linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/binfmts.h>
  24#include <linux/nsproxy.h>
  25#include <linux/pid_namespace.h>
  26#include <linux/ptrace.h>
  27#include <linux/profile.h>
  28#include <linux/mount.h>
  29#include <linux/proc_fs.h>
  30#include <linux/kthread.h>
  31#include <linux/mempolicy.h>
  32#include <linux/taskstats_kern.h>
  33#include <linux/delayacct.h>
  34#include <linux/freezer.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54
  55#include <asm/uaccess.h>
  56#include <asm/unistd.h>
  57#include <asm/pgtable.h>
  58#include <asm/mmu_context.h>
  59
  60static void exit_mm(struct task_struct * tsk);
  61
  62static void __unhash_process(struct task_struct *p, bool group_dead)
  63{
  64        nr_threads--;
  65        detach_pid(p, PIDTYPE_PID);
  66        if (group_dead) {
  67                detach_pid(p, PIDTYPE_PGID);
  68                detach_pid(p, PIDTYPE_SID);
  69
  70                list_del_rcu(&p->tasks);
  71                list_del_init(&p->sibling);
  72                __this_cpu_dec(process_counts);
  73        }
  74        list_del_rcu(&p->thread_group);
  75}
  76
  77/*
  78 * This function expects the tasklist_lock write-locked.
  79 */
  80static void __exit_signal(struct task_struct *tsk)
  81{
  82        struct signal_struct *sig = tsk->signal;
  83        bool group_dead = thread_group_leader(tsk);
  84        struct sighand_struct *sighand;
  85        struct tty_struct *uninitialized_var(tty);
  86
  87        sighand = rcu_dereference_check(tsk->sighand,
  88                                        rcu_read_lock_held() ||
  89                                        lockdep_tasklist_lock_is_held());
  90        spin_lock(&sighand->siglock);
  91
  92        posix_cpu_timers_exit(tsk);
  93        if (group_dead) {
  94                posix_cpu_timers_exit_group(tsk);
  95                tty = sig->tty;
  96                sig->tty = NULL;
  97        } else {
  98                /*
  99                 * This can only happen if the caller is de_thread().
 100                 * FIXME: this is the temporary hack, we should teach
 101                 * posix-cpu-timers to handle this case correctly.
 102                 */
 103                if (unlikely(has_group_leader_pid(tsk)))
 104                        posix_cpu_timers_exit_group(tsk);
 105
 106                /*
 107                 * If there is any task waiting for the group exit
 108                 * then notify it:
 109                 */
 110                if (sig->notify_count > 0 && !--sig->notify_count)
 111                        wake_up_process(sig->group_exit_task);
 112
 113                if (tsk == sig->curr_target)
 114                        sig->curr_target = next_thread(tsk);
 115                /*
 116                 * Accumulate here the counters for all threads but the
 117                 * group leader as they die, so they can be added into
 118                 * the process-wide totals when those are taken.
 119                 * The group leader stays around as a zombie as long
 120                 * as there are other threads.  When it gets reaped,
 121                 * the exit.c code will add its counts into these totals.
 122                 * We won't ever get here for the group leader, since it
 123                 * will have been the last reference on the signal_struct.
 124                 */
 125                sig->utime = cputime_add(sig->utime, tsk->utime);
 126                sig->stime = cputime_add(sig->stime, tsk->stime);
 127                sig->gtime = cputime_add(sig->gtime, tsk->gtime);
 128                sig->min_flt += tsk->min_flt;
 129                sig->maj_flt += tsk->maj_flt;
 130                sig->nvcsw += tsk->nvcsw;
 131                sig->nivcsw += tsk->nivcsw;
 132                sig->inblock += task_io_get_inblock(tsk);
 133                sig->oublock += task_io_get_oublock(tsk);
 134                task_io_accounting_add(&sig->ioac, &tsk->ioac);
 135                sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 136        }
 137
 138        sig->nr_threads--;
 139        __unhash_process(tsk, group_dead);
 140
 141        /*
 142         * Do this under ->siglock, we can race with another thread
 143         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 144         */
 145        flush_sigqueue(&tsk->pending);
 146        tsk->sighand = NULL;
 147        spin_unlock(&sighand->siglock);
 148
 149        __cleanup_sighand(sighand);
 150        clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
 151        if (group_dead) {
 152                flush_sigqueue(&sig->shared_pending);
 153                tty_kref_put(tty);
 154        }
 155}
 156
 157static void delayed_put_task_struct(struct rcu_head *rhp)
 158{
 159        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 160
 161        perf_event_delayed_put(tsk);
 162        trace_sched_process_free(tsk);
 163        put_task_struct(tsk);
 164}
 165
 166
 167void release_task(struct task_struct * p)
 168{
 169        struct task_struct *leader;
 170        int zap_leader;
 171repeat:
 172        tracehook_prepare_release_task(p);
 173        /* don't need to get the RCU readlock here - the process is dead and
 174         * can't be modifying its own credentials. But shut RCU-lockdep up */
 175        rcu_read_lock();
 176        atomic_dec(&__task_cred(p)->user->processes);
 177        rcu_read_unlock();
 178
 179        proc_flush_task(p);
 180
 181        write_lock_irq(&tasklist_lock);
 182        tracehook_finish_release_task(p);
 183        __exit_signal(p);
 184
 185        /*
 186         * If we are the last non-leader member of the thread
 187         * group, and the leader is zombie, then notify the
 188         * group leader's parent process. (if it wants notification.)
 189         */
 190        zap_leader = 0;
 191        leader = p->group_leader;
 192        if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
 193                BUG_ON(task_detached(leader));
 194                do_notify_parent(leader, leader->exit_signal);
 195                /*
 196                 * If we were the last child thread and the leader has
 197                 * exited already, and the leader's parent ignores SIGCHLD,
 198                 * then we are the one who should release the leader.
 199                 *
 200                 * do_notify_parent() will have marked it self-reaping in
 201                 * that case.
 202                 */
 203                zap_leader = task_detached(leader);
 204
 205                /*
 206                 * This maintains the invariant that release_task()
 207                 * only runs on a task in EXIT_DEAD, just for sanity.
 208                 */
 209                if (zap_leader)
 210                        leader->exit_state = EXIT_DEAD;
 211        }
 212
 213        write_unlock_irq(&tasklist_lock);
 214        release_thread(p);
 215        call_rcu(&p->rcu, delayed_put_task_struct);
 216
 217        p = leader;
 218        if (unlikely(zap_leader))
 219                goto repeat;
 220}
 221
 222/*
 223 * This checks not only the pgrp, but falls back on the pid if no
 224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 225 * without this...
 226 *
 227 * The caller must hold rcu lock or the tasklist lock.
 228 */
 229struct pid *session_of_pgrp(struct pid *pgrp)
 230{
 231        struct task_struct *p;
 232        struct pid *sid = NULL;
 233
 234        p = pid_task(pgrp, PIDTYPE_PGID);
 235        if (p == NULL)
 236                p = pid_task(pgrp, PIDTYPE_PID);
 237        if (p != NULL)
 238                sid = task_session(p);
 239
 240        return sid;
 241}
 242
 243/*
 244 * Determine if a process group is "orphaned", according to the POSIX
 245 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 246 * by terminal-generated stop signals.  Newly orphaned process groups are
 247 * to receive a SIGHUP and a SIGCONT.
