linux/kernel/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/module.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/backing-dev.h>
  55#include <linux/sort.h>
  56
  57#include <asm/uaccess.h>
  58#include <asm/atomic.h>
  59#include <linux/mutex.h>
  60#include <linux/workqueue.h>
  61#include <linux/cgroup.h>
  62
  63/*
  64 * Workqueue for cpuset related tasks.
  65 *
  66 * Using kevent workqueue may cause deadlock when memory_migrate
  67 * is set. So we create a separate workqueue thread for cpuset.
  68 */
  69static struct workqueue_struct *cpuset_wq;
  70
  71/*
  72 * Tracks how many cpusets are currently defined in system.
  73 * When there is only one cpuset (the root cpuset) we can
  74 * short circuit some hooks.
  75 */
  76int number_of_cpusets __read_mostly;
  77
  78/* Forward declare cgroup structures */
  79struct cgroup_subsys cpuset_subsys;
  80struct cpuset;
  81
  82/* See "Frequency meter" comments, below. */
  83
  84struct fmeter {
  85        int cnt;                /* unprocessed events count */
  86        int val;                /* most recent output value */
  87        time_t time;            /* clock (secs) when val computed */
  88        spinlock_t lock;        /* guards read or write of above */
  89};
  90
  91struct cpuset {
  92        struct cgroup_subsys_state css;
  93
  94        unsigned long flags;            /* "unsigned long" so bitops work */
  95        cpumask_var_t cpus_allowed;     /* CPUs allowed to tasks in cpuset */
  96        nodemask_t mems_allowed;        /* Memory Nodes allowed to tasks */
  97
  98        struct cpuset *parent;          /* my parent */
  99
 100        struct fmeter fmeter;           /* memory_pressure filter */
 101
 102        /* partition number for rebuild_sched_domains() */
 103        int pn;
 104
 105        /* for custom sched domain */
 106        int relax_domain_level;
 107
 108        /* used for walking a cpuset hierarchy */
 109        struct list_head stack_list;
 110};
 111
 112/* Retrieve the cpuset for a cgroup */
 113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
 114{
 115        return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
 116                            struct cpuset, css);
 117}
 118
 119/* Retrieve the cpuset for a task */
 120static inline struct cpuset *task_cs(struct task_struct *task)
 121{
 122        return container_of(task_subsys_state(task, cpuset_subsys_id),
 123                            struct cpuset, css);
 124}
 125
 126/* bits in struct cpuset flags field */
 127typedef enum {
 128        CS_CPU_EXCLUSIVE,
 129        CS_MEM_EXCLUSIVE,
 130        CS_MEM_HARDWALL,
 131        CS_MEMORY_MIGRATE,
 132        CS_SCHED_LOAD_BALANCE,
 133        CS_SPREAD_PAGE,
 134        CS_SPREAD_SLAB,
 135} cpuset_flagbits_t;
 136
 137/* convenient tests for these bits */
 138static inline int is_cpu_exclusive(const struct cpuset *cs)
 139{
 140        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 141}
 142
 143static inline int is_mem_exclusive(const struct cpuset *cs)
 144{
 145        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 146}
 147
 148static inline int is_mem_hardwall(const struct cpuset *cs)
 149{
 150        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 151}
 152
 153static inline int is_sched_load_balance(const struct cpuset *cs)
 154{
 155        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 156}
 157
 158static inline int is_memory_migrate(const struct cpuset *cs)
 159{
 160        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 161}
 162
 163static inline int is_spread_page(const struct cpuset *cs)
 164{
 165        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 166}
 167
 168static inline int is_spread_slab(const struct cpuset *cs)
 169{
 170        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 171}
 172
 173static struct cpuset top_cpuset = {
 174        .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
 175};
 176
 177/*
 178 * There are two global mutexes guarding cpuset structures.  The first
 179 * is the main control groups cgroup_mutex, accessed via
 180 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 181 * callback_mutex, below. They can nest.  It is ok to first take
 182 * cgroup_mutex, then nest callback_mutex.  We also require taking
 183 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 184 * task_lock() exception", at the end of this comment.
 185 *
 186 * A task must hold both mutexes to modify cpusets.  If a task
 187 * holds cgroup_mutex, then it blocks others wanting that mutex,
 188 * ensuring that it is the only task able to also acquire callback_mutex
 189 * and be able to modify cpusets.  It can perform various checks on
 190 * the cpuset structure first, knowing nothing will change.  It can
 191 * also allocate memory while just holding cgroup_mutex.  While it is
 192 * performing these checks, various callback routines can briefly
 193 * acquire callback_mutex to query cpusets.  Once it is ready to make
 194 * the changes, it takes callback_mutex, blocking everyone else.
 195 *
 196 * Calls to the kernel memory allocator can not be made while holding
 197 * callback_mutex, as that would risk double tripping on callback_mutex
 198 * from one of the callbacks into the cpuset code from within
 199 * __alloc_pages().
 200 *
 201 * If a task is only holding callback_mutex, then it has read-only
 202 * access to cpusets.
 203 *
 204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 205 * by other task, we use alloc_lock in the task_struct fields to protect
 206 * them.
 207 *
 208 * The cpuset_common_file_read() handlers only hold callback_mutex across
 209 * small pieces of code, such as when reading out possibly multi-word
 210 * cpumasks and nodemasks.
 211 *
 212 * Accessing a task's cpuset should be done in accordance with the
 213 * guidelines for accessing subsystem state in kernel/cgroup.c
 214 */
 215
 216static DEFINE_MUTEX(callback_mutex);
 217
 218/*
 219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 220 * buffers.  They are statically allocated to prevent using excess stack
 221 * when calling cpuset_print_task_mems_allowed().
 222 */
 223#define CPUSET_NAME_LEN         (128)
 224#define CPUSET_NODELIST_LEN     (256)
 225static char cpuset_name[CPUSET_NAME_LEN];
 226static char cpuset_nodelist[CPUSET_NODELIST_LEN];
 227static DEFINE_SPINLOCK(cpuset_buffer_lock);
 228
 229/*
 230 * This is ugly, but preserves the userspace API for existing cpuset
 231 * users. If someone tries to mount the "cpuset" filesystem, we
 232 * silently switch it to mount "cgroup" instead
 233 */
 234static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 235                         int flags, const char *unused_dev_name, void *data)
 236{
 237        struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 238        struct dentry *ret = ERR_PTR(-ENODEV);
 239        if (cgroup_fs) {
 240                char mountopts[] =
 241                        "cpuset,noprefix,"
 242                        "release_agent=/sbin/cpuset_release_agent";
 243                ret = cgroup_fs->mount(cgroup_fs, flags,
 244                                           unused_dev_name, mountopts);
 245                put_filesystem(cgroup_fs);
 246        }
 247        return ret;
 248}
 249
 250static struct file_system_type cpuset_fs_type = {
 251        .name = "cpuset",
 252        .mount = cpuset_mount,
 253};
 254
 255/*
 256 * Return in pmask the portion of a cpusets's cpus_allowed that
 257 * are online.  If none are online, walk up the cpuset hierarchy
 258 * until we find one that does have some online cpus.  If we get
 259 * all the way to the top and still haven't found any online cpus,
 260 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 261 * task, return cpu_online_map.
 262 *
 263 * One way or another, we guarantee to return some non-empty subset
 264 * of cpu_online_map.
 265 *
 266 * Call with callback_mutex held.
 267 */
 268
 269static void guarantee_online_cpus(const struct cpuset *cs,
 270                                  struct cpumask *pmask)
 271{
 272        while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
 273                cs = cs->parent;
 274        if (cs)
 275                cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
 276        else
 277                cpumask_copy(pmask, cpu_online_mask);
 278        BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
 279}
 280
 281/*
 282 * Return in *pmask the portion of a cpusets's mems_allowed that
 283 * are online, with memory.  If none are online with memory, walk
 284 * up the cpuset hierarchy until we find one that does have some
 285 * online mems.  If we get all the way to the top and still haven't
 286 * found any online mems, return node_states[N_HIGH_MEMORY].
 287 *
 288 * One way or another, we guarantee to return some non-empty subset
 289 * of node_states[N_HIGH_MEMORY].
 290 *
 291 * Call with callback_mutex held.
 292 */
 293
 294static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
 295{
 296        while (cs && !nodes_intersects(cs->mems_allowed,
 297                                        node_states[N_HIGH_MEMORY]))
 298                cs = cs->parent;
 299        if (cs)
 300                nodes_and(*pmask, cs->mems_allowed,
 301                                        node_states[N_HIGH_MEMORY]);
 302        else
 303                *pmask = node_states[N_HIGH_MEMORY];
 304        BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
 305}
 306
 307/*
 308 * update task's spread flag if cpuset's page/slab spread flag is set
 309 *
 310 * Called with callback_mutex/cgroup_mutex held
 311 */
 312static void cpuset_update_task_spread_flag(struct cpuset *cs,
 313                                        struct task_struct *tsk)
 314{
 315        if (is_spread_page(cs))
 316                tsk->flags |= PF_SPREAD_PAGE;
 317        else
 318                tsk->flags &= ~PF_SPREAD_PAGE;
 319        if (is_spread_slab(cs))
 320                tsk->flags |= PF_SPREAD_SLAB;
 321        else
 322                tsk->flags &= ~PF_SPREAD_SLAB;
 323}
 324
 325/*
 326 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 327 *
 328 * One cpuset is a subset of another if all its allowed CPUs and
 329 * Memory Nodes are a subset of the other, and its exclusive flags
 330 * are only set if the other's are set.  Call holding cgroup_mutex.
 331 */
 332
 333static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 334{
 335        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 336                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 337                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 338                is_mem_exclusive(p) <= is_mem_exclusive(q);
 339}
 340
 341/**
 342 * alloc_trial_cpuset - allocate a trial cpuset
 343 * @cs: the cpuset that the trial cpuset duplicates
 344 */
 345static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
 346{
 347        struct cpuset *trial;
 348
 349        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 350        if (!trial)
 351                return NULL;
 352
 353        if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
 354                kfree(trial);
 355                return NULL;
 356        }
 357        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 358
 359        return trial;
 360}
 361
 362/**
 363 * free_trial_cpuset - free the trial cpuset
 364 * @trial: the trial cpuset to be freed
 365 */
 366static void free_trial_cpuset(struct cpuset *trial)
 367{
 368        free_cpumask_var(trial->cpus_allowed);
 369        kfree(trial);
 370}
 371
 372/*
 373 * validate_change() - Used to validate that any proposed cpuset change
 374 *                     follows the structural rules for cpusets.
