linux/kernel/kmod.c
<<
>>
Prefs
   1/*
   2        kmod, the new module loader (replaces kerneld)
   3        Kirk Petersen
   4
   5        Reorganized not to be a daemon by Adam Richter, with guidance
   6        from Greg Zornetzer.
   7
   8        Modified to avoid chroot and file sharing problems.
   9        Mikael Pettersson
  10
  11        Limit the concurrent number of kmod modprobes to catch loops from
  12        "modprobe needs a service that is in a module".
  13        Keith Owens <kaos@ocs.com.au> December 1999
  14
  15        Unblock all signals when we exec a usermode process.
  16        Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
  17
  18        call_usermodehelper wait flag, and remove exec_usermodehelper.
  19        Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
  20*/
  21#include <linux/module.h>
  22#include <linux/sched.h>
  23#include <linux/syscalls.h>
  24#include <linux/unistd.h>
  25#include <linux/kmod.h>
  26#include <linux/slab.h>
  27#include <linux/completion.h>
  28#include <linux/file.h>
  29#include <linux/fdtable.h>
  30#include <linux/workqueue.h>
  31#include <linux/security.h>
  32#include <linux/mount.h>
  33#include <linux/kernel.h>
  34#include <linux/init.h>
  35#include <linux/resource.h>
  36#include <linux/notifier.h>
  37#include <linux/suspend.h>
  38#include <asm/uaccess.h>
  39
  40#include <trace/events/module.h>
  41
  42extern int max_threads;
  43
  44static struct workqueue_struct *khelper_wq;
  45
  46#ifdef CONFIG_MODULES
  47
  48/*
  49        modprobe_path is set via /proc/sys.
  50*/
  51char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
  52
  53/**
  54 * __request_module - try to load a kernel module
  55 * @wait: wait (or not) for the operation to complete
  56 * @fmt: printf style format string for the name of the module
  57 * @...: arguments as specified in the format string
  58 *
  59 * Load a module using the user mode module loader. The function returns
  60 * zero on success or a negative errno code on failure. Note that a
  61 * successful module load does not mean the module did not then unload
  62 * and exit on an error of its own. Callers must check that the service
  63 * they requested is now available not blindly invoke it.
  64 *
  65 * If module auto-loading support is disabled then this function
  66 * becomes a no-operation.
  67 */
  68int __request_module(bool wait, const char *fmt, ...)
  69{
  70        va_list args;
  71        char module_name[MODULE_NAME_LEN];
  72        unsigned int max_modprobes;
  73        int ret;
  74        char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
  75        static char *envp[] = { "HOME=/",
  76                                "TERM=linux",
  77                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
  78                                NULL };
  79        static atomic_t kmod_concurrent = ATOMIC_INIT(0);
  80#define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
  81        static int kmod_loop_msg;
  82
  83        va_start(args, fmt);
  84        ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
  85        va_end(args);
  86        if (ret >= MODULE_NAME_LEN)
  87                return -ENAMETOOLONG;
  88
  89        ret = security_kernel_module_request(module_name);
  90        if (ret)
  91                return ret;
  92
  93        /* If modprobe needs a service that is in a module, we get a recursive
  94         * loop.  Limit the number of running kmod threads to max_threads/2 or
  95         * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
  96         * would be to run the parents of this process, counting how many times
  97         * kmod was invoked.  That would mean accessing the internals of the
  98         * process tables to get the command line, proc_pid_cmdline is static
  99         * and it is not worth changing the proc code just to handle this case. 
 100         * KAO.
 101         *
 102         * "trace the ppid" is simple, but will fail if someone's
 103         * parent exits.  I think this is as good as it gets. --RR
 104         */
 105        max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
 106        atomic_inc(&kmod_concurrent);
 107        if (atomic_read(&kmod_concurrent) > max_modprobes) {
 108                /* We may be blaming an innocent here, but unlikely */
 109                if (kmod_loop_msg++ < 5)
 110                        printk(KERN_ERR
 111                               "request_module: runaway loop modprobe %s\n",
 112                               module_name);
 113                atomic_dec(&kmod_concurrent);
 114                return -ENOMEM;
 115        }
 116
 117        trace_module_request(module_name, wait, _RET_IP_);
 118
 119        ret = call_usermodehelper_fns(modprobe_path, argv, envp,
 120                        wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC,
 121                        NULL, NULL, NULL);
 122
 123        atomic_dec(&kmod_concurrent);
 124        return ret;
 125}
 126EXPORT_SYMBOL(__request_module);
 127#endif /* CONFIG_MODULES */
 128
 129/*
 130 * This is the task which runs the usermode application
 131 */
 132static int ____call_usermodehelper(void *data)
 133{
 134        struct subprocess_info *sub_info = data;
 135        int retval;
 136
 137        spin_lock_irq(&current->sighand->siglock);
 138        flush_signal_handlers(current, 1);
 139        spin_unlock_irq(&current->sighand->siglock);
 140
 141        /* We can run anywhere, unlike our parent keventd(). */
 142        set_cpus_allowed_ptr(current, cpu_all_mask);
 143
 144        /*
 145         * Our parent is keventd, which runs with elevated scheduling priority.