 248 *
 249 * "I ask you, have you ever known what it is to be an orphan?"
 250 */
 251static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
 252{
 253        struct task_struct *p;
 254
 255        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 256                if ((p == ignored_task) ||
 257                    (p->exit_state && thread_group_empty(p)) ||
 258                    is_global_init(p->real_parent))
 259                        continue;
 260
 261                if (task_pgrp(p->real_parent) != pgrp &&
 262                    task_session(p->real_parent) == task_session(p))
 263                        return 0;
 264        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 265
 266        return 1;
 267}
 268
 269int is_current_pgrp_orphaned(void)
 270{
 271        int retval;
 272
 273        read_lock(&tasklist_lock);
 274        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 275        read_unlock(&tasklist_lock);
 276
 277        return retval;
 278}
 279
 280static int has_stopped_jobs(struct pid *pgrp)
 281{
 282        int retval = 0;
 283        struct task_struct *p;
 284
 285        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 286                if (!task_is_stopped(p))
 287                        continue;
 288                retval = 1;
 289                break;
 290        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 291        return retval;
 292}
 293
 294/*
 295 * Check to see if any process groups have become orphaned as
 296 * a result of our exiting, and if they have any stopped jobs,
 297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 298 */
 299static void
 300kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 301{
 302        struct pid *pgrp = task_pgrp(tsk);
 303        struct task_struct *ignored_task = tsk;
 304
 305        if (!parent)
 306                 /* exit: our father is in a different pgrp than
 307                  * we are and we were the only connection outside.
 308                  */
 309                parent = tsk->real_parent;
 310        else
 311                /* reparent: our child is in a different pgrp than
 312                 * we are, and it was the only connection outside.
 313                 */
 314                ignored_task = NULL;
 315
 316        if (task_pgrp(parent) != pgrp &&
 317            task_session(parent) == task_session(tsk) &&
 318            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 319            has_stopped_jobs(pgrp)) {
 320                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 321                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 322        }
 323}
 324
 325/**
 326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 327 *
 328 * If a kernel thread is launched as a result of a system call, or if
 329 * it ever exits, it should generally reparent itself to kthreadd so it
 330 * isn't in the way of other processes and is correctly cleaned up on exit.
 331 *
 332 * The various task state such as scheduling policy and priority may have
 333 * been inherited from a user process, so we reset them to sane values here.
 334 *
 335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 336 */
 337static void reparent_to_kthreadd(void)
 338{
 339        write_lock_irq(&tasklist_lock);
 340
 341        ptrace_unlink(current);
 342        /* Reparent to init */
 343        current->real_parent = current->parent = kthreadd_task;
 344        list_move_tail(&current->sibling, &current->real_parent->children);
 345
 346        /* Set the exit signal to SIGCHLD so we signal init on exit */
 347        current->exit_signal = SIGCHLD;
 348
 349        if (task_nice(current) < 0)
 350                set_user_nice(current, 0);
 351        /* cpus_allowed? */
 352        /* rt_priority? */
 353        /* signals? */
 354        memcpy(current->signal->rlim, init_task.signal->rlim,
 355               sizeof(current->signal->rlim));
 356
 357        atomic_inc(&init_cred.usage);
 358        commit_creds(&init_cred);
 359        write_unlock_irq(&tasklist_lock);
 360}
 361
 362void __set_special_pids(struct pid *pid)
 363{
 364        struct task_struct *curr = current->group_leader;
 365
 366        if (task_session(curr) != pid)
 367                change_pid(curr, PIDTYPE_SID, pid);
 368
 369        if (task_pgrp(curr) != pid)
 370                change_pid(curr, PIDTYPE_PGID, pid);
 371}
 372
 373static void set_special_pids(struct pid *pid)
 374{
 375        write_lock_irq(&tasklist_lock);
 376        __set_special_pids(pid);
 377        write_unlock_irq(&tasklist_lock);
 378}
 379
 380/*
 381 * Let kernel threads use this to say that they allow a certain signal.
 382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
 383 */
 384int allow_signal(int sig)
 385{
 386        if (!valid_signal(sig) || sig < 1)
 387                return -EINVAL;
 388
 389        spin_lock_irq(&current->sighand->siglock);
 390        /* This is only needed for daemonize()'ed kthreads */
 391        sigdelset(&current->blocked, sig);
 392        /*
 393         * Kernel threads handle their own signals. Let the signal code
 394         * know it'll be handled, so that they don't get converted to
 395         * SIGKILL or just silently dropped.
 396         */
 397        current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
 398        recalc_sigpending();
 399        spin_unlock_irq(&current->sighand->siglock);
 400        return 0;
 401}
 402
 403EXPORT_SYMBOL(allow_signal);
 404
 405int disallow_signal(int sig)
 406{
 407        if (!valid_signal(sig) || sig < 1)
 408                return -EINVAL;
 409
 410        spin_lock_irq(&current->sighand->siglock);
 411        current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
 412        recalc_sigpending();
 413        spin_unlock_irq(&current->sighand->siglock);
 414        return 0;
 415}
 416
 417EXPORT_SYMBOL(disallow_signal);
 418
 419/*
 420 *      Put all the gunge required to become a kernel thread without
 421 *      attached user resources in one place where it belongs.
 422 */
 423
 424void daemonize(const char *name, ...)
 425{
 426        va_list args;
 427        sigset_t blocked;
 428
 429        va_start(args, name);
 430        vsnprintf(current->comm, sizeof(current->comm), name, args);
 431        va_end(args);
 432
 433        /*
 434         * If we were started as result of loading a module, close all of the
 435         * user space pages.  We don't need them, and if we didn't close them
 436         * they would be locked into memory.
 437         */
 438        exit_mm(current);
 439        /*
 440         * We don't want to have TIF_FREEZE set if the system-wide hibernation
 441         * or suspend transition begins right now.
 442         */
 443        current->flags |= (PF_NOFREEZE | PF_KTHREAD);
 444
 445        if (current->nsproxy != &init_nsproxy) {
 446                get_nsproxy(&init_nsproxy);
 447                switch_task_namespaces(current, &init_nsproxy);
 448        }
 449        set_special_pids(&init_struct_pid);
 450        proc_clear_tty(current);
 451
 452        /* Block and flush all signals */
 453        sigfillset(&blocked);
 454        sigprocmask(SIG_BLOCK, &blocked, NULL);
 455        flush_signals(current);
 456
 457        /* Become as one with the init task */
 458
 459        daemonize_fs_struct();
 460        exit_files(current);
 461        current->files = init_task.files;
 462        atomic_inc(&current->files->count);
 463
 464        reparent_to_kthreadd();
 465}
 466
 467EXPORT_SYMBOL(daemonize);
 468
 469static void close_files(struct files_struct * files)
 470{
 471        int i, j;
 472        struct fdtable *fdt;
 473
 474        j = 0;
 475
 476        /*
 477         * It is safe to dereference the fd table without RCU or
 478         * ->file_lock because this is the last reference to the
 479         * files structure.  But use RCU to shut RCU-lockdep up.
