linux/kernel/perf_event.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
  28#include <linux/vmalloc.h>
  29#include <linux/hardirq.h>
  30#include <linux/rculist.h>
  31#include <linux/uaccess.h>
  32#include <linux/syscalls.h>
  33#include <linux/anon_inodes.h>
  34#include <linux/kernel_stat.h>
  35#include <linux/perf_event.h>
  36#include <linux/ftrace_event.h>
  37#include <linux/hw_breakpoint.h>
  38
  39#include <asm/irq_regs.h>
  40
  41enum event_type_t {
  42        EVENT_FLEXIBLE = 0x1,
  43        EVENT_PINNED = 0x2,
  44        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  45};
  46
  47atomic_t perf_task_events __read_mostly;
  48static atomic_t nr_mmap_events __read_mostly;
  49static atomic_t nr_comm_events __read_mostly;
  50static atomic_t nr_task_events __read_mostly;
  51
  52static LIST_HEAD(pmus);
  53static DEFINE_MUTEX(pmus_lock);
  54static struct srcu_struct pmus_srcu;
  55
  56/*
  57 * perf event paranoia level:
  58 *  -1 - not paranoid at all
  59 *   0 - disallow raw tracepoint access for unpriv
  60 *   1 - disallow cpu events for unpriv
  61 *   2 - disallow kernel profiling for unpriv
  62 */
  63int sysctl_perf_event_paranoid __read_mostly = 1;
  64
  65int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  66
  67/*
  68 * max perf event sample rate
  69 */
  70int sysctl_perf_event_sample_rate __read_mostly = 100000;
  71
  72static atomic64_t perf_event_id;
  73
  74static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  75                              enum event_type_t event_type);
  76
  77static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  78                             enum event_type_t event_type);
  79
  80void __weak perf_event_print_debug(void)        { }
  81
  82extern __weak const char *perf_pmu_name(void)
  83{
  84        return "pmu";
  85}
  86
  87static inline u64 perf_clock(void)
  88{
  89        return local_clock();
  90}
  91
  92void perf_pmu_disable(struct pmu *pmu)
  93{
  94        int *count = this_cpu_ptr(pmu->pmu_disable_count);
  95        if (!(*count)++)
  96                pmu->pmu_disable(pmu);
  97}
  98
  99void perf_pmu_enable(struct pmu *pmu)
 100{
 101        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 102        if (!--(*count))
 103                pmu->pmu_enable(pmu);
 104}
 105
 106static DEFINE_PER_CPU(struct list_head, rotation_list);
 107
 108/*
 109 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 110 * because they're strictly cpu affine and rotate_start is called with IRQs
 111 * disabled, while rotate_context is called from IRQ context.
 112 */
 113static void perf_pmu_rotate_start(struct pmu *pmu)
 114{
 115        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 116        struct list_head *head = &__get_cpu_var(rotation_list);
 117
 118        WARN_ON(!irqs_disabled());
 119
 120        if (list_empty(&cpuctx->rotation_list))
 121                list_add(&cpuctx->rotation_list, head);
 122}
 123
 124static void get_ctx(struct perf_event_context *ctx)
 125{
 126        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 127}
 128
 129static void free_ctx(struct rcu_head *head)
 130{
 131        struct perf_event_context *ctx;
 132
 133        ctx = container_of(head, struct perf_event_context, rcu_head);
 134        kfree(ctx);
 135}
 136
 137static void put_ctx(struct perf_event_context *ctx)
 138{
 139        if (atomic_dec_and_test(&ctx->refcount)) {
 140                if (ctx->parent_ctx)
 141                        put_ctx(ctx->parent_ctx);
 142                if (ctx->task)
 143                        put_task_struct(ctx->task);
 144                call_rcu(&ctx->rcu_head, free_ctx);
 145        }
 146}
 147
 148static void unclone_ctx(struct perf_event_context *ctx)
 149{
 150        if (ctx->parent_ctx) {
 151                put_ctx(ctx->parent_ctx);
 152                ctx->parent_ctx = NULL;
 153        }
 154}
 155
 156static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 157{
 158        /*
 159         * only top level events have the pid namespace they were created in
 160         */
 161        if (event->parent)
 162                event = event->parent;
 163
 164        return task_tgid_nr_ns(p, event->ns);
 165}
 166
 167static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 168{
 169        /*
 170         * only top level events have the pid namespace they were created in
 171         */
 172        if (event->parent)
 173                event = event->parent;
 174
 175        return task_pid_nr_ns(p, event->ns);
 176}
 177
 178/*
 179 * If we inherit events we want to return the parent event id
 180 * to userspace.
 181 */
 182static u64 primary_event_id(struct perf_event *event)
 183{
 184        u64 id = event->id;
 185
 186        if (event->parent)
 187                id = event->parent->id;
 188
 189        return id;
 190}
 191
 192/*
 193 * Get the perf_event_context for a task and lock it.
 194 * This has to cope with with the fact that until it is locked,
 195 * the context could get moved to another task.
 196 */
 197static struct perf_event_context *
 198perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 199{
 200        struct perf_event_context *ctx;
 201
 202        rcu_read_lock();
 203retry:
 204        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 205        if (ctx) {
 206                /*
 207                 * If this context is a clone of another, it might
 208                 * get swapped for another underneath us by
 209                 * perf_event_task_sched_out, though the
 210                 * rcu_read_lock() protects us from any context
 211                 * getting freed.  Lock the context and check if it
 212                 * got swapped before we could get the lock, and retry
 213                 * if so.  If we locked the right context, then it
 214                 * can't get swapped on us any more.
 215                 */
 216                raw_spin_lock_irqsave(&ctx->lock, *flags);
 217                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 218                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 219                        goto retry;
 220                }
 221
 222                if (!atomic_inc_not_zero(&ctx->refcount)) {
 223                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 224                        ctx = NULL;
 225                }
 226        }
 227        rcu_read_unlock();
 228        return ctx;
 229}
 230
 231/*
 232 * Get the context for a task and increment its pin_count so it
 233 * can't get swapped to another task.  This also increments its
 234 * reference count so that the context can't get freed.
 235 */
 236static struct perf_event_context *
 237perf_pin_task_context(struct task_struct *task, int ctxn)
 238{
 239        struct perf_event_context *ctx;
 240        unsigned long flags;
 241
 242        ctx = perf_lock_task_context(task, ctxn, &flags);
 243        if (ctx) {
 244                ++ctx->pin_count;
 245                raw_spin_unlock_irqrestore(&ctx->lock, flags);
 246        }
 247        return ctx;
 248}
 249
 250static void perf_unpin_context(struct perf_event_context *ctx)
 251{
 252        unsigned long flags;
 253
 254        raw_spin_lock_irqsave(&ctx->lock, flags);
 255        --ctx->pin_count;
 256        raw_spin_unlock_irqrestore(&ctx->lock, flags);
 257        put_ctx(ctx);
 258}
 259
 260/*
 261 * Update the record of the current time in a context.
 262 */
 263static void update_context_time(struct perf_event_context *ctx)
 264{
 265        u64 now = perf_clock();
 266
 267        ctx->time += now - ctx->timestamp;
 268        ctx->timestamp = now;
 269}
 270
 271static u64 perf_event_time(struct perf_event *event)
 272{
 273        struct perf_event_context *ctx = event->ctx;
 274        return ctx ? ctx->time : 0;
 275}
 276
 277/*
 278 * Update the total_time_enabled and total_time_running fields for a event.
 279 */
 280static void update_event_times(struct perf_event *event)
 281{
 282        struct perf_event_context *ctx = event->ctx;
 283        u64 run_end;
 284
 285        if (event->state < PERF_EVENT_STATE_INACTIVE ||
 286            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 287                return;
 288
 289        if (ctx->is_active)
 290                run_end = perf_event_time(event);
 291        else
 292                run_end = event->tstamp_stopped;
 293
 294        event->total_time_enabled = run_end - event->tstamp_enabled;
 295
 296        if (event->state == PERF_EVENT_STATE_INACTIVE)
 297                run_end = event->tstamp_stopped;
 298        else
 299                run_end = perf_event_time(event);
 300
 301        event->total_time_running = run_end - event->tstamp_running;
 302}
 303
 304/*
 305 * Update total_time_enabled and total_time_running for all events in a group.
 306 */
 307static void update_group_times(struct perf_event *leader)
 308{
 309        struct perf_event *event;
 310
 311        update_event_times(leader);
 312        list_for_each_entry(event, &leader->sibling_list, group_entry)
 313                update_event_times(event);
 314}
 315
 316static struct list_head *
 317ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 318{
 319        if (event->attr.pinned)
 320                return &ctx->pinned_groups;
 321        else
 322                return &ctx->flexible_groups;
 323}
 324
 325/*
 326 * Add a event from the lists for its context.
 327 * Must be called with ctx->mutex and ctx->lock held.
 328 */
 329static void
 330list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 331{
 332        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 333        event->attach_state |= PERF_ATTACH_CONTEXT;
 334
 335        /*
 336         * If we're a stand alone event or group leader, we go to the context
 337         * list, group events are kept attached to the group so that
 338         * perf_group_detach can, at all times, locate all siblings.
 339         */
 340        if (event->group_leader == event) {
 341                struct list_head *list;
 342
 343                if (is_software_event(event))
 344                        event->group_flags |= PERF_GROUP_SOFTWARE;
 345
 346                list = ctx_group_list(event, ctx);
 347                list_add_tail(&event->group_entry, list);
 348        }
 349
 350        list_add_rcu(&event->event_entry, &ctx->event_list);
 351        if (!ctx->nr_events)
 352                perf_pmu_rotate_start(ctx->pmu);
 353        ctx->nr_events++;
 354        if (event->attr.inherit_stat)
 355                ctx->nr_stat++;
 356}
 357
 358/*
 359 * Called at perf_event creation and when events are attached/detached from a
 360 * group.
 361 */
 362static void perf_event__read_size(struct perf_event *event)
 363{
 364        int entry = sizeof(u64); /* value */
 365        int size = 0;
 366        int nr = 1;
 367
 368        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 369                size += sizeof(u64);
 370
 371        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 372                size += sizeof(u64);
 373
 374        if (event->attr.read_format & PERF_FORMAT_ID)
 375                entry += sizeof(u64);
 376
 377        if (event->attr.read_format & PERF_FORMAT_GROUP) {
 378                nr += event->group_leader->nr_siblings;
 379                size += sizeof(u64);
 380        }
 381
 382        size += entry * nr;
 383        event->read_size = size;
 384}
 385
 386static void perf_event__header_size(struct perf_event *event)
 387{
 388        struct perf_sample_data *data;
 389        u64 sample_type = event->attr.sample_type;
 390        u16 size = 0;
 391
 392        perf_event__read_size(event);
 393
 394        if (sample_type & PERF_SAMPLE_IP)
 395                size += sizeof(data->ip);
 396
 397        if (sample_type & PERF_SAMPLE_ADDR)
 398                size += sizeof(data->addr);
 399
 400        if (sample_type & PERF_SAMPLE_PERIOD)
 401                size += sizeof(data->period);
 402
 403        if (sample_type & PERF_SAMPLE_READ)
 404                size += event->read_size;
 405
 406        event->header_size = size;
 407}
 408
 409static void perf_event__id_header_size(struct perf_event *event)
 410{
 411        struct perf_sample_data *data;
 412        u64 sample_type = event->attr.sample_type;
 413        u16 size = 0;
 414
 415        if (sample_type & PERF_SAMPLE_TID)
 416                size += sizeof(data->tid_entry);
 417
 418        if (sample_type & PERF_SAMPLE_TIME)
 419                size += sizeof(data->time);
 420
 421        if (sample_type & PERF_SAMPLE_ID)
 422                size += sizeof(data->id);
 423
 424        if (sample_type & PERF_SAMPLE_STREAM_ID)
 425                size += sizeof(data->stream_id);
 426
 427        if (sample_type & PERF_SAMPLE_CPU)
 428                size += sizeof(data->cpu_entry);
 429
 430        event->id_header_size = size;
 431}
 432
 433static void perf_group_attach(struct perf_event *event)
 434{
 435        struct perf_event *group_leader = event->group_leader, *pos;
 436
 437        /*
 438         * We can have double attach due to group movement in perf_event_open.
 439         */
 440        if (event->attach_state & PERF_ATTACH_GROUP)
 441                return;
 442
 443        event->attach_state |= PERF_ATTACH_GROUP;
 444
 445        if (group_leader == event)
 446                return;
 447
 448        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 449                        !is_software_event(event))
 450                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 451
 452        list_add_tail(&event->group_entry, &group_leader->sibling_list);
 453        group_leader->nr_siblings++;
 454
 455        perf_event__header_size(group_leader);
 456
 457        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
 458                perf_event__header_size(pos);
 459}
 460
 461/*
 462 * Remove a event from the lists for its context.
 463 * Must be called with ctx->mutex and ctx->lock held.
 464 */
 465static void
 466list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 467{
 468        /*
 469         * We can have double detach due to exit/hot-unplug + close.
 470         */
 471        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
 472                return;
 473
 474        event->attach_state &= ~PERF_ATTACH_CONTEXT;
 475
 476        ctx->nr_events--;
 477        if (event->attr.inherit_stat)
 478                ctx->nr_stat--;
 479
 480        list_del_rcu(&event->event_entry);
 481
 482        if (event->group_leader == event)
 483                list_del_init(&event->group_entry);
 484
 485        update_group_times(event);
 486
 487        /*
 488         * If event was in error state, then keep it
 489         * that way, otherwise bogus counts will be
 490         * returned on read(). The only way to get out
 491         * of error state is by explicit re-enabling
 492         * of the event
 493         */
 494        if (event->state > PERF_EVENT_STATE_OFF)
 495                event->state = PERF_EVENT_STATE_OFF;
 496}
 497
 498static void perf_group_detach(struct perf_event *event)
 499{
 500        struct perf_event *sibling, *tmp;
 501        struct list_head *list = NULL;
 502
 503        /*
 504         * We can have double detach due to exit/hot-unplug + close.
 505         */
 506        if (!(event->attach_state & PERF_ATTACH_GROUP))
 507                return;
 508
 509        event->attach_state &= ~PERF_ATTACH_GROUP;
 510
 511        /*
 512         * If this is a sibling, remove it from its group.
 513         */
 514        if (event->group_leader != event) {
 515                list_del_init(&event->group_entry);
 516                event->group_leader->nr_siblings--;
 517                goto out;
 518        }
 519
 520        if (!list_empty(&event->group_entry))
 521                list = &event->group_entry;
 522
 523        /*
 524         * If this was a group event with sibling events then
 525         * upgrade the siblings to singleton events by adding them
 526         * to whatever list we are on.
