * the subsystem will not be attached to any hierarchy.
3861 */
3862void cgroup_unload_subsys(struct cgroup_subsys *ss)
3863{
3864        struct cg_cgroup_link *link;
3865        struct hlist_head *hhead;
3866
3867        BUG_ON(ss->module == NULL);
3868
3869        /*
3870         * we shouldn't be called if the subsystem is in use, and the use of
3871         * try_module_get in parse_cgroupfs_options should ensure that it
3872         * doesn't start being used while we're killing it off.
3873         */
3874        BUG_ON(ss->root != &rootnode);
3875
3876        mutex_lock(&cgroup_mutex);
3877        /* deassign the subsys_id */
3878        BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3879        subsys[ss->subsys_id] = NULL;
3880
3881        /* remove subsystem from rootnode's list of subsystems */
3882        list_del(&ss->sibling);
3883
3884        /*
3885         * disentangle the css from all css_sets attached to the dummytop. as
3886         * in loading, we need to pay our respects to the hashtable gods.
3887         */
3888        write_lock(&css_set_lock);
3889        list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3890                struct css_set *cg = link->cg;
3891
3892                hlist_del(&cg->hlist);
3893                BUG_ON(!cg->subsys[ss->subsys_id]);
3894                cg->subsys[ss->subsys_id] = NULL;
3895                hhead = css_set_hash(cg->subsys);
3896                hlist_add_head(&cg->hlist, hhead);
3897        }
3898        write_unlock(&css_set_lock);
3899
3900        /*
3901         * remove subsystem's css from the dummytop and free it - need to free
3902         * before marking as null because ss->destroy needs the cgrp->subsys
3903         * pointer to find their state. note that this also takes care of
3904         * freeing the css_id.
3905         */
3906        ss->destroy(ss, dummytop);
3907        dummytop->subsys[ss->subsys_id] = NULL;
3908
3909        mutex_unlock(&cgroup_mutex);
3910}
3911EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3912
3913/**
3914 * cgroup_init_early - cgroup initialization at system boot
3915 *
3916 * Initialize cgroups at system boot, and initialize any
3917 * subsystems that request early init.
3918 */
3919int __init cgroup_init_early(void)
3920{
3921        int i;
3922        atomic_set(&init_css_set.refcount, 1);
3923        INIT_LIST_HEAD(&init_css_set.cg_links);
3924        INIT_LIST_HEAD(&init_css_set.tasks);
3925        INIT_HLIST_NODE(&init_css_set.hlist);
3926        css_set_count = 1;
3927        init_cgroup_root(&rootnode);
3928        root_count = 1;
3929        init_task.cgroups = &init_css_set;
3930
3931        init_css_set_link.cg = &init_css_set;
3932        init_css_set_link.cgrp = dummytop;
3933        list_add(&init_css_set_link.cgrp_link_list,
3934                 &rootnode.top_cgroup.css_sets);
3935        list_add(&init_css_set_link.cg_link_list,
3936                 &init_css_set.cg_links);
3937
3938        for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3939                INIT_HLIST_HEAD(&css_set_table[i]);
3940
3941        /* at bootup time, we don't worry about modular subsystems */
3942        for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3943                struct cgroup_subsys *ss = subsys[i];
3944
3945                BUG_ON(!ss->name);
3946                BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3947                BUG_ON(!ss->create);
3948                BUG_ON(!ss->destroy);
3949                if (ss->subsys_id != i) {
3950                        printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3951                               ss->name, ss->subsys_id);
3952                        BUG();
3953                }
3954
3955                if (ss->early_init)
3956                        cgroup_init_subsys(ss);
3957        }
3958        return 0;
3959}
3960
3961/**
3962 * cgroup_init - cgroup initialization
3963 *
3964 * Register cgroup filesystem and /proc file, and initialize
3965 * any subsystems that didn't request early init.
