linux/kernel/mutex.c
<<
>>
Prefs
   1/*
   2 * kernel/mutex.c
   3 *
   4 * Mutexes: blocking mutual exclusion locks
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *
  10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11 * David Howells for suggestions and improvements.
  12 *
  13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14 *    from the -rt tree, where it was originally implemented for rtmutexes
  15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16 *    and Sven Dietrich.
  17 *
  18 * Also see Documentation/mutex-design.txt.
  19 */
  20#include <linux/mutex.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/interrupt.h>
  25#include <linux/debug_locks.h>
  26
  27/*
  28 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  29 * which forces all calls into the slowpath:
  30 */
  31#ifdef CONFIG_DEBUG_MUTEXES
  32# include "mutex-debug.h"
  33# include <asm-generic/mutex-null.h>
  34#else
  35# include "mutex.h"
  36# include <asm/mutex.h>
  37#endif
  38
  39void
  40__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  41{
  42        atomic_set(&lock->count, 1);
  43        spin_lock_init(&lock->wait_lock);
  44        INIT_LIST_HEAD(&lock->wait_list);
  45        mutex_clear_owner(lock);
  46
  47        debug_mutex_init(lock, name, key);
  48}
  49
  50EXPORT_SYMBOL(__mutex_init);
  51
  52#ifndef CONFIG_DEBUG_LOCK_ALLOC
  53/*
  54 * We split the mutex lock/unlock logic into separate fastpath and
  55 * slowpath functions, to reduce the register pressure on the fastpath.
  56 * We also put the fastpath first in the kernel image, to make sure the
  57 * branch is predicted by the CPU as default-untaken.
  58 */
  59static __used noinline void __sched
  60__mutex_lock_slowpath(atomic_t *lock_count);
  61
  62/**
  63 * mutex_lock - acquire the mutex
  64 * @lock: the mutex to be acquired
  65 *
  66 * Lock the mutex exclusively for this task. If the mutex is not
  67 * available right now, it will sleep until it can get it.
  68 *
  69 * The mutex must later on be released by the same task that
  70 * acquired it. Recursive locking is not allowed. The task
  71 * may not exit without first unlocking the mutex. Also, kernel
  72 * memory where the mutex resides mutex must not be freed with
  73 * the mutex still locked. The mutex must first be initialized
  74 * (or statically defined) before it can be locked. memset()-ing
  75 * the mutex to 0 is not allowed.
  76 *
  77 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  78 *   checks that will enforce the restrictions and will also do
  79 *   deadlock debugging. )
  80 *
  81 * This function is similar to (but not equivalent to) down().
  82 */
  83void __sched mutex_lock(struct mutex *lock)
  84{
  85        might_sleep();
  86        /*
  87         * The locking fastpath is the 1->0 transition from
  88         * 'unlocked' into 'locked' state.
  89         */
  90        __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  91        mutex_set_owner(lock);
  92}
  93
  94EXPORT_SYMBOL(mutex_lock);
  95#endif
  96
  97static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  98
  99/**
 100 * mutex_unlock - release the mutex
 101 * @lock: the mutex to be released
 102 *
 103 * Unlock a mutex that has been locked by this task previously.
 104 *
 105 * This function must not be used in interrupt context. Unlocking
 106 * of a not locked mutex is not allowed.
 107 *
 108 * This function is similar to (but not equivalent to) up().
 109 */
 110void __sched mutex_unlock(struct mutex *lock)
 111{
 112        /*
 113         * The unlocking fastpath is the 0->1 transition from 'locked'
 114         * into 'unlocked' state:
 115         */
 116#ifndef CONFIG_DEBUG_MUTEXES
 117        /*
 118         * When debugging is enabled we must not clear the owner before time,
 119         * the slow path will always be taken, and that clears the owner field
 120         * after verifying that it was indeed current.