 527         */
 528        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
 529                if (list)
 530                        list_move_tail(&sibling->group_entry, list);
 531                sibling->group_leader = sibling;
 532
 533                /* Inherit group flags from the previous leader */
 534                sibling->group_flags = event->group_flags;
 535        }
 536
 537out:
 538        perf_event__header_size(event->group_leader);
 539
 540        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
 541                perf_event__header_size(tmp);
 542}
 543
 544static inline int
 545event_filter_match(struct perf_event *event)
 546{
 547        return event->cpu == -1 || event->cpu == smp_processor_id();
 548}
 549
 550static void
 551event_sched_out(struct perf_event *event,
 552                  struct perf_cpu_context *cpuctx,
 553                  struct perf_event_context *ctx)
 554{
 555        u64 tstamp = perf_event_time(event);
 556        u64 delta;
 557        /*
 558         * An event which could not be activated because of
 559         * filter mismatch still needs to have its timings
 560         * maintained, otherwise bogus information is return
 561         * via read() for time_enabled, time_running:
 562         */
 563        if (event->state == PERF_EVENT_STATE_INACTIVE
 564            && !event_filter_match(event)) {
 565                delta = ctx->time - event->tstamp_stopped;
 566                event->tstamp_running += delta;
 567                event->tstamp_stopped = tstamp;
 568        }
 569
 570        if (event->state != PERF_EVENT_STATE_ACTIVE)
 571                return;
 572
 573        event->state = PERF_EVENT_STATE_INACTIVE;
 574        if (event->pending_disable) {
 575                event->pending_disable = 0;
 576                event->state = PERF_EVENT_STATE_OFF;
 577        }
 578        event->tstamp_stopped = tstamp;
 579        event->pmu->del(event, 0);
 580        event->oncpu = -1;
 581
 582        if (!is_software_event(event))
 583                cpuctx->active_oncpu--;
 584        ctx->nr_active--;
 585        if (event->attr.exclusive || !cpuctx->active_oncpu)
 586                cpuctx->exclusive = 0;
 587}
 588
 589static void
 590group_sched_out(struct perf_event *group_event,
 591                struct perf_cpu_context *cpuctx,
 592                struct perf_event_context *ctx)
 593{
 594        struct perf_event *event;
 595        int state = group_event->state;
 596
 597        event_sched_out(group_event, cpuctx, ctx);
 598
 599        /*
 600         * Schedule out siblings (if any):
 601         */
 602        list_for_each_entry(event, &group_event->sibling_list, group_entry)
 603                event_sched_out(event, cpuctx, ctx);
 604
 605        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
 606                cpuctx->exclusive = 0;
 607}
 608
 609static inline struct perf_cpu_context *
 610__get_cpu_context(struct perf_event_context *ctx)
 611{
 612        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 613}
 614
 615/*
 616 * Cross CPU call to remove a performance event
 617 *
 618 * We disable the event on the hardware level first. After that we
 619 * remove it from the context list.
 620 */
 621static void __perf_event_remove_from_context(void *info)
 622{
 623        struct perf_event *event = info;
 624        struct perf_event_context *ctx = event->ctx;
 625        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 626
 627        /*
 628         * If this is a task context, we need to check whether it is
 629         * the current task context of this cpu. If not it has been
 630         * scheduled out before the smp call arrived.
 631         */
 632        if (ctx->task && cpuctx->task_ctx != ctx)
 633                return;
 634
 635        raw_spin_lock(&ctx->lock);
 636
 637        event_sched_out(event, cpuctx, ctx);
 638
 639        list_del_event(event, ctx);
 640
 641        raw_spin_unlock(&ctx->lock);
 642}
 643
 644
 645/*
 646 * Remove the event from a task's (or a CPU's) list of events.
 647 *
 648 * Must be called with ctx->mutex held.
 649 *
 650 * CPU events are removed with a smp call. For task events we only
 651 * call when the task is on a CPU.
 652 *
 653 * If event->ctx is a cloned context, callers must make sure that
 654 * every task struct that event->ctx->task could possibly point to
 655 * remains valid.  This is OK when called from perf_release since
 656 * that only calls us on the top-level context, which can't be a clone.
 657 * When called from perf_event_exit_task, it's OK because the
 658 * context has been detached from its task.
 659 */
 660static void perf_event_remove_from_context(struct perf_event *event)
 661{
 662        struct perf_event_context *ctx = event->ctx;
 663        struct task_struct *task = ctx->task;
 664
 665        if (!task) {
 666                /*
 667                 * Per cpu events are removed via an smp call and
 668                 * the removal is always successful.
 669                 */
 670                smp_call_function_single(event->cpu,
 671                                         __perf_event_remove_from_context,
 672                                         event, 1);
 673                return;
 674        }
 675
 676retry:
 677        task_oncpu_function_call(task, __perf_event_remove_from_context,
 678                                 event);
 679
 680        raw_spin_lock_irq(&ctx->lock);
 681        /*
 682         * If the context is active we need to retry the smp call.
 683         */
 684        if (ctx->nr_active && !list_empty(&event->group_entry)) {
 685                raw_spin_unlock_irq(&ctx->lock);
 686                goto retry;
 687        }
 688
 689        /*
 690         * The lock prevents that this context is scheduled in so we
 691         * can remove the event safely, if the call above did not
 692         * succeed.
 693         */
 694        if (!list_empty(&event->group_entry))
 695                list_del_event(event, ctx);
 696        raw_spin_unlock_irq(&ctx->lock);
 697}
 698
 699/*
 700 * Cross CPU call to disable a performance event
 701 */
 702static void __perf_event_disable(void *info)
 703{
 704        struct perf_event *event = info;
 705        struct perf_event_context *ctx = event->ctx;
 706        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 707
 708        /*
 709         * If this is a per-task event, need to check whether this
 710         * event's task is the current task on this cpu.
 711         */
 712        if (ctx->task && cpuctx->task_ctx != ctx)
 713                return;
 714
 715        raw_spin_lock(&ctx->lock);
 716
 717        /*
 718         * If the event is on, turn it off.
 719         * If it is in error state, leave it in error state.
 720         */
 721        if (event->state >= PERF_EVENT_STATE_INACTIVE) {
 722                update_context_time(ctx);
 723                update_group_times(event);
 724                if (event == event->group_leader)
 725                        group_sched_out(event, cpuctx, ctx);
 726                else
 727                        event_sched_out(event, cpuctx, ctx);
 728                event->state = PERF_EVENT_STATE_OFF;
 729        }
 730
 731        raw_spin_unlock(&ctx->lock);
 732}
 733
 734/*
 735 * Disable a event.
 736 *
 737 * If event->ctx is a cloned context, callers must make sure that
 738 * every task struct that event->ctx->task could possibly point to
 739 * remains valid.  This condition is satisifed when called through
 740 * perf_event_for_each_child or perf_event_for_each because they
 741 * hold the top-level event's child_mutex, so any descendant that
 742 * goes to exit will block in sync_child_event.
 743 * When called from perf_pending_event it's OK because event->ctx
 744 * is the current context on this CPU and preemption is disabled,
 745 * hence we can't get into perf_event_task_sched_out for this context.
 746 */
 747void perf_event_disable(struct perf_event *event)
 748{
 749        struct perf_event_context *ctx = event->ctx;
 750        struct task_struct *task = ctx->task;
 751
 752        if (!task) {
 753                /*
 754                 * Disable the event on the cpu that it's on
 755                 */
 756                smp_call_function_single(event->cpu, __perf_event_disable,
 757                                         event, 1);
 758                return;
 759        }
 760
 761retry:
 762        task_oncpu_function_call(task, __perf_event_disable, event);
 763
 764        raw_spin_lock_irq(&ctx->lock);
 765        /*
 766         * If the event is still active, we need to retry the cross-call.
 767         */
 768        if (event->state == PERF_EVENT_STATE_ACTIVE) {
 769                raw_spin_unlock_irq(&ctx->lock);
 770                goto retry;
 771        }
 772
 773        /*
 774         * Since we have the lock this context can't be scheduled
 775         * in, so we can change the state safely.
 776         */
 777        if (event->state == PERF_EVENT_STATE_INACTIVE) {
 778                update_group_times(event);
 779                event->state = PERF_EVENT_STATE_OFF;
 780        }
 781
 782        raw_spin_unlock_irq(&ctx->lock);
 783}
 784
 785#define MAX_INTERRUPTS (~0ULL)
 786
 787static void perf_log_throttle(struct perf_event *event, int enable);
 788
 789static int
 790event_sched_in(struct perf_event *event,
 791                 struct perf_cpu_context *cpuctx,
 792                 struct perf_event_context *ctx)
 793{
 794        u64 tstamp = perf_event_time(event);
 795
 796        if (event->state <= PERF_EVENT_STATE_OFF)
 797                return 0;
 798
 799        event->state = PERF_EVENT_STATE_ACTIVE;
 800        event->oncpu = smp_processor_id();
 801
 802        /*
 803         * Unthrottle events, since we scheduled we might have missed several
 804         * ticks already, also for a heavily scheduling task there is little
 805         * guarantee it'll get a tick in a timely manner.
 806         */
 807        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
 808                perf_log_throttle(event, 1);
 809                event->hw.interrupts = 0;
 810        }
 811
 812        /*
 813         * The new state must be visible before we turn it on in the hardware:
 814         */
 815        smp_wmb();
 816
 817        if (event->pmu->add(event, PERF_EF_START)) {
 818                event->state = PERF_EVENT_STATE_INACTIVE;
 819                event->oncpu = -1;
 820                return -EAGAIN;
 821        }
 822
 823        event->tstamp_running += tstamp - event->tstamp_stopped;
 824
 825        event->shadow_ctx_time = tstamp - ctx->timestamp;
 826
 827        if (!is_software_event(event))
 828                cpuctx->active_oncpu++;
 829        ctx->nr_active++;
 830
 831        if (event->attr.exclusive)
 832                cpuctx->exclusive = 1;
 833
 834        return 0;
 835}
 836
 837static int
 838group_sched_in(struct perf_event *group_event,
 839               struct perf_cpu_context *cpuctx,
 840               struct perf_event_context *ctx)
 841{
 842        struct perf_event *event, *partial_group = NULL;
 843        struct pmu *pmu = group_event->pmu;
 844        u64 now = ctx->time;
 845        bool simulate = false;
 846
 847        if (group_event->state == PERF_EVENT_STATE_OFF)
 848                return 0;
 849
 850        pmu->start_txn(pmu);
 851
 852        if (event_sched_in(group_event, cpuctx, ctx)) {
 853                pmu->cancel_txn(pmu);
 854                return -EAGAIN;
 855        }
 856
 857        /*
 858         * Schedule in siblings as one group (if any):
 859         */
 860        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 861                if (event_sched_in(event, cpuctx, ctx)) {
 862                        partial_group = event;
 863                        goto group_error;
 864                }
 865        }
 866
 867        if (!pmu->commit_txn(pmu))
 868                return 0;
 869
 870group_error:
 871        /*
 872         * Groups can be scheduled in as one unit only, so undo any
 873         * partial group before returning:
 874         * The events up to the failed event are scheduled out normally,
 875         * tstamp_stopped will be updated.
 876         *
 877         * The failed events and the remaining siblings need to have
 878         * their timings updated as if they had gone thru event_sched_in()
 879         * and event_sched_out(). This is required to get consistent timings
 880         * across the group. This also takes care of the case where the group
 881         * could never be scheduled by ensuring tstamp_stopped is set to mark
 882         * the time the event was actually stopped, such that time delta
 883         * calculation in update_event_times() is correct.
 884         */
 885        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 886                if (event == partial_group)
 887                        simulate = true;
 888
 889                if (simulate) {
 890                        event->tstamp_running += now - event->tstamp_stopped;
 891                        event->tstamp_stopped = now;
 892                } else {
 893                        event_sched_out(event, cpuctx, ctx);
 894                }
 895        }
 896        event_sched_out(group_event, cpuctx, ctx);
 897
 898        pmu->cancel_txn(pmu);
 899
 900        return -EAGAIN;
 901}
 902
 903/*
 904 * Work out whether we can put this event group on the CPU now.
 905 */
 906static int group_can_go_on(struct perf_event *event,
 907                           struct perf_cpu_context *cpuctx,
 908                           int can_add_hw)
 909{
 910        /*
 911         * Groups consisting entirely of software events can always go on.
 912         */
 913        if (event->group_flags & PERF_GROUP_SOFTWARE)
 914                return 1;
 915        /*
 916         * If an exclusive group is already on, no other hardware
 917         * events can go on.
 918         */
 919        if (cpuctx->exclusive)
 920                return 0;
 921        /*
 922         * If this group is exclusive and there are already
 923         * events on the CPU, it can't go on.
 924         */
 925        if (event->attr.exclusive && cpuctx->active_oncpu)
 926                return 0;
 927        /*
 928         * Otherwise, try to add it if all previous groups were able
 929         * to go on.
 930         */
 931        return can_add_hw;
 932}
 933
 934static void add_event_to_ctx(struct perf_event *event,
 935                               struct perf_event_context *ctx)
 936{
 937        u64 tstamp = perf_event_time(event);
 938
 939        list_add_event(event, ctx);
 940        perf_group_attach(event);
 941        event->tstamp_enabled = tstamp;
 942        event->tstamp_running = tstamp;
 943        event->tstamp_stopped = tstamp;
 944}
 945
 946/*
 947 * Cross CPU call to install and enable a performance event
 948 *
 949 * Must be called with ctx->mutex held
 950 */
 951static void __perf_install_in_context(void *info)
 952{
 953        struct perf_event *event = info;
 954        struct perf_event_context *ctx = event->ctx;
 955        struct perf_event *leader = event->group_leader;
 956        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 957        int err;
 958
 959        /*
 960         * If this is a task context, we need to check whether it is
 961         * the current task context of this cpu. If not it has been
 962         * scheduled out before the smp call arrived.
 963         * Or possibly this is the right context but it isn't
 964         * on this cpu because it had no events.
 965         */
 966        if (ctx->task && cpuctx->task_ctx != ctx) {
 967                if (cpuctx->task_ctx || ctx->task != current)
 968                        return;
 969                cpuctx->task_ctx = ctx;
 970        }
 971
 972        raw_spin_lock(&ctx->lock);
 973        ctx->is_active = 1;
 974        update_context_time(ctx);
 975
 976        add_event_to_ctx(event, ctx);
 977
 978        if (!event_filter_match(event))
 979                goto unlock;
 980
 981        /*
 982         * Don't put the event on if it is disabled or if
 983         * it is in a group and the group isn't on.
 984         */
 985        if (event->state != PERF_EVENT_STATE_INACTIVE ||
 986            (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
 987                goto unlock;
 988
 989        /*
 990         * An exclusive event can't go on if there are already active
 991         * hardware events, and no hardware event can go on if there
 992         * is already an exclusive event on.
 993         */
 994        if (!group_can_go_on(event, cpuctx, 1))
 995                err = -EEXIST;
 996        else
 997                err = event_sched_in(event, cpuctx, ctx);
 998
 999        if (err) {
1000                /*
1001                 * This event couldn't go on.  If it is in a group
1002                 * then we have to pull the whole group off.
1003                 * If the event group is pinned then put it in error state.
1004                 */
1005                if (leader != event)
1006                        group_sched_out(leader, cpuctx, ctx);
1007                if (leader->attr.pinned) {
1008                        update_group_times(leader);
1009                        leader->state = PERF_EVENT_STATE_ERROR;
1010                }
1011        }
1012
1013unlock:
1014        raw_spin_unlock(&ctx->lock);
1015}
1016
1017/*
1018 * Attach a performance event to a context
1019 *
1020 * First we add the event to the list with the hardware enable bit
1021 * in event->hw_config cleared.
1022 *
1023 * If the event is attached to a task which is on a CPU we use a smp
1024 * call to enable it in the task context. The task might have been
1025 * scheduled away, but we check this in the smp call again.
1026 *
1027 * Must be called with ctx->mutex held.