3966 */
3967int __init cgroup_init(void)
3968{
3969        int err;
3970        int i;
3971        struct hlist_head *hhead;
3972
3973        err = bdi_init(&cgroup_backing_dev_info);
3974        if (err)
3975                return err;
3976
3977        /* at bootup time, we don't worry about modular subsystems */
3978        for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3979                struct cgroup_subsys *ss = subsys[i];
3980                if (!ss->early_init)
3981                        cgroup_init_subsys(ss);
3982                if (ss->use_id)
3983                        cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3984        }
3985
3986        /* Add init_css_set to the hash table */
3987        hhead = css_set_hash(init_css_set.subsys);
3988        hlist_add_head(&init_css_set.hlist, hhead);
3989        BUG_ON(!init_root_id(&rootnode));
3990
3991        cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3992        if (!cgroup_kobj) {
3993                err = -ENOMEM;
3994                goto out;
3995        }
3996
3997        err = register_filesystem(&cgroup_fs_type);
3998        if (err < 0) {
3999                kobject_put(cgroup_kobj);
4000                goto out;
4001        }
4002
4003        proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4004
4005out:
4006        if (err)
4007                bdi_destroy(&cgroup_backing_dev_info);
4008
4009        return err;
4010}
4011
4012/*
4013 * proc_cgroup_show()
4014 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4015 *  - Used for /proc/<pid>/cgroup.
4016 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4017 *    doesn't really matter if tsk->cgroup changes after we read it,
4018 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4019 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4020 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4021 *    cgroup to top_cgroup.
4022 */
4023
4024/* TODO: Use a proper seq_file iterator */
4025static int proc_cgroup_show(struct seq_file *m, void *v)
4026{
4027        struct pid *pid;
4028        struct task_struct *tsk;
4029        char *buf;
4030        int retval;
4031        struct cgroupfs_root *root;
4032
4033        retval = -ENOMEM;
4034        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4035        if (!buf)
4036                goto out;
4037
4038        retval = -ESRCH;
4039        pid = m->private;
4040        tsk = get_pid_task(pid, PIDTYPE_PID);
4041        if (!tsk)
4042                goto out_free;
4043
4044        retval = 0;
4045
4046        mutex_lock(&cgroup_mutex);
4047
4048        for_each_active_root(root) {
4049                struct cgroup_subsys *ss;
4050                struct cgroup *cgrp;
4051                int count = 0;
4052
4053                seq_printf(m, "%d:", root->hierarchy_id);
4054                for_each_subsys(root, ss)
4055                        seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4056                if (strlen(root->name))
4057                        seq_printf(m, "%sname=%s", count ? "," : "",
4058                                   root->name);
4059                seq_putc(m, ':');
4060                cgrp = task_cgroup_from_root(tsk, root);
4061                retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4062                if (retval < 0)
4063                        goto out_unlock;
4064                seq_puts(m, buf);
4065                seq_putc(m, '\n');
4066        }
4067
4068out_unlock:
4069        mutex_unlock(&cgroup_mutex);
4070        put_task_struct(tsk);
4071out_free:
4072        kfree(buf);
4073out:
4074        return retval;
4075}
4076
4077static int cgroup_open(struct inode *inode, struct file *file)
4078{
4079        struct pid *pid = PROC_I(inode)->pid;
4080        return single_open(file, proc_cgroup_show, pid);
4081}
4082
4083const struct file_operations proc_cgroup_operations = {
4084        .open           = cgroup_open,
4085        .read           = seq_read,
4086        .llseek         = seq_lseek,
4087        .release        = single_release,
4088};
4089
4090/* Display information about each subsystem and each hierarchy */
4091static int proc_cgroupstats_show(struct seq_file *m, void *v)
4092{
4093        int i;
4094
4095        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4096        /*
4097         * ideally we don't want subsystems moving around while we do this.
4098         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4099         * subsys/hierarchy state.
4100         */
4101        mutex_lock(&cgroup_mutex);
4102        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4103                struct cgroup_subsys *ss = subsys[i];
4104                if (ss == NULL)
4105                        continue;
4106                seq_printf(m, "%s\t%d\t%d\t%d\n",
4107                           ss->name, ss->root->hierarchy_id,
4108                           ss->root->number_of_cgroups, !ss->disabled);
4109        }
4110        mutex_unlock(&cgroup_mutex);
4111        return 0;
4112}
4113
4114static int cgroupstats_open(struct inode *inode, struct file *file)
4115{
4116        return single_open(file, proc_cgroupstats_show, NULL);
4117}
4118
4119static const struct file_operations proc_cgroupstats_operations = {
4120        .open = cgroupstats_open,
4121        .read = seq_read,
4122        .llseek = seq_lseek,
4123        .release = single_release,
4124};
4125
4126/**
4127 * cgroup_fork - attach newly forked task to its parents cgroup.
4128 * @child: pointer to task_struct of forking parent process.
4129 *
4130 * Description: A task inherits its parent's cgroup at fork().
4131 *
4132 * A pointer to the shared css_set was automatically copied in
4133 * fork.c by dup_task_struct().  However, we ignore that copy, since
4134 * it was not made under the protection of RCU or cgroup_mutex, so
4135 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4136 * have already changed current->cgroups, allowing the previously
4137 * referenced cgroup group to be removed and freed.