 121         */
 122        mutex_clear_owner(lock);
 123#endif
 124        __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
 125}
 126
 127EXPORT_SYMBOL(mutex_unlock);
 128
 129/*
 130 * Lock a mutex (possibly interruptible), slowpath:
 131 */
 132static inline int __sched
 133__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 134                unsigned long ip)
 135{
 136        struct task_struct *task = current;
 137        struct mutex_waiter waiter;
 138        unsigned long flags;
 139
 140        preempt_disable();
 141        mutex_acquire(&lock->dep_map, subclass, 0, ip);
 142
 143#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 144        /*
 145         * Optimistic spinning.
 146         *
 147         * We try to spin for acquisition when we find that there are no
 148         * pending waiters and the lock owner is currently running on a
 149         * (different) CPU.
 150         *
 151         * The rationale is that if the lock owner is running, it is likely to
 152         * release the lock soon.
 153         *
 154         * Since this needs the lock owner, and this mutex implementation
 155         * doesn't track the owner atomically in the lock field, we need to
 156         * track it non-atomically.
 157         *
 158         * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
 159         * to serialize everything.
 160         */
 161
 162        for (;;) {
 163                struct thread_info *owner;
 164
 165                /*
 166                 * If we own the BKL, then don't spin. The owner of
 167                 * the mutex might be waiting on us to release the BKL.
 168                 */
 169                if (unlikely(current->lock_depth >= 0))
 170                        break;
 171
 172                /*
 173                 * If there's an owner, wait for it to either
 174                 * release the lock or go to sleep.
 175                 */
 176                owner = ACCESS_ONCE(lock->owner);
 177                if (owner && !mutex_spin_on_owner(lock, owner))
 178                        break;
 179
 180                if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
 181                        lock_acquired(&lock->dep_map, ip);
 182                        mutex_set_owner(lock);
 183                        preempt_enable();
 184                        return 0;
 185                }
 186
 187                /*
 188                 * When there's no owner, we might have preempted between the
 189                 * owner acquiring the lock and setting the owner field. If
 190                 * we're an RT task that will live-lock because we won't let
 191                 * the owner complete.
 192                 */
 193                if (!owner && (need_resched() || rt_task(task)))
 194                        break;
 195
 196                /*
 197                 * The cpu_relax() call is a compiler barrier which forces
 198                 * everything in this loop to be re-loaded. We don't need
 199                 * memory barriers as we'll eventually observe the right
 200                 * values at the cost of a few extra spins.
 201                 */
 202                arch_mutex_cpu_relax();
 203        }
 204#endif
 205        spin_lock_mutex(&lock->wait_lock, flags);
 206
 207        debug_mutex_lock_common(lock, &waiter);
 208        debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
 209
 210        /* add waiting tasks to the end of the waitqueue (FIFO): */
 211        list_add_tail(&waiter.list, &lock->wait_list);
 212        waiter.task = task;
 213
 214        if (atomic_xchg(&lock->count, -1) == 1)
 215                goto done;
 216
 217        lock_contended(&lock->dep_map, ip);
 218
 219        for (;;) {
 220                /*
 221                 * Lets try to take the lock again - this is needed even if
 222                 * we get here for the first time (shortly after failing to
 223                 * acquire the lock), to make sure that we get a wakeup once
 224                 * it's unlocked. Later on, if we sleep, this is the
 225                 * operation that gives us the lock. We xchg it to -1, so
 226                 * that when we release the lock, we properly wake up the
 227                 * other waiters:
 228                 */
 229                if (atomic_xchg(&lock->count, -1) == 1)
 230                        break;
 231
 232                /*
 233                 * got a signal? (This code gets eliminated in the
 234                 * TASK_UNINTERRUPTIBLE case.)