1028 */
1029static void
1030perf_install_in_context(struct perf_event_context *ctx,
1031                        struct perf_event *event,
1032                        int cpu)
1033{
1034        struct task_struct *task = ctx->task;
1035
1036        event->ctx = ctx;
1037
1038        if (!task) {
1039                /*
1040                 * Per cpu events are installed via an smp call and
1041                 * the install is always successful.
1042                 */
1043                smp_call_function_single(cpu, __perf_install_in_context,
1044                                         event, 1);
1045                return;
1046        }
1047
1048retry:
1049        task_oncpu_function_call(task, __perf_install_in_context,
1050                                 event);
1051
1052        raw_spin_lock_irq(&ctx->lock);
1053        /*
1054         * we need to retry the smp call.
1055         */
1056        if (ctx->is_active && list_empty(&event->group_entry)) {
1057                raw_spin_unlock_irq(&ctx->lock);
1058                goto retry;
1059        }
1060
1061        /*
1062         * The lock prevents that this context is scheduled in so we
1063         * can add the event safely, if it the call above did not
1064         * succeed.
1065         */
1066        if (list_empty(&event->group_entry))
1067                add_event_to_ctx(event, ctx);
1068        raw_spin_unlock_irq(&ctx->lock);
1069}
1070
1071/*
1072 * Put a event into inactive state and update time fields.
1073 * Enabling the leader of a group effectively enables all
1074 * the group members that aren't explicitly disabled, so we
1075 * have to update their ->tstamp_enabled also.
1076 * Note: this works for group members as well as group leaders
1077 * since the non-leader members' sibling_lists will be empty.
1078 */
1079static void __perf_event_mark_enabled(struct perf_event *event,
1080                                        struct perf_event_context *ctx)
1081{
1082        struct perf_event *sub;
1083        u64 tstamp = perf_event_time(event);
1084
1085        event->state = PERF_EVENT_STATE_INACTIVE;
1086        event->tstamp_enabled = tstamp - event->total_time_enabled;
1087        list_for_each_entry(sub, &event->sibling_list, group_entry) {
1088                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1089                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1090        }
1091}
1092
1093/*
1094 * Cross CPU call to enable a performance event
1095 */
1096static void __perf_event_enable(void *info)
1097{
1098        struct perf_event *event = info;
1099        struct perf_event_context *ctx = event->ctx;
1100        struct perf_event *leader = event->group_leader;
1101        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1102        int err;
1103
1104        /*
1105         * If this is a per-task event, need to check whether this
1106         * event's task is the current task on this cpu.
1107         */
1108        if (ctx->task && cpuctx->task_ctx != ctx) {
1109                if (cpuctx->task_ctx || ctx->task != current)
1110                        return;
1111                cpuctx->task_ctx = ctx;
1112        }
1113
1114        raw_spin_lock(&ctx->lock);
1115        ctx->is_active = 1;
1116        update_context_time(ctx);
1117
1118        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1119                goto unlock;
1120        __perf_event_mark_enabled(event, ctx);
1121
1122        if (!event_filter_match(event))
1123                goto unlock;
1124
1125        /*
1126         * If the event is in a group and isn't the group leader,
1127         * then don't put it on unless the group is on.
1128         */
1129        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1130                goto unlock;
1131
1132        if (!group_can_go_on(event, cpuctx, 1)) {
1133                err = -EEXIST;
1134        } else {
1135                if (event == leader)
1136                        err = group_sched_in(event, cpuctx, ctx);
1137                else
1138                        err = event_sched_in(event, cpuctx, ctx);
1139        }
1140
1141        if (err) {
1142                /*
1143                 * If this event can't go on and it's part of a
1144                 * group, then the whole group has to come off.
1145                 */
1146                if (leader != event)
1147                        group_sched_out(leader, cpuctx, ctx);
1148                if (leader->attr.pinned) {
1149                        update_group_times(leader);
1150                        leader->state = PERF_EVENT_STATE_ERROR;
1151                }
1152        }
1153
1154unlock:
1155        raw_spin_unlock(&ctx->lock);
1156}
1157
1158/*
1159 * Enable a event.
1160 *
1161 * If event->ctx is a cloned context, callers must make sure that
1162 * every task struct that event->ctx->task could possibly point to
1163 * remains valid.  This condition is satisfied when called through
1164 * perf_event_for_each_child or perf_event_for_each as described
1165 * for perf_event_disable.
1166 */
1167void perf_event_enable(struct perf_event *event)
1168{
1169        struct perf_event_context *ctx = event->ctx;
1170        struct task_struct *task = ctx->task;
1171
1172        if (!task) {
1173                /*
1174                 * Enable the event on the cpu that it's on
1175                 */
1176                smp_call_function_single(event->cpu, __perf_event_enable,
1177                                         event, 1);
1178                return;
1179        }
1180
1181        raw_spin_lock_irq(&ctx->lock);
1182        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1183                goto out;
1184
1185        /*
1186         * If the event is in error state, clear that first.
1187         * That way, if we see the event in error state below, we
1188         * know that it has gone back into error state, as distinct
1189         * from the task having been scheduled away before the
1190         * cross-call arrived.
1191         */
1192        if (event->state == PERF_EVENT_STATE_ERROR)
1193                event->state = PERF_EVENT_STATE_OFF;
1194
1195retry:
1196        raw_spin_unlock_irq(&ctx->lock);
1197        task_oncpu_function_call(task, __perf_event_enable, event);
1198
1199        raw_spin_lock_irq(&ctx->lock);
1200
1201        /*
1202         * If the context is active and the event is still off,
1203         * we need to retry the cross-call.
1204         */
1205        if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1206                goto retry;
1207
1208        /*
1209         * Since we have the lock this context can't be scheduled
1210         * in, so we can change the state safely.
1211         */
1212        if (event->state == PERF_EVENT_STATE_OFF)
1213                __perf_event_mark_enabled(event, ctx);
1214
1215out:
1216        raw_spin_unlock_irq(&ctx->lock);
1217}
1218
1219static int perf_event_refresh(struct perf_event *event, int refresh)
1220{
1221        /*
1222         * not supported on inherited events
1223         */
1224        if (event->attr.inherit || !is_sampling_event(event))
1225                return -EINVAL;
1226
1227        atomic_add(refresh, &event->event_limit);
1228        perf_event_enable(event);
1229
1230        return 0;
1231}
1232
1233static void ctx_sched_out(struct perf_event_context *ctx,
1234                          struct perf_cpu_context *cpuctx,
1235                          enum event_type_t event_type)
1236{
1237        struct perf_event *event;
1238
1239        raw_spin_lock(&ctx->lock);
1240        perf_pmu_disable(ctx->pmu);
1241        ctx->is_active = 0;
1242        if (likely(!ctx->nr_events))
1243                goto out;
1244        update_context_time(ctx);
1245
1246        if (!ctx->nr_active)
1247                goto out;
1248
1249        if (event_type & EVENT_PINNED) {
1250                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1251                        group_sched_out(event, cpuctx, ctx);
1252        }
1253
1254        if (event_type & EVENT_FLEXIBLE) {
1255                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1256                        group_sched_out(event, cpuctx, ctx);
1257        }
1258out:
1259        perf_pmu_enable(ctx->pmu);
1260        raw_spin_unlock(&ctx->lock);
1261}
1262
1263/*
1264 * Test whether two contexts are equivalent, i.e. whether they
1265 * have both been cloned from the same version of the same context
1266 * and they both have the same number of enabled events.
1267 * If the number of enabled events is the same, then the set
1268 * of enabled events should be the same, because these are both
1269 * inherited contexts, therefore we can't access individual events
1270 * in them directly with an fd; we can only enable/disable all
1271 * events via prctl, or enable/disable all events in a family
1272 * via ioctl, which will have the same effect on both contexts.
1273 */
1274static int context_equiv(struct perf_event_context *ctx1,
1275                         struct perf_event_context *ctx2)
1276{
1277        return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1278                && ctx1->parent_gen == ctx2->parent_gen
1279                && !ctx1->pin_count && !ctx2->pin_count;
1280}
1281
1282static void __perf_event_sync_stat(struct perf_event *event,
1283                                     struct perf_event *next_event)
1284{
1285        u64 value;
1286
1287        if (!event->attr.inherit_stat)
1288                return;
1289
1290        /*
1291         * Update the event value, we cannot use perf_event_read()
1292         * because we're in the middle of a context switch and have IRQs
1293         * disabled, which upsets smp_call_function_single(), however
1294         * we know the event must be on the current CPU, therefore we
1295         * don't need to use it.
1296         */
1297        switch (event->state) {
1298        case PERF_EVENT_STATE_ACTIVE:
1299                event->pmu->read(event);
1300                /* fall-through */
1301
1302        case PERF_EVENT_STATE_INACTIVE:
1303                update_event_times(event);
1304                break;
1305
1306        default:
1307                break;
1308        }
1309
1310        /*
1311         * In order to keep per-task stats reliable we need to flip the event
1312         * values when we flip the contexts.
1313         */
1314        value = local64_read(&next_event->count);
1315        value = local64_xchg(&event->count, value);
1316        local64_set(&next_event->count, value);
1317
1318        swap(event->total_time_enabled, next_event->total_time_enabled);
1319        swap(event->total_time_running, next_event->total_time_running);
1320
1321        /*
1322         * Since we swizzled the values, update the user visible data too.
1323         */
1324        perf_event_update_userpage(event);
1325        perf_event_update_userpage(next_event);
1326}
1327
1328#define list_next_entry(pos, member) \
1329        list_entry(pos->member.next, typeof(*pos), member)
1330
1331static void perf_event_sync_stat(struct perf_event_context *ctx,
1332                                   struct perf_event_context *next_ctx)
1333{
1334        struct perf_event *event, *next_event;
1335
1336        if (!ctx->nr_stat)
1337                return;
1338
1339        update_context_time(ctx);
1340
1341        event = list_first_entry(&ctx->event_list,
1342                                   struct perf_event, event_entry);
1343
1344        next_event = list_first_entry(&next_ctx->event_list,
1345                                        struct perf_event, event_entry);
1346
1347        while (&event->event_entry != &ctx->event_list &&
1348               &next_event->event_entry != &next_ctx->event_list) {
1349
1350                __perf_event_sync_stat(event, next_event);
1351
1352                event = list_next_entry(event, event_entry);
1353                next_event = list_next_entry(next_event, event_entry);
1354        }
1355}
1356
1357void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1358                                  struct task_struct *next)
1359{
1360        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1361        struct perf_event_context *next_ctx;
1362        struct perf_event_context *parent;
1363        struct perf_cpu_context *cpuctx;
1364        int do_switch = 1;
1365
1366        if (likely(!ctx))
1367                return;
1368
1369        cpuctx = __get_cpu_context(ctx);
1370        if (!cpuctx->task_ctx)
1371                return;
1372
1373        rcu_read_lock();
1374        parent = rcu_dereference(ctx->parent_ctx);
1375        next_ctx = next->perf_event_ctxp[ctxn];
1376        if (parent && next_ctx &&
1377            rcu_dereference(next_ctx->parent_ctx) == parent) {
1378                /*
1379                 * Looks like the two contexts are clones, so we might be
1380                 * able to optimize the context switch.  We lock both
1381                 * contexts and check that they are clones under the
1382                 * lock (including re-checking that neither has been
1383                 * uncloned in the meantime).  It doesn't matter which
1384                 * order we take the locks because no other cpu could
1385                 * be trying to lock both of these tasks.
1386                 */
1387                raw_spin_lock(&ctx->lock);
1388                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1389                if (context_equiv(ctx, next_ctx)) {
1390                        /*
1391                         * XXX do we need a memory barrier of sorts
1392                         * wrt to rcu_dereference() of perf_event_ctxp
1393                         */
1394                        task->perf_event_ctxp[ctxn] = next_ctx;
1395                        next->perf_event_ctxp[ctxn] = ctx;
1396                        ctx->task = next;
1397                        next_ctx->task = task;
1398                        do_switch = 0;
1399
1400                        perf_event_sync_stat(ctx, next_ctx);
1401                }
1402                raw_spin_unlock(&next_ctx->lock);
1403                raw_spin_unlock(&ctx->lock);
1404        }
1405        rcu_read_unlock();
1406
1407        if (do_switch) {
1408                ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1409                cpuctx->task_ctx = NULL;
1410        }
1411}
1412
1413#define for_each_task_context_nr(ctxn)                                  \
1414        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1415
1416/*
1417 * Called from scheduler to remove the events of the current task,
1418 * with interrupts disabled.
1419 *
1420 * We stop each event and update the event value in event->count.
1421 *
1422 * This does not protect us against NMI, but disable()
1423 * sets the disabled bit in the control field of event _before_
1424 * accessing the event control register. If a NMI hits, then it will
1425 * not restart the event.
1426 */
1427void __perf_event_task_sched_out(struct task_struct *task,
1428                                 struct task_struct *next)
1429{
1430        int ctxn;
1431
1432        for_each_task_context_nr(ctxn)
1433                perf_event_context_sched_out(task, ctxn, next);
1434}
1435
1436static void task_ctx_sched_out(struct perf_event_context *ctx,
1437                               enum event_type_t event_type)
1438{
1439        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1440
1441        if (!cpuctx->task_ctx)
1442                return;
1443
1444        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1445                return;
1446
1447        ctx_sched_out(ctx, cpuctx, event_type);
1448        cpuctx->task_ctx = NULL;
1449}
1450
1451/*
1452 * Called with IRQs disabled
1453 */
1454static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1455                              enum event_type_t event_type)
1456{
1457        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1458}
1459
1460static void
1461ctx_pinned_sched_in(struct perf_event_context *ctx,
1462                    struct perf_cpu_context *cpuctx)
1463{
1464        struct perf_event *event;
1465
1466        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1467                if (event->state <= PERF_EVENT_STATE_OFF)
1468                        continue;
1469                if (!event_filter_match(event))
1470                        continue;
1471
1472                if (group_can_go_on(event, cpuctx, 1))
1473                        group_sched_in(event, cpuctx, ctx);
1474
1475                /*
1476                 * If this pinned group hasn't been scheduled,
1477                 * put it in error state.
1478                 */
1479                if (event->state == PERF_EVENT_STATE_INACTIVE) {
1480                        update_group_times(event);
1481                        event->state = PERF_EVENT_STATE_ERROR;
1482                }
1483        }
1484}
1485
1486static void
1487ctx_flexible_sched_in(struct perf_event_context *ctx,
1488                      struct perf_cpu_context *cpuctx)
1489{
1490        struct perf_event *event;
1491        int can_add_hw = 1;
1492
1493        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1494                /* Ignore events in OFF or ERROR state */
1495                if (event->state <= PERF_EVENT_STATE_OFF)
1496                        continue;
1497                /*
1498                 * Listen to the 'cpu' scheduling filter constraint
1499                 * of events:
1500                 */
1501                if (!event_filter_match(event))
1502                        continue;
1503
1504                if (group_can_go_on(event, cpuctx, can_add_hw)) {
1505                        if (group_sched_in(event, cpuctx, ctx))
1506                                can_add_hw = 0;
1507                }
1508        }
1509}
1510
1511static void
1512ctx_sched_in(struct perf_event_context *ctx,
1513             struct perf_cpu_context *cpuctx,
1514             enum event_type_t event_type)
1515{
1516        raw_spin_lock(&ctx->lock);
1517        ctx->is_active = 1;
1518        if (likely(!ctx->nr_events))
1519                goto out;
1520
1521        ctx->timestamp = perf_clock();
1522
1523        /*
1524         * First go through the list and put on any pinned groups
1525         * in order to give them the best chance of going on.