4138 *
4139 * At the point that cgroup_fork() is called, 'current' is the parent
4140 * task, and the passed argument 'child' points to the child task.
4141 */
4142void cgroup_fork(struct task_struct *child)
4143{
4144        task_lock(current);
4145        child->cgroups = current->cgroups;
4146        get_css_set(child->cgroups);
4147        task_unlock(current);
4148        INIT_LIST_HEAD(&child->cg_list);
4149}
4150
4151/**
4152 * cgroup_fork_callbacks - run fork callbacks
4153 * @child: the new task
4154 *
4155 * Called on a new task very soon before adding it to the
4156 * tasklist. No need to take any locks since no-one can
4157 * be operating on this task.
4158 */
4159void cgroup_fork_callbacks(struct task_struct *child)
4160{
4161        if (need_forkexit_callback) {
4162                int i;
4163                /*
4164                 * forkexit callbacks are only supported for builtin
4165                 * subsystems, and the builtin section of the subsys array is
4166                 * immutable, so we don't need to lock the subsys array here.
4167                 */
4168                for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4169                        struct cgroup_subsys *ss = subsys[i];
4170                        if (ss->fork)
4171                                ss->fork(ss, child);
4172                }
4173        }
4174}
4175
4176/**
4177 * cgroup_post_fork - called on a new task after adding it to the task list
4178 * @child: the task in question
4179 *
4180 * Adds the task to the list running through its css_set if necessary.
4181 * Has to be after the task is visible on the task list in case we race
4182 * with the first call to cgroup_iter_start() - to guarantee that the
4183 * new task ends up on its list.
4184 */
4185void cgroup_post_fork(struct task_struct *child)
4186{
4187        if (use_task_css_set_links) {
4188                write_lock(&css_set_lock);
4189                task_lock(child);
4190                if (list_empty(&child->cg_list))
4191                        list_add(&child->cg_list, &child->cgroups->tasks);
4192                task_unlock(child);
4193                write_unlock(&css_set_lock);
4194        }
4195}
4196/**
4197 * cgroup_exit - detach cgroup from exiting task
4198 * @tsk: pointer to task_struct of exiting process
4199 * @run_callback: run exit callbacks?
4200 *
4201 * Description: Detach cgroup from @tsk and release it.
4202 *
4203 * Note that cgroups marked notify_on_release force every task in
4204 * them to take the global cgroup_mutex mutex when exiting.
4205 * This could impact scaling on very large systems.  Be reluctant to
4206 * use notify_on_release cgroups where very high task exit scaling
4207 * is required on large systems.
4208 *
4209 * the_top_cgroup_hack:
4210 *
4211 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4212 *
4213 *    We call cgroup_exit() while the task is still competent to
4214 *    handle notify_on_release(), then leave the task attached to the
4215 *    root cgroup in each hierarchy for the remainder of its exit.
4216 *
4217 *    To do this properly, we would increment the reference count on
4218 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4219 *    code we would add a second cgroup function call, to drop that
4220 *    reference.  This would just create an unnecessary hot spot on
4221 *    the top_cgroup reference count, to no avail.
4222 *
4223 *    Normally, holding a reference to a cgroup without bumping its
4224 *    count is unsafe.   The cgroup could go away, or someone could
4225 *    attach us to a different cgroup, decrementing the count on
4226 *    the first cgroup that we never incremented.  But in this case,
4227 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4228 *    which wards off any cgroup_attach_task() attempts, or task is a failed
4229 *    fork, never visible to cgroup_attach_task.
4230 */
4231void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4232{
4233        int i;
4234        struct css_set *cg;
4235
4236        if (run_callbacks && need_forkexit_callback) {
4237                /*
4238                 * modular subsystems can't use callbacks, so no need to lock
4239                 * the subsys array
4240                 */
4241                for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4242                        struct cgroup_subsys *ss = subsys[i];
4243                        if (ss->exit)
4244                                ss->exit(ss, tsk);
4245                }
4246        }
4247
4248        /*
4249         * Unlink from the css_set task list if necessary.
