linux/kernel/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/module.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/timer.h>
  48
  49#include <asm/uaccess.h>
  50
  51#include <trace/events/timer.h>
  52
  53/*
  54 * The timer bases:
  55 *
  56 * Note: If we want to add new timer bases, we have to skip the two
  57 * clock ids captured by the cpu-timers. We do this by holding empty
  58 * entries rather than doing math adjustment of the clock ids.
  59 * This ensures that we capture erroneous accesses to these clock ids
  60 * rather than moving them into the range of valid clock id's.
  61 */
  62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  63{
  64
  65        .clock_base =
  66        {
  67                {
  68                        .index = CLOCK_REALTIME,
  69                        .get_time = &ktime_get_real,
  70                        .resolution = KTIME_LOW_RES,
  71                },
  72                {
  73                        .index = CLOCK_MONOTONIC,
  74                        .get_time = &ktime_get,
  75                        .resolution = KTIME_LOW_RES,
  76                },
  77        }
  78};
  79
  80/*
  81 * Get the coarse grained time at the softirq based on xtime and
  82 * wall_to_monotonic.
  83 */
  84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
  85{
  86        ktime_t xtim, tomono;
  87        struct timespec xts, tom;
  88        unsigned long seq;
  89
  90        do {
  91                seq = read_seqbegin(&xtime_lock);
  92                xts = __current_kernel_time();
  93                tom = __get_wall_to_monotonic();
  94        } while (read_seqretry(&xtime_lock, seq));
  95
  96        xtim = timespec_to_ktime(xts);
  97        tomono = timespec_to_ktime(tom);
  98        base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
  99        base->clock_base[CLOCK_MONOTONIC].softirq_time =
 100                ktime_add(xtim, tomono);
 101}
 102
 103/*
 104 * Functions and macros which are different for UP/SMP systems are kept in a
 105 * single place
 106 */
 107#ifdef CONFIG_SMP
 108
 109/*
 110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 111 * means that all timers which are tied to this base via timer->base are
 112 * locked, and the base itself is locked too.
 113 *
 114 * So __run_timers/migrate_timers can safely modify all timers which could
 115 * be found on the lists/queues.
 116 *
 117 * When the timer's base is locked, and the timer removed from list, it is
 118 * possible to set timer->base = NULL and drop the lock: the timer remains
 119 * locked.
 120 */
 121static
 122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 123                                             unsigned long *flags)
 124{
 125        struct hrtimer_clock_base *base;
 126
 127        for (;;) {
 128                base = timer->base;
 129                if (likely(base != NULL)) {
 130                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 131                        if (likely(base == timer->base))
 132                                return base;
 133                        /* The timer has migrated to another CPU: */
 134                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 135                }
 136                cpu_relax();
 137        }
 138}
 139
 140
 141/*
 142 * Get the preferred target CPU for NOHZ
 143 */
 144static int hrtimer_get_target(int this_cpu, int pinned)
 145{
 146#ifdef CONFIG_NO_HZ
 147        if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
 148                return get_nohz_timer_target();
 149#endif
 150        return this_cpu;
 151}
 152
 153/*
 154 * With HIGHRES=y we do not migrate the timer when it is expiring
 155 * before the next event on the target cpu because we cannot reprogram
 156 * the target cpu hardware and we would cause it to fire late.
 157 *
 158 * Called with cpu_base->lock of target cpu held.
 159 */
 160static int
 161hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 162{
 163#ifdef CONFIG_HIGH_RES_TIMERS
 164        ktime_t expires;
 165
 166        if (!new_base->cpu_base->hres_active)
 167                return 0;
 168
 169        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 170        return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 171#else
 172        return 0;
 173#endif
 174}
 175
 176/*
 177 * Switch the timer base to the current CPU when possible.
 178 */
 179static inline struct hrtimer_clock_base *
 180switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 181                    int pinned)
 182{
 183        struct hrtimer_clock_base *new_base;
 184        struct hrtimer_cpu_base *new_cpu_base;
 185        int this_cpu = smp_processor_id();
 186        int cpu = hrtimer_get_target(this_cpu, pinned);
 187
 188again:
 189        new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 190        new_base = &new_cpu_base->clock_base[base->index];
 191
 192        if (base != new_base) {
 193                /*
 194                 * We are trying to move timer to new_base.
 195                 * However we can't change timer's base while it is running,
 196                 * so we keep it on the same CPU. No hassle vs. reprogramming
 197                 * the event source in the high resolution case. The softirq
 198                 * code will take care of this when the timer function has
 199                 * completed. There is no conflict as we hold the lock until
 200                 * the timer is enqueued.
 201                 */
 202                if (unlikely(hrtimer_callback_running(timer)))
 203                        return base;
 204
 205                /* See the comment in lock_timer_base() */
 206                timer->base = NULL;
 207                raw_spin_unlock(&base->cpu_base->lock);
 208                raw_spin_lock(&new_base->cpu_base->lock);
 209
 210                if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 211                        cpu = this_cpu;
 212                        raw_spin_unlock(&new_base->cpu_base->lock);
 213                        raw_spin_lock(&base->cpu_base->lock);
 214                        timer->base = base;
 215                        goto again;
 216                }
 217                timer->base = new_base;
 218        }
 219        return new_base;
 220}
 221
 222#else /* CONFIG_SMP */
 223
 224static inline struct hrtimer_clock_base *
 225lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 226{
 227        struct hrtimer_clock_base *base = timer->base;
 228
 229        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 230
 231        return base;
 232}
 233
 234# define switch_hrtimer_base(t, b, p)   (b)
 235
 236#endif  /* !CONFIG_SMP */
 237
 238/*
 239 * Functions for the union type storage format of ktime_t which are
 240 * too large for inlining:
 241 */
 242#if BITS_PER_LONG < 64
 243# ifndef CONFIG_KTIME_SCALAR
 244/**
 245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 246 * @kt:         addend