1526         */
1527        if (event_type & EVENT_PINNED)
1528                ctx_pinned_sched_in(ctx, cpuctx);
1529
1530        /* Then walk through the lower prio flexible groups */
1531        if (event_type & EVENT_FLEXIBLE)
1532                ctx_flexible_sched_in(ctx, cpuctx);
1533
1534out:
1535        raw_spin_unlock(&ctx->lock);
1536}
1537
1538static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1539                             enum event_type_t event_type)
1540{
1541        struct perf_event_context *ctx = &cpuctx->ctx;
1542
1543        ctx_sched_in(ctx, cpuctx, event_type);
1544}
1545
1546static void task_ctx_sched_in(struct perf_event_context *ctx,
1547                              enum event_type_t event_type)
1548{
1549        struct perf_cpu_context *cpuctx;
1550
1551        cpuctx = __get_cpu_context(ctx);
1552        if (cpuctx->task_ctx == ctx)
1553                return;
1554
1555        ctx_sched_in(ctx, cpuctx, event_type);
1556        cpuctx->task_ctx = ctx;
1557}
1558
1559void perf_event_context_sched_in(struct perf_event_context *ctx)
1560{
1561        struct perf_cpu_context *cpuctx;
1562
1563        cpuctx = __get_cpu_context(ctx);
1564        if (cpuctx->task_ctx == ctx)
1565                return;
1566
1567        perf_pmu_disable(ctx->pmu);
1568        /*
1569         * We want to keep the following priority order:
1570         * cpu pinned (that don't need to move), task pinned,
1571         * cpu flexible, task flexible.
1572         */
1573        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1574
1575        ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1576        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1577        ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1578
1579        cpuctx->task_ctx = ctx;
1580
1581        /*
1582         * Since these rotations are per-cpu, we need to ensure the
1583         * cpu-context we got scheduled on is actually rotating.
1584         */
1585        perf_pmu_rotate_start(ctx->pmu);
1586        perf_pmu_enable(ctx->pmu);
1587}
1588
1589/*
1590 * Called from scheduler to add the events of the current task
1591 * with interrupts disabled.
1592 *
1593 * We restore the event value and then enable it.
1594 *
1595 * This does not protect us against NMI, but enable()
1596 * sets the enabled bit in the control field of event _before_
1597 * accessing the event control register. If a NMI hits, then it will
1598 * keep the event running.
1599 */
1600void __perf_event_task_sched_in(struct task_struct *task)
1601{
1602        struct perf_event_context *ctx;
1603        int ctxn;
1604
1605        for_each_task_context_nr(ctxn) {
1606                ctx = task->perf_event_ctxp[ctxn];
1607                if (likely(!ctx))
1608                        continue;
1609
1610                perf_event_context_sched_in(ctx);
1611        }
1612}
1613
1614static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1615{
1616        u64 frequency = event->attr.sample_freq;
1617        u64 sec = NSEC_PER_SEC;
1618        u64 divisor, dividend;
1619
1620        int count_fls, nsec_fls, frequency_fls, sec_fls;
1621
1622        count_fls = fls64(count);
1623        nsec_fls = fls64(nsec);
1624        frequency_fls = fls64(frequency);
1625        sec_fls = 30;
1626
1627        /*
1628         * We got @count in @nsec, with a target of sample_freq HZ
1629         * the target period becomes:
1630         *
1631         *             @count * 10^9
1632         * period = -------------------
1633         *          @nsec * sample_freq
1634         *
1635         */
1636
1637        /*
1638         * Reduce accuracy by one bit such that @a and @b converge
1639         * to a similar magnitude.
1640         */
1641#define REDUCE_FLS(a, b)                \
1642do {                                    \
1643        if (a##_fls > b##_fls) {        \
1644                a >>= 1;                \
1645                a##_fls--;              \
1646        } else {                        \
1647                b >>= 1;                \
1648                b##_fls--;              \
1649        }                               \
1650} while (0)
1651
1652        /*
1653         * Reduce accuracy until either term fits in a u64, then proceed with
1654         * the other, so that finally we can do a u64/u64 division.
1655         */
1656        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1657                REDUCE_FLS(nsec, frequency);
1658                REDUCE_FLS(sec, count);
1659        }
1660
1661        if (count_fls + sec_fls > 64) {
1662                divisor = nsec * frequency;
1663
1664                while (count_fls + sec_fls > 64) {
1665                        REDUCE_FLS(count, sec);
1666                        divisor >>= 1;
1667                }
1668
1669                dividend = count * sec;
1670        } else {
1671                dividend = count * sec;
1672
1673                while (nsec_fls + frequency_fls > 64) {
1674                        REDUCE_FLS(nsec, frequency);
1675                        dividend >>= 1;
1676                }
1677
1678                divisor = nsec * frequency;
1679        }
1680
1681        if (!divisor)
1682                return dividend;
1683
1684        return div64_u64(dividend, divisor);
1685}
1686
1687static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1688{
1689        struct hw_perf_event *hwc = &event->hw;
1690        s64 period, sample_period;
1691        s64 delta;
1692
1693        period = perf_calculate_period(event, nsec, count);
1694
1695        delta = (s64)(period - hwc->sample_period);
1696        delta = (delta + 7) / 8; /* low pass filter */
1697
1698        sample_period = hwc->sample_period + delta;
1699
1700        if (!sample_period)
1701                sample_period = 1;
1702
1703        hwc->sample_period = sample_period;
1704
1705        if (local64_read(&hwc->period_left) > 8*sample_period) {
1706                event->pmu->stop(event, PERF_EF_UPDATE);
1707                local64_set(&hwc->period_left, 0);
1708                event->pmu->start(event, PERF_EF_RELOAD);
1709        }
1710}
1711
1712static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1713{
1714        struct perf_event *event;
1715        struct hw_perf_event *hwc;
1716        u64 interrupts, now;
1717        s64 delta;
1718
1719        raw_spin_lock(&ctx->lock);
1720        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1721                if (event->state != PERF_EVENT_STATE_ACTIVE)
1722                        continue;
1723
1724                if (!event_filter_match(event))
1725                        continue;
1726
1727                hwc = &event->hw;
1728
1729                interrupts = hwc->interrupts;
1730                hwc->interrupts = 0;
1731
1732                /*
1733                 * unthrottle events on the tick
1734                 */
1735                if (interrupts == MAX_INTERRUPTS) {
1736                        perf_log_throttle(event, 1);
1737                        event->pmu->start(event, 0);
1738                }
1739
1740                if (!event->attr.freq || !event->attr.sample_freq)
1741                        continue;
1742
1743                event->pmu->read(event);
1744                now = local64_read(&event->count);
1745                delta = now - hwc->freq_count_stamp;
1746                hwc->freq_count_stamp = now;
1747
1748                if (delta > 0)
1749                        perf_adjust_period(event, period, delta);
1750        }
1751        raw_spin_unlock(&ctx->lock);
1752}
1753
1754/*
1755 * Round-robin a context's events:
1756 */
1757static void rotate_ctx(struct perf_event_context *ctx)
1758{
1759        raw_spin_lock(&ctx->lock);
1760
1761        /*
1762         * Rotate the first entry last of non-pinned groups. Rotation might be
1763         * disabled by the inheritance code.
1764         */
1765        if (!ctx->rotate_disable)
1766                list_rotate_left(&ctx->flexible_groups);
1767
1768        raw_spin_unlock(&ctx->lock);
1769}
1770
1771/*
1772 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1773 * because they're strictly cpu affine and rotate_start is called with IRQs
1774 * disabled, while rotate_context is called from IRQ context.
1775 */
1776static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1777{
1778        u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1779        struct perf_event_context *ctx = NULL;
1780        int rotate = 0, remove = 1;
1781
1782        if (cpuctx->ctx.nr_events) {
1783                remove = 0;
1784                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1785                        rotate = 1;
1786        }
1787
1788        ctx = cpuctx->task_ctx;
1789        if (ctx && ctx->nr_events) {
1790                remove = 0;
1791                if (ctx->nr_events != ctx->nr_active)
1792                        rotate = 1;
1793        }
1794
1795        perf_pmu_disable(cpuctx->ctx.pmu);
1796        perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1797        if (ctx)
1798                perf_ctx_adjust_freq(ctx, interval);
1799
1800        if (!rotate)
1801                goto done;
1802
1803        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1804        if (ctx)
1805                task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1806
1807        rotate_ctx(&cpuctx->ctx);
1808        if (ctx)
1809                rotate_ctx(ctx);
1810
1811        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1812        if (ctx)
1813                task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1814
1815done:
1816        if (remove)
1817                list_del_init(&cpuctx->rotation_list);
1818
1819        perf_pmu_enable(cpuctx->ctx.pmu);
1820}
1821
1822void perf_event_task_tick(void)
1823{
1824        struct list_head *head = &__get_cpu_var(rotation_list);
1825        struct perf_cpu_context *cpuctx, *tmp;
1826
1827        WARN_ON(!irqs_disabled());
1828
1829        list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1830                if (cpuctx->jiffies_interval == 1 ||
1831                                !(jiffies % cpuctx->jiffies_interval))
1832                        perf_rotate_context(cpuctx);
1833        }
1834}
1835
1836static int event_enable_on_exec(struct perf_event *event,
1837                                struct perf_event_context *ctx)
1838{
1839        if (!event->attr.enable_on_exec)
1840                return 0;
1841
1842        event->attr.enable_on_exec = 0;
1843        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1844                return 0;
1845
1846        __perf_event_mark_enabled(event, ctx);
1847
1848        return 1;
1849}
1850
1851/*
1852 * Enable all of a task's events that have been marked enable-on-exec.
1853 * This expects task == current.
1854 */
1855static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1856{
1857        struct perf_event *event;
1858        unsigned long flags;
1859        int enabled = 0;
1860        int ret;
1861
1862        local_irq_save(flags);
1863        if (!ctx || !ctx->nr_events)
1864                goto out;
1865
1866        task_ctx_sched_out(ctx, EVENT_ALL);
1867
1868        raw_spin_lock(&ctx->lock);
1869
1870        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1871                ret = event_enable_on_exec(event, ctx);
1872                if (ret)
1873                        enabled = 1;
1874        }
1875
1876        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1877                ret = event_enable_on_exec(event, ctx);
1878                if (ret)
1879                        enabled = 1;
1880        }
1881
1882        /*
1883         * Unclone this context if we enabled any event.
1884         */
1885        if (enabled)
1886                unclone_ctx(ctx);
1887
1888        raw_spin_unlock(&ctx->lock);
1889
1890        perf_event_context_sched_in(ctx);
1891out:
1892        local_irq_restore(flags);
1893}
1894
1895/*
1896 * Cross CPU call to read the hardware event
1897 */
1898static void __perf_event_read(void *info)
1899{
1900        struct perf_event *event = info;
1901        struct perf_event_context *ctx = event->ctx;
1902        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1903
1904        /*
1905         * If this is a task context, we need to check whether it is
1906         * the current task context of this cpu.  If not it has been
1907         * scheduled out before the smp call arrived.  In that case
1908         * event->count would have been updated to a recent sample
1909         * when the event was scheduled out.
1910         */
1911        if (ctx->task && cpuctx->task_ctx != ctx)
1912                return;
1913
1914        raw_spin_lock(&ctx->lock);
1915        if (ctx->is_active)
1916                update_context_time(ctx);
1917        update_event_times(event);
1918        if (event->state == PERF_EVENT_STATE_ACTIVE)
1919                event->pmu->read(event);
1920        raw_spin_unlock(&ctx->lock);
1921}
1922
1923static inline u64 perf_event_count(struct perf_event *event)
1924{
1925        return local64_read(&event->count) + atomic64_read(&event->child_count);
1926}
1927
1928static u64 perf_event_read(struct perf_event *event)
1929{
1930        /*
1931         * If event is enabled and currently active on a CPU, update the
1932         * value in the event structure:
1933         */
1934        if (event->state == PERF_EVENT_STATE_ACTIVE) {
1935                smp_call_function_single(event->oncpu,
1936                                         __perf_event_read, event, 1);
1937        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1938                struct perf_event_context *ctx = event->ctx;
1939                unsigned long flags;
1940
1941                raw_spin_lock_irqsave(&ctx->lock, flags);
1942                /*
1943                 * may read while context is not active
1944                 * (e.g., thread is blocked), in that case
1945                 * we cannot update context time
1946                 */
1947                if (ctx->is_active)
1948                        update_context_time(ctx);
1949                update_event_times(event);
1950                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1951        }
1952
1953        return perf_event_count(event);
1954}
1955
1956/*
1957 * Callchain support
1958 */
1959
1960struct callchain_cpus_entries {
1961        struct rcu_head                 rcu_head;
1962        struct perf_callchain_entry     *cpu_entries[0];
1963};
1964
1965static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1966static atomic_t nr_callchain_events;
1967static DEFINE_MUTEX(callchain_mutex);
1968struct callchain_cpus_entries *callchain_cpus_entries;
1969
1970
1971__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1972                                  struct pt_regs *regs)
1973{
1974}
1975
1976__weak void perf_callchain_user(struct perf_callchain_entry *entry,
1977                                struct pt_regs *regs)
1978{
1979}
1980
1981static void release_callchain_buffers_rcu(struct rcu_head *head)
1982{
1983        struct callchain_cpus_entries *entries;
1984        int cpu;
1985
1986        entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1987
1988        for_each_possible_cpu(cpu)
1989                kfree(entries->cpu_entries[cpu]);
1990
1991        kfree(entries);
1992}
1993
1994static void release_callchain_buffers(void)
1995{
1996        struct callchain_cpus_entries *entries;
1997
1998        entries = callchain_cpus_entries;
1999        rcu_assign_pointer(callchain_cpus_entries, NULL);
2000        call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2001}
2002
2003static int alloc_callchain_buffers(void)
2004{
2005        int cpu;
2006        int size;
2007        struct callchain_cpus_entries *entries;
2008
2009        /*
2010         * We can't use the percpu allocation API for data that can be
2011         * accessed from NMI. Use a temporary manual per cpu allocation
2012         * until that gets sorted out.