4250         * Optimistically check cg_list before taking
4251         * css_set_lock
4252         */
4253        if (!list_empty(&tsk->cg_list)) {
4254                write_lock(&css_set_lock);
4255                if (!list_empty(&tsk->cg_list))
4256                        list_del(&tsk->cg_list);
4257                write_unlock(&css_set_lock);
4258        }
4259
4260        /* Reassign the task to the init_css_set. */
4261        task_lock(tsk);
4262        cg = tsk->cgroups;
4263        tsk->cgroups = &init_css_set;
4264        task_unlock(tsk);
4265        if (cg)
4266                put_css_set_taskexit(cg);
4267}
4268
4269/**
4270 * cgroup_clone - clone the cgroup the given subsystem is attached to
4271 * @tsk: the task to be moved
4272 * @subsys: the given subsystem
4273 * @nodename: the name for the new cgroup
4274 *
4275 * Duplicate the current cgroup in the hierarchy that the given
4276 * subsystem is attached to, and move this task into the new
4277 * child.
4278 */
4279int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4280                                                        char *nodename)
4281{
4282        struct dentry *dentry;
4283        int ret = 0;
4284        struct cgroup *parent, *child;
4285        struct inode *inode;
4286        struct css_set *cg;
4287        struct cgroupfs_root *root;
4288        struct cgroup_subsys *ss;
4289
4290        /* We shouldn't be called by an unregistered subsystem */
4291        BUG_ON(!subsys->active);
4292
4293        /* First figure out what hierarchy and cgroup we're dealing
4294         * with, and pin them so we can drop cgroup_mutex */
4295        mutex_lock(&cgroup_mutex);
4296 again:
4297        root = subsys->root;
4298        if (root == &rootnode) {
4299                mutex_unlock(&cgroup_mutex);
4300                return 0;
4301        }
4302
4303        /* Pin the hierarchy */
4304        if (!atomic_inc_not_zero(&root->sb->s_active)) {
4305                /* We race with the final deactivate_super() */
4306                mutex_unlock(&cgroup_mutex);
4307                return 0;
4308        }
4309
4310        /* Keep the cgroup alive */
4311        task_lock(tsk);
4312        parent = task_cgroup(tsk, subsys->subsys_id);
4313        cg = tsk->cgroups;
4314        get_css_set(cg);
4315        task_unlock(tsk);
4316
4317        mutex_unlock(&cgroup_mutex);
4318
4319        /* Now do the VFS work to create a cgroup */
4320        inode = parent->dentry->d_inode;
4321
4322        /* Hold the parent directory mutex across this operation to
4323         * stop anyone else deleting the new cgroup */
4324        mutex_lock(&inode->i_mutex);
4325        dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4326        if (IS_ERR(dentry)) {
4327                printk(KERN_INFO
4328                       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4329                       PTR_ERR(dentry));
4330                ret = PTR_ERR(dentry);
4331                goto out_release;
4332        }
4333
4334        /* Create the cgroup directory, which also creates the cgroup */
4335        ret = vfs_mkdir(inode, dentry, 0755);
4336        child = __d_cgrp(dentry);
4337        dput(dentry);
4338        if (ret) {
4339                printk(KERN_INFO
4340                       "Failed to create cgroup %s: %d\n", nodename,
4341                       ret);
4342                goto out_release;
4343        }
4344
4345        /* The cgroup now exists. Retake cgroup_mutex and check
4346         * that we're still in the same state that we thought we
4347         * were. */
4348        mutex_lock(&cgroup_mutex);
4349        if ((root != subsys->root) ||
4350            (parent != task_cgroup(tsk, subsys->subsys_id))) {
4351                /* Aargh, we raced ... */
4352                mutex_unlock(&inode->i_mutex);
4353                put_css_set(cg);
4354
4355                deactivate_super(root->sb);
4356                /* The cgroup is still accessible in the VFS, but
4357                 * we're not going to try to rmdir() it at this
4358                 * point. */
4359                printk(KERN_INFO
4360                       "Race in cgroup_clone() - leaking cgroup %s\n",
4361                       nodename);
4362                goto again;
4363        }
4364
4365        /* do any required auto-setup */
4366        for_each_subsys(root, ss) {
4367                if (ss->post_clone)
4368                        ss->post_clone(ss, child);
4369        }
4370
4371        /* All seems fine. Finish by moving the task into the new cgroup */
4372        ret = cgroup_attach_task(child, tsk);
4373        mutex_unlock(&cgroup_mutex);
4374
4375 out_release:
4376        mutex_unlock(&inode->i_mutex);
4377
4378        mutex_lock(&cgroup_mutex);
4379        put_css_set(cg);
4380        mutex_unlock(&cgroup_mutex);
4381        deactivate_super(root->sb);
4382        return ret;
4383}
4384
4385/**
4386 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4387 * @cgrp: the cgroup in question
4388 * @task: the task in question
4389 *
4390 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4391 * hierarchy.