 480         */
 481        rcu_read_lock();
 482        fdt = files_fdtable(files);
 483        rcu_read_unlock();
 484        for (;;) {
 485                unsigned long set;
 486                i = j * __NFDBITS;
 487                if (i >= fdt->max_fds)
 488                        break;
 489                set = fdt->open_fds->fds_bits[j++];
 490                while (set) {
 491                        if (set & 1) {
 492                                struct file * file = xchg(&fdt->fd[i], NULL);
 493                                if (file) {
 494                                        filp_close(file, files);
 495                                        cond_resched();
 496                                }
 497                        }
 498                        i++;
 499                        set >>= 1;
 500                }
 501        }
 502}
 503
 504struct files_struct *get_files_struct(struct task_struct *task)
 505{
 506        struct files_struct *files;
 507
 508        task_lock(task);
 509        files = task->files;
 510        if (files)
 511                atomic_inc(&files->count);
 512        task_unlock(task);
 513
 514        return files;
 515}
 516
 517void put_files_struct(struct files_struct *files)
 518{
 519        struct fdtable *fdt;
 520
 521        if (atomic_dec_and_test(&files->count)) {
 522                close_files(files);
 523                /*
 524                 * Free the fd and fdset arrays if we expanded them.
 525                 * If the fdtable was embedded, pass files for freeing
 526                 * at the end of the RCU grace period. Otherwise,
 527                 * you can free files immediately.
 528                 */
 529                rcu_read_lock();
 530                fdt = files_fdtable(files);
 531                if (fdt != &files->fdtab)
 532                        kmem_cache_free(files_cachep, files);
 533                free_fdtable(fdt);
 534                rcu_read_unlock();
 535        }
 536}
 537
 538void reset_files_struct(struct files_struct *files)
 539{
 540        struct task_struct *tsk = current;
 541        struct files_struct *old;
 542
 543        old = tsk->files;
 544        task_lock(tsk);
 545        tsk->files = files;
 546        task_unlock(tsk);
 547        put_files_struct(old);
 548}
 549
 550void exit_files(struct task_struct *tsk)
 551{
 552        struct files_struct * files = tsk->files;
 553
 554        if (files) {
 555                task_lock(tsk);
 556                tsk->files = NULL;
 557                task_unlock(tsk);
 558                put_files_struct(files);
 559        }
 560}
 561
 562#ifdef CONFIG_MM_OWNER
 563/*
 564 * Task p is exiting and it owned mm, lets find a new owner for it
 565 */
 566static inline int
 567mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
 568{
 569        /*
 570         * If there are other users of the mm and the owner (us) is exiting
 571         * we need to find a new owner to take on the responsibility.
 572         */
 573        if (atomic_read(&mm->mm_users) <= 1)
 574                return 0;
 575        if (mm->owner != p)
 576                return 0;
 577        return 1;
 578}
 579
 580void mm_update_next_owner(struct mm_struct *mm)
 581{
 582        struct task_struct *c, *g, *p = current;
 583
 584retry:
 585        if (!mm_need_new_owner(mm, p))
 586                return;
 587
 588        read_lock(&tasklist_lock);
 589        /*
 590         * Search in the children
 591         */
 592        list_for_each_entry(c, &p->children, sibling) {
 593                if (c->mm == mm)
 594                        goto assign_new_owner;
 595        }
 596
 597        /*
 598         * Search in the siblings
 599         */
 600        list_for_each_entry(c, &p->real_parent->children, sibling) {
 601                if (c->mm == mm)
 602                        goto assign_new_owner;
 603        }
 604
 605        /*
 606         * Search through everything else. We should not get
 607         * here often
 608         */
 609        do_each_thread(g, c) {
 610                if (c->mm == mm)
 611                        goto assign_new_owner;
 612        } while_each_thread(g, c);
 613
 614        read_unlock(&tasklist_lock);
 615        /*
 616         * We found no owner yet mm_users > 1: this implies that we are
 617         * most likely racing with swapoff (try_to_unuse()) or /proc or
 618         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 619         */
 620        mm->owner = NULL;
 621        return;
 622
 623assign_new_owner:
 624        BUG_ON(c == p);
 625        get_task_struct(c);
 626        /*
 627         * The task_lock protects c->mm from changing.
 628         * We always want mm->owner->mm == mm
 629         */
 630        task_lock(c);
 631        /*
 632         * Delay read_unlock() till we have the task_lock()
 633         * to ensure that c does not slip away underneath us
 634         */
 635        read_unlock(&tasklist_lock);
 636        if (c->mm != mm) {
 637                task_unlock(c);
 638                put_task_struct(c);
 639                goto retry;
 640        }
 641        mm->owner = c;
 642        task_unlock(c);
 643        put_task_struct(c);
 644}
 645#endif /* CONFIG_MM_OWNER */
 646
 647/*
 648 * Turn us into a lazy TLB process if we
 649 * aren't already..
 650 */
 651static void exit_mm(struct task_struct * tsk)
 652{
 653        struct mm_struct *mm = tsk->mm;
 654        struct core_state *core_state;
 655
 656        mm_release(tsk, mm);
 657        if (!mm)
 658                return;
 659        /*
 660         * Serialize with any possible pending coredump.
 661         * We must hold mmap_sem around checking core_state
 662         * and clearing tsk->mm.  The core-inducing thread
 663         * will increment ->nr_threads for each thread in the
 664         * group with ->mm != NULL.
 665         */
 666        down_read(&mm->mmap_sem);
 667        core_state = mm->core_state;
 668        if (core_state) {
 669                struct core_thread self;
 670                up_read(&mm->mmap_sem);
 671
 672                self.task = tsk;
 673                self.next = xchg(&core_state->dumper.next, &self);
 674                /*
 675                 * Implies mb(), the result of xchg() must be visible
 676                 * to core_state->dumper.
 677                 */
 678                if (atomic_dec_and_test(&core_state->nr_threads))
 679                        complete(&core_state->startup);
 680
 681                for (;;) {
 682                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 683                        if (!self.task) /* see coredump_finish() */
 684                                break;
 685                        schedule();
 686                }
 687                __set_task_state(tsk, TASK_RUNNING);
 688                down_read(&mm->mmap_sem);
 689        }
 690        atomic_inc(&mm->mm_count);
 691        BUG_ON(mm != tsk->active_mm);
 692        /* more a memory barrier than a real lock */
 693        task_lock(tsk);
 694        tsk->mm = NULL;
 695        up_read(&mm->mmap_sem);
 696        enter_lazy_tlb(mm, current);
 697        /* We don't want this task to be frozen prematurely */
 698        clear_freeze_flag(tsk);
 699        if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
 700                atomic_dec(&mm->oom_disable_count);
 701        task_unlock(tsk);
 702        mm_update_next_owner(mm);
 703        mmput(mm);
 704}
 705
 706/*
 707 * When we die, we re-parent all our children.