 146         * Avoid propagating that into the userspace child.
 147         */
 148        set_user_nice(current, 0);
 149
 150        if (sub_info->init) {
 151                retval = sub_info->init(sub_info);
 152                if (retval)
 153                        goto fail;
 154        }
 155
 156        retval = kernel_execve(sub_info->path,
 157                               (const char *const *)sub_info->argv,
 158                               (const char *const *)sub_info->envp);
 159
 160        /* Exec failed? */
 161fail:
 162        sub_info->retval = retval;
 163        do_exit(0);
 164}
 165
 166void call_usermodehelper_freeinfo(struct subprocess_info *info)
 167{
 168        if (info->cleanup)
 169                (*info->cleanup)(info);
 170        kfree(info);
 171}
 172EXPORT_SYMBOL(call_usermodehelper_freeinfo);
 173
 174/* Keventd can't block, but this (a child) can. */
 175static int wait_for_helper(void *data)
 176{
 177        struct subprocess_info *sub_info = data;
 178        pid_t pid;
 179
 180        /* If SIGCLD is ignored sys_wait4 won't populate the status. */
 181        spin_lock_irq(&current->sighand->siglock);
 182        current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
 183        spin_unlock_irq(&current->sighand->siglock);
 184
 185        pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
 186        if (pid < 0) {
 187                sub_info->retval = pid;
 188        } else {
 189                int ret = -ECHILD;
 190                /*
 191                 * Normally it is bogus to call wait4() from in-kernel because
 192                 * wait4() wants to write the exit code to a userspace address.
 193                 * But wait_for_helper() always runs as keventd, and put_user()
 194                 * to a kernel address works OK for kernel threads, due to their
 195                 * having an mm_segment_t which spans the entire address space.
 196                 *
 197                 * Thus the __user pointer cast is valid here.
 198                 */
 199                sys_wait4(pid, (int __user *)&ret, 0, NULL);
 200
 201                /*
 202                 * If ret is 0, either ____call_usermodehelper failed and the
 203                 * real error code is already in sub_info->retval or
 204                 * sub_info->retval is 0 anyway, so don't mess with it then.
 205                 */
 206                if (ret)
 207                        sub_info->retval = ret;
 208        }
 209
 210        complete(sub_info->complete);
 211        return 0;
 212}
 213
 214/* This is run by khelper thread  */
 215static void __call_usermodehelper(struct work_struct *work)
 216{
 217        struct subprocess_info *sub_info =
 218                container_of(work, struct subprocess_info, work);
 219        enum umh_wait wait = sub_info->wait;
 220        pid_t pid;
 221
 222        /* CLONE_VFORK: wait until the usermode helper has execve'd
 223         * successfully We need the data structures to stay around
 224         * until that is done.  */
 225        if (wait == UMH_WAIT_PROC)
 226                pid = kernel_thread(wait_for_helper, sub_info,
 227                                    CLONE_FS | CLONE_FILES | SIGCHLD);
 228        else
 229                pid = kernel_thread(____call_usermodehelper, sub_info,
 230                                    CLONE_VFORK | SIGCHLD);
 231
 232        switch (wait) {
 233        case UMH_NO_WAIT:
 234                call_usermodehelper_freeinfo(sub_info);
 235                break;
 236
 237        case UMH_WAIT_PROC:
 238                if (pid > 0)
 239                        break;
 240                /* FALLTHROUGH */
 241        case UMH_WAIT_EXEC:
 242                if (pid < 0)
 243                        sub_info->retval = pid;
 244                complete(sub_info->complete);
 245        }
 246}
 247
 248#ifdef CONFIG_PM_SLEEP
 249/*
 250 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
 251 * (used for preventing user land processes from being created after the user
 252 * land has been frozen during a system-wide hibernation or suspend operation).
 253 */
 254static int usermodehelper_disabled;
 255
 256/* Number of helpers running */
 257static atomic_t running_helpers = ATOMIC_INIT(0);
 258
 259/*
 260 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
 261 * helpers to finish.
 262 */
 263static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
 264
 265/*
 266 * Time to wait for running_helpers to become zero before the setting of
 267 * usermodehelper_disabled in usermodehelper_pm_callback() fails
 268 */
 269#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
 270
 271/**
 272 * usermodehelper_disable - prevent new helpers from being started
 273 */
 274int usermodehelper_disable(void)
 275{
 276        long retval;
 277
 278        usermodehelper_disabled = 1;
 279        smp_mb();
 280        /*
 281         * From now on call_usermodehelper_exec() won't start any new
 282         * helpers, so it is sufficient if running_helpers turns out to
 283         * be zero at one point (it may be increased later, but that
 284         * doesn't matter).