4392 *
4393 * If we are sending in dummytop, then presumably we are creating
4394 * the top cgroup in the subsystem.
4395 *
4396 * Called only by the ns (nsproxy) cgroup.
4397 */
4398int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4399{
4400        int ret;
4401        struct cgroup *target;
4402
4403        if (cgrp == dummytop)
4404                return 1;
4405
4406        target = task_cgroup_from_root(task, cgrp->root);
4407        while (cgrp != target && cgrp!= cgrp->top_cgroup)
4408                cgrp = cgrp->parent;
4409        ret = (cgrp == target);
4410        return ret;
4411}
4412
4413static void check_for_release(struct cgroup *cgrp)
4414{
4415        /* All of these checks rely on RCU to keep the cgroup
4416         * structure alive */
4417        if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4418            && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4419                /* Control Group is currently removeable. If it's not
4420                 * already queued for a userspace notification, queue
4421                 * it now */
4422                int need_schedule_work = 0;
4423                spin_lock(&release_list_lock);
4424                if (!cgroup_is_removed(cgrp) &&
4425                    list_empty(&cgrp->release_list)) {
4426                        list_add(&cgrp->release_list, &release_list);
4427                        need_schedule_work = 1;
4428                }
4429                spin_unlock(&release_list_lock);
4430                if (need_schedule_work)
4431                        schedule_work(&release_agent_work);
4432        }
4433}
4434
4435/* Caller must verify that the css is not for root cgroup */
4436void __css_put(struct cgroup_subsys_state *css, int count)
4437{
4438        struct cgroup *cgrp = css->cgroup;
4439        int val;
4440        rcu_read_lock();
4441        val = atomic_sub_return(count, &css->refcnt);
4442        if (val == 1) {
4443                if (notify_on_release(cgrp)) {
4444                        set_bit(CGRP_RELEASABLE, &cgrp->flags);
4445                        check_for_release(cgrp);
4446                }
4447                cgroup_wakeup_rmdir_waiter(cgrp);
4448        }
4449        rcu_read_unlock();
4450        WARN_ON_ONCE(val < 1);
4451}
4452EXPORT_SYMBOL_GPL(__css_put);
4453
4454/*
4455 * Notify userspace when a cgroup is released, by running the
4456 * configured release agent with the name of the cgroup (path
4457 * relative to the root of cgroup file system) as the argument.
4458 *
4459 * Most likely, this user command will try to rmdir this cgroup.
4460 *
4461 * This races with the possibility that some other task will be
4462 * attached to this cgroup before it is removed, or that some other
4463 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
4464 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4465 * unused, and this cgroup will be reprieved from its death sentence,
4466 * to continue to serve a useful existence.  Next time it's released,
4467 * we will get notified again, if it still has 'notify_on_release' set.
4468 *
4469 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4470 * means only wait until the task is successfully execve()'d.  The
4471 * separate release agent task is forked by call_usermodehelper(),
4472 * then control in this thread returns here, without waiting for the
4473 * release agent task.  We don't bother to wait because the caller of
4474 * this routine has no use for the exit status of the release agent
4475 * task, so no sense holding our caller up for that.
4476 */
4477static void cgroup_release_agent(struct work_struct *work)
4478{
4479        BUG_ON(work != &release_agent_work);
4480        mutex_lock(&cgroup_mutex);
4481        spin_lock(&release_list_lock);
4482        while (!list_empty(&release_list)) {
4483                char *argv[3], *envp[3];
4484                int i;
4485                char *pathbuf = NULL, *agentbuf = NULL;
4486                struct cgroup *cgrp = list_entry(release_list.next,
4487                                                    struct cgroup,
4488                                                    release_list);
4489                list_del_init(&cgrp->release_list);
4490                spin_unlock(&release_list_lock);
4491                pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4492                if (!pathbuf)
4493                        goto continue_free;
4494                if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4495                        goto continue_free;
4496                agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4497                if (!agentbuf)
4498                        goto continue_free;
4499
4500                i = 0;
4501                argv[i++] = agentbuf;
4502                argv[i++] = pathbuf;
4503                argv[i] = NULL;
4504
4505                i = 0;
4506                /* minimal command environment */
4507                envp[i++] = "HOME=/";
4508                envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4509                envp[i] = NULL;
4510
4511                /* Drop the lock while we invoke the usermode helper,
4512                 * since the exec could involve hitting disk and hence
4513                 * be a slow process */
4514                mutex_unlock(&cgroup_mutex);
4515                call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4516                mutex_lock(&cgroup_mutex);
4517 continue_free:
4518                kfree(pathbuf);
4519                kfree(agentbuf);
4520                spin_lock(&release_list_lock);
4521        }
4522        spin_unlock(&release_list_lock);
4523        mutex_unlock(&cgroup_mutex);
4524}
4525
4526static int __init cgroup_disable(char *str)
4527{
4528        int i;
4529        char *token;
4530
4531        while ((token = strsep(&str, ",")) != NULL) {
4532                if (!*token)
4533                        continue;
4534                /*
4535                 * cgroup_disable, being at boot time, can't know about module
4536                 * subsystems, so we don't worry about them.