 708 * Try to give them to another thread in our thread
 709 * group, and if no such member exists, give it to
 710 * the child reaper process (ie "init") in our pid
 711 * space.
 712 */
 713static struct task_struct *find_new_reaper(struct task_struct *father)
 714        __releases(&tasklist_lock)
 715        __acquires(&tasklist_lock)
 716{
 717        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 718        struct task_struct *thread;
 719
 720        thread = father;
 721        while_each_thread(father, thread) {
 722                if (thread->flags & PF_EXITING)
 723                        continue;
 724                if (unlikely(pid_ns->child_reaper == father))
 725                        pid_ns->child_reaper = thread;
 726                return thread;
 727        }
 728
 729        if (unlikely(pid_ns->child_reaper == father)) {
 730                write_unlock_irq(&tasklist_lock);
 731                if (unlikely(pid_ns == &init_pid_ns))
 732                        panic("Attempted to kill init!");
 733
 734                zap_pid_ns_processes(pid_ns);
 735                write_lock_irq(&tasklist_lock);
 736                /*
 737                 * We can not clear ->child_reaper or leave it alone.
 738                 * There may by stealth EXIT_DEAD tasks on ->children,
 739                 * forget_original_parent() must move them somewhere.
 740                 */
 741                pid_ns->child_reaper = init_pid_ns.child_reaper;
 742        }
 743
 744        return pid_ns->child_reaper;
 745}
 746
 747/*
 748* Any that need to be release_task'd are put on the @dead list.
 749 */
 750static void reparent_leader(struct task_struct *father, struct task_struct *p,
 751                                struct list_head *dead)
 752{
 753        list_move_tail(&p->sibling, &p->real_parent->children);
 754
 755        if (task_detached(p))
 756                return;
 757        /*
 758         * If this is a threaded reparent there is no need to
 759         * notify anyone anything has happened.
 760         */
 761        if (same_thread_group(p->real_parent, father))
 762                return;
 763
 764        /* We don't want people slaying init.  */
 765        p->exit_signal = SIGCHLD;
 766
 767        /* If it has exited notify the new parent about this child's death. */
 768        if (!task_ptrace(p) &&
 769            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 770                do_notify_parent(p, p->exit_signal);
 771                if (task_detached(p)) {
 772                        p->exit_state = EXIT_DEAD;
 773                        list_move_tail(&p->sibling, dead);
 774                }
 775        }
 776
 777        kill_orphaned_pgrp(p, father);
 778}
 779
 780static void forget_original_parent(struct task_struct *father)
 781{
 782        struct task_struct *p, *n, *reaper;
 783        LIST_HEAD(dead_children);
 784
 785        write_lock_irq(&tasklist_lock);
 786        /*
 787         * Note that exit_ptrace() and find_new_reaper() might
 788         * drop tasklist_lock and reacquire it.
 789         */
 790        exit_ptrace(father);
 791        reaper = find_new_reaper(father);
 792
 793        list_for_each_entry_safe(p, n, &father->children, sibling) {
 794                struct task_struct *t = p;
 795                do {
 796                        t->real_parent = reaper;
 797                        if (t->parent == father) {
 798                                BUG_ON(task_ptrace(t));
 799                                t->parent = t->real_parent;
 800                        }
 801                        if (t->pdeath_signal)
 802                                group_send_sig_info(t->pdeath_signal,
 803                                                    SEND_SIG_NOINFO, t);
 804                } while_each_thread(p, t);
 805                reparent_leader(father, p, &dead_children);
 806        }
 807        write_unlock_irq(&tasklist_lock);
 808
 809        BUG_ON(!list_empty(&father->children));
 810
 811        list_for_each_entry_safe(p, n, &dead_children, sibling) {
 812                list_del_init(&p->sibling);
 813                release_task(p);
 814        }
 815}
 816
 817/*
 818 * Send signals to all our closest relatives so that they know
 819 * to properly mourn us..
 820 */
 821static void exit_notify(struct task_struct *tsk, int group_dead)
 822{
 823        int signal;
 824        void *cookie;
 825
 826        /*
 827         * This does two things:
 828         *
 829         * A.  Make init inherit all the child processes
 830         * B.  Check to see if any process groups have become orphaned
 831         *      as a result of our exiting, and if they have any stopped
 832         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 833         */
 834        forget_original_parent(tsk);
 835        exit_task_namespaces(tsk);
 836
 837        write_lock_irq(&tasklist_lock);
 838        if (group_dead)
 839                kill_orphaned_pgrp(tsk->group_leader, NULL);
 840
 841        /* Let father know we died
 842         *
 843         * Thread signals are configurable, but you aren't going to use
 844         * that to send signals to arbitary processes.
 845         * That stops right now.
 846         *
 847         * If the parent exec id doesn't match the exec id we saved
 848         * when we started then we know the parent has changed security
 849         * domain.
 850         *
 851         * If our self_exec id doesn't match our parent_exec_id then
 852         * we have changed execution domain as these two values started
 853         * the same after a fork.
 854         */
 855        if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
 856            (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
 857             tsk->self_exec_id != tsk->parent_exec_id))
 858                tsk->exit_signal = SIGCHLD;
 859
 860        signal = tracehook_notify_death(tsk, &cookie, group_dead);
 861        if (signal >= 0)
 862                signal = do_notify_parent(tsk, signal);
 863
 864        tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
 865
 866        /* mt-exec, de_thread() is waiting for group leader */
 867        if (unlikely(tsk->signal->notify_count < 0))
 868                wake_up_process(tsk->signal->group_exit_task);
 869        write_unlock_irq(&tasklist_lock);
 870
 871        tracehook_report_death(tsk, signal, cookie, group_dead);
 872
 873        /* If the process is dead, release it - nobody will wait for it */
 874        if (signal == DEATH_REAP)
 875                release_task(tsk);
 876}
 877
 878#ifdef CONFIG_DEBUG_STACK_USAGE
 879static void check_stack_usage(void)
 880{
 881        static DEFINE_SPINLOCK(low_water_lock);
 882        static int lowest_to_date = THREAD_SIZE;
 883        unsigned long free;
 884
 885        free = stack_not_used(current);
 886
 887        if (free >= lowest_to_date)
 888                return;
 889
 890        spin_lock(&low_water_lock);
 891        if (free < lowest_to_date) {
 892                printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
 893                                "left\n",
 894                                current->comm, free);
 895                lowest_to_date = free;
 896        }
 897        spin_unlock(&low_water_lock);
 898}
 899#else
 900static inline void check_stack_usage(void) {}
 901#endif
 902
 903NORET_TYPE void do_exit(long code)
 904{
 905        struct task_struct *tsk = current;
 906        int group_dead;
 907
 908        profile_task_exit(tsk);
 909
 910        WARN_ON(atomic_read(&tsk->fs_excl));
 911
 912        if (unlikely(in_interrupt()))
 913                panic("Aiee, killing interrupt handler!");
 914        if (unlikely(!tsk->pid))
 915                panic("Attempted to kill the idle task!");
 916
 917        /*
 918         * If do_exit is called because this processes oopsed, it's possible
 919         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 920         * continuing. Amongst other possible reasons, this is to prevent
 921         * mm_release()->clear_child_tid() from writing to a user-controlled
 922         * kernel address.