2013         */
2014        size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2015
2016        entries = kzalloc(size, GFP_KERNEL);
2017        if (!entries)
2018                return -ENOMEM;
2019
2020        size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2021
2022        for_each_possible_cpu(cpu) {
2023                entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2024                                                         cpu_to_node(cpu));
2025                if (!entries->cpu_entries[cpu])
2026                        goto fail;
2027        }
2028
2029        rcu_assign_pointer(callchain_cpus_entries, entries);
2030
2031        return 0;
2032
2033fail:
2034        for_each_possible_cpu(cpu)
2035                kfree(entries->cpu_entries[cpu]);
2036        kfree(entries);
2037
2038        return -ENOMEM;
2039}
2040
2041static int get_callchain_buffers(void)
2042{
2043        int err = 0;
2044        int count;
2045
2046        mutex_lock(&callchain_mutex);
2047
2048        count = atomic_inc_return(&nr_callchain_events);
2049        if (WARN_ON_ONCE(count < 1)) {
2050                err = -EINVAL;
2051                goto exit;
2052        }
2053
2054        if (count > 1) {
2055                /* If the allocation failed, give up */
2056                if (!callchain_cpus_entries)
2057                        err = -ENOMEM;
2058                goto exit;
2059        }
2060
2061        err = alloc_callchain_buffers();
2062        if (err)
2063                release_callchain_buffers();
2064exit:
2065        mutex_unlock(&callchain_mutex);
2066
2067        return err;
2068}
2069
2070static void put_callchain_buffers(void)
2071{
2072        if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2073                release_callchain_buffers();
2074                mutex_unlock(&callchain_mutex);
2075        }
2076}
2077
2078static int get_recursion_context(int *recursion)
2079{
2080        int rctx;
2081
2082        if (in_nmi())
2083                rctx = 3;
2084        else if (in_irq())
2085                rctx = 2;
2086        else if (in_softirq())
2087                rctx = 1;
2088        else
2089                rctx = 0;
2090
2091        if (recursion[rctx])
2092                return -1;
2093
2094        recursion[rctx]++;
2095        barrier();
2096
2097        return rctx;
2098}
2099
2100static inline void put_recursion_context(int *recursion, int rctx)
2101{
2102        barrier();
2103        recursion[rctx]--;
2104}
2105
2106static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2107{
2108        int cpu;
2109        struct callchain_cpus_entries *entries;
2110
2111        *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2112        if (*rctx == -1)
2113                return NULL;
2114
2115        entries = rcu_dereference(callchain_cpus_entries);
2116        if (!entries)
2117                return NULL;
2118
2119        cpu = smp_processor_id();
2120
2121        return &entries->cpu_entries[cpu][*rctx];
2122}
2123
2124static void
2125put_callchain_entry(int rctx)
2126{
2127        put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2128}
2129
2130static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2131{
2132        int rctx;
2133        struct perf_callchain_entry *entry;
2134
2135
2136        entry = get_callchain_entry(&rctx);
2137        if (rctx == -1)
2138                return NULL;
2139
2140        if (!entry)
2141                goto exit_put;
2142
2143        entry->nr = 0;
2144
2145        if (!user_mode(regs)) {
2146                perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2147                perf_callchain_kernel(entry, regs);
2148                if (current->mm)
2149                        regs = task_pt_regs(current);
2150                else
2151                        regs = NULL;
2152        }
2153
2154        if (regs) {
2155                perf_callchain_store(entry, PERF_CONTEXT_USER);
2156                perf_callchain_user(entry, regs);
2157        }
2158
2159exit_put:
2160        put_callchain_entry(rctx);
2161
2162        return entry;
2163}
2164
2165/*
2166 * Initialize the perf_event context in a task_struct:
2167 */
2168static void __perf_event_init_context(struct perf_event_context *ctx)
2169{
2170        raw_spin_lock_init(&ctx->lock);
2171        mutex_init(&ctx->mutex);
2172        INIT_LIST_HEAD(&ctx->pinned_groups);
2173        INIT_LIST_HEAD(&ctx->flexible_groups);
2174        INIT_LIST_HEAD(&ctx->event_list);
2175        atomic_set(&ctx->refcount, 1);
2176}
2177
2178static struct perf_event_context *
2179alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2180{
2181        struct perf_event_context *ctx;
2182
2183        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2184        if (!ctx)
2185                return NULL;
2186
2187        __perf_event_init_context(ctx);
2188        if (task) {
2189                ctx->task = task;
2190                get_task_struct(task);
2191        }
2192        ctx->pmu = pmu;
2193
2194        return ctx;
2195}
2196
2197static struct task_struct *
2198find_lively_task_by_vpid(pid_t vpid)
2199{
2200        struct task_struct *task;
2201        int err;
2202
2203        rcu_read_lock();
2204        if (!vpid)
2205                task = current;
2206        else
2207                task = find_task_by_vpid(vpid);
2208        if (task)
2209                get_task_struct(task);
2210        rcu_read_unlock();
2211
2212        if (!task)
2213                return ERR_PTR(-ESRCH);
2214
2215        /* Reuse ptrace permission checks for now. */
2216        err = -EACCES;
2217        if (!ptrace_may_access(task, PTRACE_MODE_READ))
2218                goto errout;
2219
2220        return task;
2221errout:
2222        put_task_struct(task);
2223        return ERR_PTR(err);
2224
2225}
2226
2227static struct perf_event_context *
2228find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2229{
2230        struct perf_event_context *ctx;
2231        struct perf_cpu_context *cpuctx;
2232        unsigned long flags;
2233        int ctxn, err;
2234
2235        if (!task) {
2236                /* Must be root to operate on a CPU event: */
2237                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2238                        return ERR_PTR(-EACCES);
2239
2240                /*
2241                 * We could be clever and allow to attach a event to an
2242                 * offline CPU and activate it when the CPU comes up, but
2243                 * that's for later.
2244                 */
2245                if (!cpu_online(cpu))
2246                        return ERR_PTR(-ENODEV);
2247
2248                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2249                ctx = &cpuctx->ctx;
2250                get_ctx(ctx);
2251
2252                return ctx;
2253        }
2254
2255        err = -EINVAL;
2256        ctxn = pmu->task_ctx_nr;
2257        if (ctxn < 0)
2258                goto errout;
2259
2260retry:
2261        ctx = perf_lock_task_context(task, ctxn, &flags);
2262        if (ctx) {
2263                unclone_ctx(ctx);
2264                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2265        }
2266
2267        if (!ctx) {
2268                ctx = alloc_perf_context(pmu, task);
2269                err = -ENOMEM;
2270                if (!ctx)
2271                        goto errout;
2272
2273                get_ctx(ctx);
2274
2275                err = 0;
2276                mutex_lock(&task->perf_event_mutex);
2277                /*
2278                 * If it has already passed perf_event_exit_task().
2279                 * we must see PF_EXITING, it takes this mutex too.
2280                 */
2281                if (task->flags & PF_EXITING)
2282                        err = -ESRCH;
2283                else if (task->perf_event_ctxp[ctxn])
2284                        err = -EAGAIN;
2285                else
2286                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2287                mutex_unlock(&task->perf_event_mutex);
2288
2289                if (unlikely(err)) {
2290                        put_task_struct(task);
2291                        kfree(ctx);
2292
2293                        if (err == -EAGAIN)
2294                                goto retry;
2295                        goto errout;
2296                }
2297        }
2298
2299        return ctx;
2300
2301errout:
2302        return ERR_PTR(err);
2303}
2304
2305static void perf_event_free_filter(struct perf_event *event);
2306
2307static void free_event_rcu(struct rcu_head *head)
2308{
2309        struct perf_event *event;
2310
2311        event = container_of(head, struct perf_event, rcu_head);
2312        if (event->ns)
2313                put_pid_ns(event->ns);
2314        perf_event_free_filter(event);
2315        kfree(event);
2316}
2317
2318static void perf_buffer_put(struct perf_buffer *buffer);
2319
2320static void free_event(struct perf_event *event)
2321{
2322        irq_work_sync(&event->pending);
2323
2324        if (!event->parent) {
2325                if (event->attach_state & PERF_ATTACH_TASK)
2326                        jump_label_dec(&perf_task_events);
2327                if (event->attr.mmap || event->attr.mmap_data)
2328                        atomic_dec(&nr_mmap_events);
2329                if (event->attr.comm)
2330                        atomic_dec(&nr_comm_events);
2331                if (event->attr.task)
2332                        atomic_dec(&nr_task_events);
2333                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2334                        put_callchain_buffers();
2335        }
2336
2337        if (event->buffer) {
2338                perf_buffer_put(event->buffer);
2339                event->buffer = NULL;
2340        }
2341
2342        if (event->destroy)
2343                event->destroy(event);
2344
2345        if (event->ctx)
2346                put_ctx(event->ctx);
2347
2348        call_rcu(&event->rcu_head, free_event_rcu);
2349}
2350
2351int perf_event_release_kernel(struct perf_event *event)
2352{
2353        struct perf_event_context *ctx = event->ctx;
2354
2355        /*
2356         * Remove from the PMU, can't get re-enabled since we got
2357         * here because the last ref went.
2358         */
2359        perf_event_disable(event);
2360
2361        WARN_ON_ONCE(ctx->parent_ctx);
2362        /*
2363         * There are two ways this annotation is useful:
2364         *
2365         *  1) there is a lock recursion from perf_event_exit_task
2366         *     see the comment there.
2367         *
2368         *  2) there is a lock-inversion with mmap_sem through
2369         *     perf_event_read_group(), which takes faults while
2370         *     holding ctx->mutex, however this is called after
2371         *     the last filedesc died, so there is no possibility
2372         *     to trigger the AB-BA case.
2373         */
2374        mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2375        raw_spin_lock_irq(&ctx->lock);
2376        perf_group_detach(event);
2377        list_del_event(event, ctx);
2378        raw_spin_unlock_irq(&ctx->lock);
2379        mutex_unlock(&ctx->mutex);
2380
2381        free_event(event);
2382
2383        return 0;
2384}
2385EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2386
2387/*
2388 * Called when the last reference to the file is gone.
2389 */
2390static int perf_release(struct inode *inode, struct file *file)
2391{
2392        struct perf_event *event = file->private_data;
2393        struct task_struct *owner;
2394
2395        file->private_data = NULL;
2396
2397        rcu_read_lock();
2398        owner = ACCESS_ONCE(event->owner);
2399        /*
2400         * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2401         * !owner it means the list deletion is complete and we can indeed
2402         * free this event, otherwise we need to serialize on
2403         * owner->perf_event_mutex.
2404         */
2405        smp_read_barrier_depends();
2406        if (owner) {
2407                /*
2408                 * Since delayed_put_task_struct() also drops the last
2409                 * task reference we can safely take a new reference
2410                 * while holding the rcu_read_lock().
2411                 */
2412                get_task_struct(owner);
2413        }
2414        rcu_read_unlock();
2415
2416        if (owner) {
2417                mutex_lock(&owner->perf_event_mutex);
2418                /*
2419                 * We have to re-check the event->owner field, if it is cleared
2420                 * we raced with perf_event_exit_task(), acquiring the mutex
2421                 * ensured they're done, and we can proceed with freeing the
2422                 * event.
2423                 */
2424                if (event->owner)
2425                        list_del_init(&event->owner_entry);
2426                mutex_unlock(&owner->perf_event_mutex);
2427                put_task_struct(owner);
2428        }
2429
2430        return perf_event_release_kernel(event);
2431}
2432
2433u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2434{
2435        struct perf_event *child;
2436        u64 total = 0;
2437
2438        *enabled = 0;
2439        *running = 0;
2440
2441        mutex_lock(&event->child_mutex);
2442        total += perf_event_read(event);
2443        *enabled += event->total_time_enabled +
2444                        atomic64_read(&event->child_total_time_enabled);
2445        *running += event->total_time_running +
2446                        atomic64_read(&event->child_total_time_running);
2447
2448        list_for_each_entry(child, &event->child_list, child_list) {
2449                total += perf_event_read(child);
2450                *enabled += child->total_time_enabled;
2451                *running += child->total_time_running;
2452        }
2453        mutex_unlock(&event->child_mutex);
2454
2455        return total;
2456}
2457EXPORT_SYMBOL_GPL(perf_event_read_value);
2458
2459static int perf_event_read_group(struct perf_event *event,
2460                                   u64 read_format, char __user *buf)
2461{
2462        struct perf_event *leader = event->group_leader, *sub;
2463        int n = 0, size = 0, ret = -EFAULT;
2464        struct perf_event_context *ctx = leader->ctx;
2465        u64 values[5];
2466        u64 count, enabled, running;
2467
2468        mutex_lock(&ctx->mutex);
2469        count = perf_event_read_value(leader, &enabled, &running);
2470
2471        values[n++] = 1 + leader->nr_siblings;
2472        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2473                values[n++] = enabled;
2474        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2475                values[n++] = running;
2476        values[n++] = count;
2477        if (read_format & PERF_FORMAT_ID)
2478                values[n++] = primary_event_id(leader);
2479
2480        size = n * sizeof(u64);
2481
2482        if (copy_to_user(buf, values, size))
2483                goto unlock;
2484
2485        ret = size;
2486
2487        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2488                n = 0;
2489
2490                values[n++] = perf_event_read_value(sub, &enabled, &running);
2491                if (read_format & PERF_FORMAT_ID)
2492                        values[n++] = primary_event_id(sub);
2493
2494                size = n * sizeof(u64);
2495
2496                if (copy_to_user(buf + ret, values, size)) {
2497                        ret = -EFAULT;
2498                        goto unlock;
2499                }
2500
2501                ret += size;
2502        }
2503unlock:
2504        mutex_unlock(&ctx->mutex);
2505
2506        return ret;
2507}
2508
2509static int perf_event_read_one(struct perf_event *event,
2510                                 u64 read_format, char __user *buf)
2511{
2512        u64 enabled, running;
2513        u64 values[4];
2514        int n = 0;
2515
2516        values[n++] = perf_event_read_value(event, &enabled, &running);
2517        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2518                values[n++] = enabled;
2519        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2520                values[n++] = running;
2521        if (read_format & PERF_FORMAT_ID)
2522                values[n++] = primary_event_id(event);
2523
2524        if (copy_to_user(buf, values, n * sizeof(u64)))
2525                return -EFAULT;
2526
2527        return n * sizeof(u64);
2528}
2529
2530/*
2531 * Read the performance event - simple non blocking version for now
2532 */
2533static ssize_t
2534perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2535{
2536        u64 read_format = event->attr.read_format;
2537        int ret;
2538
2539        /*
2540         * Return end-of-file for a read on a event that is in
2541         * error state (i.e. because it was pinned but it couldn't be
2542         * scheduled on to the CPU at some point).
2543         */
2544        if (event->state == PERF_EVENT_STATE_ERROR)
2545                return 0;
2546
2547        if (count < event->read_size)
2548                return -ENOSPC;
2549
2550        WARN_ON_ONCE(event->ctx->parent_ctx);
2551        if (read_format & PERF_FORMAT_GROUP)
2552                ret = perf_event_read_group(event, read_format, buf);
2553        else
2554                ret = perf_event_read_one(event, read_format, buf);
2555
2556        return ret;
2557}
2558
2559static ssize_t
2560perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2561{
2562        struct perf_event *event = file->private_data;
2563
2564        return perf_read_hw(event, buf, count);
2565}
2566
2567static unsigned int perf_poll(struct file *file, poll_table *wait)
2568{
2569        struct perf_event *event = file->private_data;
2570        struct perf_buffer *buffer;
2571        unsigned int events = POLL_HUP;
2572
2573        rcu_read_lock();
2574        buffer = rcu_dereference(event->buffer);
2575        if (buffer)
2576                events = atomic_xchg(&buffer->poll, 0);
2577        rcu_read_unlock();
2578
2579        poll_wait(file, &event->waitq, wait);
2580
2581        return events;
2582}
2583
2584static void perf_event_reset(struct perf_event *event)
2585{
2586        (void)perf_event_read(event);
2587        local64_set(&event->count, 0);
2588        perf_event_update_userpage(event);
2589}
2590
2591/*
2592 * Holding the top-level event's child_mutex means that any
2593 * descendant process that has inherited this event will block
2594 * in sync_child_event if it goes to exit, thus satisfying the
2595 * task existence requirements of perf_event_enable/disable.