 247 * @nsec:       the scalar nsec value to add
 248 *
 249 * Returns the sum of kt and nsec in ktime_t format
 250 */
 251ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 252{
 253        ktime_t tmp;
 254
 255        if (likely(nsec < NSEC_PER_SEC)) {
 256                tmp.tv64 = nsec;
 257        } else {
 258                unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 259
 260                tmp = ktime_set((long)nsec, rem);
 261        }
 262
 263        return ktime_add(kt, tmp);
 264}
 265
 266EXPORT_SYMBOL_GPL(ktime_add_ns);
 267
 268/**
 269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 270 * @kt:         minuend
 271 * @nsec:       the scalar nsec value to subtract
 272 *
 273 * Returns the subtraction of @nsec from @kt in ktime_t format
 274 */
 275ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 276{
 277        ktime_t tmp;
 278
 279        if (likely(nsec < NSEC_PER_SEC)) {
 280                tmp.tv64 = nsec;
 281        } else {
 282                unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 283
 284                tmp = ktime_set((long)nsec, rem);
 285        }
 286
 287        return ktime_sub(kt, tmp);
 288}
 289
 290EXPORT_SYMBOL_GPL(ktime_sub_ns);
 291# endif /* !CONFIG_KTIME_SCALAR */
 292
 293/*
 294 * Divide a ktime value by a nanosecond value
 295 */
 296u64 ktime_divns(const ktime_t kt, s64 div)
 297{
 298        u64 dclc;
 299        int sft = 0;
 300
 301        dclc = ktime_to_ns(kt);
 302        /* Make sure the divisor is less than 2^32: */
 303        while (div >> 32) {
 304                sft++;
 305                div >>= 1;
 306        }
 307        dclc >>= sft;
 308        do_div(dclc, (unsigned long) div);
 309
 310        return dclc;
 311}
 312#endif /* BITS_PER_LONG >= 64 */
 313
 314/*
 315 * Add two ktime values and do a safety check for overflow:
 316 */
 317ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 318{
 319        ktime_t res = ktime_add(lhs, rhs);
 320
 321        /*
 322         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 323         * return to user space in a timespec:
 324         */
 325        if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 326                res = ktime_set(KTIME_SEC_MAX, 0);
 327
 328        return res;
 329}
 330
 331EXPORT_SYMBOL_GPL(ktime_add_safe);
 332
 333#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 334
 335static struct debug_obj_descr hrtimer_debug_descr;
 336
 337/*
 338 * fixup_init is called when:
 339 * - an active object is initialized
 340 */
 341static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 342{
 343        struct hrtimer *timer = addr;
 344
 345        switch (state) {
 346        case ODEBUG_STATE_ACTIVE:
 347                hrtimer_cancel(timer);
 348                debug_object_init(timer, &hrtimer_debug_descr);
 349                return 1;
 350        default:
 351                return 0;
 352        }
 353}
 354
 355/*
 356 * fixup_activate is called when:
 357 * - an active object is activated
 358 * - an unknown object is activated (might be a statically initialized object)
 359 */
 360static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 361{
 362        switch (state) {
 363
 364        case ODEBUG_STATE_NOTAVAILABLE:
 365                WARN_ON_ONCE(1);
 366                return 0;
 367
 368        case ODEBUG_STATE_ACTIVE:
 369                WARN_ON(1);
 370
 371        default:
 372                return 0;
 373        }
 374}
 375
 376/*
 377 * fixup_free is called when:
 378 * - an active object is freed
 379 */
 380static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 381{
 382        struct hrtimer *timer = addr;
 383
 384        switch (state) {
 385        case ODEBUG_STATE_ACTIVE:
 386                hrtimer_cancel(timer);
 387                debug_object_free(timer, &hrtimer_debug_descr);
 388                return 1;
 389        default:
 390                return 0;
 391        }
 392}
 393
 394static struct debug_obj_descr hrtimer_debug_descr = {
 395        .name           = "hrtimer",
 396        .fixup_init     = hrtimer_fixup_init,
 397        .fixup_activate = hrtimer_fixup_activate,
 398        .fixup_free     = hrtimer_fixup_free,
 399};
 400
 401static inline void debug_hrtimer_init(struct hrtimer *timer)
 402{
 403        debug_object_init(timer, &hrtimer_debug_descr);
 404}
 405
 406static inline void debug_hrtimer_activate(struct hrtimer *timer)
 407{
 408        debug_object_activate(timer, &hrtimer_debug_descr);
 409}
 410
 411static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 412{
 413        debug_object_deactivate(timer, &hrtimer_debug_descr);
 414}
 415
 416static inline void debug_hrtimer_free(struct hrtimer *timer)
 417{
 418        debug_object_free(timer, &hrtimer_debug_descr);
 419}
 420
 421static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 422                           enum hrtimer_mode mode);
 423
 424void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 425                           enum hrtimer_mode mode)
 426{
 427        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 428        __hrtimer_init(timer, clock_id, mode);
 429}
 430EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 431
 432void destroy_hrtimer_on_stack(struct hrtimer *timer)
 433{
 434        debug_object_free(timer, &hrtimer_debug_descr);
 435}
 436
 437#else
 438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 439static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 440static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 441#endif
 442
 443static inline void
 444debug_init(struct hrtimer *timer, clockid_t clockid,
 445           enum hrtimer_mode mode)
 446{
 447        debug_hrtimer_init(timer);
 448        trace_hrtimer_init(timer, clockid, mode);
 449}
 450
 451static inline void debug_activate(struct hrtimer *timer)
 452{
 453        debug_hrtimer_activate(timer);
 454        trace_hrtimer_start(timer);
 455}
 456
 457static inline void debug_deactivate(struct hrtimer *timer)
 458{
 459        debug_hrtimer_deactivate(timer);
 460        trace_hrtimer_cancel(timer);
 461}
 462
 463/* High resolution timer related functions */
 464#ifdef CONFIG_HIGH_RES_TIMERS
 465
 466/*
 467 * High resolution timer enabled ?
 468 */
 469static int hrtimer_hres_enabled __read_mostly  = 1;
 470
 471/*
 472 * Enable / Disable high resolution mode
 473 */
 474static int __init setup_hrtimer_hres(char *str)
 475{
 476        if (!strcmp(str, "off"))
 477                hrtimer_hres_enabled = 0;
 478        else if (!strcmp(str, "on"))
 479                hrtimer_hres_enabled = 1;
 480        else
 481                return 0;
 482        return 1;
 483}
 484
 485__setup("highres=", setup_hrtimer_hres);
 486
 487/*
 488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 489 */
 490static inline int hrtimer_is_hres_enabled(void)
 491{
 492        return hrtimer_hres_enabled;
 493}
 494
 495/*
 496 * Is the high resolution mode active ?