4537                 */
4538                for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4539                        struct cgroup_subsys *ss = subsys[i];
4540
4541                        if (!strcmp(token, ss->name)) {
4542                                ss->disabled = 1;
4543                                printk(KERN_INFO "Disabling %s control group"
4544                                        " subsystem\n", ss->name);
4545                                break;
4546                        }
4547                }
4548        }
4549        return 1;
4550}
4551__setup("cgroup_disable=", cgroup_disable);
4552
4553/*
4554 * Functons for CSS ID.
4555 */
4556
4557/*
4558 *To get ID other than 0, this should be called when !cgroup_is_removed().
4559 */
4560unsigned short css_id(struct cgroup_subsys_state *css)
4561{
4562        struct css_id *cssid;
4563
4564        /*
4565         * This css_id() can return correct value when somone has refcnt
4566         * on this or this is under rcu_read_lock(). Once css->id is allocated,
4567         * it's unchanged until freed.
4568         */
4569        cssid = rcu_dereference_check(css->id,
4570                        rcu_read_lock_held() || atomic_read(&css->refcnt));
4571
4572        if (cssid)
4573                return cssid->id;
4574        return 0;
4575}
4576EXPORT_SYMBOL_GPL(css_id);
4577
4578unsigned short css_depth(struct cgroup_subsys_state *css)
4579{
4580        struct css_id *cssid;
4581
4582        cssid = rcu_dereference_check(css->id,
4583                        rcu_read_lock_held() || atomic_read(&css->refcnt));
4584
4585        if (cssid)
4586                return cssid->depth;
4587        return 0;
4588}
4589EXPORT_SYMBOL_GPL(css_depth);
4590
4591/**
4592 *  css_is_ancestor - test "root" css is an ancestor of "child"
4593 * @child: the css to be tested.
4594 * @root: the css supporsed to be an ancestor of the child.
4595 *
4596 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4597 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4598 * But, considering usual usage, the csses should be valid objects after test.
4599 * Assuming that the caller will do some action to the child if this returns
4600 * returns true, the caller must take "child";s reference count.
4601 * If "child" is valid object and this returns true, "root" is valid, too.
4602 */
4603
4604bool css_is_ancestor(struct cgroup_subsys_state *child,
4605                    const struct cgroup_subsys_state *root)
4606{
4607        struct css_id *child_id;
4608        struct css_id *root_id;
4609        bool ret = true;
4610
4611        rcu_read_lock();
4612        child_id  = rcu_dereference(child->id);
4613        root_id = rcu_dereference(root->id);
4614        if (!child_id
4615            || !root_id
4616            || (child_id->depth < root_id->depth)
4617            || (child_id->stack[root_id->depth] != root_id->id))
4618                ret = false;
4619        rcu_read_unlock();
4620        return ret;
4621}
4622
4623static void __free_css_id_cb(struct rcu_head *head)
4624{
4625        struct css_id *id;
4626
4627        id = container_of(head, struct css_id, rcu_head);
4628        kfree(id);
4629}
4630
4631void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4632{
4633        struct css_id *id = css->id;
4634        /* When this is called before css_id initialization, id can be NULL */
4635        if (!id)
4636                return;
4637
4638        BUG_ON(!ss->use_id);
4639
4640        rcu_assign_pointer(id->css, NULL);
4641        rcu_assign_pointer(css->id, NULL);
4642        spin_lock(&ss->id_lock);
4643        idr_remove(&ss->idr, id->id);
4644        spin_unlock(&ss->id_lock);
4645        call_rcu(&id->rcu_head, __free_css_id_cb);
4646}
4647EXPORT_SYMBOL_GPL(free_css_id);
4648
4649/*
4650 * This is called by init or create(). Then, calls to this function are
4651 * always serialized (By cgroup_mutex() at create()).