 375 *
 376 * If we replaced the flag and mask values of the current cpuset
 377 * (cur) with those values in the trial cpuset (trial), would
 378 * our various subset and exclusive rules still be valid?  Presumes
 379 * cgroup_mutex held.
 380 *
 381 * 'cur' is the address of an actual, in-use cpuset.  Operations
 382 * such as list traversal that depend on the actual address of the
 383 * cpuset in the list must use cur below, not trial.
 384 *
 385 * 'trial' is the address of bulk structure copy of cur, with
 386 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 387 * or flags changed to new, trial values.
 388 *
 389 * Return 0 if valid, -errno if not.
 390 */
 391
 392static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
 393{
 394        struct cgroup *cont;
 395        struct cpuset *c, *par;
 396
 397        /* Each of our child cpusets must be a subset of us */
 398        list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
 399                if (!is_cpuset_subset(cgroup_cs(cont), trial))
 400                        return -EBUSY;
 401        }
 402
 403        /* Remaining checks don't apply to root cpuset */
 404        if (cur == &top_cpuset)
 405                return 0;
 406
 407        par = cur->parent;
 408
 409        /* We must be a subset of our parent cpuset */
 410        if (!is_cpuset_subset(trial, par))
 411                return -EACCES;
 412
 413        /*
 414         * If either I or some sibling (!= me) is exclusive, we can't
 415         * overlap
 416         */
 417        list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
 418                c = cgroup_cs(cont);
 419                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 420                    c != cur &&
 421                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 422                        return -EINVAL;
 423                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 424                    c != cur &&
 425                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 426                        return -EINVAL;
 427        }
 428
 429        /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
 430        if (cgroup_task_count(cur->css.cgroup)) {
 431                if (cpumask_empty(trial->cpus_allowed) ||
 432                    nodes_empty(trial->mems_allowed)) {
 433                        return -ENOSPC;
 434                }
 435        }
 436
 437        return 0;
 438}
 439
 440#ifdef CONFIG_SMP
 441/*
 442 * Helper routine for generate_sched_domains().
 443 * Do cpusets a, b have overlapping cpus_allowed masks?
 444 */
 445static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 446{
 447        return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
 448}
 449
 450static void
 451update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 452{
 453        if (dattr->relax_domain_level < c->relax_domain_level)
 454                dattr->relax_domain_level = c->relax_domain_level;
 455        return;
 456}
 457
 458static void
 459update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
 460{
 461        LIST_HEAD(q);
 462
 463        list_add(&c->stack_list, &q);
 464        while (!list_empty(&q)) {
 465                struct cpuset *cp;
 466                struct cgroup *cont;
 467                struct cpuset *child;
 468
 469                cp = list_first_entry(&q, struct cpuset, stack_list);
 470                list_del(q.next);
 471
 472                if (cpumask_empty(cp->cpus_allowed))
 473                        continue;
 474
 475                if (is_sched_load_balance(cp))
 476                        update_domain_attr(dattr, cp);
 477
 478                list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
 479                        child = cgroup_cs(cont);
 480                        list_add_tail(&child->stack_list, &q);
 481                }
 482        }
 483}
 484
 485/*
 486 * generate_sched_domains()
 487 *
 488 * This function builds a partial partition of the systems CPUs
 489 * A 'partial partition' is a set of non-overlapping subsets whose
 490 * union is a subset of that set.
 491 * The output of this function needs to be passed to kernel/sched.c
 492 * partition_sched_domains() routine, which will rebuild the scheduler's
 493 * load balancing domains (sched domains) as specified by that partial
 494 * partition.
 495 *
 496 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 497 * for a background explanation of this.
 498 *
 499 * Does not return errors, on the theory that the callers of this
 500 * routine would rather not worry about failures to rebuild sched
 501 * domains when operating in the severe memory shortage situations
 502 * that could cause allocation failures below.
 503 *
 504 * Must be called with cgroup_lock held.
 505 *
 506 * The three key local variables below are:
 507 *    q  - a linked-list queue of cpuset pointers, used to implement a
 508 *         top-down scan of all cpusets.  This scan loads a pointer
 509 *         to each cpuset marked is_sched_load_balance into the
 510 *         array 'csa'.  For our purposes, rebuilding the schedulers
 511 *         sched domains, we can ignore !is_sched_load_balance cpusets.
 512 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 513 *         that need to be load balanced, for convenient iterative
 514 *         access by the subsequent code that finds the best partition,
 515 *         i.e the set of domains (subsets) of CPUs such that the
 516 *         cpus_allowed of every cpuset marked is_sched_load_balance
 517 *         is a subset of one of these domains, while there are as
 518 *         many such domains as possible, each as small as possible.
 519 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 520 *         the kernel/sched.c routine partition_sched_domains() in a
 521 *         convenient format, that can be easily compared to the prior
 522 *         value to determine what partition elements (sched domains)
 523 *         were changed (added or removed.)
 524 *
 525 * Finding the best partition (set of domains):
 526 *      The triple nested loops below over i, j, k scan over the
 527 *      load balanced cpusets (using the array of cpuset pointers in
 528 *      csa[]) looking for pairs of cpusets that have overlapping
 529 *      cpus_allowed, but which don't have the same 'pn' partition
 530 *      number and gives them in the same partition number.  It keeps
 531 *      looping on the 'restart' label until it can no longer find
 532 *      any such pairs.
 533 *
 534 *      The union of the cpus_allowed masks from the set of
 535 *      all cpusets having the same 'pn' value then form the one
 536 *      element of the partition (one sched domain) to be passed to
 537 *      partition_sched_domains().
 538 */
 539static int generate_sched_domains(cpumask_var_t **domains,
 540                        struct sched_domain_attr **attributes)
 541{
 542        LIST_HEAD(q);           /* queue of cpusets to be scanned */
 543        struct cpuset *cp;      /* scans q */
 544        struct cpuset **csa;    /* array of all cpuset ptrs */
 545        int csn;                /* how many cpuset ptrs in csa so far */
 546        int i, j, k;            /* indices for partition finding loops */
 547        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 548        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 549        int ndoms = 0;          /* number of sched domains in result */
 550        int nslot;              /* next empty doms[] struct cpumask slot */
 551
 552        doms = NULL;
 553        dattr = NULL;
 554        csa = NULL;
 555
 556        /* Special case for the 99% of systems with one, full, sched domain */
 557        if (is_sched_load_balance(&top_cpuset)) {
 558                ndoms = 1;
 559                doms = alloc_sched_domains(ndoms);
 560                if (!doms)
 561                        goto done;
 562
 563                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 564                if (dattr) {
 565                        *dattr = SD_ATTR_INIT;
 566                        update_domain_attr_tree(dattr, &top_cpuset);
 567                }
 568                cpumask_copy(doms[0], top_cpuset.cpus_allowed);
 569
 570                goto done;
 571        }
 572
 573        csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
 574        if (!csa)
 575                goto done;
 576        csn = 0;
 577
 578        list_add(&top_cpuset.stack_list, &q);
 579        while (!list_empty(&q)) {
 580                struct cgroup *cont;
 581                struct cpuset *child;   /* scans child cpusets of cp */
 582
 583                cp = list_first_entry(&q, struct cpuset, stack_list);
 584                list_del(q.next);
 585
 586                if (cpumask_empty(cp->cpus_allowed))
 587                        continue;
 588
 589                /*
 590                 * All child cpusets contain a subset of the parent's cpus, so
 591                 * just skip them, and then we call update_domain_attr_tree()
 592                 * to calc relax_domain_level of the corresponding sched
 593                 * domain.
 594                 */
 595                if (is_sched_load_balance(cp)) {
 596                        csa[csn++] = cp;
 597                        continue;
 598                }
 599
 600                list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
 601                        child = cgroup_cs(cont);
 602                        list_add_tail(&child->stack_list, &q);
 603                }
 604        }
 605
 606        for (i = 0; i < csn; i++)
 607                csa[i]->pn = i;
 608        ndoms = csn;
 609
 610restart:
 611        /* Find the best partition (set of sched domains) */
 612        for (i = 0; i < csn; i++) {
 613                struct cpuset *a = csa[i];
 614                int apn = a->pn;
 615
 616                for (j = 0; j < csn; j++) {
 617                        struct cpuset *b = csa[j];
 618                        int bpn = b->pn;
 619
 620                        if (apn != bpn && cpusets_overlap(a, b)) {
 621                                for (k = 0; k < csn; k++) {
 622                                        struct cpuset *c = csa[k];
 623
 624                                        if (c->pn == bpn)
 625                                                c->pn = apn;
 626                                }
 627                                ndoms--;        /* one less element */
 628                                goto restart;
 629                        }
 630                }
 631        }
 632
 633        /*
 634         * Now we know how many domains to create.
 635         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 636         */
 637        doms = alloc_sched_domains(ndoms);
 638        if (!doms)
 639                goto done;
 640
 641        /*
 642         * The rest of the code, including the scheduler, can deal with
 643         * dattr==NULL case. No need to abort if alloc fails.
 644         */
 645        dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 646
 647        for (nslot = 0, i = 0; i < csn; i++) {
 648                struct cpuset *a = csa[i];
 649                struct cpumask *dp;
 650                int apn = a->pn;
 651
 652                if (apn < 0) {
 653                        /* Skip completed partitions */
 654                        continue;
 655                }
 656
 657                dp = doms[nslot];
 658
 659                if (nslot == ndoms) {
 660                        static int warnings = 10;
 661                        if (warnings) {
 662                                printk(KERN_WARNING
 663                                 "rebuild_sched_domains confused:"
 664                                  " nslot %d, ndoms %d, csn %d, i %d,"
 665                                  " apn %d\n",
 666                                  nslot, ndoms, csn, i, apn);
 667                                warnings--;
 668                        }
 669                        continue;
 670                }
 671
 672                cpumask_clear(dp);
 673                if (dattr)
 674                        *(dattr + nslot) = SD_ATTR_INIT;
 675                for (j = i; j < csn; j++) {
 676                        struct cpuset *b = csa[j];
 677
 678                        if (apn == b->pn) {
 679                                cpumask_or(dp, dp, b->cpus_allowed);
 680                                if (dattr)
 681                                        update_domain_attr_tree(dattr + nslot, b);
 682
 683                                /* Done with this partition */
 684                                b->pn = -1;
 685                        }
 686                }
 687                nslot++;
 688        }
 689        BUG_ON(nslot != ndoms);
 690
 691done:
 692        kfree(csa);
 693
 694        /*
 695         * Fallback to the default domain if kmalloc() failed.