 497 */
 498static inline int hrtimer_hres_active(void)
 499{
 500        return __this_cpu_read(hrtimer_bases.hres_active);
 501}
 502
 503/*
 504 * Reprogram the event source with checking both queues for the
 505 * next event
 506 * Called with interrupts disabled and base->lock held
 507 */
 508static void
 509hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 510{
 511        int i;
 512        struct hrtimer_clock_base *base = cpu_base->clock_base;
 513        ktime_t expires, expires_next;
 514
 515        expires_next.tv64 = KTIME_MAX;
 516
 517        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 518                struct hrtimer *timer;
 519                struct timerqueue_node *next;
 520
 521                next = timerqueue_getnext(&base->active);
 522                if (!next)
 523                        continue;
 524                timer = container_of(next, struct hrtimer, node);
 525
 526                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 527                /*
 528                 * clock_was_set() has changed base->offset so the
 529                 * result might be negative. Fix it up to prevent a
 530                 * false positive in clockevents_program_event()
 531                 */
 532                if (expires.tv64 < 0)
 533                        expires.tv64 = 0;
 534                if (expires.tv64 < expires_next.tv64)
 535                        expires_next = expires;
 536        }
 537
 538        if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 539                return;
 540
 541        cpu_base->expires_next.tv64 = expires_next.tv64;
 542
 543        if (cpu_base->expires_next.tv64 != KTIME_MAX)
 544                tick_program_event(cpu_base->expires_next, 1);
 545}
 546
 547/*
 548 * Shared reprogramming for clock_realtime and clock_monotonic
 549 *
 550 * When a timer is enqueued and expires earlier than the already enqueued
 551 * timers, we have to check, whether it expires earlier than the timer for
 552 * which the clock event device was armed.
 553 *
 554 * Called with interrupts disabled and base->cpu_base.lock held
 555 */
 556static int hrtimer_reprogram(struct hrtimer *timer,
 557                             struct hrtimer_clock_base *base)
 558{
 559        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 560        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 561        int res;
 562
 563        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 564
 565        /*
 566         * When the callback is running, we do not reprogram the clock event
 567         * device. The timer callback is either running on a different CPU or
 568         * the callback is executed in the hrtimer_interrupt context. The
 569         * reprogramming is handled either by the softirq, which called the
 570         * callback or at the end of the hrtimer_interrupt.
 571         */
 572        if (hrtimer_callback_running(timer))
 573                return 0;
 574
 575        /*
 576         * CLOCK_REALTIME timer might be requested with an absolute
 577         * expiry time which is less than base->offset. Nothing wrong
 578         * about that, just avoid to call into the tick code, which
 579         * has now objections against negative expiry values.
 580         */
 581        if (expires.tv64 < 0)
 582                return -ETIME;
 583
 584        if (expires.tv64 >= cpu_base->expires_next.tv64)
 585                return 0;
 586
 587        /*
 588         * If a hang was detected in the last timer interrupt then we
 589         * do not schedule a timer which is earlier than the expiry
 590         * which we enforced in the hang detection. We want the system
 591         * to make progress.
 592         */
 593        if (cpu_base->hang_detected)
 594                return 0;
 595
 596        /*
 597         * Clockevents returns -ETIME, when the event was in the past.
 598         */
 599        res = tick_program_event(expires, 0);
 600        if (!IS_ERR_VALUE(res))
 601                cpu_base->expires_next = expires;
 602        return res;
 603}
 604
 605
 606/*
 607 * Retrigger next event is called after clock was set
 608 *
 609 * Called with interrupts disabled via on_each_cpu()
 610 */
 611static void retrigger_next_event(void *arg)
 612{
 613        struct hrtimer_cpu_base *base;
 614        struct timespec realtime_offset, wtm;
 615        unsigned long seq;
 616
 617        if (!hrtimer_hres_active())
 618                return;
 619
 620        do {
 621                seq = read_seqbegin(&xtime_lock);
 622                wtm = __get_wall_to_monotonic();
 623        } while (read_seqretry(&xtime_lock, seq));
 624        set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
 625
 626        base = &__get_cpu_var(hrtimer_bases);
 627
 628        /* Adjust CLOCK_REALTIME offset */
 629        raw_spin_lock(&base->lock);
 630        base->clock_base[CLOCK_REALTIME].offset =
 631                timespec_to_ktime(realtime_offset);
 632
 633        hrtimer_force_reprogram(base, 0);
 634        raw_spin_unlock(&base->lock);
 635}
 636
 637/*
 638 * Clock realtime was set
 639 *
 640 * Change the offset of the realtime clock vs. the monotonic
 641 * clock.
 642 *
 643 * We might have to reprogram the high resolution timer interrupt. On
 644 * SMP we call the architecture specific code to retrigger _all_ high
 645 * resolution timer interrupts. On UP we just disable interrupts and
 646 * call the high resolution interrupt code.
 647 */
 648void clock_was_set(void)
 649{
 650        /* Retrigger the CPU local events everywhere */
 651        on_each_cpu(retrigger_next_event, NULL, 1);
 652}
 653
 654/*
 655 * During resume we might have to reprogram the high resolution timer
 656 * interrupt (on the local CPU):
 657 */
 658void hres_timers_resume(void)
 659{
 660        WARN_ONCE(!irqs_disabled(),
 661                  KERN_INFO "hres_timers_resume() called with IRQs enabled!");
 662
 663        retrigger_next_event(NULL);
 664}
 665
 666/*
 667 * Initialize the high resolution related parts of cpu_base
 668 */
 669static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 670{
 671        base->expires_next.tv64 = KTIME_MAX;
 672        base->hres_active = 0;
 673}
 674
 675/*
 676 * Initialize the high resolution related parts of a hrtimer
 677 */
 678static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
 679{
 680}
 681
 682
 683/*
 684 * When High resolution timers are active, try to reprogram. Note, that in case
 685 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 686 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 687 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 688 */
 689static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 690                                            struct hrtimer_clock_base *base,
 691                                            int wakeup)
 692{
 693        if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
 694                if (wakeup) {
 695                        raw_spin_unlock(&base->cpu_base->lock);
 696                        raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 697                        raw_spin_lock(&base->cpu_base->lock);
 698                } else
 699                        __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 700
 701                return 1;
 702        }
 703
 704        return 0;
 705}
 706
 707/*
 708 * Switch to high resolution mode
 709 */
 710static int hrtimer_switch_to_hres(void)
 711{
 712        int cpu = smp_processor_id();
 713        struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 714        unsigned long flags;
 715
 716        if (base->hres_active)
 717                return 1;
 718
 719        local_irq_save(flags);
 720
 721        if (tick_init_highres()) {
 722                local_irq_restore(flags);
 723                printk(KERN_WARNING "Could not switch to high resolution "
 724                                    "mode on CPU %d\n", cpu);
 725                return 0;
 726        }
 727        base->hres_active = 1;
 728        base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
 729        base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
 730
 731        tick_setup_sched_timer();
 732
 733        /* "Retrigger" the interrupt to get things going */
 734        retrigger_next_event(NULL);
 735        local_irq_restore(flags);
 736        return 1;
 737}
 738
 739#else
 740
 741static inline int hrtimer_hres_active(void) { return 0; }
 742static inline int hrtimer_is_hres_enabled(void) { return 0; }
 743static inline int hrtimer_switch_to_hres(void) { return 0; }
 744static inline void
 745hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 746static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 747                                            struct hrtimer_clock_base *base,
 748                                            int wakeup)
 749{
 750        return 0;
 751}
 752static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 753static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
 754
 755#endif /* CONFIG_HIGH_RES_TIMERS */
 756
 757static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 758{
 759#ifdef CONFIG_TIMER_STATS
 760        if (timer->start_site)
 761                return;
 762        timer->start_site = __builtin_return_address(0);
 763        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 764        timer->start_pid = current->pid;
 765#endif
 766}
 767
 768static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 769{
 770#ifdef CONFIG_TIMER_STATS
 771        timer->start_site = NULL;
 772#endif
 773}
 774
 775static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 776{
 777#ifdef CONFIG_TIMER_STATS
 778        if (likely(!timer_stats_active))
 779                return;
 780        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 781                                 timer->function, timer->start_comm, 0);
 782#endif
 783}
 784
 785/*
 786 * Counterpart to lock_hrtimer_base above:
 787 */
 788static inline
 789void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 790{
 791        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 792}
 793
 794/**
 795 * hrtimer_forward - forward the timer expiry
 796 * @timer:      hrtimer to forward
 797 * @now:        forward past this time
 798 * @interval:   the interval to forward
 799 *
 800 * Forward the timer expiry so it will expire in the future.