 235                 */
 236                if (unlikely(signal_pending_state(state, task))) {
 237                        mutex_remove_waiter(lock, &waiter,
 238                                            task_thread_info(task));
 239                        mutex_release(&lock->dep_map, 1, ip);
 240                        spin_unlock_mutex(&lock->wait_lock, flags);
 241
 242                        debug_mutex_free_waiter(&waiter);
 243                        preempt_enable();
 244                        return -EINTR;
 245                }
 246                __set_task_state(task, state);
 247
 248                /* didnt get the lock, go to sleep: */
 249                spin_unlock_mutex(&lock->wait_lock, flags);
 250                preempt_enable_no_resched();
 251                schedule();
 252                preempt_disable();
 253                spin_lock_mutex(&lock->wait_lock, flags);
 254        }
 255
 256done:
 257        lock_acquired(&lock->dep_map, ip);
 258        /* got the lock - rejoice! */
 259        mutex_remove_waiter(lock, &waiter, current_thread_info());
 260        mutex_set_owner(lock);
 261
 262        /* set it to 0 if there are no waiters left: */
 263        if (likely(list_empty(&lock->wait_list)))
 264                atomic_set(&lock->count, 0);
 265
 266        spin_unlock_mutex(&lock->wait_lock, flags);
 267
 268        debug_mutex_free_waiter(&waiter);
 269        preempt_enable();
 270
 271        return 0;
 272}
 273
 274#ifdef CONFIG_DEBUG_LOCK_ALLOC
 275void __sched
 276mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 277{
 278        might_sleep();
 279        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_);
 280}
 281
 282EXPORT_SYMBOL_GPL(mutex_lock_nested);
 283
 284int __sched
 285mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
 286{
 287        might_sleep();
 288        return __mutex_lock_common(lock, TASK_KILLABLE, subclass, _RET_IP_);
 289}
 290EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 291
 292int __sched
 293mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
 294{
 295        might_sleep();
 296        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
 297                                   subclass, _RET_IP_);
 298}
 299
 300EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 301#endif
 302
 303/*
 304 * Release the lock, slowpath:
 305 */
 306static inline void
 307__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
 308{
 309        struct mutex *lock = container_of(lock_count, struct mutex, count);
 310        unsigned long flags;
 311
 312        spin_lock_mutex(&lock->wait_lock, flags);
 313        mutex_release(&lock->dep_map, nested, _RET_IP_);
 314        debug_mutex_unlock(lock);
 315
 316        /*
 317         * some architectures leave the lock unlocked in the fastpath failure
 318         * case, others need to leave it locked. In the later case we have to
 319         * unlock it here
 320         */
 321        if (__mutex_slowpath_needs_to_unlock())
 322                atomic_set(&lock->count, 1);
 323
 324        if (!list_empty(&lock->wait_list)) {
 325                /* get the first entry from the wait-list: */
 326                struct mutex_waiter *waiter =
 327                                list_entry(lock->wait_list.next,
 328                                           struct mutex_waiter, list);
 329
 330                debug_mutex_wake_waiter(lock, waiter);
 331
 332                wake_up_process(waiter->task);
 333        }
 334
 335        spin_unlock_mutex(&lock->wait_lock, flags);
 336}
 337
 338/*
 339 * Release the lock, slowpath:
 340 */
 341static __used noinline void
 342__mutex_unlock_slowpath(atomic_t *lock_count)
 343{
 344        __mutex_unlock_common_slowpath(lock_count, 1);
 345}
 346
 347#ifndef CONFIG_DEBUG_LOCK_ALLOC
 348/*
 349 * Here come the less common (and hence less performance-critical) APIs:
 350 * mutex_lock_interruptible() and mutex_trylock().
 351 */
 352static noinline int __sched
 353__mutex_lock_killable_slowpath(atomic_t *lock_count);
 354
 355static noinline int __sched
 356__mutex_lock_interruptible_slowpath(atomic_t *lock_count);
 357
 358/**
 359 * mutex_lock_interruptible - acquire the mutex, interruptible
 360 * @lock: the mutex to be acquired
 361 *
 362 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 363 * been acquired or sleep until the mutex becomes available. If a
 364 * signal arrives while waiting for the lock then this function
 365 * returns -EINTR.
 366 *
 367 * This function is similar to (but not equivalent to) down_interruptible().