 696         * See comments in partition_sched_domains().
 697         */
 698        if (doms == NULL)
 699                ndoms = 1;
 700
 701        *domains    = doms;
 702        *attributes = dattr;
 703        return ndoms;
 704}
 705
 706/*
 707 * Rebuild scheduler domains.
 708 *
 709 * Call with neither cgroup_mutex held nor within get_online_cpus().
 710 * Takes both cgroup_mutex and get_online_cpus().
 711 *
 712 * Cannot be directly called from cpuset code handling changes
 713 * to the cpuset pseudo-filesystem, because it cannot be called
 714 * from code that already holds cgroup_mutex.
 715 */
 716static void do_rebuild_sched_domains(struct work_struct *unused)
 717{
 718        struct sched_domain_attr *attr;
 719        cpumask_var_t *doms;
 720        int ndoms;
 721
 722        get_online_cpus();
 723
 724        /* Generate domain masks and attrs */
 725        cgroup_lock();
 726        ndoms = generate_sched_domains(&doms, &attr);
 727        cgroup_unlock();
 728
 729        /* Have scheduler rebuild the domains */
 730        partition_sched_domains(ndoms, doms, attr);
 731
 732        put_online_cpus();
 733}
 734#else /* !CONFIG_SMP */
 735static void do_rebuild_sched_domains(struct work_struct *unused)
 736{
 737}
 738
 739static int generate_sched_domains(cpumask_var_t **domains,
 740                        struct sched_domain_attr **attributes)
 741{
 742        *domains = NULL;
 743        return 1;
 744}
 745#endif /* CONFIG_SMP */
 746
 747static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
 748
 749/*
 750 * Rebuild scheduler domains, asynchronously via workqueue.
 751 *
 752 * If the flag 'sched_load_balance' of any cpuset with non-empty
 753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 754 * which has that flag enabled, or if any cpuset with a non-empty
 755 * 'cpus' is removed, then call this routine to rebuild the
 756 * scheduler's dynamic sched domains.
 757 *
 758 * The rebuild_sched_domains() and partition_sched_domains()
 759 * routines must nest cgroup_lock() inside get_online_cpus(),
 760 * but such cpuset changes as these must nest that locking the
 761 * other way, holding cgroup_lock() for much of the code.
 762 *
 763 * So in order to avoid an ABBA deadlock, the cpuset code handling
 764 * these user changes delegates the actual sched domain rebuilding
 765 * to a separate workqueue thread, which ends up processing the
 766 * above do_rebuild_sched_domains() function.
 767 */
 768static void async_rebuild_sched_domains(void)
 769{
 770        queue_work(cpuset_wq, &rebuild_sched_domains_work);
 771}
 772
 773/*
 774 * Accomplishes the same scheduler domain rebuild as the above
 775 * async_rebuild_sched_domains(), however it directly calls the
 776 * rebuild routine synchronously rather than calling it via an
 777 * asynchronous work thread.
 778 *
 779 * This can only be called from code that is not holding
 780 * cgroup_mutex (not nested in a cgroup_lock() call.)
 781 */
 782void rebuild_sched_domains(void)
 783{
 784        do_rebuild_sched_domains(NULL);
 785}
 786
 787/**
 788 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 789 * @tsk: task to test
 790 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 791 *
 792 * Call with cgroup_mutex held.  May take callback_mutex during call.
 793 * Called for each task in a cgroup by cgroup_scan_tasks().
 794 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 795 * words, if its mask is not equal to its cpuset's mask).
 796 */
 797static int cpuset_test_cpumask(struct task_struct *tsk,
 798                               struct cgroup_scanner *scan)
 799{
 800        return !cpumask_equal(&tsk->cpus_allowed,
 801                        (cgroup_cs(scan->cg))->cpus_allowed);
 802}
 803
 804/**
 805 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 806 * @tsk: task to test
 807 * @scan: struct cgroup_scanner containing the cgroup of the task
 808 *
 809 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 810 * cpus_allowed mask needs to be changed.
 811 *
 812 * We don't need to re-check for the cgroup/cpuset membership, since we're
 813 * holding cgroup_lock() at this point.
 814 */
 815static void cpuset_change_cpumask(struct task_struct *tsk,
 816                                  struct cgroup_scanner *scan)
 817{
 818        set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
 819}
 820
 821/**
 822 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 823 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 824 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 825 *
 826 * Called with cgroup_mutex held
 827 *
 828 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 829 * calling callback functions for each.
 830 *
 831 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 832 * if @heap != NULL.
 833 */
 834static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
 835{
 836        struct cgroup_scanner scan;
 837
 838        scan.cg = cs->css.cgroup;
 839        scan.test_task = cpuset_test_cpumask;
 840        scan.process_task = cpuset_change_cpumask;
 841        scan.heap = heap;
 842        cgroup_scan_tasks(&scan);
 843}
 844
 845/**
 846 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 847 * @cs: the cpuset to consider
 848 * @buf: buffer of cpu numbers written to this cpuset
 849 */
 850static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 851                          const char *buf)
 852{
 853        struct ptr_heap heap;
 854        int retval;
 855        int is_load_balanced;
 856
 857        /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
 858        if (cs == &top_cpuset)
 859                return -EACCES;
 860
 861        /*
 862         * An empty cpus_allowed is ok only if the cpuset has no tasks.
 863         * Since cpulist_parse() fails on an empty mask, we special case
 864         * that parsing.  The validate_change() call ensures that cpusets
 865         * with tasks have cpus.
 866         */
 867        if (!*buf) {
 868                cpumask_clear(trialcs->cpus_allowed);
 869        } else {
 870                retval = cpulist_parse(buf, trialcs->cpus_allowed);
 871                if (retval < 0)
 872                        return retval;
 873
 874                if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
 875                        return -EINVAL;
 876        }
 877        retval = validate_change(cs, trialcs);
 878        if (retval < 0)
 879                return retval;
 880
 881        /* Nothing to do if the cpus didn't change */
 882        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 883                return 0;
 884
 885        retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 886        if (retval)
 887                return retval;
 888
 889        is_load_balanced = is_sched_load_balance(trialcs);
 890
 891        mutex_lock(&callback_mutex);
 892        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 893        mutex_unlock(&callback_mutex);
 894
 895        /*
 896         * Scan tasks in the cpuset, and update the cpumasks of any
 897         * that need an update.
 898         */
 899        update_tasks_cpumask(cs, &heap);
 900
 901        heap_free(&heap);
 902
 903        if (is_load_balanced)
 904                async_rebuild_sched_domains();
 905        return 0;
 906}
 907
 908/*
 909 * cpuset_migrate_mm
 910 *
 911 *    Migrate memory region from one set of nodes to another.
 912 *
 913 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 914 *    so that the migration code can allocate pages on these nodes.
 915 *
 916 *    Call holding cgroup_mutex, so current's cpuset won't change
 917 *    during this call, as manage_mutex holds off any cpuset_attach()
 918 *    calls.  Therefore we don't need to take task_lock around the
 919 *    call to guarantee_online_mems(), as we know no one is changing
 920 *    our task's cpuset.
 921 *
 922 *    While the mm_struct we are migrating is typically from some
 923 *    other task, the task_struct mems_allowed that we are hacking
 924 *    is for our current task, which must allocate new pages for that
 925 *    migrating memory region.
 926 */
 927
 928static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 929                                                        const nodemask_t *to)
 930{
 931        struct task_struct *tsk = current;
 932
 933        tsk->mems_allowed = *to;
 934
 935        do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 936
 937        guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
 938}
 939
 940/*
 941 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 942 * @tsk: the task to change
 943 * @newmems: new nodes that the task will be set
 944 *
 945 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 946 * we structure updates as setting all new allowed nodes, then clearing newly
 947 * disallowed ones.
 948 */
 949static void cpuset_change_task_nodemask(struct task_struct *tsk,
 950                                        nodemask_t *newmems)
 951{
 952repeat:
 953        /*
 954         * Allow tasks that have access to memory reserves because they have
 955         * been OOM killed to get memory anywhere.
 956         */
 957        if (unlikely(test_thread_flag(TIF_MEMDIE)))
 958                return;
 959        if (current->flags & PF_EXITING) /* Let dying task have memory */
 960                return;
 961
 962        task_lock(tsk);
 963        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
 964        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
 965
 966
 967        /*
 968         * ensure checking ->mems_allowed_change_disable after setting all new
 969         * allowed nodes.
 970         *
 971         * the read-side task can see an nodemask with new allowed nodes and
 972         * old allowed nodes. and if it allocates page when cpuset clears newly
 973         * disallowed ones continuous, it can see the new allowed bits.
 974         *
 975         * And if setting all new allowed nodes is after the checking, setting
 976         * all new allowed nodes and clearing newly disallowed ones will be done
 977         * continuous, and the read-side task may find no node to alloc page.
 978         */
 979        smp_mb();
 980
 981        /*
 982         * Allocation of memory is very fast, we needn't sleep when waiting
 983         * for the read-side.
 984         */
 985        while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
 986                task_unlock(tsk);
 987                if (!task_curr(tsk))
 988                        yield();
 989                goto repeat;
 990        }
 991
 992        /*
 993         * ensure checking ->mems_allowed_change_disable before clearing all new
 994         * disallowed nodes.
 995         *
 996         * if clearing newly disallowed bits before the checking, the read-side
 997         * task may find no node to alloc page.
 998         */
 999        smp_mb();
1000
1001        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1002        tsk->mems_allowed = *newmems;
1003        task_unlock(tsk);
1004}
1005
1006/*
1007 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1008 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1009 * memory_migrate flag is set. Called with cgroup_mutex held.