 801 * Returns the number of overruns.
 802 */
 803u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 804{
 805        u64 orun = 1;
 806        ktime_t delta;
 807
 808        delta = ktime_sub(now, hrtimer_get_expires(timer));
 809
 810        if (delta.tv64 < 0)
 811                return 0;
 812
 813        if (interval.tv64 < timer->base->resolution.tv64)
 814                interval.tv64 = timer->base->resolution.tv64;
 815
 816        if (unlikely(delta.tv64 >= interval.tv64)) {
 817                s64 incr = ktime_to_ns(interval);
 818
 819                orun = ktime_divns(delta, incr);
 820                hrtimer_add_expires_ns(timer, incr * orun);
 821                if (hrtimer_get_expires_tv64(timer) > now.tv64)
 822                        return orun;
 823                /*
 824                 * This (and the ktime_add() below) is the
 825                 * correction for exact:
 826                 */
 827                orun++;
 828        }
 829        hrtimer_add_expires(timer, interval);
 830
 831        return orun;
 832}
 833EXPORT_SYMBOL_GPL(hrtimer_forward);
 834
 835/*
 836 * enqueue_hrtimer - internal function to (re)start a timer
 837 *
 838 * The timer is inserted in expiry order. Insertion into the
 839 * red black tree is O(log(n)). Must hold the base lock.
 840 *
 841 * Returns 1 when the new timer is the leftmost timer in the tree.
 842 */
 843static int enqueue_hrtimer(struct hrtimer *timer,
 844                           struct hrtimer_clock_base *base)
 845{
 846        debug_activate(timer);
 847
 848        timerqueue_add(&base->active, &timer->node);
 849
 850        /*
 851         * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 852         * state of a possibly running callback.
 853         */
 854        timer->state |= HRTIMER_STATE_ENQUEUED;
 855
 856        return (&timer->node == base->active.next);
 857}
 858
 859/*
 860 * __remove_hrtimer - internal function to remove a timer
 861 *
 862 * Caller must hold the base lock.
 863 *
 864 * High resolution timer mode reprograms the clock event device when the
 865 * timer is the one which expires next. The caller can disable this by setting
 866 * reprogram to zero. This is useful, when the context does a reprogramming
 867 * anyway (e.g. timer interrupt)
 868 */
 869static void __remove_hrtimer(struct hrtimer *timer,
 870                             struct hrtimer_clock_base *base,
 871                             unsigned long newstate, int reprogram)
 872{
 873        if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 874                goto out;
 875
 876        if (&timer->node == timerqueue_getnext(&base->active)) {
 877#ifdef CONFIG_HIGH_RES_TIMERS
 878                /* Reprogram the clock event device. if enabled */
 879                if (reprogram && hrtimer_hres_active()) {
 880                        ktime_t expires;
 881
 882                        expires = ktime_sub(hrtimer_get_expires(timer),
 883                                            base->offset);
 884                        if (base->cpu_base->expires_next.tv64 == expires.tv64)
 885                                hrtimer_force_reprogram(base->cpu_base, 1);
 886                }
 887#endif
 888        }
 889        timerqueue_del(&base->active, &timer->node);
 890out:
 891        timer->state = newstate;
 892}
 893
 894/*
 895 * remove hrtimer, called with base lock held
 896 */
 897static inline int
 898remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 899{
 900        if (hrtimer_is_queued(timer)) {
 901                unsigned long state;
 902                int reprogram;
 903
 904                /*
 905                 * Remove the timer and force reprogramming when high
 906                 * resolution mode is active and the timer is on the current
 907                 * CPU. If we remove a timer on another CPU, reprogramming is
 908                 * skipped. The interrupt event on this CPU is fired and
 909                 * reprogramming happens in the interrupt handler. This is a
 910                 * rare case and less expensive than a smp call.
 911                 */
 912                debug_deactivate(timer);
 913                timer_stats_hrtimer_clear_start_info(timer);
 914                reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 915                /*
 916                 * We must preserve the CALLBACK state flag here,
 917                 * otherwise we could move the timer base in
 918                 * switch_hrtimer_base.
 919                 */
 920                state = timer->state & HRTIMER_STATE_CALLBACK;
 921                __remove_hrtimer(timer, base, state, reprogram);
 922                return 1;
 923        }
 924        return 0;
 925}
 926
 927int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 928                unsigned long delta_ns, const enum hrtimer_mode mode,
 929                int wakeup)
 930{
 931        struct hrtimer_clock_base *base, *new_base;
 932        unsigned long flags;
 933        int ret, leftmost;
 934
 935        base = lock_hrtimer_base(timer, &flags);
 936
 937        /* Remove an active timer from the queue: */
 938        ret = remove_hrtimer(timer, base);
 939
 940        /* Switch the timer base, if necessary: */
 941        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 942
 943        if (mode & HRTIMER_MODE_REL) {
 944                tim = ktime_add_safe(tim, new_base->get_time());
 945                /*
 946                 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 947                 * to signal that they simply return xtime in
 948                 * do_gettimeoffset(). In this case we want to round up by
 949                 * resolution when starting a relative timer, to avoid short
 950                 * timeouts. This will go away with the GTOD framework.