 923         */
 924        set_fs(USER_DS);
 925
 926        tracehook_report_exit(&code);
 927
 928        validate_creds_for_do_exit(tsk);
 929
 930        /*
 931         * We're taking recursive faults here in do_exit. Safest is to just
 932         * leave this task alone and wait for reboot.
 933         */
 934        if (unlikely(tsk->flags & PF_EXITING)) {
 935                printk(KERN_ALERT
 936                        "Fixing recursive fault but reboot is needed!\n");
 937                /*
 938                 * We can do this unlocked here. The futex code uses
 939                 * this flag just to verify whether the pi state
 940                 * cleanup has been done or not. In the worst case it
 941                 * loops once more. We pretend that the cleanup was
 942                 * done as there is no way to return. Either the
 943                 * OWNER_DIED bit is set by now or we push the blocked
 944                 * task into the wait for ever nirwana as well.
 945                 */
 946                tsk->flags |= PF_EXITPIDONE;
 947                set_current_state(TASK_UNINTERRUPTIBLE);
 948                schedule();
 949        }
 950
 951        exit_irq_thread();
 952
 953        exit_signals(tsk);  /* sets PF_EXITING */
 954        /*
 955         * tsk->flags are checked in the futex code to protect against
 956         * an exiting task cleaning up the robust pi futexes.
 957         */
 958        smp_mb();
 959        raw_spin_unlock_wait(&tsk->pi_lock);
 960
 961        if (unlikely(in_atomic()))
 962                printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
 963                                current->comm, task_pid_nr(current),
 964                                preempt_count());
 965
 966        acct_update_integrals(tsk);
 967        /* sync mm's RSS info before statistics gathering */
 968        if (tsk->mm)
 969                sync_mm_rss(tsk, tsk->mm);
 970        group_dead = atomic_dec_and_test(&tsk->signal->live);
 971        if (group_dead) {
 972                hrtimer_cancel(&tsk->signal->real_timer);
 973                exit_itimers(tsk->signal);
 974                if (tsk->mm)
 975                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 976        }
 977        acct_collect(code, group_dead);
 978        if (group_dead)
 979                tty_audit_exit();
 980        if (unlikely(tsk->audit_context))
 981                audit_free(tsk);
 982
 983        tsk->exit_code = code;
 984        taskstats_exit(tsk, group_dead);
 985
 986        exit_mm(tsk);
 987
 988        if (group_dead)
 989                acct_process();
 990        trace_sched_process_exit(tsk);
 991
 992        exit_sem(tsk);
 993        exit_files(tsk);
 994        exit_fs(tsk);
 995        check_stack_usage();
 996        exit_thread();
 997
 998        /*
 999         * Flush inherited counters to the parent - before the parent
1000         * gets woken up by child-exit notifications.
1001         *
1002         * because of cgroup mode, must be called before cgroup_exit()
1003         */
1004        perf_event_exit_task(tsk);
1005
1006        cgroup_exit(tsk, 1);
1007
1008        if (group_dead)
1009                disassociate_ctty(1);
1010
1011        module_put(task_thread_info(tsk)->exec_domain->module);
1012
1013        proc_exit_connector(tsk);
1014
1015        /*
1016         * FIXME: do that only when needed, using sched_exit tracepoint
1017         */
1018        flush_ptrace_hw_breakpoint(tsk);
1019
1020        exit_notify(tsk, group_dead);
1021#ifdef CONFIG_NUMA
1022        task_lock(tsk);
1023        mpol_put(tsk->mempolicy);
1024        tsk->mempolicy = NULL;
1025        task_unlock(tsk);
1026#endif
1027#ifdef CONFIG_FUTEX
1028        if (unlikely(current->pi_state_cache))
1029                kfree(current->pi_state_cache);
1030#endif
1031        /*
1032         * Make sure we are holding no locks:
1033         */
1034        debug_check_no_locks_held(tsk);
1035        /*
1036         * We can do this unlocked here. The futex code uses this flag
1037         * just to verify whether the pi state cleanup has been done
1038         * or not. In the worst case it loops once more.
1039         */
1040        tsk->flags |= PF_EXITPIDONE;
1041
1042        if (tsk->io_context)
1043                exit_io_context(tsk);
1044
1045        if (tsk->splice_pipe)
1046                __free_pipe_info(tsk->splice_pipe);
1047
1048        validate_creds_for_do_exit(tsk);
1049
1050        preempt_disable();
1051        exit_rcu();
1052        /* causes final put_task_struct in finish_task_switch(). */
1053        tsk->state = TASK_DEAD;
1054        schedule();
1055        BUG();
1056        /* Avoid "noreturn function does return".  */
1057        for (;;)
1058                cpu_relax();    /* For when BUG is null */
1059}
1060
1061EXPORT_SYMBOL_GPL(do_exit);
1062
1063NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1064{
1065        if (comp)
1066                complete(comp);
1067
1068        do_exit(code);
1069}
1070
1071EXPORT_SYMBOL(complete_and_exit);
1072
1073SYSCALL_DEFINE1(exit, int, error_code)
1074{
1075        do_exit((error_code&0xff)<<8);
1076}
1077
1078/*
1079 * Take down every thread in the group.  This is called by fatal signals
1080 * as well as by sys_exit_group (below).
1081 */
1082NORET_TYPE void
1083do_group_exit(int exit_code)
1084{
1085        struct signal_struct *sig = current->signal;
1086
1087        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1088
1089        if (signal_group_exit(sig))
1090                exit_code = sig->group_exit_code;
1091        else if (!thread_group_empty(current)) {
1092                struct sighand_struct *const sighand = current->sighand;
1093                spin_lock_irq(&sighand->siglock);
1094                if (signal_group_exit(sig))
1095                        /* Another thread got here before we took the lock.  */
1096                        exit_code = sig->group_exit_code;
1097                else {
1098                        sig->group_exit_code = exit_code;
1099                        sig->flags = SIGNAL_GROUP_EXIT;
1100                        zap_other_threads(current);
1101                }
1102                spin_unlock_irq(&sighand->siglock);
1103        }
1104
1105        do_exit(exit_code);
1106        /* NOTREACHED */
1107}
1108
1109/*
1110 * this kills every thread in the thread group. Note that any externally
1111 * wait4()-ing process will get the correct exit code - even if this
1112 * thread is not the thread group leader.