 285         */
 286        retval = wait_event_timeout(running_helpers_waitq,
 287                                        atomic_read(&running_helpers) == 0,
 288                                        RUNNING_HELPERS_TIMEOUT);
 289        if (retval)
 290                return 0;
 291
 292        usermodehelper_disabled = 0;
 293        return -EAGAIN;
 294}
 295
 296/**
 297 * usermodehelper_enable - allow new helpers to be started again
 298 */
 299void usermodehelper_enable(void)
 300{
 301        usermodehelper_disabled = 0;
 302}
 303
 304static void helper_lock(void)
 305{
 306        atomic_inc(&running_helpers);
 307        smp_mb__after_atomic_inc();
 308}
 309
 310static void helper_unlock(void)
 311{
 312        if (atomic_dec_and_test(&running_helpers))
 313                wake_up(&running_helpers_waitq);
 314}
 315#else /* CONFIG_PM_SLEEP */
 316#define usermodehelper_disabled 0
 317
 318static inline void helper_lock(void) {}
 319static inline void helper_unlock(void) {}
 320#endif /* CONFIG_PM_SLEEP */
 321
 322/**
 323 * call_usermodehelper_setup - prepare to call a usermode helper
 324 * @path: path to usermode executable
 325 * @argv: arg vector for process
 326 * @envp: environment for process
 327 * @gfp_mask: gfp mask for memory allocation
 328 *
 329 * Returns either %NULL on allocation failure, or a subprocess_info
 330 * structure.  This should be passed to call_usermodehelper_exec to
 331 * exec the process and free the structure.
 332 */
 333struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
 334                                                  char **envp, gfp_t gfp_mask)
 335{
 336        struct subprocess_info *sub_info;
 337        sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
 338        if (!sub_info)
 339                goto out;
 340
 341        INIT_WORK(&sub_info->work, __call_usermodehelper);
 342        sub_info->path = path;
 343        sub_info->argv = argv;
 344        sub_info->envp = envp;
 345  out:
 346        return sub_info;
 347}
 348EXPORT_SYMBOL(call_usermodehelper_setup);
 349
 350/**
 351 * call_usermodehelper_setfns - set a cleanup/init function
 352 * @info: a subprocess_info returned by call_usermodehelper_setup
 353 * @cleanup: a cleanup function
 354 * @init: an init function
 355 * @data: arbitrary context sensitive data
 356 *
 357 * The init function is used to customize the helper process prior to
 358 * exec.  A non-zero return code causes the process to error out, exit,
 359 * and return the failure to the calling process
 360 *
 361 * The cleanup function is just before ethe subprocess_info is about to
 362 * be freed.  This can be used for freeing the argv and envp.  The
 363 * Function must be runnable in either a process context or the
 364 * context in which call_usermodehelper_exec is called.
 365 */
 366void call_usermodehelper_setfns(struct subprocess_info *info,
 367                    int (*init)(struct subprocess_info *info),
 368                    void (*cleanup)(struct subprocess_info *info),
 369                    void *data)
 370{
 371        info->cleanup = cleanup;
 372        info->init = init;
 373        info->data = data;
 374}
 375EXPORT_SYMBOL(call_usermodehelper_setfns);
 376
 377/**
 378 * call_usermodehelper_exec - start a usermode application
 379 * @sub_info: information about the subprocessa
 380 * @wait: wait for the application to finish and return status.
 381 *        when -1 don't wait at all, but you get no useful error back when
 382 *        the program couldn't be exec'ed. This makes it safe to call
 383 *        from interrupt context.
 384 *
 385 * Runs a user-space application.  The application is started
 386 * asynchronously if wait is not set, and runs as a child of keventd.
 387 * (ie. it runs with full root capabilities).
 388 */
 389int call_usermodehelper_exec(struct subprocess_info *sub_info,
 390                             enum umh_wait wait)
 391{
 392        DECLARE_COMPLETION_ONSTACK(done);
 393        int retval = 0;
 394
 395        helper_lock();
 396        if (sub_info->path[0] == '\0')
 397                goto out;
 398
 399        if (!khelper_wq || usermodehelper_disabled) {
 400                retval = -EBUSY;
 401                goto out;
 402        }
 403
 404        sub_info->complete = &done;
 405        sub_info->wait = wait;
 406
 407        queue_work(khelper_wq, &sub_info->work);
 408        if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
 409                goto unlock;
 410        wait_for_completion(&done);
 411        retval = sub_info->retval;
 412
 413out:
 414        call_usermodehelper_freeinfo(sub_info);
 415unlock:
 416        helper_unlock();
 417        return retval;
 418}
 419EXPORT_SYMBOL(call_usermodehelper_exec);
 420
 421void __init usermodehelper_init(void)
 422{
 423        khelper_wq = create_singlethread_workqueue("khelper");
 424        BUG_ON(!khelper_wq);
 425}
 426