 951                 */
 952#ifdef CONFIG_TIME_LOW_RES
 953                tim = ktime_add_safe(tim, base->resolution);
 954#endif
 955        }
 956
 957        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 958
 959        timer_stats_hrtimer_set_start_info(timer);
 960
 961        leftmost = enqueue_hrtimer(timer, new_base);
 962
 963        /*
 964         * Only allow reprogramming if the new base is on this CPU.
 965         * (it might still be on another CPU if the timer was pending)
 966         *
 967         * XXX send_remote_softirq() ?
 968         */
 969        if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
 970                hrtimer_enqueue_reprogram(timer, new_base, wakeup);
 971
 972        unlock_hrtimer_base(timer, &flags);
 973
 974        return ret;
 975}
 976
 977/**
 978 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 979 * @timer:      the timer to be added
 980 * @tim:        expiry time
 981 * @delta_ns:   "slack" range for the timer
 982 * @mode:       expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 983 *
 984 * Returns:
 985 *  0 on success
 986 *  1 when the timer was active
 987 */
 988int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 989                unsigned long delta_ns, const enum hrtimer_mode mode)
 990{
 991        return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
 992}
 993EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
 994
 995/**
 996 * hrtimer_start - (re)start an hrtimer on the current CPU
 997 * @timer:      the timer to be added
 998 * @tim:        expiry time
 999 * @mode:       expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1000 *
1001 * Returns:
1002 *  0 on success
1003 *  1 when the timer was active
1004 */
1005int
1006hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1007{
1008        return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1009}
1010EXPORT_SYMBOL_GPL(hrtimer_start);
1011
1012
1013/**
1014 * hrtimer_try_to_cancel - try to deactivate a timer
1015 * @timer:      hrtimer to stop
1016 *
1017 * Returns:
1018 *  0 when the timer was not active
1019 *  1 when the timer was active
1020 * -1 when the timer is currently excuting the callback function and
1021 *    cannot be stopped
1022 */
1023int hrtimer_try_to_cancel(struct hrtimer *timer)
1024{
1025        struct hrtimer_clock_base *base;
1026        unsigned long flags;
1027        int ret = -1;
1028
1029        base = lock_hrtimer_base(timer, &flags);
1030
1031        if (!hrtimer_callback_running(timer))
1032                ret = remove_hrtimer(timer, base);
1033
1034        unlock_hrtimer_base(timer, &flags);
1035
1036        return ret;
1037
1038}
1039EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1040
1041/**
1042 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1043 * @timer:      the timer to be cancelled
1044 *
1045 * Returns:
1046 *  0 when the timer was not active
1047 *  1 when the timer was active
1048 */
1049int hrtimer_cancel(struct hrtimer *timer)
1050{
1051        for (;;) {
1052                int ret = hrtimer_try_to_cancel(timer);
1053
1054                if (ret >= 0)
1055                        return ret;
1056                cpu_relax();
1057        }
1058}
1059EXPORT_SYMBOL_GPL(hrtimer_cancel);
1060
1061/**
1062 * hrtimer_get_remaining - get remaining time for the timer
1063 * @timer:      the timer to read
1064 */
1065ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1066{
1067        unsigned long flags;
1068        ktime_t rem;
1069
1070        lock_hrtimer_base(timer, &flags);
1071        rem = hrtimer_expires_remaining(timer);
1072        unlock_hrtimer_base(timer, &flags);
1073
1074        return rem;
1075}
1076EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1077
1078#ifdef CONFIG_NO_HZ
1079/**
1080 * hrtimer_get_next_event - get the time until next expiry event
1081 *
1082 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1083 * is pending.
1084 */
1085ktime_t hrtimer_get_next_event(void)
1086{
1087        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1088        struct hrtimer_clock_base *base = cpu_base->clock_base;
1089        ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1090        unsigned long flags;
1091        int i;
1092
1093        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1094
1095        if (!hrtimer_hres_active()) {
1096                for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1097                        struct hrtimer *timer;
1098                        struct timerqueue_node *next;
1099
1100                        next = timerqueue_getnext(&base->active);
1101                        if (!next)
1102                                continue;
1103
1104                        timer = container_of(next, struct hrtimer, node);
1105                        delta.tv64 = hrtimer_get_expires_tv64(timer);
1106                        delta = ktime_sub(delta, base->get_time());
1107                        if (delta.tv64 < mindelta.tv64)
1108                                mindelta.tv64 = delta.tv64;
1109                }
1110        }
1111
1112        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1113
1114        if (mindelta.tv64 < 0)
1115                mindelta.tv64 = 0;
1116        return mindelta;
1117}
1118#endif
1119
1120static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121                           enum hrtimer_mode mode)
1122{
1123        struct hrtimer_cpu_base *cpu_base;
1124
1125        memset(timer, 0, sizeof(struct hrtimer));
1126
1127        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1128
1129        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130                clock_id = CLOCK_MONOTONIC;
1131
1132        timer->base = &cpu_base->clock_base[clock_id];
1133        hrtimer_init_timer_hres(timer);
1134        timerqueue_init(&timer->node);
1135
1136#ifdef CONFIG_TIMER_STATS
1137        timer->start_site = NULL;
1138        timer->start_pid = -1;
1139        memset(timer->start_comm, 0, TASK_COMM_LEN);
1140#endif
1141}
1142
1143/**
1144 * hrtimer_init - initialize a timer to the given clock
1145 * @timer:      the timer to be initialized
1146 * @clock_id:   the clock to be used
1147 * @mode:       timer mode abs/rel
1148 */
1149void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150                  enum hrtimer_mode mode)
1151{
1152        debug_init(timer, clock_id, mode);
1153        __hrtimer_init(timer, clock_id, mode);
1154}
1155EXPORT_SYMBOL_GPL(hrtimer_init);
1156
1157/**
1158 * hrtimer_get_res - get the timer resolution for a clock
1159 * @which_clock: which clock to query
1160 * @tp:          pointer to timespec variable to store the resolution
1161 *
1162 * Store the resolution of the clock selected by @which_clock in the
1163 * variable pointed to by @tp.
1164 */
1165int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1166{
1167        struct hrtimer_cpu_base *cpu_base;
1168
1169        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1170        *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1171
1172        return 0;
1173}
1174EXPORT_SYMBOL_GPL(hrtimer_get_res);
1175
1176static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1177{
1178        struct hrtimer_clock_base *base = timer->base;
1179        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1180        enum hrtimer_restart (*fn)(struct hrtimer *);
1181        int restart;
1182
1183        WARN_ON(!irqs_disabled());
1184
1185        debug_deactivate(timer);
1186        __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1187        timer_stats_account_hrtimer(timer);
1188        fn = timer->function;
1189
1190        /*
1191         * Because we run timers from hardirq context, there is no chance
1192         * they get migrated to another cpu, therefore its safe to unlock
1193         * the timer base.