1113 */
1114SYSCALL_DEFINE1(exit_group, int, error_code)
1115{
1116        do_group_exit((error_code & 0xff) << 8);
1117        /* NOTREACHED */
1118        return 0;
1119}
1120
1121struct wait_opts {
1122        enum pid_type           wo_type;
1123        int                     wo_flags;
1124        struct pid              *wo_pid;
1125
1126        struct siginfo __user   *wo_info;
1127        int __user              *wo_stat;
1128        struct rusage __user    *wo_rusage;
1129
1130        wait_queue_t            child_wait;
1131        int                     notask_error;
1132};
1133
1134static inline
1135struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1136{
1137        if (type != PIDTYPE_PID)
1138                task = task->group_leader;
1139        return task->pids[type].pid;
1140}
1141
1142static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1143{
1144        return  wo->wo_type == PIDTYPE_MAX ||
1145                task_pid_type(p, wo->wo_type) == wo->wo_pid;
1146}
1147
1148static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1149{
1150        if (!eligible_pid(wo, p))
1151                return 0;
1152        /* Wait for all children (clone and not) if __WALL is set;
1153         * otherwise, wait for clone children *only* if __WCLONE is
1154         * set; otherwise, wait for non-clone children *only*.  (Note:
1155         * A "clone" child here is one that reports to its parent
1156         * using a signal other than SIGCHLD.) */
1157        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1158            && !(wo->wo_flags & __WALL))
1159                return 0;
1160
1161        return 1;
1162}
1163
1164static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1165                                pid_t pid, uid_t uid, int why, int status)
1166{
1167        struct siginfo __user *infop;
1168        int retval = wo->wo_rusage
1169                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1170
1171        put_task_struct(p);
1172        infop = wo->wo_info;
1173        if (infop) {
1174                if (!retval)
1175                        retval = put_user(SIGCHLD, &infop->si_signo);
1176                if (!retval)
1177                        retval = put_user(0, &infop->si_errno);
1178                if (!retval)
1179                        retval = put_user((short)why, &infop->si_code);
1180                if (!retval)
1181                        retval = put_user(pid, &infop->si_pid);
1182                if (!retval)
1183                        retval = put_user(uid, &infop->si_uid);
1184                if (!retval)
1185                        retval = put_user(status, &infop->si_status);
1186        }
1187        if (!retval)
1188                retval = pid;
1189        return retval;
1190}
1191
1192/*
1193 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1194 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1195 * the lock and this task is uninteresting.  If we return nonzero, we have
1196 * released the lock and the system call should return.
1197 */
1198static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1199{
1200        unsigned long state;
1201        int retval, status, traced;
1202        pid_t pid = task_pid_vnr(p);
1203        uid_t uid = __task_cred(p)->uid;
1204        struct siginfo __user *infop;
1205
1206        if (!likely(wo->wo_flags & WEXITED))
1207                return 0;
1208
1209        if (unlikely(wo->wo_flags & WNOWAIT)) {
1210                int exit_code = p->exit_code;
1211                int why;
1212
1213                get_task_struct(p);
1214                read_unlock(&tasklist_lock);
1215                if ((exit_code & 0x7f) == 0) {
1216                        why = CLD_EXITED;
1217                        status = exit_code >> 8;
1218                } else {
1219                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220                        status = exit_code & 0x7f;
1221                }
1222                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1223        }
1224
1225        /*
1226         * Try to move the task's state to DEAD
1227         * only one thread is allowed to do this:
1228         */
1229        state = xchg(&p->exit_state, EXIT_DEAD);
1230        if (state != EXIT_ZOMBIE) {
1231                BUG_ON(state != EXIT_DEAD);
1232                return 0;
1233        }
1234
1235        traced = ptrace_reparented(p);
1236        /*
1237         * It can be ptraced but not reparented, check
1238         * !task_detached() to filter out sub-threads.
1239         */
1240        if (likely(!traced) && likely(!task_detached(p))) {
1241                struct signal_struct *psig;
1242                struct signal_struct *sig;
1243                unsigned long maxrss;
1244                cputime_t tgutime, tgstime;
1245
1246                /*
1247                 * The resource counters for the group leader are in its
1248                 * own task_struct.  Those for dead threads in the group
1249                 * are in its signal_struct, as are those for the child
1250                 * processes it has previously reaped.  All these
1251                 * accumulate in the parent's signal_struct c* fields.
1252                 *
1253                 * We don't bother to take a lock here to protect these
1254                 * p->signal fields, because they are only touched by
1255                 * __exit_signal, which runs with tasklist_lock
1256                 * write-locked anyway, and so is excluded here.  We do
1257                 * need to protect the access to parent->signal fields,
1258                 * as other threads in the parent group can be right
1259                 * here reaping other children at the same time.
1260                 *
1261                 * We use thread_group_times() to get times for the thread
1262                 * group, which consolidates times for all threads in the
1263                 * group including the group leader.
1264                 */
1265                thread_group_times(p, &tgutime, &tgstime);
1266                spin_lock_irq(&p->real_parent->sighand->siglock);
1267                psig = p->real_parent->signal;
1268                sig = p->signal;
1269                psig->cutime =
1270                        cputime_add(psig->cutime,
1271                        cputime_add(tgutime,
1272                                    sig->cutime));
1273                psig->cstime =
1274                        cputime_add(psig->cstime,
1275                        cputime_add(tgstime,
1276                                    sig->cstime));
1277                psig->cgtime =
1278                        cputime_add(psig->cgtime,
1279                        cputime_add(p->gtime,
1280                        cputime_add(sig->gtime,
1281                                    sig->cgtime)));
1282                psig->cmin_flt +=
1283                        p->min_flt + sig->min_flt + sig->cmin_flt;
1284                psig->cmaj_flt +=
1285                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1286                psig->cnvcsw +=
1287                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1288                psig->cnivcsw +=
1289                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1290                psig->cinblock +=
1291                        task_io_get_inblock(p) +
1292                        sig->inblock + sig->cinblock;
1293                psig->coublock +=
1294                        task_io_get_oublock(p) +
1295                        sig->oublock + sig->coublock;
1296                maxrss = max(sig->maxrss, sig->cmaxrss);
1297                if (psig->cmaxrss < maxrss)
1298                        psig->cmaxrss = maxrss;
1299                task_io_accounting_add(&psig->ioac, &p->ioac);
1300                task_io_accounting_add(&psig->ioac, &sig->ioac);
1301                spin_unlock_irq(&p->real_parent->sighand->siglock);
1302        }
1303
1304        /*
1305         * Now we are sure this task is interesting, and no other
1306         * thread can reap it because we set its state to EXIT_DEAD.
1307         */
1308        read_unlock(&tasklist_lock);
1309
1310        retval = wo->wo_rusage
1311                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1312        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1313                ? p->signal->group_exit_code : p->exit_code;
1314        if (!retval && wo->wo_stat)
1315                retval = put_user(status, wo->wo_stat);
1316
1317        infop = wo->wo_info;
1318        if (!retval && infop)
1319                retval = put_user(SIGCHLD, &infop->si_signo);
1320        if (!retval && infop)
1321                retval = put_user(0, &infop->si_errno);
1322        if (!retval && infop) {
1323                int why;
1324
1325                if ((status & 0x7f) == 0) {
1326                        why = CLD_EXITED;
1327                        status >>= 8;
1328                } else {
1329                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1330                        status &= 0x7f;
1331                }
1332                retval = put_user((short)why, &infop->si_code);
1333                if (!retval)
1334                        retval = put_user(status, &infop->si_status);
1335        }
1336        if (!retval && infop)
1337                retval = put_user(pid, &infop->si_pid);
1338        if (!retval && infop)
1339                retval = put_user(uid, &infop->si_uid);
1340        if (!retval)
1341                retval = pid;
1342
1343        if (traced) {
1344                write_lock_irq(&tasklist_lock);
1345                /* We dropped tasklist, ptracer could die and untrace */
1346                ptrace_unlink(p);
1347                /*
1348                 * If this is not a detached task, notify the parent.