 368 */
 369int __sched mutex_lock_interruptible(struct mutex *lock)
 370{
 371        int ret;
 372
 373        might_sleep();
 374        ret =  __mutex_fastpath_lock_retval
 375                        (&lock->count, __mutex_lock_interruptible_slowpath);
 376        if (!ret)
 377                mutex_set_owner(lock);
 378
 379        return ret;
 380}
 381
 382EXPORT_SYMBOL(mutex_lock_interruptible);
 383
 384int __sched mutex_lock_killable(struct mutex *lock)
 385{
 386        int ret;
 387
 388        might_sleep();
 389        ret = __mutex_fastpath_lock_retval
 390                        (&lock->count, __mutex_lock_killable_slowpath);
 391        if (!ret)
 392                mutex_set_owner(lock);
 393
 394        return ret;
 395}
 396EXPORT_SYMBOL(mutex_lock_killable);
 397
 398static __used noinline void __sched
 399__mutex_lock_slowpath(atomic_t *lock_count)
 400{
 401        struct mutex *lock = container_of(lock_count, struct mutex, count);
 402
 403        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_);
 404}
 405
 406static noinline int __sched
 407__mutex_lock_killable_slowpath(atomic_t *lock_count)
 408{
 409        struct mutex *lock = container_of(lock_count, struct mutex, count);
 410
 411        return __mutex_lock_common(lock, TASK_KILLABLE, 0, _RET_IP_);
 412}
 413
 414static noinline int __sched
 415__mutex_lock_interruptible_slowpath(atomic_t *lock_count)
 416{
 417        struct mutex *lock = container_of(lock_count, struct mutex, count);
 418
 419        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_);
 420}
 421#endif
 422
 423/*
 424 * Spinlock based trylock, we take the spinlock and check whether we
 425 * can get the lock:
 426 */
 427static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
 428{
 429        struct mutex *lock = container_of(lock_count, struct mutex, count);
 430        unsigned long flags;
 431        int prev;
 432
 433        spin_lock_mutex(&lock->wait_lock, flags);
 434
 435        prev = atomic_xchg(&lock->count, -1);
 436        if (likely(prev == 1)) {
 437                mutex_set_owner(lock);
 438                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
 439        }
 440
 441        /* Set it back to 0 if there are no waiters: */
 442        if (likely(list_empty(&lock->wait_list)))
 443                atomic_set(&lock->count, 0);
 444
 445        spin_unlock_mutex(&lock->wait_lock, flags);
 446
 447        return prev == 1;
 448}
 449
 450/**
 451 * mutex_trylock - try to acquire the mutex, without waiting
 452 * @lock: the mutex to be acquired
 453 *
 454 * Try to acquire the mutex atomically. Returns 1 if the mutex
 455 * has been acquired successfully, and 0 on contention.
 456 *
 457 * NOTE: this function follows the spin_trylock() convention, so
 458 * it is negated from the down_trylock() return values! Be careful
 459 * about this when converting semaphore users to mutexes.
 460 *
 461 * This function must not be used in interrupt context. The
 462 * mutex must be released by the same task that acquired it.
 463 */
 464int __sched mutex_trylock(struct mutex *lock)
 465{
 466        int ret;
 467
 468        ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
 469        if (ret)
 470                mutex_set_owner(lock);
 471
 472        return ret;
 473}
 474EXPORT_SYMBOL(mutex_trylock);
 475
 476/**
 477 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 478 * @cnt: the atomic which we are to dec
 479 * @lock: the mutex to return holding if we dec to 0
 480 *
 481 * return true and hold lock if we dec to 0, return false otherwise
 482 */
 483int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
 484{
 485        /* dec if we can't possibly hit 0 */
 486        if (atomic_add_unless(cnt, -1, 1))
 487                return 0;
 488        /* we might hit 0, so take the lock */
 489        mutex_lock(lock);
 490        if (!atomic_dec_and_test(cnt)) {
 491                /* when we actually did the dec, we didn't hit 0 */
 492                mutex_unlock(lock);
 493                return 0;
 494        }
 495        /* we hit 0, and we hold the lock */
 496        return 1;
 497}
 498EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
 499