4652 */
4653
4654static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4655{
4656        struct css_id *newid;
4657        int myid, error, size;
4658
4659        BUG_ON(!ss->use_id);
4660
4661        size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4662        newid = kzalloc(size, GFP_KERNEL);
4663        if (!newid)
4664                return ERR_PTR(-ENOMEM);
4665        /* get id */
4666        if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4667                error = -ENOMEM;
4668                goto err_out;
4669        }
4670        spin_lock(&ss->id_lock);
4671        /* Don't use 0. allocates an ID of 1-65535 */
4672        error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4673        spin_unlock(&ss->id_lock);
4674
4675        /* Returns error when there are no free spaces for new ID.*/
4676        if (error) {
4677                error = -ENOSPC;
4678                goto err_out;
4679        }
4680        if (myid > CSS_ID_MAX)
4681                goto remove_idr;
4682
4683        newid->id = myid;
4684        newid->depth = depth;
4685        return newid;
4686remove_idr:
4687        error = -ENOSPC;
4688        spin_lock(&ss->id_lock);
4689        idr_remove(&ss->idr, myid);
4690        spin_unlock(&ss->id_lock);
4691err_out:
4692        kfree(newid);
4693        return ERR_PTR(error);
4694
4695}
4696
4697static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4698                                            struct cgroup_subsys_state *rootcss)
4699{
4700        struct css_id *newid;
4701
4702        spin_lock_init(&ss->id_lock);
4703        idr_init(&ss->idr);
4704
4705        newid = get_new_cssid(ss, 0);
4706        if (IS_ERR(newid))
4707                return PTR_ERR(newid);
4708
4709        newid->stack[0] = newid->id;
4710        newid->css = rootcss;
4711        rootcss->id = newid;
4712        return 0;
4713}
4714
4715static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4716                        struct cgroup *child)
4717{
4718        int subsys_id, i, depth = 0;
4719        struct cgroup_subsys_state *parent_css, *child_css;
4720        struct css_id *child_id, *parent_id;
4721
4722        subsys_id = ss->subsys_id;
4723        parent_css = parent->subsys[subsys_id];
4724        child_css = child->subsys[subsys_id];
4725        parent_id = parent_css->id;
4726        depth = parent_id->depth + 1;
4727
4728        child_id = get_new_cssid(ss, depth);
4729        if (IS_ERR(child_id))
4730                return PTR_ERR(child_id);
4731
4732        for (i = 0; i < depth; i++)
4733                child_id->stack[i] = parent_id->stack[i];
4734        child_id->stack[depth] = child_id->id;
4735        /*
4736         * child_id->css pointer will be set after this cgroup is available
4737         * see cgroup_populate_dir()
4738         */
4739        rcu_assign_pointer(child_css->id, child_id);
4740
4741        return 0;
4742}
4743
4744/**
4745 * css_lookup - lookup css by id
4746 * @ss: cgroup subsys to be looked into.
4747 * @id: the id
4748 *
4749 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4750 * NULL if not. Should be called under rcu_read_lock()
4751 */
4752struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4753{
4754        struct css_id *cssid = NULL;
4755
4756        BUG_ON(!ss->use_id);
4757        cssid = idr_find(&ss->idr, id);
4758
4759        if (unlikely(!cssid))
4760                return NULL;
4761
4762        return rcu_dereference(cssid->css);
4763}
4764EXPORT_SYMBOL_GPL(css_lookup);
4765
4766/**
4767 * css_get_next - lookup next cgroup under specified hierarchy.
4768 * @ss: pointer to subsystem
4769 * @id: current position of iteration.
4770 * @root: pointer to css. search tree under this.
4771 * @foundid: position of found object.
4772 *
4773 * Search next css under the specified hierarchy of rootid. Calling under
4774 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4775 */
4776struct cgroup_subsys_state *
4777css_get_next(struct cgroup_subsys *ss, int id,
4778             struct cgroup_subsys_state *root, int *foundid)
4779{
4780        struct cgroup_subsys_state *ret = NULL;
4781        struct css_id *tmp;
4782        int tmpid;
4783        int rootid = css_id(root);
4784        int depth = css_depth(root);
4785
4786        if (!rootid)
4787                return NULL;
4788
4789        BUG_ON(!ss->use_id);
4790        /* fill start point for scan */
4791        tmpid = id;
4792        while (1) {
4793                /*
4794                 * scan next entry from bitmap(tree), tmpid is updated after
4795                 * idr_get_next().