1194         */
1195        raw_spin_unlock(&cpu_base->lock);
1196        trace_hrtimer_expire_entry(timer, now);
1197        restart = fn(timer);
1198        trace_hrtimer_expire_exit(timer);
1199        raw_spin_lock(&cpu_base->lock);
1200
1201        /*
1202         * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1203         * we do not reprogramm the event hardware. Happens either in
1204         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1205         */
1206        if (restart != HRTIMER_NORESTART) {
1207                BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1208                enqueue_hrtimer(timer, base);
1209        }
1210
1211        WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1212
1213        timer->state &= ~HRTIMER_STATE_CALLBACK;
1214}
1215
1216#ifdef CONFIG_HIGH_RES_TIMERS
1217
1218/*
1219 * High resolution timer interrupt
1220 * Called with interrupts disabled
1221 */
1222void hrtimer_interrupt(struct clock_event_device *dev)
1223{
1224        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1225        struct hrtimer_clock_base *base;
1226        ktime_t expires_next, now, entry_time, delta;
1227        int i, retries = 0;
1228
1229        BUG_ON(!cpu_base->hres_active);
1230        cpu_base->nr_events++;
1231        dev->next_event.tv64 = KTIME_MAX;
1232
1233        entry_time = now = ktime_get();
1234retry:
1235        expires_next.tv64 = KTIME_MAX;
1236
1237        raw_spin_lock(&cpu_base->lock);
1238        /*
1239         * We set expires_next to KTIME_MAX here with cpu_base->lock
1240         * held to prevent that a timer is enqueued in our queue via
1241         * the migration code. This does not affect enqueueing of
1242         * timers which run their callback and need to be requeued on
1243         * this CPU.
1244         */
1245        cpu_base->expires_next.tv64 = KTIME_MAX;
1246
1247        base = cpu_base->clock_base;
1248
1249        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1250                ktime_t basenow;
1251                struct timerqueue_node *node;
1252
1253                basenow = ktime_add(now, base->offset);
1254
1255                while ((node = timerqueue_getnext(&base->active))) {
1256                        struct hrtimer *timer;
1257
1258                        timer = container_of(node, struct hrtimer, node);
1259
1260                        /*
1261                         * The immediate goal for using the softexpires is
1262                         * minimizing wakeups, not running timers at the
1263                         * earliest interrupt after their soft expiration.
1264                         * This allows us to avoid using a Priority Search
1265                         * Tree, which can answer a stabbing querry for
1266                         * overlapping intervals and instead use the simple
1267                         * BST we already have.
1268                         * We don't add extra wakeups by delaying timers that
1269                         * are right-of a not yet expired timer, because that
1270                         * timer will have to trigger a wakeup anyway.
1271                         */
1272
1273                        if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1274                                ktime_t expires;
1275
1276                                expires = ktime_sub(hrtimer_get_expires(timer),
1277                                                    base->offset);
1278                                if (expires.tv64 < expires_next.tv64)
1279                                        expires_next = expires;
1280                                break;
1281                        }
1282
1283                        __run_hrtimer(timer, &basenow);
1284                }
1285                base++;
1286        }
1287
1288        /*
1289         * Store the new expiry value so the migration code can verify
1290         * against it.
1291         */
1292        cpu_base->expires_next = expires_next;
1293        raw_spin_unlock(&cpu_base->lock);
1294
1295        /* Reprogramming necessary ? */
1296        if (expires_next.tv64 == KTIME_MAX ||
1297            !tick_program_event(expires_next, 0)) {
1298                cpu_base->hang_detected = 0;
1299                return;
1300        }
1301
1302        /*
1303         * The next timer was already expired due to:
1304         * - tracing
1305         * - long lasting callbacks
1306         * - being scheduled away when running in a VM
1307         *
1308         * We need to prevent that we loop forever in the hrtimer
1309         * interrupt routine. We give it 3 attempts to avoid
1310         * overreacting on some spurious event.
1311         */
1312        now = ktime_get();
1313        cpu_base->nr_retries++;
1314        if (++retries < 3)
1315                goto retry;
1316        /*
1317         * Give the system a chance to do something else than looping
1318         * here. We stored the entry time, so we know exactly how long
1319         * we spent here. We schedule the next event this amount of
1320         * time away.
1321         */
1322        cpu_base->nr_hangs++;
1323        cpu_base->hang_detected = 1;
1324        delta = ktime_sub(now, entry_time);
1325        if (delta.tv64 > cpu_base->max_hang_time.tv64)
1326                cpu_base->max_hang_time = delta;
1327        /*
1328         * Limit it to a sensible value as we enforce a longer
1329         * delay. Give the CPU at least 100ms to catch up.
1330         */
1331        if (delta.tv64 > 100 * NSEC_PER_MSEC)
1332                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1333        else
1334                expires_next = ktime_add(now, delta);
1335        tick_program_event(expires_next, 1);
1336        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1337                    ktime_to_ns(delta));
1338}
1339
1340/*
1341 * local version of hrtimer_peek_ahead_timers() called with interrupts
1342 * disabled.
1343 */
1344static void __hrtimer_peek_ahead_timers(void)
1345{
1346        struct tick_device *td;
1347
1348        if (!hrtimer_hres_active())
1349                return;
1350
1351        td = &__get_cpu_var(tick_cpu_device);
1352        if (td && td->evtdev)
1353                hrtimer_interrupt(td->evtdev);
1354}
1355
1356/**
1357 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1358 *
1359 * hrtimer_peek_ahead_timers will peek at the timer queue of
1360 * the current cpu and check if there are any timers for which
1361 * the soft expires time has passed. If any such timers exist,
1362 * they are run immediately and then removed from the timer queue.
1363 *
1364 */
1365void hrtimer_peek_ahead_timers(void)
1366{
1367        unsigned long flags;
1368
1369        local_irq_save(flags);
1370        __hrtimer_peek_ahead_timers();
1371        local_irq_restore(flags);
1372}
1373
1374static void run_hrtimer_softirq(struct softirq_action *h)
1375{
1376        hrtimer_peek_ahead_timers();
1377}
1378
1379#else /* CONFIG_HIGH_RES_TIMERS */
1380
1381static inline void __hrtimer_peek_ahead_timers(void) { }
1382
1383#endif  /* !CONFIG_HIGH_RES_TIMERS */
1384
1385/*
1386 * Called from timer softirq every jiffy, expire hrtimers:
1387 *
1388 * For HRT its the fall back code to run the softirq in the timer
1389 * softirq context in case the hrtimer initialization failed or has
1390 * not been done yet.