1010 */
1011static void cpuset_change_nodemask(struct task_struct *p,
1012                                   struct cgroup_scanner *scan)
1013{
1014        struct mm_struct *mm;
1015        struct cpuset *cs;
1016        int migrate;
1017        const nodemask_t *oldmem = scan->data;
1018        NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);
1019
1020        if (!newmems)
1021                return;
1022
1023        cs = cgroup_cs(scan->cg);
1024        guarantee_online_mems(cs, newmems);
1025
1026        cpuset_change_task_nodemask(p, newmems);
1027
1028        NODEMASK_FREE(newmems);
1029
1030        mm = get_task_mm(p);
1031        if (!mm)
1032                return;
1033
1034        migrate = is_memory_migrate(cs);
1035
1036        mpol_rebind_mm(mm, &cs->mems_allowed);
1037        if (migrate)
1038                cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1039        mmput(mm);
1040}
1041
1042static void *cpuset_being_rebound;
1043
1044/**
1045 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1046 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1047 * @oldmem: old mems_allowed of cpuset cs
1048 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1049 *
1050 * Called with cgroup_mutex held
1051 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1052 * if @heap != NULL.
1053 */
1054static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1055                                 struct ptr_heap *heap)
1056{
1057        struct cgroup_scanner scan;
1058
1059        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1060
1061        scan.cg = cs->css.cgroup;
1062        scan.test_task = NULL;
1063        scan.process_task = cpuset_change_nodemask;
1064        scan.heap = heap;
1065        scan.data = (nodemask_t *)oldmem;
1066
1067        /*
1068         * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1069         * take while holding tasklist_lock.  Forks can happen - the
1070         * mpol_dup() cpuset_being_rebound check will catch such forks,
1071         * and rebind their vma mempolicies too.  Because we still hold
1072         * the global cgroup_mutex, we know that no other rebind effort
1073         * will be contending for the global variable cpuset_being_rebound.
1074         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1075         * is idempotent.  Also migrate pages in each mm to new nodes.
1076         */
1077        cgroup_scan_tasks(&scan);
1078
1079        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1080        cpuset_being_rebound = NULL;
1081}
1082
1083/*
1084 * Handle user request to change the 'mems' memory placement
1085 * of a cpuset.  Needs to validate the request, update the
1086 * cpusets mems_allowed, and for each task in the cpuset,
1087 * update mems_allowed and rebind task's mempolicy and any vma
1088 * mempolicies and if the cpuset is marked 'memory_migrate',
1089 * migrate the tasks pages to the new memory.
1090 *
1091 * Call with cgroup_mutex held.  May take callback_mutex during call.
1092 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1093 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1094 * their mempolicies to the cpusets new mems_allowed.
1095 */
1096static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1097                           const char *buf)
1098{
1099        NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1100        int retval;
1101        struct ptr_heap heap;
1102
1103        if (!oldmem)
1104                return -ENOMEM;
1105
1106        /*
1107         * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1108         * it's read-only
1109         */
1110        if (cs == &top_cpuset) {
1111                retval = -EACCES;
1112                goto done;
1113        }
1114
1115        /*
1116         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1117         * Since nodelist_parse() fails on an empty mask, we special case
1118         * that parsing.  The validate_change() call ensures that cpusets
1119         * with tasks have memory.
1120         */
1121        if (!*buf) {
1122                nodes_clear(trialcs->mems_allowed);
1123        } else {
1124                retval = nodelist_parse(buf, trialcs->mems_allowed);
1125                if (retval < 0)
1126                        goto done;
1127
1128                if (!nodes_subset(trialcs->mems_allowed,
1129                                node_states[N_HIGH_MEMORY])) {
1130                        retval =  -EINVAL;
1131                        goto done;
1132                }
1133        }
1134        *oldmem = cs->mems_allowed;
1135        if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1136                retval = 0;             /* Too easy - nothing to do */
1137                goto done;
1138        }
1139        retval = validate_change(cs, trialcs);
1140        if (retval < 0)
1141                goto done;
1142
1143        retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1144        if (retval < 0)
1145                goto done;
1146
1147        mutex_lock(&callback_mutex);
1148        cs->mems_allowed = trialcs->mems_allowed;
1149        mutex_unlock(&callback_mutex);
1150
1151        update_tasks_nodemask(cs, oldmem, &heap);
1152
1153        heap_free(&heap);
1154done:
1155        NODEMASK_FREE(oldmem);
1156        return retval;
1157}
1158
1159int current_cpuset_is_being_rebound(void)
1160{
1161        return task_cs(current) == cpuset_being_rebound;
1162}
1163
1164static int update_relax_domain_level(struct cpuset *cs, s64 val)
1165{
1166#ifdef CONFIG_SMP
1167        if (val < -1 || val >= SD_LV_MAX)
1168                return -EINVAL;
1169#endif
1170
1171        if (val != cs->relax_domain_level) {
1172                cs->relax_domain_level = val;
1173                if (!cpumask_empty(cs->cpus_allowed) &&
1174                    is_sched_load_balance(cs))
1175                        async_rebuild_sched_domains();
1176        }
1177
1178        return 0;
1179}
1180
1181/*
1182 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1183 * @tsk: task to be updated
1184 * @scan: struct cgroup_scanner containing the cgroup of the task
1185 *
1186 * Called by cgroup_scan_tasks() for each task in a cgroup.
1187 *
1188 * We don't need to re-check for the cgroup/cpuset membership, since we're
1189 * holding cgroup_lock() at this point.
1190 */
1191static void cpuset_change_flag(struct task_struct *tsk,
1192                                struct cgroup_scanner *scan)
1193{
1194        cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1195}
1196
1197/*
1198 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1199 * @cs: the cpuset in which each task's spread flags needs to be changed
1200 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1201 *
1202 * Called with cgroup_mutex held
1203 *
1204 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1205 * calling callback functions for each.
1206 *
1207 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1208 * if @heap != NULL.
1209 */
1210static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1211{
1212        struct cgroup_scanner scan;
1213
1214        scan.cg = cs->css.cgroup;
1215        scan.test_task = NULL;
1216        scan.process_task = cpuset_change_flag;
1217        scan.heap = heap;
1218        cgroup_scan_tasks(&scan);
1219}
1220
1221/*
1222 * update_flag - read a 0 or a 1 in a file and update associated flag
1223 * bit:         the bit to update (see cpuset_flagbits_t)
1224 * cs:          the cpuset to update
1225 * turning_on:  whether the flag is being set or cleared
1226 *
1227 * Call with cgroup_mutex held.
1228 */
1229
1230static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1231                       int turning_on)
1232{
1233        struct cpuset *trialcs;
1234        int balance_flag_changed;
1235        int spread_flag_changed;
1236        struct ptr_heap heap;
1237        int err;
1238
1239        trialcs = alloc_trial_cpuset(cs);
1240        if (!trialcs)
1241                return -ENOMEM;
1242
1243        if (turning_on)
1244                set_bit(bit, &trialcs->flags);
1245        else
1246                clear_bit(bit, &trialcs->flags);
1247
1248        err = validate_change(cs, trialcs);
1249        if (err < 0)
1250                goto out;
1251
1252        err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1253        if (err < 0)
1254                goto out;
1255
1256        balance_flag_changed = (is_sched_load_balance(cs) !=
1257                                is_sched_load_balance(trialcs));
1258
1259        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1260                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1261
1262        mutex_lock(&callback_mutex);
1263        cs->flags = trialcs->flags;
1264        mutex_unlock(&callback_mutex);
1265
1266        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1267                async_rebuild_sched_domains();
1268
1269        if (spread_flag_changed)
1270                update_tasks_flags(cs, &heap);
1271        heap_free(&heap);
1272out:
1273        free_trial_cpuset(trialcs);
1274        return err;
1275}
1276
1277/*
1278 * Frequency meter - How fast is some event occurring?
1279 *
1280 * These routines manage a digitally filtered, constant time based,
1281 * event frequency meter.  There are four routines:
1282 *   fmeter_init() - initialize a frequency meter.
1283 *   fmeter_markevent() - called each time the event happens.
1284 *   fmeter_getrate() - returns the recent rate of such events.
1285 *   fmeter_update() - internal routine used to update fmeter.
1286 *
1287 * A common data structure is passed to each of these routines,
1288 * which is used to keep track of the state required to manage the
1289 * frequency meter and its digital filter.
1290 *
1291 * The filter works on the number of events marked per unit time.
1292 * The filter is single-pole low-pass recursive (IIR).  The time unit
1293 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1294 * simulate 3 decimal digits of precision (multiplied by 1000).
1295 *
1296 * With an FM_COEF of 933, and a time base of 1 second, the filter
1297 * has a half-life of 10 seconds, meaning that if the events quit
1298 * happening, then the rate returned from the fmeter_getrate()
1299 * will be cut in half each 10 seconds, until it converges to zero.
1300 *
1301 * It is not worth doing a real infinitely recursive filter.  If more
1302 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1303 * just compute FM_MAXTICKS ticks worth, by which point the level
1304 * will be stable.
1305 *
1306 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1307 * arithmetic overflow in the fmeter_update() routine.
1308 *
1309 * Given the simple 32 bit integer arithmetic used, this meter works
1310 * best for reporting rates between one per millisecond (msec) and
1311 * one per 32 (approx) seconds.  At constant rates faster than one
1312 * per msec it maxes out at values just under 1,000,000.  At constant
1313 * rates between one per msec, and one per second it will stabilize
1314 * to a value N*1000, where N is the rate of events per second.
1315 * At constant rates between one per second and one per 32 seconds,
1316 * it will be choppy, moving up on the seconds that have an event,
1317 * and then decaying until the next event.  At rates slower than
1318 * about one in 32 seconds, it decays all the way back to zero between
1319 * each event.