1349                 * If it's still not detached after that, don't release
1350                 * it now.
1351                 */
1352                if (!task_detached(p)) {
1353                        do_notify_parent(p, p->exit_signal);
1354                        if (!task_detached(p)) {
1355                                p->exit_state = EXIT_ZOMBIE;
1356                                p = NULL;
1357                        }
1358                }
1359                write_unlock_irq(&tasklist_lock);
1360        }
1361        if (p != NULL)
1362                release_task(p);
1363
1364        return retval;
1365}
1366
1367static int *task_stopped_code(struct task_struct *p, bool ptrace)
1368{
1369        if (ptrace) {
1370                if (task_is_stopped_or_traced(p))
1371                        return &p->exit_code;
1372        } else {
1373                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1374                        return &p->signal->group_exit_code;
1375        }
1376        return NULL;
1377}
1378
1379/*
1380 * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1381 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1382 * the lock and this task is uninteresting.  If we return nonzero, we have
1383 * released the lock and the system call should return.
1384 */
1385static int wait_task_stopped(struct wait_opts *wo,
1386                                int ptrace, struct task_struct *p)
1387{
1388        struct siginfo __user *infop;
1389        int retval, exit_code, *p_code, why;
1390        uid_t uid = 0; /* unneeded, required by compiler */
1391        pid_t pid;
1392
1393        /*
1394         * Traditionally we see ptrace'd stopped tasks regardless of options.
1395         */
1396        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1397                return 0;
1398
1399        exit_code = 0;
1400        spin_lock_irq(&p->sighand->siglock);
1401
1402        p_code = task_stopped_code(p, ptrace);
1403        if (unlikely(!p_code))
1404                goto unlock_sig;
1405
1406        exit_code = *p_code;
1407        if (!exit_code)
1408                goto unlock_sig;
1409
1410        if (!unlikely(wo->wo_flags & WNOWAIT))
1411                *p_code = 0;
1412
1413        uid = task_uid(p);
1414unlock_sig:
1415        spin_unlock_irq(&p->sighand->siglock);
1416        if (!exit_code)
1417                return 0;
1418
1419        /*
1420         * Now we are pretty sure this task is interesting.
1421         * Make sure it doesn't get reaped out from under us while we
1422         * give up the lock and then examine it below.  We don't want to
1423         * keep holding onto the tasklist_lock while we call getrusage and
1424         * possibly take page faults for user memory.
1425         */
1426        get_task_struct(p);
1427        pid = task_pid_vnr(p);
1428        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1429        read_unlock(&tasklist_lock);
1430
1431        if (unlikely(wo->wo_flags & WNOWAIT))
1432                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1433
1434        retval = wo->wo_rusage
1435                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1436        if (!retval && wo->wo_stat)
1437                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1438
1439        infop = wo->wo_info;
1440        if (!retval && infop)
1441                retval = put_user(SIGCHLD, &infop->si_signo);
1442        if (!retval && infop)
1443                retval = put_user(0, &infop->si_errno);
1444        if (!retval && infop)
1445                retval = put_user((short)why, &infop->si_code);
1446        if (!retval && infop)
1447                retval = put_user(exit_code, &infop->si_status);
1448        if (!retval && infop)
1449                retval = put_user(pid, &infop->si_pid);
1450        if (!retval && infop)
1451                retval = put_user(uid, &infop->si_uid);
1452        if (!retval)
1453                retval = pid;
1454        put_task_struct(p);
1455
1456        BUG_ON(!retval);
1457        return retval;
1458}
1459
1460/*
1461 * Handle do_wait work for one task in a live, non-stopped state.
1462 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1463 * the lock and this task is uninteresting.  If we return nonzero, we have
1464 * released the lock and the system call should return.
1465 */
1466static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1467{
1468        int retval;
1469        pid_t pid;
1470        uid_t uid;
1471
1472        if (!unlikely(wo->wo_flags & WCONTINUED))
1473                return 0;
1474
1475        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1476                return 0;
1477
1478        spin_lock_irq(&p->sighand->siglock);
1479        /* Re-check with the lock held.  */
1480        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1481                spin_unlock_irq(&p->sighand->siglock);
1482                return 0;
1483        }
1484        if (!unlikely(wo->wo_flags & WNOWAIT))
1485                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1486        uid = task_uid(p);
1487        spin_unlock_irq(&p->sighand->siglock);
1488
1489        pid = task_pid_vnr(p);
1490        get_task_struct(p);
1491        read_unlock(&tasklist_lock);
1492
1493        if (!wo->wo_info) {
1494                retval = wo->wo_rusage
1495                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1496                put_task_struct(p);
1497                if (!retval && wo->wo_stat)
1498                        retval = put_user(0xffff, wo->wo_stat);
1499                if (!retval)
1500                        retval = pid;
1501        } else {
1502                retval = wait_noreap_copyout(wo, p, pid, uid,
1503                                             CLD_CONTINUED, SIGCONT);
1504                BUG_ON(retval == 0);
1505        }
1506
1507        return retval;
1508}
1509
1510/*
1511 * Consider @p for a wait by @parent.
1512 *
1513 * -ECHILD should be in ->notask_error before the first call.
1514 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1515 * Returns zero if the search for a child should continue;
1516 * then ->notask_error is 0 if @p is an eligible child,
1517 * or another error from security_task_wait(), or still -ECHILD.
1518 */
1519static int wait_consider_task(struct wait_opts *wo, int ptrace,
1520                                struct task_struct *p)
1521{
1522        int ret = eligible_child(wo, p);
1523        if (!ret)
1524                return ret;
1525
1526        ret = security_task_wait(p);
1527        if (unlikely(ret < 0)) {
1528                /*
1529                 * If we have not yet seen any eligible child,
1530                 * then let this error code replace -ECHILD.
1531                 * A permission error will give the user a clue
1532                 * to look for security policy problems, rather
1533                 * than for mysterious wait bugs.
1534                 */
1535                if (wo->notask_error)
1536                        wo->notask_error = ret;
1537                return 0;
1538        }
1539
1540        if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1541                /*
1542                 * This child is hidden by ptrace.
1543                 * We aren't allowed to see it now, but eventually we will.
1544                 */
1545                wo->notask_error = 0;
1546                return 0;
1547        }
1548
1549        if (p->exit_state == EXIT_DEAD)
1550                return 0;
1551
1552        /*
1553         * We don't reap group leaders with subthreads.