1391 */
1392void hrtimer_run_pending(void)
1393{
1394        if (hrtimer_hres_active())
1395                return;
1396
1397        /*
1398         * This _is_ ugly: We have to check in the softirq context,
1399         * whether we can switch to highres and / or nohz mode. The
1400         * clocksource switch happens in the timer interrupt with
1401         * xtime_lock held. Notification from there only sets the
1402         * check bit in the tick_oneshot code, otherwise we might
1403         * deadlock vs. xtime_lock.
1404         */
1405        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1406                hrtimer_switch_to_hres();
1407}
1408
1409/*
1410 * Called from hardirq context every jiffy
1411 */
1412void hrtimer_run_queues(void)
1413{
1414        struct timerqueue_node *node;
1415        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1416        struct hrtimer_clock_base *base;
1417        int index, gettime = 1;
1418
1419        if (hrtimer_hres_active())
1420                return;
1421
1422        for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1423                base = &cpu_base->clock_base[index];
1424                if (!timerqueue_getnext(&base->active))
1425                        continue;
1426
1427                if (gettime) {
1428                        hrtimer_get_softirq_time(cpu_base);
1429                        gettime = 0;
1430                }
1431
1432                raw_spin_lock(&cpu_base->lock);
1433
1434                while ((node = timerqueue_getnext(&base->active))) {
1435                        struct hrtimer *timer;
1436
1437                        timer = container_of(node, struct hrtimer, node);
1438                        if (base->softirq_time.tv64 <=
1439                                        hrtimer_get_expires_tv64(timer))
1440                                break;
1441
1442                        __run_hrtimer(timer, &base->softirq_time);
1443                }
1444                raw_spin_unlock(&cpu_base->lock);
1445        }
1446}
1447
1448/*
1449 * Sleep related functions:
1450 */
1451static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1452{
1453        struct hrtimer_sleeper *t =
1454                container_of(timer, struct hrtimer_sleeper, timer);
1455        struct task_struct *task = t->task;
1456
1457        t->task = NULL;
1458        if (task)
1459                wake_up_process(task);
1460
1461        return HRTIMER_NORESTART;
1462}
1463
1464void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1465{
1466        sl->timer.function = hrtimer_wakeup;
1467        sl->task = task;
1468}
1469EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1470
1471static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1472{
1473        hrtimer_init_sleeper(t, current);
1474
1475        do {
1476                set_current_state(TASK_INTERRUPTIBLE);
1477                hrtimer_start_expires(&t->timer, mode);
1478                if (!hrtimer_active(&t->timer))
1479                        t->task = NULL;
1480
1481                if (likely(t->task))
1482                        schedule();
1483
1484                hrtimer_cancel(&t->timer);
1485                mode = HRTIMER_MODE_ABS;
1486
1487        } while (t->task && !signal_pending(current));
1488
1489        __set_current_state(TASK_RUNNING);
1490
1491        return t->task == NULL;
1492}
1493
1494static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1495{
1496        struct timespec rmt;
1497        ktime_t rem;
1498
1499        rem = hrtimer_expires_remaining(timer);
1500        if (rem.tv64 <= 0)
1501                return 0;
1502        rmt = ktime_to_timespec(rem);
1503
1504        if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1505                return -EFAULT;
1506
1507        return 1;
1508}
1509
1510long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1511{
1512        struct hrtimer_sleeper t;
1513        struct timespec __user  *rmtp;
1514        int ret = 0;
1515
1516        hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1517                                HRTIMER_MODE_ABS);
1518        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1519
1520        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1521                goto out;
1522
1523        rmtp = restart->nanosleep.rmtp;
1524        if (rmtp) {
1525                ret = update_rmtp(&t.timer, rmtp);
1526                if (ret <= 0)
1527                        goto out;
1528        }
1529
1530        /* The other values in restart are already filled in */
1531        ret = -ERESTART_RESTARTBLOCK;
1532out:
1533        destroy_hrtimer_on_stack(&t.timer);
1534        return ret;
1535}
1536
1537long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1538                       const enum hrtimer_mode mode, const clockid_t clockid)
1539{
1540        struct restart_block *restart;
1541        struct hrtimer_sleeper t;
1542        int ret = 0;
1543        unsigned long slack;
1544
1545        slack = current->timer_slack_ns;
1546        if (rt_task(current))
1547                slack = 0;
1548
1549        hrtimer_init_on_stack(&t.timer, clockid, mode);
1550        hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1551        if (do_nanosleep(&t, mode))
1552                goto out;
1553
1554        /* Absolute timers do not update the rmtp value and restart: */
1555        if (mode == HRTIMER_MODE_ABS) {
1556                ret = -ERESTARTNOHAND;
1557                goto out;
1558        }
1559
1560        if (rmtp) {
1561                ret = update_rmtp(&t.timer, rmtp);
1562                if (ret <= 0)
1563                        goto out;
1564        }
1565
1566        restart = &current_thread_info()->restart_block;
1567        restart->fn = hrtimer_nanosleep_restart;
1568        restart->nanosleep.index = t.timer.base->index;
1569        restart->nanosleep.rmtp = rmtp;
1570        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1571
1572        ret = -ERESTART_RESTARTBLOCK;
1573out:
1574        destroy_hrtimer_on_stack(&t.timer);
1575        return ret;
1576}
1577
1578SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1579                struct timespec __user *, rmtp)
1580{
1581        struct timespec tu;
1582
1583        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1584                return -EFAULT;
1585
1586        if (!timespec_valid(&tu))
1587                return -EINVAL;
1588
1589        return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1590}
1591
1592/*
1593 * Functions related to boot-time initialization:
1594 */
1595static void __cpuinit init_hrtimers_cpu(int cpu)
1596{
1597        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1598        int i;
1599
1600        raw_spin_lock_init(&cpu_base->lock);
1601
1602        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603                cpu_base->clock_base[i].cpu_base = cpu_base;
1604                timerqueue_init_head(&cpu_base->clock_base[i].active);
1605        }
1606
1607        hrtimer_init_hres(cpu_base);
1608}
1609
1610#ifdef CONFIG_HOTPLUG_CPU
1611
1612static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1613                                struct hrtimer_clock_base *new_base)
1614{
1615        struct hrtimer *timer;
1616        struct timerqueue_node *node;
1617
1618        while ((node = timerqueue_getnext(&old_base->active))) {
1619                timer = container_of(node, struct hrtimer, node);
1620                BUG_ON(hrtimer_callback_running(timer));
1621                debug_deactivate(timer);
1622
1623                /*
1624                 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1625                 * timer could be seen as !active and just vanish away
1626                 * under us on another CPU
1627                 */
1628                __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1629                timer->base = new_base;
1630                /*
1631                 * Enqueue the timers on the new cpu. This does not
1632                 * reprogram the event device in case the timer
1633                 * expires before the earliest on this CPU, but we run
1634                 * hrtimer_interrupt after we migrated everything to
1635                 * sort out already expired timers and reprogram the
1636                 * event device.