1320 */
1321
1322#define FM_COEF 933             /* coefficient for half-life of 10 secs */
1323#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1324#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
1325#define FM_SCALE 1000           /* faux fixed point scale */
1326
1327/* Initialize a frequency meter */
1328static void fmeter_init(struct fmeter *fmp)
1329{
1330        fmp->cnt = 0;
1331        fmp->val = 0;
1332        fmp->time = 0;
1333        spin_lock_init(&fmp->lock);
1334}
1335
1336/* Internal meter update - process cnt events and update value */
1337static void fmeter_update(struct fmeter *fmp)
1338{
1339        time_t now = get_seconds();
1340        time_t ticks = now - fmp->time;
1341
1342        if (ticks == 0)
1343                return;
1344
1345        ticks = min(FM_MAXTICKS, ticks);
1346        while (ticks-- > 0)
1347                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1348        fmp->time = now;
1349
1350        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1351        fmp->cnt = 0;
1352}
1353
1354/* Process any previous ticks, then bump cnt by one (times scale). */
1355static void fmeter_markevent(struct fmeter *fmp)
1356{
1357        spin_lock(&fmp->lock);
1358        fmeter_update(fmp);
1359        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1360        spin_unlock(&fmp->lock);
1361}
1362
1363/* Process any previous ticks, then return current value. */
1364static int fmeter_getrate(struct fmeter *fmp)
1365{
1366        int val;
1367
1368        spin_lock(&fmp->lock);
1369        fmeter_update(fmp);
1370        val = fmp->val;
1371        spin_unlock(&fmp->lock);
1372        return val;
1373}
1374
1375/* Protected by cgroup_lock */
1376static cpumask_var_t cpus_attach;
1377
1378/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1379static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1380                             struct task_struct *tsk, bool threadgroup)
1381{
1382        int ret;
1383        struct cpuset *cs = cgroup_cs(cont);
1384
1385        if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1386                return -ENOSPC;
1387
1388        /*
1389         * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1390         * cannot change their cpu affinity and isolating such threads by their
1391         * set of allowed nodes is unnecessary.  Thus, cpusets are not
1392         * applicable for such threads.  This prevents checking for success of
1393         * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1394         * be changed.
1395         */
1396        if (tsk->flags & PF_THREAD_BOUND)
1397                return -EINVAL;
1398
1399        ret = security_task_setscheduler(tsk);
1400        if (ret)
1401                return ret;
1402        if (threadgroup) {
1403                struct task_struct *c;
1404
1405                rcu_read_lock();
1406                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1407                        ret = security_task_setscheduler(c);
1408                        if (ret) {
1409                                rcu_read_unlock();
1410                                return ret;
1411                        }
1412                }
1413                rcu_read_unlock();
1414        }
1415        return 0;
1416}
1417
1418static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1419                               struct cpuset *cs)
1420{
1421        int err;
1422        /*
1423         * can_attach beforehand should guarantee that this doesn't fail.
1424         * TODO: have a better way to handle failure here
1425         */
1426        err = set_cpus_allowed_ptr(tsk, cpus_attach);
1427        WARN_ON_ONCE(err);
1428
1429        cpuset_change_task_nodemask(tsk, to);
1430        cpuset_update_task_spread_flag(cs, tsk);
1431
1432}
1433
1434static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1435                          struct cgroup *oldcont, struct task_struct *tsk,
1436                          bool threadgroup)
1437{
1438        struct mm_struct *mm;
1439        struct cpuset *cs = cgroup_cs(cont);
1440        struct cpuset *oldcs = cgroup_cs(oldcont);
1441        NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
1442        NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);
1443
1444        if (from == NULL || to == NULL)
1445                goto alloc_fail;
1446
1447        if (cs == &top_cpuset) {
1448                cpumask_copy(cpus_attach, cpu_possible_mask);
1449        } else {
1450                guarantee_online_cpus(cs, cpus_attach);
1451        }
1452        guarantee_online_mems(cs, to);
1453
1454        /* do per-task migration stuff possibly for each in the threadgroup */
1455        cpuset_attach_task(tsk, to, cs);
1456        if (threadgroup) {
1457                struct task_struct *c;
1458                rcu_read_lock();
1459                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1460                        cpuset_attach_task(c, to, cs);
1461                }
1462                rcu_read_unlock();
1463        }
1464
1465        /* change mm; only needs to be done once even if threadgroup */
1466        *from = oldcs->mems_allowed;
1467        *to = cs->mems_allowed;
1468        mm = get_task_mm(tsk);
1469        if (mm) {
1470                mpol_rebind_mm(mm, to);
1471                if (is_memory_migrate(cs))
1472                        cpuset_migrate_mm(mm, from, to);
1473                mmput(mm);
1474        }
1475
1476alloc_fail:
1477        NODEMASK_FREE(from);
1478        NODEMASK_FREE(to);
1479}
1480
1481/* The various types of files and directories in a cpuset file system */
1482
1483typedef enum {
1484        FILE_MEMORY_MIGRATE,
1485        FILE_CPULIST,
1486        FILE_MEMLIST,
1487        FILE_CPU_EXCLUSIVE,
1488        FILE_MEM_EXCLUSIVE,
1489        FILE_MEM_HARDWALL,
1490        FILE_SCHED_LOAD_BALANCE,
1491        FILE_SCHED_RELAX_DOMAIN_LEVEL,
1492        FILE_MEMORY_PRESSURE_ENABLED,
1493        FILE_MEMORY_PRESSURE,
1494        FILE_SPREAD_PAGE,
1495        FILE_SPREAD_SLAB,
1496} cpuset_filetype_t;
1497
1498static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1499{
1500        int retval = 0;
1501        struct cpuset *cs = cgroup_cs(cgrp);
1502        cpuset_filetype_t type = cft->private;
1503
1504        if (!cgroup_lock_live_group(cgrp))
1505                return -ENODEV;
1506
1507        switch (type) {
1508        case FILE_CPU_EXCLUSIVE:
1509                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1510                break;
1511        case FILE_MEM_EXCLUSIVE:
1512                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1513                break;
1514        case FILE_MEM_HARDWALL:
1515                retval = update_flag(CS_MEM_HARDWALL, cs, val);
1516                break;
1517        case FILE_SCHED_LOAD_BALANCE:
1518                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1519                break;
1520        case FILE_MEMORY_MIGRATE:
1521                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1522                break;
1523        case FILE_MEMORY_PRESSURE_ENABLED:
1524                cpuset_memory_pressure_enabled = !!val;
1525                break;
1526        case FILE_MEMORY_PRESSURE:
1527                retval = -EACCES;
1528                break;
1529        case FILE_SPREAD_PAGE:
1530                retval = update_flag(CS_SPREAD_PAGE, cs, val);
1531                break;
1532        case FILE_SPREAD_SLAB:
1533                retval = update_flag(CS_SPREAD_SLAB, cs, val);
1534                break;
1535        default:
1536                retval = -EINVAL;
1537                break;
1538        }
1539        cgroup_unlock();
1540        return retval;
1541}
1542
1543static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1544{
1545        int retval = 0;
1546        struct cpuset *cs = cgroup_cs(cgrp);
1547        cpuset_filetype_t type = cft->private;
1548
1549        if (!cgroup_lock_live_group(cgrp))
1550                return -ENODEV;
1551
1552        switch (type) {
1553        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1554                retval = update_relax_domain_level(cs, val);
1555                break;
1556        default:
1557                retval = -EINVAL;
1558                break;
1559        }
1560        cgroup_unlock();
1561        return retval;
1562}
1563
1564/*
1565 * Common handling for a write to a "cpus" or "mems" file.
1566 */
1567static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1568                                const char *buf)
1569{
1570        int retval = 0;
1571        struct cpuset *cs = cgroup_cs(cgrp);
1572        struct cpuset *trialcs;
1573
1574        if (!cgroup_lock_live_group(cgrp))
1575                return -ENODEV;
1576
1577        trialcs = alloc_trial_cpuset(cs);
1578        if (!trialcs) {
1579                retval = -ENOMEM;
1580                goto out;
1581        }
1582
1583        switch (cft->private) {
1584        case FILE_CPULIST:
1585                retval = update_cpumask(cs, trialcs, buf);
1586                break;
1587        case FILE_MEMLIST:
1588                retval = update_nodemask(cs, trialcs, buf);
1589                break;
1590        default:
1591                retval = -EINVAL;
1592                break;
1593        }
1594
1595        free_trial_cpuset(trialcs);
1596out:
1597        cgroup_unlock();
1598        return retval;
1599}
1600
1601/*
1602 * These ascii lists should be read in a single call, by using a user
1603 * buffer large enough to hold the entire map.  If read in smaller
1604 * chunks, there is no guarantee of atomicity.  Since the display format
1605 * used, list of ranges of sequential numbers, is variable length,
1606 * and since these maps can change value dynamically, one could read
1607 * gibberish by doing partial reads while a list was changing.
1608 * A single large read to a buffer that crosses a page boundary is
1609 * ok, because the result being copied to user land is not recomputed
1610 * across a page fault.