4796                 */
4797                spin_lock(&ss->id_lock);
4798                tmp = idr_get_next(&ss->idr, &tmpid);
4799                spin_unlock(&ss->id_lock);
4800
4801                if (!tmp)
4802                        break;
4803                if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4804                        ret = rcu_dereference(tmp->css);
4805                        if (ret) {
4806                                *foundid = tmpid;
4807                                break;
4808                        }
4809                }
4810                /* continue to scan from next id */
4811                tmpid = tmpid + 1;
4812        }
4813        return ret;
4814}
4815
4816#ifdef CONFIG_CGROUP_DEBUG
4817static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4818                                                   struct cgroup *cont)
4819{
4820        struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4821
4822        if (!css)
4823                return ERR_PTR(-ENOMEM);
4824
4825        return css;
4826}
4827
4828static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4829{
4830        kfree(cont->subsys[debug_subsys_id]);
4831}
4832
4833static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4834{
4835        return atomic_read(&cont->count);
4836}
4837
4838static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4839{
4840        return cgroup_task_count(cont);
4841}
4842
4843static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4844{
4845        return (u64)(unsigned long)current->cgroups;
4846}
4847
4848static u64 current_css_set_refcount_read(struct cgroup *cont,
4849                                           struct cftype *cft)
4850{
4851        u64 count;
4852
4853        rcu_read_lock();
4854        count = atomic_read(&current->cgroups->refcount);
4855        rcu_read_unlock();
4856        return count;
4857}
4858
4859static int current_css_set_cg_links_read(struct cgroup *cont,
4860                                         struct cftype *cft,
4861                                         struct seq_file *seq)
4862{
4863        struct cg_cgroup_link *link;
4864        struct css_set *cg;
4865
4866        read_lock(&css_set_lock);
4867        rcu_read_lock();
4868        cg = rcu_dereference(current->cgroups);
4869        list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4870                struct cgroup *c = link->cgrp;
4871                const char *name;
4872
4873                if (c->dentry)
4874                        name = c->dentry->d_name.name;
4875                else
4876                        name = "?";
4877                seq_printf(seq, "Root %d group %s\n",
4878                           c->root->hierarchy_id, name);
4879        }
4880        rcu_read_unlock();
4881        read_unlock(&css_set_lock);
4882        return 0;
4883}
4884
4885#define MAX_TASKS_SHOWN_PER_CSS 25
4886static int cgroup_css_links_read(struct cgroup *cont,
4887                                 struct cftype *cft,
4888                                 struct seq_file *seq)
4889{
4890        struct cg_cgroup_link *link;
4891
4892        read_lock(&css_set_lock);
4893        list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4894                struct css_set *cg = link->cg;
4895                struct task_struct *task;
4896                int count = 0;
4897                seq_printf(seq, "css_set %p\n", cg);
4898                list_for_each_entry(task, &cg->tasks, cg_list) {
4899                        if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4900                                seq_puts(seq, "  ...\n");
4901                                break;
4902                        } else {
4903                                seq_printf(seq, "  task %d\n",
4904                                           task_pid_vnr(task));
4905                        }
4906                }
4907        }
4908        read_unlock(&css_set_lock);
4909        return 0;
4910}
4911
4912static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4913{
4914        return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4915}
4916
4917static struct cftype debug_files[] =  {
4918        {
4919                .name = "cgroup_refcount",
4920                .read_u64 = cgroup_refcount_read,
4921        },
4922        {
4923                .name = "taskcount",
4924                .read_u64 = debug_taskcount_read,
4925        },
4926
4927        {
4928                .name = "current_css_set",
4929                .read_u64 = current_css_set_read,
4930        },
4931
4932        {
4933                .name = "current_css_set_refcount",
4934                .read_u64 = current_css_set_refcount_read,
4935        },
4936
4937        {
4938                .name = "current_css_set_cg_links",
4939                .read_seq_string = current_css_set_cg_links_read,
4940        },
4941
4942        {
4943                .name = "cgroup_css_links",
4944                .read_seq_string = cgroup_css_links_read,
4945        },
4946
4947        {
4948                .name = "releasable",
4949                .read_u64 = releasable_read,
4950        },
4951};
4952
4953static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4954{
4955        return cgroup_add_files(cont, ss, debug_files,
4956                                ARRAY_SIZE(debug_files));
4957}
4958
4959struct cgroup_subsys debug_subsys = {
4960        .name = "debug",
4961        .create = debug_create,
4962        .destroy = debug_destroy,
4963        .populate = debug_populate,
4964        .subsys_id = debug_subsys_id,
4965};
4966#endif /* CONFIG_CGROUP_DEBUG */
4967