2596 */
2597static void perf_event_for_each_child(struct perf_event *event,
2598                                        void (*func)(struct perf_event *))
2599{
2600        struct perf_event *child;
2601
2602        WARN_ON_ONCE(event->ctx->parent_ctx);
2603        mutex_lock(&event->child_mutex);
2604        func(event);
2605        list_for_each_entry(child, &event->child_list, child_list)
2606                func(child);
2607        mutex_unlock(&event->child_mutex);
2608}
2609
2610static void perf_event_for_each(struct perf_event *event,
2611                                  void (*func)(struct perf_event *))
2612{
2613        struct perf_event_context *ctx = event->ctx;
2614        struct perf_event *sibling;
2615
2616        WARN_ON_ONCE(ctx->parent_ctx);
2617        mutex_lock(&ctx->mutex);
2618        event = event->group_leader;
2619
2620        perf_event_for_each_child(event, func);
2621        func(event);
2622        list_for_each_entry(sibling, &event->sibling_list, group_entry)
2623                perf_event_for_each_child(event, func);
2624        mutex_unlock(&ctx->mutex);
2625}
2626
2627static int perf_event_period(struct perf_event *event, u64 __user *arg)
2628{
2629        struct perf_event_context *ctx = event->ctx;
2630        int ret = 0;
2631        u64 value;
2632
2633        if (!is_sampling_event(event))
2634                return -EINVAL;
2635
2636        if (copy_from_user(&value, arg, sizeof(value)))
2637                return -EFAULT;
2638
2639        if (!value)
2640                return -EINVAL;
2641
2642        raw_spin_lock_irq(&ctx->lock);
2643        if (event->attr.freq) {
2644                if (value > sysctl_perf_event_sample_rate) {
2645                        ret = -EINVAL;
2646                        goto unlock;
2647                }
2648
2649                event->attr.sample_freq = value;
2650        } else {
2651                event->attr.sample_period = value;
2652                event->hw.sample_period = value;
2653        }
2654unlock:
2655        raw_spin_unlock_irq(&ctx->lock);
2656
2657        return ret;
2658}
2659
2660static const struct file_operations perf_fops;
2661
2662static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2663{
2664        struct file *file;
2665
2666        file = fget_light(fd, fput_needed);
2667        if (!file)
2668                return ERR_PTR(-EBADF);
2669
2670        if (file->f_op != &perf_fops) {
2671                fput_light(file, *fput_needed);
2672                *fput_needed = 0;
2673                return ERR_PTR(-EBADF);
2674        }
2675
2676        return file->private_data;
2677}
2678
2679static int perf_event_set_output(struct perf_event *event,
2680                                 struct perf_event *output_event);
2681static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2682
2683static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2684{
2685        struct perf_event *event = file->private_data;
2686        void (*func)(struct perf_event *);
2687        u32 flags = arg;
2688
2689        switch (cmd) {
2690        case PERF_EVENT_IOC_ENABLE:
2691                func = perf_event_enable;
2692                break;
2693        case PERF_EVENT_IOC_DISABLE:
2694                func = perf_event_disable;
2695                break;
2696        case PERF_EVENT_IOC_RESET:
2697                func = perf_event_reset;
2698                break;
2699
2700        case PERF_EVENT_IOC_REFRESH:
2701                return perf_event_refresh(event, arg);
2702
2703        case PERF_EVENT_IOC_PERIOD:
2704                return perf_event_period(event, (u64 __user *)arg);
2705
2706        case PERF_EVENT_IOC_SET_OUTPUT:
2707        {
2708                struct perf_event *output_event = NULL;
2709                int fput_needed = 0;
2710                int ret;
2711
2712                if (arg != -1) {
2713                        output_event = perf_fget_light(arg, &fput_needed);
2714                        if (IS_ERR(output_event))
2715                                return PTR_ERR(output_event);
2716                }
2717
2718                ret = perf_event_set_output(event, output_event);
2719                if (output_event)
2720                        fput_light(output_event->filp, fput_needed);
2721
2722                return ret;
2723        }
2724
2725        case PERF_EVENT_IOC_SET_FILTER:
2726                return perf_event_set_filter(event, (void __user *)arg);
2727
2728        default:
2729                return -ENOTTY;
2730        }
2731
2732        if (flags & PERF_IOC_FLAG_GROUP)
2733                perf_event_for_each(event, func);
2734        else
2735                perf_event_for_each_child(event, func);
2736
2737        return 0;
2738}
2739
2740int perf_event_task_enable(void)
2741{
2742        struct perf_event *event;
2743
2744        mutex_lock(&current->perf_event_mutex);
2745        list_for_each_entry(event, &current->perf_event_list, owner_entry)
2746                perf_event_for_each_child(event, perf_event_enable);
2747        mutex_unlock(&current->perf_event_mutex);
2748
2749        return 0;
2750}
2751
2752int perf_event_task_disable(void)
2753{
2754        struct perf_event *event;
2755
2756        mutex_lock(&current->perf_event_mutex);
2757        list_for_each_entry(event, &current->perf_event_list, owner_entry)
2758                perf_event_for_each_child(event, perf_event_disable);
2759        mutex_unlock(&current->perf_event_mutex);
2760
2761        return 0;
2762}
2763
2764#ifndef PERF_EVENT_INDEX_OFFSET
2765# define PERF_EVENT_INDEX_OFFSET 0
2766#endif
2767
2768static int perf_event_index(struct perf_event *event)
2769{
2770        if (event->hw.state & PERF_HES_STOPPED)
2771                return 0;
2772
2773        if (event->state != PERF_EVENT_STATE_ACTIVE)
2774                return 0;
2775
2776        return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2777}
2778
2779/*
2780 * Callers need to ensure there can be no nesting of this function, otherwise
2781 * the seqlock logic goes bad. We can not serialize this because the arch
2782 * code calls this from NMI context.
2783 */
2784void perf_event_update_userpage(struct perf_event *event)
2785{
2786        struct perf_event_mmap_page *userpg;
2787        struct perf_buffer *buffer;
2788
2789        rcu_read_lock();
2790        buffer = rcu_dereference(event->buffer);
2791        if (!buffer)
2792                goto unlock;
2793
2794        userpg = buffer->user_page;
2795
2796        /*
2797         * Disable preemption so as to not let the corresponding user-space
2798         * spin too long if we get preempted.
2799         */
2800        preempt_disable();
2801        ++userpg->lock;
2802        barrier();
2803        userpg->index = perf_event_index(event);
2804        userpg->offset = perf_event_count(event);
2805        if (event->state == PERF_EVENT_STATE_ACTIVE)
2806                userpg->offset -= local64_read(&event->hw.prev_count);
2807
2808        userpg->time_enabled = event->total_time_enabled +
2809                        atomic64_read(&event->child_total_time_enabled);
2810
2811        userpg->time_running = event->total_time_running +
2812                        atomic64_read(&event->child_total_time_running);
2813
2814        barrier();
2815        ++userpg->lock;
2816        preempt_enable();
2817unlock:
2818        rcu_read_unlock();
2819}
2820
2821static unsigned long perf_data_size(struct perf_buffer *buffer);
2822
2823static void
2824perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2825{
2826        long max_size = perf_data_size(buffer);
2827
2828        if (watermark)
2829                buffer->watermark = min(max_size, watermark);
2830
2831        if (!buffer->watermark)
2832                buffer->watermark = max_size / 2;
2833
2834        if (flags & PERF_BUFFER_WRITABLE)
2835                buffer->writable = 1;
2836
2837        atomic_set(&buffer->refcount, 1);
2838}
2839
2840#ifndef CONFIG_PERF_USE_VMALLOC
2841
2842/*
2843 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2844 */
2845
2846static struct page *
2847perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2848{
2849        if (pgoff > buffer->nr_pages)
2850                return NULL;
2851
2852        if (pgoff == 0)
2853                return virt_to_page(buffer->user_page);
2854
2855        return virt_to_page(buffer->data_pages[pgoff - 1]);
2856}
2857
2858static void *perf_mmap_alloc_page(int cpu)
2859{
2860        struct page *page;
2861        int node;
2862
2863        node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2864        page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2865        if (!page)
2866                return NULL;
2867
2868        return page_address(page);
2869}
2870
2871static struct perf_buffer *
2872perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2873{
2874        struct perf_buffer *buffer;
2875        unsigned long size;
2876        int i;
2877
2878        size = sizeof(struct perf_buffer);
2879        size += nr_pages * sizeof(void *);
2880
2881        buffer = kzalloc(size, GFP_KERNEL);
2882        if (!buffer)
2883                goto fail;
2884
2885        buffer->user_page = perf_mmap_alloc_page(cpu);
2886        if (!buffer->user_page)
2887                goto fail_user_page;
2888
2889        for (i = 0; i < nr_pages; i++) {
2890                buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2891                if (!buffer->data_pages[i])
2892                        goto fail_data_pages;
2893        }
2894
2895        buffer->nr_pages = nr_pages;
2896
2897        perf_buffer_init(buffer, watermark, flags);
2898
2899        return buffer;
2900
2901fail_data_pages:
2902        for (i--; i >= 0; i--)
2903                free_page((unsigned long)buffer->data_pages[i]);
2904
2905        free_page((unsigned long)buffer->user_page);
2906
2907fail_user_page:
2908        kfree(buffer);
2909
2910fail:
2911        return NULL;
2912}
2913
2914static void perf_mmap_free_page(unsigned long addr)
2915{
2916        struct page *page = virt_to_page((void *)addr);
2917
2918        page->mapping = NULL;
2919        __free_page(page);
2920}
2921
2922static void perf_buffer_free(struct perf_buffer *buffer)
2923{
2924        int i;
2925
2926        perf_mmap_free_page((unsigned long)buffer->user_page);
2927        for (i = 0; i < buffer->nr_pages; i++)
2928                perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2929        kfree(buffer);
2930}
2931
2932static inline int page_order(struct perf_buffer *buffer)
2933{
2934        return 0;
2935}
2936
2937#else
2938
2939/*
2940 * Back perf_mmap() with vmalloc memory.
2941 *
2942 * Required for architectures that have d-cache aliasing issues.
2943 */
2944
2945static inline int page_order(struct perf_buffer *buffer)
2946{
2947        return buffer->page_order;
2948}
2949
2950static struct page *
2951perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2952{
2953        if (pgoff > (1UL << page_order(buffer)))
2954                return NULL;
2955
2956        return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2957}
2958
2959static void perf_mmap_unmark_page(void *addr)
2960{
2961        struct page *page = vmalloc_to_page(addr);
2962
2963        page->mapping = NULL;
2964}
2965
2966static void perf_buffer_free_work(struct work_struct *work)
2967{
2968        struct perf_buffer *buffer;
2969        void *base;
2970        int i, nr;
2971
2972        buffer = container_of(work, struct perf_buffer, work);
2973        nr = 1 << page_order(buffer);
2974
2975        base = buffer->user_page;
2976        for (i = 0; i < nr + 1; i++)
2977                perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2978
2979        vfree(base);
2980        kfree(buffer);
2981}
2982
2983static void perf_buffer_free(struct perf_buffer *buffer)
2984{
2985        schedule_work(&buffer->work);
2986}
2987
2988static struct perf_buffer *
2989perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2990{
2991        struct perf_buffer *buffer;
2992        unsigned long size;
2993        void *all_buf;
2994
2995        size = sizeof(struct perf_buffer);
2996        size += sizeof(void *);
2997
2998        buffer = kzalloc(size, GFP_KERNEL);
2999        if (!buffer)
3000                goto fail;
3001
3002        INIT_WORK(&buffer->work, perf_buffer_free_work);
3003
3004        all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3005        if (!all_buf)
3006                goto fail_all_buf;
3007
3008        buffer->user_page = all_buf;
3009        buffer->data_pages[0] = all_buf + PAGE_SIZE;
3010        buffer->page_order = ilog2(nr_pages);
3011        buffer->nr_pages = 1;
3012
3013        perf_buffer_init(buffer, watermark, flags);
3014
3015        return buffer;
3016
3017fail_all_buf:
3018        kfree(buffer);
3019
3020fail:
3021        return NULL;
3022}
3023
3024#endif
3025
3026static unsigned long perf_data_size(struct perf_buffer *buffer)
3027{
3028        return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3029}
3030
3031static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3032{
3033        struct perf_event *event = vma->vm_file->private_data;
3034        struct perf_buffer *buffer;
3035        int ret = VM_FAULT_SIGBUS;
3036
3037        if (vmf->flags & FAULT_FLAG_MKWRITE) {
3038                if (vmf->pgoff == 0)
3039                        ret = 0;
3040                return ret;
3041        }
3042
3043        rcu_read_lock();
3044        buffer = rcu_dereference(event->buffer);
3045        if (!buffer)
3046                goto unlock;
3047
3048        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3049                goto unlock;
3050
3051        vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3052        if (!vmf->page)
3053                goto unlock;
3054
3055        get_page(vmf->page);
3056        vmf->page->mapping = vma->vm_file->f_mapping;
3057        vmf->page->index   = vmf->pgoff;
3058
3059        ret = 0;
3060unlock:
3061        rcu_read_unlock();
3062
3063        return ret;
3064}
3065
3066static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3067{
3068        struct perf_buffer *buffer;
3069
3070        buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3071        perf_buffer_free(buffer);
3072}
3073
3074static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3075{
3076        struct perf_buffer *buffer;
3077
3078        rcu_read_lock();
3079        buffer = rcu_dereference(event->buffer);
3080        if (buffer) {
3081                if (!atomic_inc_not_zero(&buffer->refcount))
3082                        buffer = NULL;
3083        }
3084        rcu_read_unlock();
3085
3086        return buffer;
3087}
3088
3089static void perf_buffer_put(struct perf_buffer *buffer)
3090{
3091        if (!atomic_dec_and_test(&buffer->refcount))
3092                return;
3093
3094        call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3095}
3096
3097static void perf_mmap_open(struct vm_area_struct *vma)
3098{
3099        struct perf_event *event = vma->vm_file->private_data;
3100
3101        atomic_inc(&event->mmap_count);
3102}
3103
3104static void perf_mmap_close(struct vm_area_struct *vma)
3105{
3106        struct perf_event *event = vma->vm_file->private_data;
3107
3108        if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3109                unsigned long size = perf_data_size(event->buffer);
3110                struct user_struct *user = event->mmap_user;
3111                struct perf_buffer *buffer = event->buffer;
3112
3113                atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3114                vma->vm_mm->locked_vm -= event->mmap_locked;
3115                rcu_assign_pointer(event->buffer, NULL);
3116                mutex_unlock(&event->mmap_mutex);
3117
3118                perf_buffer_put(buffer);
3119                free_uid(user);
3120        }
3121}
3122
3123static const struct vm_operations_struct perf_mmap_vmops = {
3124        .open           = perf_mmap_open,
3125        .close          = perf_mmap_close,
3126        .fault          = perf_mmap_fault,
3127        .page_mkwrite   = perf_mmap_fault,
3128};
3129
3130static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3131{
3132        struct perf_event *event = file->private_data;
3133        unsigned long user_locked, user_lock_limit;
3134        struct user_struct *user = current_user();
3135        unsigned long locked, lock_limit;
3136        struct perf_buffer *buffer;
3137        unsigned long vma_size;
3138        unsigned long nr_pages;
3139        long user_extra, extra;
3140        int ret = 0, flags = 0;
3141
3142        /*
3143         * Don't allow mmap() of inherited per-task counters. This would
3144         * create a performance issue due to all children writing to the
3145         * same buffer.