1611 */
1612
1613static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1614{
1615        int ret;
1616
1617        mutex_lock(&callback_mutex);
1618        ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1619        mutex_unlock(&callback_mutex);
1620
1621        return ret;
1622}
1623
1624static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1625{
1626        NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL);
1627        int retval;
1628
1629        if (mask == NULL)
1630                return -ENOMEM;
1631
1632        mutex_lock(&callback_mutex);
1633        *mask = cs->mems_allowed;
1634        mutex_unlock(&callback_mutex);
1635
1636        retval = nodelist_scnprintf(page, PAGE_SIZE, *mask);
1637
1638        NODEMASK_FREE(mask);
1639
1640        return retval;
1641}
1642
1643static ssize_t cpuset_common_file_read(struct cgroup *cont,
1644                                       struct cftype *cft,
1645                                       struct file *file,
1646                                       char __user *buf,
1647                                       size_t nbytes, loff_t *ppos)
1648{
1649        struct cpuset *cs = cgroup_cs(cont);
1650        cpuset_filetype_t type = cft->private;
1651        char *page;
1652        ssize_t retval = 0;
1653        char *s;
1654
1655        if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1656                return -ENOMEM;
1657
1658        s = page;
1659
1660        switch (type) {
1661        case FILE_CPULIST:
1662                s += cpuset_sprintf_cpulist(s, cs);
1663                break;
1664        case FILE_MEMLIST:
1665                s += cpuset_sprintf_memlist(s, cs);
1666                break;
1667        default:
1668                retval = -EINVAL;
1669                goto out;
1670        }
1671        *s++ = '\n';
1672
1673        retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1674out:
1675        free_page((unsigned long)page);
1676        return retval;
1677}
1678
1679static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1680{
1681        struct cpuset *cs = cgroup_cs(cont);
1682        cpuset_filetype_t type = cft->private;
1683        switch (type) {
1684        case FILE_CPU_EXCLUSIVE:
1685                return is_cpu_exclusive(cs);
1686        case FILE_MEM_EXCLUSIVE:
1687                return is_mem_exclusive(cs);
1688        case FILE_MEM_HARDWALL:
1689                return is_mem_hardwall(cs);
1690        case FILE_SCHED_LOAD_BALANCE:
1691                return is_sched_load_balance(cs);
1692        case FILE_MEMORY_MIGRATE:
1693                return is_memory_migrate(cs);
1694        case FILE_MEMORY_PRESSURE_ENABLED:
1695                return cpuset_memory_pressure_enabled;
1696        case FILE_MEMORY_PRESSURE:
1697                return fmeter_getrate(&cs->fmeter);
1698        case FILE_SPREAD_PAGE:
1699                return is_spread_page(cs);
1700        case FILE_SPREAD_SLAB:
1701                return is_spread_slab(cs);
1702        default:
1703                BUG();
1704        }
1705
1706        /* Unreachable but makes gcc happy */
1707        return 0;
1708}
1709
1710static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1711{
1712        struct cpuset *cs = cgroup_cs(cont);
1713        cpuset_filetype_t type = cft->private;
1714        switch (type) {
1715        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1716                return cs->relax_domain_level;
1717        default:
1718                BUG();
1719        }
1720
1721        /* Unrechable but makes gcc happy */
1722        return 0;
1723}
1724
1725
1726/*
1727 * for the common functions, 'private' gives the type of file
1728 */
1729
1730static struct cftype files[] = {
1731        {
1732                .name = "cpus",
1733                .read = cpuset_common_file_read,
1734                .write_string = cpuset_write_resmask,
1735                .max_write_len = (100U + 6 * NR_CPUS),
1736                .private = FILE_CPULIST,
1737        },
1738
1739        {
1740                .name = "mems",
1741                .read = cpuset_common_file_read,
1742                .write_string = cpuset_write_resmask,
1743                .max_write_len = (100U + 6 * MAX_NUMNODES),
1744                .private = FILE_MEMLIST,
1745        },
1746
1747        {
1748                .name = "cpu_exclusive",
1749                .read_u64 = cpuset_read_u64,
1750                .write_u64 = cpuset_write_u64,
1751                .private = FILE_CPU_EXCLUSIVE,
1752        },
1753
1754        {
1755                .name = "mem_exclusive",
1756                .read_u64 = cpuset_read_u64,
1757                .write_u64 = cpuset_write_u64,
1758                .private = FILE_MEM_EXCLUSIVE,
1759        },
1760
1761        {
1762                .name = "mem_hardwall",
1763                .read_u64 = cpuset_read_u64,
1764                .write_u64 = cpuset_write_u64,
1765                .private = FILE_MEM_HARDWALL,
1766        },
1767
1768        {
1769                .name = "sched_load_balance",
1770                .read_u64 = cpuset_read_u64,
1771                .write_u64 = cpuset_write_u64,
1772                .private = FILE_SCHED_LOAD_BALANCE,
1773        },
1774
1775        {
1776                .name = "sched_relax_domain_level",
1777                .read_s64 = cpuset_read_s64,
1778                .write_s64 = cpuset_write_s64,
1779                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1780        },
1781
1782        {
1783                .name = "memory_migrate",
1784                .read_u64 = cpuset_read_u64,
1785                .write_u64 = cpuset_write_u64,
1786                .private = FILE_MEMORY_MIGRATE,
1787        },
1788
1789        {
1790                .name = "memory_pressure",
1791                .read_u64 = cpuset_read_u64,
1792                .write_u64 = cpuset_write_u64,
1793                .private = FILE_MEMORY_PRESSURE,
1794                .mode = S_IRUGO,
1795        },
1796
1797        {
1798                .name = "memory_spread_page",
1799                .read_u64 = cpuset_read_u64,
1800                .write_u64 = cpuset_write_u64,
1801                .private = FILE_SPREAD_PAGE,
1802        },
1803
1804        {
1805                .name = "memory_spread_slab",
1806                .read_u64 = cpuset_read_u64,
1807                .write_u64 = cpuset_write_u64,
1808                .private = FILE_SPREAD_SLAB,
1809        },
1810};
1811
1812static struct cftype cft_memory_pressure_enabled = {
1813        .name = "memory_pressure_enabled",
1814        .read_u64 = cpuset_read_u64,
1815        .write_u64 = cpuset_write_u64,
1816        .private = FILE_MEMORY_PRESSURE_ENABLED,
1817};
1818
1819static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1820{
1821        int err;
1822
1823        err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1824        if (err)
1825                return err;
1826        /* memory_pressure_enabled is in root cpuset only */
1827        if (!cont->parent)
1828                err = cgroup_add_file(cont, ss,
1829                                      &cft_memory_pressure_enabled);
1830        return err;
1831}
1832
1833/*
1834 * post_clone() is called at the end of cgroup_clone().
1835 * 'cgroup' was just created automatically as a result of
1836 * a cgroup_clone(), and the current task is about to
1837 * be moved into 'cgroup'.
1838 *
1839 * Currently we refuse to set up the cgroup - thereby
1840 * refusing the task to be entered, and as a result refusing
1841 * the sys_unshare() or clone() which initiated it - if any
1842 * sibling cpusets have exclusive cpus or mem.
1843 *
1844 * If this becomes a problem for some users who wish to
1845 * allow that scenario, then cpuset_post_clone() could be
1846 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1847 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1848 * held.
1849 */
1850static void cpuset_post_clone(struct cgroup_subsys *ss,
1851                              struct cgroup *cgroup)
1852{
1853        struct cgroup *parent, *child;
1854        struct cpuset *cs, *parent_cs;
1855
1856        parent = cgroup->parent;
1857        list_for_each_entry(child, &parent->children, sibling) {
1858                cs = cgroup_cs(child);
1859                if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1860                        return;
1861        }
1862        cs = cgroup_cs(cgroup);
1863        parent_cs = cgroup_cs(parent);
1864
1865        cs->mems_allowed = parent_cs->mems_allowed;
1866        cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1867        return;
1868}
1869
1870/*
1871 *      cpuset_create - create a cpuset
1872 *      ss:     cpuset cgroup subsystem
1873 *      cont:   control group that the new cpuset will be part of
1874 */
1875
1876static struct cgroup_subsys_state *cpuset_create(
1877        struct cgroup_subsys *ss,
1878        struct cgroup *cont)
1879{
1880        struct cpuset *cs;
1881        struct cpuset *parent;
1882
1883        if (!cont->parent) {
1884                return &top_cpuset.css;
1885        }
1886        parent = cgroup_cs(cont->parent);
1887        cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1888        if (!cs)
1889                return ERR_PTR(-ENOMEM);
1890        if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1891                kfree(cs);
1892                return ERR_PTR(-ENOMEM);
1893        }
1894
1895        cs->flags = 0;
1896        if (is_spread_page(parent))
1897                set_bit(CS_SPREAD_PAGE, &cs->flags);
1898        if (is_spread_slab(parent))
1899                set_bit(CS_SPREAD_SLAB, &cs->flags);
1900        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1901        cpumask_clear(cs->cpus_allowed);
1902        nodes_clear(cs->mems_allowed);
1903        fmeter_init(&cs->fmeter);
1904        cs->relax_domain_level = -1;
1905
1906        cs->parent = parent;
1907        number_of_cpusets++;
1908        return &cs->css ;
1909}
1910
1911/*
1912 * If the cpuset being removed has its flag 'sched_load_balance'
1913 * enabled, then simulate turning sched_load_balance off, which
1914 * will call async_rebuild_sched_domains().
1915 */
1916
1917static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1918{
1919        struct cpuset *cs = cgroup_cs(cont);
1920
1921        if (is_sched_load_balance(cs))
1922                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1923
1924        number_of_cpusets--;
1925        free_cpumask_var(cs->cpus_allowed);
1926        kfree(cs);
1927}
1928
1929struct cgroup_subsys cpuset_subsys = {
1930        .name = "cpuset",
1931        .create = cpuset_create,
1932        .destroy = cpuset_destroy,
1933        .can_attach = cpuset_can_attach,
1934        .attach = cpuset_attach,
1935        .populate = cpuset_populate,
1936        .post_clone = cpuset_post_clone,
1937        .subsys_id = cpuset_subsys_id,
1938        .early_init = 1,
1939};
1940
1941/**
1942 * cpuset_init - initialize cpusets at system boot
1943 *
1944 * Description: Initialize top_cpuset and the cpuset internal file system,
1945 **/
1946
1947int __init cpuset_init(void)
1948{
1949        int err = 0;
1950
1951        if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1952                BUG();
1953
1954        cpumask_setall(top_cpuset.cpus_allowed);
1955        nodes_setall(top_cpuset.mems_allowed);
1956
1957        fmeter_init(&top_cpuset.fmeter);
1958        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1959        top_cpuset.relax_domain_level = -1;
1960
1961        err = register_filesystem(&cpuset_fs_type);
1962        if (err < 0)
1963                return err;
1964
1965        if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1966                BUG();
1967
1968        number_of_cpusets = 1;
1969        return 0;
1970}
1971
1972/**
1973 * cpuset_do_move_task - move a given task to another cpuset
1974 * @tsk: pointer to task_struct the task to move
1975 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1976 *
1977 * Called by cgroup_scan_tasks() for each task in a cgroup.
1978 * Return nonzero to stop the walk through the tasks.
1979 */
1980static void cpuset_do_move_task(struct task_struct *tsk,
1981                                struct cgroup_scanner *scan)
1982{
1983        struct cgroup *new_cgroup = scan->data;
1984
1985        cgroup_attach_task(new_cgroup, tsk);
1986}
1987
1988/**
1989 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1990 * @from: cpuset in which the tasks currently reside
1991 * @to: cpuset to which the tasks will be moved
1992 *
1993 * Called with cgroup_mutex held
1994 * callback_mutex must not be held, as cpuset_attach() will take it.
1995 *
1996 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1997 * calling callback functions for each.