1637                 */
1638                enqueue_hrtimer(timer, new_base);
1639
1640                /* Clear the migration state bit */
1641                timer->state &= ~HRTIMER_STATE_MIGRATE;
1642        }
1643}
1644
1645static void migrate_hrtimers(int scpu)
1646{
1647        struct hrtimer_cpu_base *old_base, *new_base;
1648        int i;
1649
1650        BUG_ON(cpu_online(scpu));
1651        tick_cancel_sched_timer(scpu);
1652
1653        local_irq_disable();
1654        old_base = &per_cpu(hrtimer_bases, scpu);
1655        new_base = &__get_cpu_var(hrtimer_bases);
1656        /*
1657         * The caller is globally serialized and nobody else
1658         * takes two locks at once, deadlock is not possible.
1659         */
1660        raw_spin_lock(&new_base->lock);
1661        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1662
1663        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1664                migrate_hrtimer_list(&old_base->clock_base[i],
1665                                     &new_base->clock_base[i]);
1666        }
1667
1668        raw_spin_unlock(&old_base->lock);
1669        raw_spin_unlock(&new_base->lock);
1670
1671        /* Check, if we got expired work to do */
1672        __hrtimer_peek_ahead_timers();
1673        local_irq_enable();
1674}
1675
1676#endif /* CONFIG_HOTPLUG_CPU */
1677
1678static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1679                                        unsigned long action, void *hcpu)
1680{
1681        int scpu = (long)hcpu;
1682
1683        switch (action) {
1684
1685        case CPU_UP_PREPARE:
1686        case CPU_UP_PREPARE_FROZEN:
1687                init_hrtimers_cpu(scpu);
1688                break;
1689
1690#ifdef CONFIG_HOTPLUG_CPU
1691        case CPU_DYING:
1692        case CPU_DYING_FROZEN:
1693                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1694                break;
1695        case CPU_DEAD:
1696        case CPU_DEAD_FROZEN:
1697        {
1698                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1699                migrate_hrtimers(scpu);
1700                break;
1701        }
1702#endif
1703
1704        default:
1705                break;
1706        }
1707
1708        return NOTIFY_OK;
1709}
1710
1711static struct notifier_block __cpuinitdata hrtimers_nb = {
1712        .notifier_call = hrtimer_cpu_notify,
1713};
1714
1715void __init hrtimers_init(void)
1716{
1717        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1718                          (void *)(long)smp_processor_id());
1719        register_cpu_notifier(&hrtimers_nb);
1720#ifdef CONFIG_HIGH_RES_TIMERS
1721        open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1722#endif
1723}
1724
1725/**
1726 * schedule_hrtimeout_range_clock - sleep until timeout
1727 * @expires:    timeout value (ktime_t)
1728 * @delta:      slack in expires timeout (ktime_t)
1729 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1730 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1731 */
1732int __sched
1733schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1734                               const enum hrtimer_mode mode, int clock)
1735{
1736        struct hrtimer_sleeper t;
1737
1738        /*
1739         * Optimize when a zero timeout value is given. It does not
1740         * matter whether this is an absolute or a relative time.
1741         */
1742        if (expires && !expires->tv64) {
1743                __set_current_state(TASK_RUNNING);
1744                return 0;
1745        }
1746
1747        /*
1748         * A NULL parameter means "infinite"
1749         */
1750        if (!expires) {
1751                schedule();
1752                __set_current_state(TASK_RUNNING);
1753                return -EINTR;
1754        }
1755
1756        hrtimer_init_on_stack(&t.timer, clock, mode);
1757        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1758
1759        hrtimer_init_sleeper(&t, current);
1760
1761        hrtimer_start_expires(&t.timer, mode);
1762        if (!hrtimer_active(&t.timer))
1763                t.task = NULL;
1764
1765        if (likely(t.task))
1766                schedule();
1767
1768        hrtimer_cancel(&t.timer);
1769        destroy_hrtimer_on_stack(&t.timer);
1770
1771        __set_current_state(TASK_RUNNING);
1772
1773        return !t.task ? 0 : -EINTR;
1774}
1775
1776/**
1777 * schedule_hrtimeout_range - sleep until timeout
1778 * @expires:    timeout value (ktime_t)
1779 * @delta:      slack in expires timeout (ktime_t)
1780 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1781 *
1782 * Make the current task sleep until the given expiry time has
1783 * elapsed. The routine will return immediately unless
1784 * the current task state has been set (see set_current_state()).
1785 *
1786 * The @delta argument gives the kernel the freedom to schedule the
1787 * actual wakeup to a time that is both power and performance friendly.
1788 * The kernel give the normal best effort behavior for "@expires+@delta",
1789 * but may decide to fire the timer earlier, but no earlier than @expires.
1790 *
1791 * You can set the task state as follows -
1792 *
1793 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1794 * pass before the routine returns.
1795 *
1796 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1797 * delivered to the current task.
1798 *
1799 * The current task state is guaranteed to be TASK_RUNNING when this
1800 * routine returns.
1801 *
1802 * Returns 0 when the timer has expired otherwise -EINTR
1803 */
1804int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1805                                     const enum hrtimer_mode mode)
1806{
1807        return schedule_hrtimeout_range_clock(expires, delta, mode,
1808                                              CLOCK_MONOTONIC);
1809}
1810EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1811
1812/**
1813 * schedule_hrtimeout - sleep until timeout
1814 * @expires:    timeout value (ktime_t)
1815 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1816 *
1817 * Make the current task sleep until the given expiry time has
1818 * elapsed. The routine will return immediately unless
1819 * the current task state has been set (see set_current_state()).
1820 *
1821 * You can set the task state as follows -
1822 *
1823 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1824 * pass before the routine returns.
1825 *
1826 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1827 * delivered to the current task.
1828 *
1829 * The current task state is guaranteed to be TASK_RUNNING when this
1830 * routine returns.
1831 *
1832 * Returns 0 when the timer has expired otherwise -EINTR
1833 */
1834int __sched schedule_hrtimeout(ktime_t *expires,
1835                               const enum hrtimer_mode mode)
1836{
1837        return schedule_hrtimeout_range(expires, 0, mode);
1838}
1839EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1840