3146         */
3147        if (event->cpu == -1 && event->attr.inherit)
3148                return -EINVAL;
3149
3150        if (!(vma->vm_flags & VM_SHARED))
3151                return -EINVAL;
3152
3153        vma_size = vma->vm_end - vma->vm_start;
3154        nr_pages = (vma_size / PAGE_SIZE) - 1;
3155
3156        /*
3157         * If we have buffer pages ensure they're a power-of-two number, so we
3158         * can do bitmasks instead of modulo.
3159         */
3160        if (nr_pages != 0 && !is_power_of_2(nr_pages))
3161                return -EINVAL;
3162
3163        if (vma_size != PAGE_SIZE * (1 + nr_pages))
3164                return -EINVAL;
3165
3166        if (vma->vm_pgoff != 0)
3167                return -EINVAL;
3168
3169        WARN_ON_ONCE(event->ctx->parent_ctx);
3170        mutex_lock(&event->mmap_mutex);
3171        if (event->buffer) {
3172                if (event->buffer->nr_pages == nr_pages)
3173                        atomic_inc(&event->buffer->refcount);
3174                else
3175                        ret = -EINVAL;
3176                goto unlock;
3177        }
3178
3179        user_extra = nr_pages + 1;
3180        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3181
3182        /*
3183         * Increase the limit linearly with more CPUs:
3184         */
3185        user_lock_limit *= num_online_cpus();
3186
3187        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3188
3189        extra = 0;
3190        if (user_locked > user_lock_limit)
3191                extra = user_locked - user_lock_limit;
3192
3193        lock_limit = rlimit(RLIMIT_MEMLOCK);
3194        lock_limit >>= PAGE_SHIFT;
3195        locked = vma->vm_mm->locked_vm + extra;
3196
3197        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3198                !capable(CAP_IPC_LOCK)) {
3199                ret = -EPERM;
3200                goto unlock;
3201        }
3202
3203        WARN_ON(event->buffer);
3204
3205        if (vma->vm_flags & VM_WRITE)
3206                flags |= PERF_BUFFER_WRITABLE;
3207
3208        buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3209                                   event->cpu, flags);
3210        if (!buffer) {
3211                ret = -ENOMEM;
3212                goto unlock;
3213        }
3214        rcu_assign_pointer(event->buffer, buffer);
3215
3216        atomic_long_add(user_extra, &user->locked_vm);
3217        event->mmap_locked = extra;
3218        event->mmap_user = get_current_user();
3219        vma->vm_mm->locked_vm += event->mmap_locked;
3220
3221unlock:
3222        if (!ret)
3223                atomic_inc(&event->mmap_count);
3224        mutex_unlock(&event->mmap_mutex);
3225
3226        vma->vm_flags |= VM_RESERVED;
3227        vma->vm_ops = &perf_mmap_vmops;
3228
3229        return ret;
3230}
3231
3232static int perf_fasync(int fd, struct file *filp, int on)
3233{
3234        struct inode *inode = filp->f_path.dentry->d_inode;
3235        struct perf_event *event = filp->private_data;
3236        int retval;
3237
3238        mutex_lock(&inode->i_mutex);
3239        retval = fasync_helper(fd, filp, on, &event->fasync);
3240        mutex_unlock(&inode->i_mutex);
3241
3242        if (retval < 0)
3243                return retval;
3244
3245        return 0;
3246}
3247
3248static const struct file_operations perf_fops = {
3249        .llseek                 = no_llseek,
3250        .release                = perf_release,
3251        .read                   = perf_read,
3252        .poll                   = perf_poll,
3253        .unlocked_ioctl         = perf_ioctl,
3254        .compat_ioctl           = perf_ioctl,
3255        .mmap                   = perf_mmap,
3256        .fasync                 = perf_fasync,
3257};
3258
3259/*
3260 * Perf event wakeup
3261 *
3262 * If there's data, ensure we set the poll() state and publish everything
3263 * to user-space before waking everybody up.
3264 */
3265
3266void perf_event_wakeup(struct perf_event *event)
3267{
3268        wake_up_all(&event->waitq);
3269
3270        if (event->pending_kill) {
3271                kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3272                event->pending_kill = 0;
3273        }
3274}
3275
3276static void perf_pending_event(struct irq_work *entry)
3277{
3278        struct perf_event *event = container_of(entry,
3279                        struct perf_event, pending);
3280
3281        if (event->pending_disable) {
3282                event->pending_disable = 0;
3283                __perf_event_disable(event);
3284        }
3285
3286        if (event->pending_wakeup) {
3287                event->pending_wakeup = 0;
3288                perf_event_wakeup(event);
3289        }
3290}
3291
3292/*
3293 * We assume there is only KVM supporting the callbacks.
3294 * Later on, we might change it to a list if there is
3295 * another virtualization implementation supporting the callbacks.
3296 */
3297struct perf_guest_info_callbacks *perf_guest_cbs;
3298
3299int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3300{
3301        perf_guest_cbs = cbs;
3302        return 0;
3303}
3304EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3305
3306int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3307{
3308        perf_guest_cbs = NULL;
3309        return 0;
3310}
3311EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3312
3313/*
3314 * Output
3315 */
3316static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3317                              unsigned long offset, unsigned long head)
3318{
3319        unsigned long mask;
3320
3321        if (!buffer->writable)
3322                return true;
3323
3324        mask = perf_data_size(buffer) - 1;
3325
3326        offset = (offset - tail) & mask;
3327        head   = (head   - tail) & mask;
3328
3329        if ((int)(head - offset) < 0)
3330                return false;
3331
3332        return true;
3333}
3334
3335static void perf_output_wakeup(struct perf_output_handle *handle)
3336{
3337        atomic_set(&handle->buffer->poll, POLL_IN);
3338
3339        if (handle->nmi) {
3340                handle->event->pending_wakeup = 1;
3341                irq_work_queue(&handle->event->pending);
3342        } else
3343                perf_event_wakeup(handle->event);
3344}
3345
3346/*
3347 * We need to ensure a later event_id doesn't publish a head when a former
3348 * event isn't done writing. However since we need to deal with NMIs we
3349 * cannot fully serialize things.
3350 *
3351 * We only publish the head (and generate a wakeup) when the outer-most
3352 * event completes.
3353 */
3354static void perf_output_get_handle(struct perf_output_handle *handle)
3355{
3356        struct perf_buffer *buffer = handle->buffer;
3357
3358        preempt_disable();
3359        local_inc(&buffer->nest);
3360        handle->wakeup = local_read(&buffer->wakeup);
3361}
3362
3363static void perf_output_put_handle(struct perf_output_handle *handle)
3364{
3365        struct perf_buffer *buffer = handle->buffer;
3366        unsigned long head;
3367
3368again:
3369        head = local_read(&buffer->head);
3370
3371        /*
3372         * IRQ/NMI can happen here, which means we can miss a head update.
3373         */
3374
3375        if (!local_dec_and_test(&buffer->nest))
3376                goto out;
3377
3378        /*
3379         * Publish the known good head. Rely on the full barrier implied
3380         * by atomic_dec_and_test() order the buffer->head read and this
3381         * write.
3382         */
3383        buffer->user_page->data_head = head;
3384
3385        /*
3386         * Now check if we missed an update, rely on the (compiler)
3387         * barrier in atomic_dec_and_test() to re-read buffer->head.
3388         */
3389        if (unlikely(head != local_read(&buffer->head))) {
3390                local_inc(&buffer->nest);
3391                goto again;
3392        }
3393
3394        if (handle->wakeup != local_read(&buffer->wakeup))
3395                perf_output_wakeup(handle);
3396
3397out:
3398        preempt_enable();
3399}
3400
3401__always_inline void perf_output_copy(struct perf_output_handle *handle,
3402                      const void *buf, unsigned int len)
3403{
3404        do {
3405                unsigned long size = min_t(unsigned long, handle->size, len);
3406
3407                memcpy(handle->addr, buf, size);
3408
3409                len -= size;
3410                handle->addr += size;
3411                buf += size;
3412                handle->size -= size;
3413                if (!handle->size) {
3414                        struct perf_buffer *buffer = handle->buffer;
3415
3416                        handle->page++;
3417                        handle->page &= buffer->nr_pages - 1;
3418                        handle->addr = buffer->data_pages[handle->page];
3419                        handle->size = PAGE_SIZE << page_order(buffer);
3420                }
3421        } while (len);
3422}
3423
3424static void __perf_event_header__init_id(struct perf_event_header *header,
3425                                         struct perf_sample_data *data,
3426                                         struct perf_event *event)
3427{
3428        u64 sample_type = event->attr.sample_type;
3429
3430        data->type = sample_type;
3431        header->size += event->id_header_size;
3432
3433        if (sample_type & PERF_SAMPLE_TID) {
3434                /* namespace issues */
3435                data->tid_entry.pid = perf_event_pid(event, current);
3436                data->tid_entry.tid = perf_event_tid(event, current);
3437        }
3438
3439        if (sample_type & PERF_SAMPLE_TIME)
3440                data->time = perf_clock();
3441
3442        if (sample_type & PERF_SAMPLE_ID)
3443                data->id = primary_event_id(event);
3444
3445        if (sample_type & PERF_SAMPLE_STREAM_ID)
3446                data->stream_id = event->id;
3447
3448        if (sample_type & PERF_SAMPLE_CPU) {
3449                data->cpu_entry.cpu      = raw_smp_processor_id();
3450                data->cpu_entry.reserved = 0;
3451        }
3452}
3453
3454static void perf_event_header__init_id(struct perf_event_header *header,
3455                                       struct perf_sample_data *data,
3456                                       struct perf_event *event)
3457{
3458        if (event->attr.sample_id_all)
3459                __perf_event_header__init_id(header, data, event);
3460}
3461
3462static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3463                                           struct perf_sample_data *data)
3464{
3465        u64 sample_type = data->type;
3466
3467        if (sample_type & PERF_SAMPLE_TID)
3468                perf_output_put(handle, data->tid_entry);
3469
3470        if (sample_type & PERF_SAMPLE_TIME)
3471                perf_output_put(handle, data->time);
3472
3473        if (sample_type & PERF_SAMPLE_ID)
3474                perf_output_put(handle, data->id);
3475
3476        if (sample_type & PERF_SAMPLE_STREAM_ID)
3477                perf_output_put(handle, data->stream_id);
3478
3479        if (sample_type & PERF_SAMPLE_CPU)
3480                perf_output_put(handle, data->cpu_entry);
3481}
3482
3483static void perf_event__output_id_sample(struct perf_event *event,
3484                                         struct perf_output_handle *handle,
3485                                         struct perf_sample_data *sample)
3486{
3487        if (event->attr.sample_id_all)
3488                __perf_event__output_id_sample(handle, sample);
3489}
3490
3491int perf_output_begin(struct perf_output_handle *handle,
3492                      struct perf_event *event, unsigned int size,
3493                      int nmi, int sample)
3494{
3495        struct perf_buffer *buffer;
3496        unsigned long tail, offset, head;
3497        int have_lost;
3498        struct perf_sample_data sample_data;
3499        struct {
3500                struct perf_event_header header;
3501                u64                      id;
3502                u64                      lost;
3503        } lost_event;
3504
3505        rcu_read_lock();
3506        /*
3507         * For inherited events we send all the output towards the parent.
3508         */
3509        if (event->parent)
3510                event = event->parent;
3511
3512        buffer = rcu_dereference(event->buffer);
3513        if (!buffer)
3514                goto out;
3515
3516        handle->buffer  = buffer;
3517        handle->event   = event;
3518        handle->nmi     = nmi;
3519        handle->sample  = sample;
3520
3521        if (!buffer->nr_pages)
3522                goto out;
3523
3524        have_lost = local_read(&buffer->lost);
3525        if (have_lost) {
3526                lost_event.header.size = sizeof(lost_event);
3527                perf_event_header__init_id(&lost_event.header, &sample_data,
3528                                           event);
3529                size += lost_event.header.size;
3530        }
3531
3532        perf_output_get_handle(handle);
3533
3534        do {
3535                /*
3536                 * Userspace could choose to issue a mb() before updating the
3537                 * tail pointer. So that all reads will be completed before the
3538                 * write is issued.
3539                 */
3540                tail = ACCESS_ONCE(buffer->user_page->data_tail);
3541                smp_rmb();
3542                offset = head = local_read(&buffer->head);
3543                head += size;
3544                if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3545                        goto fail;
3546        } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3547
3548        if (head - local_read(&buffer->wakeup) > buffer->watermark)
3549                local_add(buffer->watermark, &buffer->wakeup);
3550
3551        handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3552        handle->page &= buffer->nr_pages - 1;
3553        handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3554        handle->addr = buffer->data_pages[handle->page];
3555        handle->addr += handle->size;
3556        handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3557
3558        if (have_lost) {
3559                lost_event.header.type = PERF_RECORD_LOST;
3560                lost_event.header.misc = 0;
3561                lost_event.id          = event->id;
3562                lost_event.lost        = local_xchg(&buffer->lost, 0);
3563
3564                perf_output_put(handle, lost_event);
3565                perf_event__output_id_sample(event, handle, &sample_data);
3566        }
3567
3568        return 0;
3569
3570fail:
3571        local_inc(&buffer->lost);
3572        perf_output_put_handle(handle);
3573out:
3574        rcu_read_unlock();
3575
3576        return -ENOSPC;
3577}
3578
3579void perf_output_end(struct perf_output_handle *handle)
3580{
3581        struct perf_event *event = handle->event;
3582        struct perf_buffer *buffer = handle->buffer;
3583
3584        int wakeup_events = event->attr.wakeup_events;
3585
3586        if (handle->sample && wakeup_events) {
3587                int events = local_inc_return(&buffer->events);
3588                if (events >= wakeup_events) {
3589                        local_sub(wakeup_events, &buffer->events);
3590                        local_inc(&buffer->wakeup);
3591                }
3592        }
3593
3594        perf_output_put_handle(handle);
3595        rcu_read_unlock();
3596}
3597
3598static void perf_output_read_one(struct perf_output_handle *handle,
3599                                 struct perf_event *event,
3600                                 u64 enabled, u64 running)
3601{
3602        u64 read_format = event->attr.read_format;
3603        u64 values[4];
3604        int n = 0;
3605
3606        values[n++] = perf_event_count(event);
3607        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3608                values[n++] = enabled +
3609                        atomic64_read(&event->child_total_time_enabled);
3610        }
3611        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3612                values[n++] = running +
3613                        atomic64_read(&event->child_total_time_running);
3614        }
3615        if (read_format & PERF_FORMAT_ID)
3616                values[n++] = primary_event_id(event);
3617
3618        perf_output_copy(handle, values, n * sizeof(u64));
3619}
3620
3621/*
3622 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3623 */
3624static void perf_output_read_group(struct perf_output_handle *handle,
3625                            struct perf_event *event,
3626                            u64 enabled, u64 running)
3627{
3628        struct perf_event *leader = event->group_leader, *sub;
3629        u64 read_format = event->attr.read_format;
3630        u64 values[5];
3631        int n = 0;
3632
3633        values[n++] = 1 + leader->nr_siblings;
3634
3635        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3636                values[n++] = enabled;
3637
3638        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3639                values[n++] = running;
3640
3641        if (leader != event)
3642                leader->pmu->read(leader);
3643
3644        values[n++] = perf_event_count(leader);
3645        if (read_format & PERF_FORMAT_ID)
3646                values[n++] = primary_event_id(leader);
3647
3648        perf_output_copy(handle, values, n * sizeof(u64));
3649
3650        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3651                n = 0;
3652
3653                if (sub != event)
3654                        sub->pmu->read(sub);
3655
3656                values[n++] = perf_event_count(sub);
3657                if (read_format & PERF_FORMAT_ID)
3658                        values[n++] = primary_event_id(sub);
3659
3660                perf_output_copy(handle, values, n * sizeof(u64));
3661        }
3662}
3663
3664#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3665                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
3666
3667static void perf_output_read(struct perf_output_handle *handle,
3668                             struct perf_event *event)
3669{
3670        u64 enabled = 0, running = 0, now, ctx_time;
3671        u64 read_format = event->attr.read_format;
3672
3673        /*
3674         * compute total_time_enabled, total_time_running
3675         * based on snapshot values taken when the event
3676         * was last scheduled in.