1998 */
1999static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
2000{
2001        struct cgroup_scanner scan;
2002
2003        scan.cg = from->css.cgroup;
2004        scan.test_task = NULL; /* select all tasks in cgroup */
2005        scan.process_task = cpuset_do_move_task;
2006        scan.heap = NULL;
2007        scan.data = to->css.cgroup;
2008
2009        if (cgroup_scan_tasks(&scan))
2010                printk(KERN_ERR "move_member_tasks_to_cpuset: "
2011                                "cgroup_scan_tasks failed\n");
2012}
2013
2014/*
2015 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2016 * or memory nodes, we need to walk over the cpuset hierarchy,
2017 * removing that CPU or node from all cpusets.  If this removes the
2018 * last CPU or node from a cpuset, then move the tasks in the empty
2019 * cpuset to its next-highest non-empty parent.
2020 *
2021 * Called with cgroup_mutex held
2022 * callback_mutex must not be held, as cpuset_attach() will take it.
2023 */
2024static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2025{
2026        struct cpuset *parent;
2027
2028        /*
2029         * The cgroup's css_sets list is in use if there are tasks
2030         * in the cpuset; the list is empty if there are none;
2031         * the cs->css.refcnt seems always 0.
2032         */
2033        if (list_empty(&cs->css.cgroup->css_sets))
2034                return;
2035
2036        /*
2037         * Find its next-highest non-empty parent, (top cpuset
2038         * has online cpus, so can't be empty).
2039         */
2040        parent = cs->parent;
2041        while (cpumask_empty(parent->cpus_allowed) ||
2042                        nodes_empty(parent->mems_allowed))
2043                parent = parent->parent;
2044
2045        move_member_tasks_to_cpuset(cs, parent);
2046}
2047
2048/*
2049 * Walk the specified cpuset subtree and look for empty cpusets.
2050 * The tasks of such cpuset must be moved to a parent cpuset.
2051 *
2052 * Called with cgroup_mutex held.  We take callback_mutex to modify
2053 * cpus_allowed and mems_allowed.
2054 *
2055 * This walk processes the tree from top to bottom, completing one layer
2056 * before dropping down to the next.  It always processes a node before
2057 * any of its children.
2058 *
2059 * For now, since we lack memory hot unplug, we'll never see a cpuset
2060 * that has tasks along with an empty 'mems'.  But if we did see such
2061 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2062 */
2063static void scan_for_empty_cpusets(struct cpuset *root)
2064{
2065        LIST_HEAD(queue);
2066        struct cpuset *cp;      /* scans cpusets being updated */
2067        struct cpuset *child;   /* scans child cpusets of cp */
2068        struct cgroup *cont;
2069        NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
2070
2071        if (oldmems == NULL)
2072                return;
2073
2074        list_add_tail((struct list_head *)&root->stack_list, &queue);
2075
2076        while (!list_empty(&queue)) {
2077                cp = list_first_entry(&queue, struct cpuset, stack_list);
2078                list_del(queue.next);
2079                list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2080                        child = cgroup_cs(cont);
2081                        list_add_tail(&child->stack_list, &queue);
2082                }
2083
2084                /* Continue past cpusets with all cpus, mems online */
2085                if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2086                    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2087                        continue;
2088
2089                *oldmems = cp->mems_allowed;
2090
2091                /* Remove offline cpus and mems from this cpuset. */
2092                mutex_lock(&callback_mutex);
2093                cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2094                            cpu_active_mask);
2095                nodes_and(cp->mems_allowed, cp->mems_allowed,
2096                                                node_states[N_HIGH_MEMORY]);
2097                mutex_unlock(&callback_mutex);
2098
2099                /* Move tasks from the empty cpuset to a parent */
2100                if (cpumask_empty(cp->cpus_allowed) ||
2101                     nodes_empty(cp->mems_allowed))
2102                        remove_tasks_in_empty_cpuset(cp);
2103                else {
2104                        update_tasks_cpumask(cp, NULL);
2105                        update_tasks_nodemask(cp, oldmems, NULL);
2106                }
2107        }
2108        NODEMASK_FREE(oldmems);
2109}
2110
2111/*
2112 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2113 * period.  This is necessary in order to make cpusets transparent
2114 * (of no affect) on systems that are actively using CPU hotplug
2115 * but making no active use of cpusets.
2116 *
2117 * This routine ensures that top_cpuset.cpus_allowed tracks
2118 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2119 *
2120 * Called within get_online_cpus().  Needs to call cgroup_lock()
2121 * before calling generate_sched_domains().
2122 */
2123void cpuset_update_active_cpus(void)
2124{
2125        struct sched_domain_attr *attr;
2126        cpumask_var_t *doms;
2127        int ndoms;
2128
2129        cgroup_lock();
2130        mutex_lock(&callback_mutex);
2131        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2132        mutex_unlock(&callback_mutex);
2133        scan_for_empty_cpusets(&top_cpuset);
2134        ndoms = generate_sched_domains(&doms, &attr);
2135        cgroup_unlock();
2136
2137        /* Have scheduler rebuild the domains */
2138        partition_sched_domains(ndoms, doms, attr);
2139}
2140
2141#ifdef CONFIG_MEMORY_HOTPLUG
2142/*
2143 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2144 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2145 * See also the previous routine cpuset_track_online_cpus().
2146 */
2147static int cpuset_track_online_nodes(struct notifier_block *self,
2148                                unsigned long action, void *arg)
2149{
2150        NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
2151
2152        if (oldmems == NULL)
2153                return NOTIFY_DONE;
2154
2155        cgroup_lock();
2156        switch (action) {
2157        case MEM_ONLINE:
2158                *oldmems = top_cpuset.mems_allowed;
2159                mutex_lock(&callback_mutex);
2160                top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2161                mutex_unlock(&callback_mutex);
2162                update_tasks_nodemask(&top_cpuset, oldmems, NULL);
2163                break;
2164        case MEM_OFFLINE:
2165                /*
2166                 * needn't update top_cpuset.mems_allowed explicitly because
2167                 * scan_for_empty_cpusets() will update it.
2168                 */
2169                scan_for_empty_cpusets(&top_cpuset);
2170                break;
2171        default:
2172                break;
2173        }
2174        cgroup_unlock();
2175
2176        NODEMASK_FREE(oldmems);
2177        return NOTIFY_OK;
2178}
2179#endif
2180
2181/**
2182 * cpuset_init_smp - initialize cpus_allowed
2183 *
2184 * Description: Finish top cpuset after cpu, node maps are initialized
2185 **/
2186
2187void __init cpuset_init_smp(void)
2188{
2189        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2190        top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2191
2192        hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2193
2194        cpuset_wq = create_singlethread_workqueue("cpuset");
2195        BUG_ON(!cpuset_wq);
2196}
2197
2198/**
2199 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2200 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2201 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2202 *
2203 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2204 * attached to the specified @tsk.  Guaranteed to return some non-empty
2205 * subset of cpu_online_map, even if this means going outside the
2206 * tasks cpuset.
2207 **/
2208
2209void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2210{
2211        mutex_lock(&callback_mutex);
2212        task_lock(tsk);
2213        guarantee_online_cpus(task_cs(tsk), pmask);
2214        task_unlock(tsk);
2215        mutex_unlock(&callback_mutex);
2216}
2217
2218int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2219{
2220        const struct cpuset *cs;
2221        int cpu;
2222
2223        rcu_read_lock();
2224        cs = task_cs(tsk);
2225        if (cs)
2226                cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
2227        rcu_read_unlock();
2228
2229        /*
2230         * We own tsk->cpus_allowed, nobody can change it under us.
2231         *
2232         * But we used cs && cs->cpus_allowed lockless and thus can
2233         * race with cgroup_attach_task() or update_cpumask() and get
2234         * the wrong tsk->cpus_allowed. However, both cases imply the
2235         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2236         * which takes task_rq_lock().
2237         *
2238         * If we are called after it dropped the lock we must see all
2239         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2240         * set any mask even if it is not right from task_cs() pov,
2241         * the pending set_cpus_allowed_ptr() will fix things.
2242         */
2243
2244        cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2245        if (cpu >= nr_cpu_ids) {
2246                /*
2247                 * Either tsk->cpus_allowed is wrong (see above) or it
2248                 * is actually empty. The latter case is only possible
2249                 * if we are racing with remove_tasks_in_empty_cpuset().
2250                 * Like above we can temporary set any mask and rely on
2251                 * set_cpus_allowed_ptr() as synchronization point.
2252                 */
2253                cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
2254                cpu = cpumask_any(cpu_active_mask);
2255        }
2256
2257        return cpu;
2258}
2259
2260void cpuset_init_current_mems_allowed(void)
2261{
2262        nodes_setall(current->mems_allowed);
2263}
2264
2265/**
2266 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2267 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2268 *
2269 * Description: Returns the nodemask_t mems_allowed of the cpuset
2270 * attached to the specified @tsk.  Guaranteed to return some non-empty
2271 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2272 * tasks cpuset.
2273 **/
2274
2275nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2276{
2277        nodemask_t mask;
2278
2279        mutex_lock(&callback_mutex);
2280        task_lock(tsk);
2281        guarantee_online_mems(task_cs(tsk), &mask);
2282        task_unlock(tsk);
2283        mutex_unlock(&callback_mutex);
2284
2285        return mask;
2286}
2287
2288/**
2289 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2290 * @nodemask: the nodemask to be checked
2291 *
2292 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2293 */
2294int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2295{
2296        return nodes_intersects(*nodemask, current->mems_allowed);
2297}
2298
2299/*
2300 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2301 * mem_hardwall ancestor to the specified cpuset.  Call holding
2302 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2303 * (an unusual configuration), then returns the root cpuset.
2304 */
2305static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2306{
2307        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2308                cs = cs->parent;
2309        return cs;
2310}
2311
2312/**
2313 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2314 * @node: is this an allowed node?
2315 * @gfp_mask: memory allocation flags
2316 *
2317 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2318 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2319 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2320 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2321 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2322 * flag, yes.
2323 * Otherwise, no.
2324 *
2325 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2326 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2327 * might sleep, and might allow a node from an enclosing cpuset.
2328 *
2329 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2330 * cpusets, and never sleeps.