1554         */
1555        if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1556                return wait_task_zombie(wo, p);
1557
1558        /*
1559         * It's stopped or running now, so it might
1560         * later continue, exit, or stop again.
1561         */
1562        wo->notask_error = 0;
1563
1564        if (task_stopped_code(p, ptrace))
1565                return wait_task_stopped(wo, ptrace, p);
1566
1567        return wait_task_continued(wo, p);
1568}
1569
1570/*
1571 * Do the work of do_wait() for one thread in the group, @tsk.
1572 *
1573 * -ECHILD should be in ->notask_error before the first call.
1574 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1575 * Returns zero if the search for a child should continue; then
1576 * ->notask_error is 0 if there were any eligible children,
1577 * or another error from security_task_wait(), or still -ECHILD.
1578 */
1579static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1580{
1581        struct task_struct *p;
1582
1583        list_for_each_entry(p, &tsk->children, sibling) {
1584                int ret = wait_consider_task(wo, 0, p);
1585                if (ret)
1586                        return ret;
1587        }
1588
1589        return 0;
1590}
1591
1592static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1593{
1594        struct task_struct *p;
1595
1596        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1597                int ret = wait_consider_task(wo, 1, p);
1598                if (ret)
1599                        return ret;
1600        }
1601
1602        return 0;
1603}
1604
1605static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1606                                int sync, void *key)
1607{
1608        struct wait_opts *wo = container_of(wait, struct wait_opts,
1609                                                child_wait);
1610        struct task_struct *p = key;
1611
1612        if (!eligible_pid(wo, p))
1613                return 0;
1614
1615        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1616                return 0;
1617
1618        return default_wake_function(wait, mode, sync, key);
1619}
1620
1621void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1622{
1623        __wake_up_sync_key(&parent->signal->wait_chldexit,
1624                                TASK_INTERRUPTIBLE, 1, p);
1625}
1626
1627static long do_wait(struct wait_opts *wo)
1628{
1629        struct task_struct *tsk;
1630        int retval;
1631
1632        trace_sched_process_wait(wo->wo_pid);
1633
1634        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1635        wo->child_wait.private = current;
1636        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1637repeat:
1638        /*
1639         * If there is nothing that can match our critiera just get out.
1640         * We will clear ->notask_error to zero if we see any child that
1641         * might later match our criteria, even if we are not able to reap
1642         * it yet.
1643         */
1644        wo->notask_error = -ECHILD;
1645        if ((wo->wo_type < PIDTYPE_MAX) &&
1646           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1647                goto notask;
1648
1649        set_current_state(TASK_INTERRUPTIBLE);
1650        read_lock(&tasklist_lock);
1651        tsk = current;
1652        do {
1653                retval = do_wait_thread(wo, tsk);
1654                if (retval)
1655                        goto end;
1656
1657                retval = ptrace_do_wait(wo, tsk);
1658                if (retval)
1659                        goto end;
1660
1661                if (wo->wo_flags & __WNOTHREAD)
1662                        break;
1663        } while_each_thread(current, tsk);
1664        read_unlock(&tasklist_lock);
1665
1666notask:
1667        retval = wo->notask_error;
1668        if (!retval && !(wo->wo_flags & WNOHANG)) {
1669                retval = -ERESTARTSYS;
1670                if (!signal_pending(current)) {
1671                        schedule();
1672                        goto repeat;
1673                }
1674        }
1675end:
1676        __set_current_state(TASK_RUNNING);
1677        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1678        return retval;
1679}
1680
1681SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1682                infop, int, options, struct rusage __user *, ru)
1683{
1684        struct wait_opts wo;
1685        struct pid *pid = NULL;
1686        enum pid_type type;
1687        long ret;
1688
1689        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1690                return -EINVAL;
1691        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1692                return -EINVAL;
1693
1694        switch (which) {
1695        case P_ALL:
1696                type = PIDTYPE_MAX;
1697                break;
1698        case P_PID:
1699                type = PIDTYPE_PID;
1700                if (upid <= 0)
1701                        return -EINVAL;
1702                break;
1703        case P_PGID:
1704                type = PIDTYPE_PGID;
1705                if (upid <= 0)
1706                        return -EINVAL;
1707                break;
1708        default:
1709                return -EINVAL;
1710        }
1711
1712        if (type < PIDTYPE_MAX)
1713                pid = find_get_pid(upid);
1714
1715        wo.wo_type      = type;
1716        wo.wo_pid       = pid;
1717        wo.wo_flags     = options;
1718        wo.wo_info      = infop;
1719        wo.wo_stat      = NULL;
1720        wo.wo_rusage    = ru;
1721        ret = do_wait(&wo);
1722
1723        if (ret > 0) {
1724                ret = 0;
1725        } else if (infop) {
1726                /*
1727                 * For a WNOHANG return, clear out all the fields
1728                 * we would set so the user can easily tell the
1729                 * difference.
1730                 */
1731                if (!ret)
1732                        ret = put_user(0, &infop->si_signo);
1733                if (!ret)
1734                        ret = put_user(0, &infop->si_errno);
1735                if (!ret)
1736                        ret = put_user(0, &infop->si_code);
1737                if (!ret)
1738                        ret = put_user(0, &infop->si_pid);
1739                if (!ret)
1740                        ret = put_user(0, &infop->si_uid);
1741                if (!ret)
1742                        ret = put_user(0, &infop->si_status);
1743        }
1744
1745        put_pid(pid);
1746
1747        /* avoid REGPARM breakage on x86: */
1748        asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1749        return ret;
1750}
1751
1752SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1753                int, options, struct rusage __user *, ru)
1754{
1755        struct wait_opts wo;
1756        struct pid *pid = NULL;
1757        enum pid_type type;
1758        long ret;
1759
1760        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1761                        __WNOTHREAD|__WCLONE|__WALL))
1762                return -EINVAL;
1763
1764        if (upid == -1)
1765                type = PIDTYPE_MAX;
1766        else if (upid < 0) {
1767                type = PIDTYPE_PGID;
1768                pid = find_get_pid(-upid);
1769        } else if (upid == 0) {
1770                type = PIDTYPE_PGID;
1771                pid = get_task_pid(current, PIDTYPE_PGID);
1772        } else /* upid > 0 */ {
1773                type = PIDTYPE_PID;
1774                pid = find_get_pid(upid);
1775        }
1776
1777        wo.wo_type      = type;
1778        wo.wo_pid       = pid;
1779        wo.wo_flags     = options | WEXITED;
1780        wo.wo_info      = NULL;
1781        wo.wo_stat      = stat_addr;
1782        wo.wo_rusage    = ru;
1783        ret = do_wait(&wo);
1784        put_pid(pid);
1785
1786        /* avoid REGPARM breakage on x86: */
1787        asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1788        return ret;
1789}
1790
1791#ifdef __ARCH_WANT_SYS_WAITPID
1792
1793/*
1794 * sys_waitpid() remains for compatibility. waitpid() should be
1795 * implemented by calling sys_wait4() from libc.a.
1796 */
1797SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1798{
1799        return sys_wait4(pid, stat_addr, options, NULL);
1800}
1801
1802#endif
1803