2331 *
2332 * The __GFP_THISNODE placement logic is really handled elsewhere,
2333 * by forcibly using a zonelist starting at a specified node, and by
2334 * (in get_page_from_freelist()) refusing to consider the zones for
2335 * any node on the zonelist except the first.  By the time any such
2336 * calls get to this routine, we should just shut up and say 'yes'.
2337 *
2338 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2339 * and do not allow allocations outside the current tasks cpuset
2340 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2341 * GFP_KERNEL allocations are not so marked, so can escape to the
2342 * nearest enclosing hardwalled ancestor cpuset.
2343 *
2344 * Scanning up parent cpusets requires callback_mutex.  The
2345 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2346 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2347 * current tasks mems_allowed came up empty on the first pass over
2348 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2349 * cpuset are short of memory, might require taking the callback_mutex
2350 * mutex.
2351 *
2352 * The first call here from mm/page_alloc:get_page_from_freelist()
2353 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2354 * so no allocation on a node outside the cpuset is allowed (unless
2355 * in interrupt, of course).
2356 *
2357 * The second pass through get_page_from_freelist() doesn't even call
2358 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2359 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2360 * in alloc_flags.  That logic and the checks below have the combined
2361 * affect that:
2362 *      in_interrupt - any node ok (current task context irrelevant)
2363 *      GFP_ATOMIC   - any node ok
2364 *      TIF_MEMDIE   - any node ok
2365 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2366 *      GFP_USER     - only nodes in current tasks mems allowed ok.
2367 *
2368 * Rule:
2369 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2370 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2371 *    the code that might scan up ancestor cpusets and sleep.
2372 */
2373int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2374{
2375        const struct cpuset *cs;        /* current cpuset ancestors */
2376        int allowed;                    /* is allocation in zone z allowed? */
2377
2378        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2379                return 1;
2380        might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2381        if (node_isset(node, current->mems_allowed))
2382                return 1;
2383        /*
2384         * Allow tasks that have access to memory reserves because they have
2385         * been OOM killed to get memory anywhere.
2386         */
2387        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2388                return 1;
2389        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
2390                return 0;
2391
2392        if (current->flags & PF_EXITING) /* Let dying task have memory */
2393                return 1;
2394
2395        /* Not hardwall and node outside mems_allowed: scan up cpusets */
2396        mutex_lock(&callback_mutex);
2397
2398        task_lock(current);
2399        cs = nearest_hardwall_ancestor(task_cs(current));
2400        task_unlock(current);
2401
2402        allowed = node_isset(node, cs->mems_allowed);
2403        mutex_unlock(&callback_mutex);
2404        return allowed;
2405}
2406
2407/*
2408 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2409 * @node: is this an allowed node?
2410 * @gfp_mask: memory allocation flags
2411 *
2412 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2413 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2414 * yes.  If the task has been OOM killed and has access to memory reserves as
2415 * specified by the TIF_MEMDIE flag, yes.
2416 * Otherwise, no.
2417 *
2418 * The __GFP_THISNODE placement logic is really handled elsewhere,
2419 * by forcibly using a zonelist starting at a specified node, and by
2420 * (in get_page_from_freelist()) refusing to consider the zones for
2421 * any node on the zonelist except the first.  By the time any such
2422 * calls get to this routine, we should just shut up and say 'yes'.
2423 *
2424 * Unlike the cpuset_node_allowed_softwall() variant, above,
2425 * this variant requires that the node be in the current task's
2426 * mems_allowed or that we're in interrupt.  It does not scan up the
2427 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2428 * It never sleeps.
2429 */
2430int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2431{
2432        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2433                return 1;
2434        if (node_isset(node, current->mems_allowed))
2435                return 1;
2436        /*
2437         * Allow tasks that have access to memory reserves because they have
2438         * been OOM killed to get memory anywhere.
2439         */
2440        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2441                return 1;
2442        return 0;
2443}
2444
2445/**
2446 * cpuset_unlock - release lock on cpuset changes
2447 *
2448 * Undo the lock taken in a previous cpuset_lock() call.
2449 */
2450
2451void cpuset_unlock(void)
2452{
2453        mutex_unlock(&callback_mutex);
2454}
2455
2456/**
2457 * cpuset_mem_spread_node() - On which node to begin search for a file page
2458 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2459 *
2460 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2461 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2462 * and if the memory allocation used cpuset_mem_spread_node()
2463 * to determine on which node to start looking, as it will for
2464 * certain page cache or slab cache pages such as used for file
2465 * system buffers and inode caches, then instead of starting on the
2466 * local node to look for a free page, rather spread the starting
2467 * node around the tasks mems_allowed nodes.
2468 *
2469 * We don't have to worry about the returned node being offline
2470 * because "it can't happen", and even if it did, it would be ok.
2471 *
2472 * The routines calling guarantee_online_mems() are careful to
2473 * only set nodes in task->mems_allowed that are online.  So it
2474 * should not be possible for the following code to return an
2475 * offline node.  But if it did, that would be ok, as this routine
2476 * is not returning the node where the allocation must be, only
2477 * the node where the search should start.  The zonelist passed to
2478 * __alloc_pages() will include all nodes.  If the slab allocator
2479 * is passed an offline node, it will fall back to the local node.
2480 * See kmem_cache_alloc_node().
2481 */
2482
2483static int cpuset_spread_node(int *rotor)
2484{
2485        int node;
2486
2487        node = next_node(*rotor, current->mems_allowed);
2488        if (node == MAX_NUMNODES)
2489                node = first_node(current->mems_allowed);
2490        *rotor = node;
2491        return node;
2492}
2493
2494int cpuset_mem_spread_node(void)
2495{
2496        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2497}
2498
2499int cpuset_slab_spread_node(void)
2500{
2501        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2502}
2503
2504EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2505
2506/**
2507 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2508 * @tsk1: pointer to task_struct of some task.
2509 * @tsk2: pointer to task_struct of some other task.
2510 *
2511 * Description: Return true if @tsk1's mems_allowed intersects the
2512 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2513 * one of the task's memory usage might impact the memory available
2514 * to the other.
2515 **/
2516
2517int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2518                                   const struct task_struct *tsk2)
2519{
2520        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2521}
2522
2523/**
2524 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2525 * @task: pointer to task_struct of some task.
2526 *
2527 * Description: Prints @task's name, cpuset name, and cached copy of its
2528 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2529 * dereferencing task_cs(task).
2530 */
2531void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2532{
2533        struct dentry *dentry;
2534
2535        dentry = task_cs(tsk)->css.cgroup->dentry;
2536        spin_lock(&cpuset_buffer_lock);
2537        snprintf(cpuset_name, CPUSET_NAME_LEN,
2538                 dentry ? (const char *)dentry->d_name.name : "/");
2539        nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2540                           tsk->mems_allowed);
2541        printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2542               tsk->comm, cpuset_name, cpuset_nodelist);
2543        spin_unlock(&cpuset_buffer_lock);
2544}
2545
2546/*
2547 * Collection of memory_pressure is suppressed unless
2548 * this flag is enabled by writing "1" to the special
2549 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2550 */
2551
2552int cpuset_memory_pressure_enabled __read_mostly;
2553
2554/**
2555 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2556 *
2557 * Keep a running average of the rate of synchronous (direct)
2558 * page reclaim efforts initiated by tasks in each cpuset.
2559 *
2560 * This represents the rate at which some task in the cpuset
2561 * ran low on memory on all nodes it was allowed to use, and
2562 * had to enter the kernels page reclaim code in an effort to
2563 * create more free memory by tossing clean pages or swapping
2564 * or writing dirty pages.
2565 *
2566 * Display to user space in the per-cpuset read-only file
2567 * "memory_pressure".  Value displayed is an integer
2568 * representing the recent rate of entry into the synchronous
2569 * (direct) page reclaim by any task attached to the cpuset.
2570 **/
2571
2572void __cpuset_memory_pressure_bump(void)
2573{
2574        task_lock(current);
2575        fmeter_markevent(&task_cs(current)->fmeter);
2576        task_unlock(current);
2577}
2578
2579#ifdef CONFIG_PROC_PID_CPUSET
2580/*
2581 * proc_cpuset_show()
2582 *  - Print tasks cpuset path into seq_file.
2583 *  - Used for /proc/<pid>/cpuset.
2584 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2585 *    doesn't really matter if tsk->cpuset changes after we read it,
2586 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2587 *    anyway.
2588 */
2589static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2590{
2591        struct pid *pid;
2592        struct task_struct *tsk;
2593        char *buf;
2594        struct cgroup_subsys_state *css;
2595        int retval;
2596
2597        retval = -ENOMEM;
2598        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2599        if (!buf)
2600                goto out;
2601
2602        retval = -ESRCH;
2603        pid = m->private;
2604        tsk = get_pid_task(pid, PIDTYPE_PID);
2605        if (!tsk)
2606                goto out_free;
2607
2608        retval = -EINVAL;
2609        cgroup_lock();
2610        css = task_subsys_state(tsk, cpuset_subsys_id);
2611        retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2612        if (retval < 0)
2613                goto out_unlock;
2614        seq_puts(m, buf);
2615        seq_putc(m, '\n');
2616out_unlock:
2617        cgroup_unlock();
2618        put_task_struct(tsk);
2619out_free:
2620        kfree(buf);
2621out:
2622        return retval;
2623}
2624
2625static int cpuset_open(struct inode *inode, struct file *file)
2626{
2627        struct pid *pid = PROC_I(inode)->pid;
2628        return single_open(file, proc_cpuset_show, pid);
2629}
2630
2631const struct file_operations proc_cpuset_operations = {
2632        .open           = cpuset_open,
2633        .read           = seq_read,
2634        .llseek         = seq_lseek,
2635        .release        = single_release,
2636};
2637#endif /* CONFIG_PROC_PID_CPUSET */
2638
2639/* Display task mems_allowed in /proc/<pid>/status file. */
2640void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2641{
2642        seq_printf(m, "Mems_allowed:\t");
2643        seq_nodemask(m, &task->mems_allowed);
2644        seq_printf(m, "\n");
2645        seq_printf(m, "Mems_allowed_list:\t");
2646        seq_nodemask_list(m, &task->mems_allowed);
2647        seq_printf(m, "\n");
2648}
2649