3677         *
3678         * we cannot simply called update_context_time()
3679         * because of locking issue as we are called in
3680         * NMI context
3681         */
3682        if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3683                now = perf_clock();
3684                ctx_time = event->shadow_ctx_time + now;
3685                enabled = ctx_time - event->tstamp_enabled;
3686                running = ctx_time - event->tstamp_running;
3687        }
3688
3689        if (event->attr.read_format & PERF_FORMAT_GROUP)
3690                perf_output_read_group(handle, event, enabled, running);
3691        else
3692                perf_output_read_one(handle, event, enabled, running);
3693}
3694
3695void perf_output_sample(struct perf_output_handle *handle,
3696                        struct perf_event_header *header,
3697                        struct perf_sample_data *data,
3698                        struct perf_event *event)
3699{
3700        u64 sample_type = data->type;
3701
3702        perf_output_put(handle, *header);
3703
3704        if (sample_type & PERF_SAMPLE_IP)
3705                perf_output_put(handle, data->ip);
3706
3707        if (sample_type & PERF_SAMPLE_TID)
3708                perf_output_put(handle, data->tid_entry);
3709
3710        if (sample_type & PERF_SAMPLE_TIME)
3711                perf_output_put(handle, data->time);
3712
3713        if (sample_type & PERF_SAMPLE_ADDR)
3714                perf_output_put(handle, data->addr);
3715
3716        if (sample_type & PERF_SAMPLE_ID)
3717                perf_output_put(handle, data->id);
3718
3719        if (sample_type & PERF_SAMPLE_STREAM_ID)
3720                perf_output_put(handle, data->stream_id);
3721
3722        if (sample_type & PERF_SAMPLE_CPU)
3723                perf_output_put(handle, data->cpu_entry);
3724
3725        if (sample_type & PERF_SAMPLE_PERIOD)
3726                perf_output_put(handle, data->period);
3727
3728        if (sample_type & PERF_SAMPLE_READ)
3729                perf_output_read(handle, event);
3730
3731        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3732                if (data->callchain) {
3733                        int size = 1;
3734
3735                        if (data->callchain)
3736                                size += data->callchain->nr;
3737
3738                        size *= sizeof(u64);
3739
3740                        perf_output_copy(handle, data->callchain, size);
3741                } else {
3742                        u64 nr = 0;
3743                        perf_output_put(handle, nr);
3744                }
3745        }
3746
3747        if (sample_type & PERF_SAMPLE_RAW) {
3748                if (data->raw) {
3749                        perf_output_put(handle, data->raw->size);
3750                        perf_output_copy(handle, data->raw->data,
3751                                         data->raw->size);
3752                } else {
3753                        struct {
3754                                u32     size;
3755                                u32     data;
3756                        } raw = {
3757                                .size = sizeof(u32),
3758                                .data = 0,
3759                        };
3760                        perf_output_put(handle, raw);
3761                }
3762        }
3763}
3764
3765void perf_prepare_sample(struct perf_event_header *header,
3766                         struct perf_sample_data *data,
3767                         struct perf_event *event,
3768                         struct pt_regs *regs)
3769{
3770        u64 sample_type = event->attr.sample_type;
3771
3772        header->type = PERF_RECORD_SAMPLE;
3773        header->size = sizeof(*header) + event->header_size;
3774
3775        header->misc = 0;
3776        header->misc |= perf_misc_flags(regs);
3777
3778        __perf_event_header__init_id(header, data, event);
3779
3780        if (sample_type & PERF_SAMPLE_IP)
3781                data->ip = perf_instruction_pointer(regs);
3782
3783        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3784                int size = 1;
3785
3786                data->callchain = perf_callchain(regs);
3787
3788                if (data->callchain)
3789                        size += data->callchain->nr;
3790
3791                header->size += size * sizeof(u64);
3792        }
3793
3794        if (sample_type & PERF_SAMPLE_RAW) {
3795                int size = sizeof(u32);
3796
3797                if (data->raw)
3798                        size += data->raw->size;
3799                else
3800                        size += sizeof(u32);
3801
3802                WARN_ON_ONCE(size & (sizeof(u64)-1));
3803                header->size += size;
3804        }
3805}
3806
3807static void perf_event_output(struct perf_event *event, int nmi,
3808                                struct perf_sample_data *data,
3809                                struct pt_regs *regs)
3810{
3811        struct perf_output_handle handle;
3812        struct perf_event_header header;
3813
3814        /* protect the callchain buffers */
3815        rcu_read_lock();
3816
3817        perf_prepare_sample(&header, data, event, regs);
3818
3819        if (perf_output_begin(&handle, event, header.size, nmi, 1))
3820                goto exit;
3821
3822        perf_output_sample(&handle, &header, data, event);
3823
3824        perf_output_end(&handle);
3825
3826exit:
3827        rcu_read_unlock();
3828}
3829
3830/*
3831 * read event_id
3832 */
3833
3834struct perf_read_event {
3835        struct perf_event_header        header;
3836
3837        u32                             pid;
3838        u32                             tid;
3839};
3840
3841static void
3842perf_event_read_event(struct perf_event *event,
3843                        struct task_struct *task)
3844{
3845        struct perf_output_handle handle;
3846        struct perf_sample_data sample;
3847        struct perf_read_event read_event = {
3848                .header = {
3849                        .type = PERF_RECORD_READ,
3850                        .misc = 0,
3851                        .size = sizeof(read_event) + event->read_size,
3852                },
3853                .pid = perf_event_pid(event, task),
3854                .tid = perf_event_tid(event, task),
3855        };
3856        int ret;
3857
3858        perf_event_header__init_id(&read_event.header, &sample, event);
3859        ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3860        if (ret)
3861                return;
3862
3863        perf_output_put(&handle, read_event);
3864        perf_output_read(&handle, event);
3865        perf_event__output_id_sample(event, &handle, &sample);
3866
3867        perf_output_end(&handle);
3868}
3869
3870/*
3871 * task tracking -- fork/exit
3872 *
3873 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3874 */
3875
3876struct perf_task_event {
3877        struct task_struct              *task;
3878        struct perf_event_context       *task_ctx;
3879
3880        struct {
3881                struct perf_event_header        header;
3882
3883                u32                             pid;
3884                u32                             ppid;
3885                u32                             tid;
3886                u32                             ptid;
3887                u64                             time;
3888        } event_id;
3889};
3890
3891static void perf_event_task_output(struct perf_event *event,
3892                                     struct perf_task_event *task_event)
3893{
3894        struct perf_output_handle handle;
3895        struct perf_sample_data sample;
3896        struct task_struct *task = task_event->task;
3897        int ret, size = task_event->event_id.header.size;
3898
3899        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3900
3901        ret = perf_output_begin(&handle, event,
3902                                task_event->event_id.header.size, 0, 0);
3903        if (ret)
3904                goto out;
3905
3906        task_event->event_id.pid = perf_event_pid(event, task);
3907        task_event->event_id.ppid = perf_event_pid(event, current);
3908
3909        task_event->event_id.tid = perf_event_tid(event, task);
3910        task_event->event_id.ptid = perf_event_tid(event, current);
3911
3912        perf_output_put(&handle, task_event->event_id);
3913
3914        perf_event__output_id_sample(event, &handle, &sample);
3915
3916        perf_output_end(&handle);
3917out:
3918        task_event->event_id.header.size = size;
3919}
3920
3921static int perf_event_task_match(struct perf_event *event)
3922{
3923        if (event->state < PERF_EVENT_STATE_INACTIVE)
3924                return 0;
3925
3926        if (!event_filter_match(event))
3927                return 0;
3928
3929        if (event->attr.comm || event->attr.mmap ||
3930            event->attr.mmap_data || event->attr.task)
3931                return 1;
3932
3933        return 0;
3934}
3935
3936static void perf_event_task_ctx(struct perf_event_context *ctx,
3937                                  struct perf_task_event *task_event)
3938{
3939        struct perf_event *event;
3940
3941        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3942                if (perf_event_task_match(event))
3943                        perf_event_task_output(event, task_event);
3944        }
3945}
3946
3947static void perf_event_task_event(struct perf_task_event *task_event)
3948{
3949        struct perf_cpu_context *cpuctx;
3950        struct perf_event_context *ctx;
3951        struct pmu *pmu;
3952        int ctxn;
3953
3954        rcu_read_lock();
3955        list_for_each_entry_rcu(pmu, &pmus, entry) {
3956                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3957                if (cpuctx->active_pmu != pmu)
3958                        goto next;
3959                perf_event_task_ctx(&cpuctx->ctx, task_event);
3960
3961                ctx = task_event->task_ctx;
3962                if (!ctx) {
3963                        ctxn = pmu->task_ctx_nr;
3964                        if (ctxn < 0)
3965                                goto next;
3966                        ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3967                }
3968                if (ctx)
3969                        perf_event_task_ctx(ctx, task_event);
3970next:
3971                put_cpu_ptr(pmu->pmu_cpu_context);
3972        }
3973        rcu_read_unlock();
3974}
3975
3976static void perf_event_task(struct task_struct *task,
3977                              struct perf_event_context *task_ctx,
3978                              int new)
3979{
3980        struct perf_task_event task_event;
3981
3982        if (!atomic_read(&nr_comm_events) &&
3983            !atomic_read(&nr_mmap_events) &&
3984            !atomic_read(&nr_task_events))
3985                return;
3986
3987        task_event = (struct perf_task_event){
3988                .task     = task,
3989                .task_ctx = task_ctx,
3990                .event_id    = {
3991                        .header = {
3992                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3993                                .misc = 0,
3994                                .size = sizeof(task_event.event_id),
3995                        },
3996                        /* .pid  */
3997                        /* .ppid */
3998                        /* .tid  */
3999                        /* .ptid */
4000                        .time = perf_clock(),
4001                },
4002        };
4003
4004        perf_event_task_event(&task_event);
4005}
4006
4007void perf_event_fork(struct task_struct *task)
4008{
4009        perf_event_task(task, NULL, 1);
4010}
4011
4012/*
4013 * comm tracking
4014 */
4015
4016struct perf_comm_event {
4017        struct task_struct      *task;
4018        char                    *comm;
4019        int                     comm_size;
4020
4021        struct {
4022                struct perf_event_header        header;
4023
4024                u32                             pid;
4025                u32                             tid;
4026        } event_id;
4027};
4028
4029static void perf_event_comm_output(struct perf_event *event,
4030                                     struct perf_comm_event *comm_event)
4031{
4032        struct perf_output_handle handle;
4033        struct perf_sample_data sample;
4034        int size = comm_event->event_id.header.size;
4035        int ret;
4036
4037        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4038        ret = perf_output_begin(&handle, event,
4039                                comm_event->event_id.header.size, 0, 0);
4040
4041        if (ret)
4042                goto out;
4043
4044        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4045        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4046
4047        perf_output_put(&handle, comm_event->event_id);
4048        perf_output_copy(&handle, comm_event->comm,
4049                                   comm_event->comm_size);
4050
4051        perf_event__output_id_sample(event, &handle, &sample);
4052
4053        perf_output_end(&handle);
4054out:
4055        comm_event->event_id.header.size = size;
4056}
4057
4058static int perf_event_comm_match(struct perf_event *event)
4059{
4060        if (event->state < PERF_EVENT_STATE_INACTIVE)
4061                return 0;
4062
4063        if (!event_filter_match(event))
4064                return 0;
4065
4066        if (event->attr.comm)
4067                return 1;
4068
4069        return 0;
4070}
4071
4072static void perf_event_comm_ctx(struct perf_event_context *ctx,
4073                                  struct perf_comm_event *comm_event)
4074{
4075        struct perf_event *event;
4076
4077        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4078                if (perf_event_comm_match(event))
4079                        perf_event_comm_output(event, comm_event);
4080        }
4081}
4082
4083static void perf_event_comm_event(struct perf_comm_event *comm_event)
4084{
4085        struct perf_cpu_context *cpuctx;
4086        struct perf_event_context *ctx;
4087        char comm[TASK_COMM_LEN];
4088        unsigned int size;
4089        struct pmu *pmu;
4090        int ctxn;
4091
4092        memset(comm, 0, sizeof(comm));
4093        strlcpy(comm, comm_event->task->comm, sizeof(comm));
4094        size = ALIGN(strlen(comm)+1, sizeof(u64));
4095
4096        comm_event->comm = comm;
4097        comm_event->comm_size = size;
4098
4099        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4100        rcu_read_lock();
4101        list_for_each_entry_rcu(pmu, &pmus, entry) {
4102                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4103                if (cpuctx->active_pmu != pmu)
4104                        goto next;
4105                perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4106
4107                ctxn = pmu->task_ctx_nr;
4108                if (ctxn < 0)
4109                        goto next;
4110
4111                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4112                if (ctx)
4113                        perf_event_comm_ctx(ctx, comm_event);
4114next:
4115                put_cpu_ptr(pmu->pmu_cpu_context);
4116        }
4117        rcu_read_unlock();
4118}
4119
4120void perf_event_comm(struct task_struct *task)
4121{
4122        struct perf_comm_event comm_event;
4123        struct perf_event_context *ctx;
4124        int ctxn;
4125
4126        for_each_task_context_nr(ctxn) {
4127                ctx = task->perf_event_ctxp[ctxn];
4128                if (!ctx)
4129                        continue;
4130
4131                perf_event_enable_on_exec(ctx);
4132        }
4133
4134        if (!atomic_read(&nr_comm_events))
4135                return;
4136
4137        comm_event = (struct perf_comm_event){
4138                .task   = task,
4139                /* .comm      */
4140                /* .comm_size */
4141                .event_id  = {
4142                        .header = {
4143                                .type = PERF_RECORD_COMM,
4144                                .misc = 0,
4145                                /* .size */
4146                        },
4147                        /* .pid */
4148                        /* .tid */
4149                },
4150        };
4151
4152        perf_event_comm_event(&comm_event);
4153}
4154
4155/*
4156 * mmap tracking
4157 */
4158
4159struct perf_mmap_event {
4160        struct vm_area_struct   *vma;
4161
4162        const char              *file_name;
4163        int                     file_size;
4164
4165        struct {
4166                struct perf_event_header        header;
4167
4168                u32                             pid;
4169                u32                             tid;
4170                u64                             start;
4171                u64                             len;
4172                u64                             pgoff;
4173        } event_id;
4174};
4175
4176static void perf_event_mmap_output(struct perf_event *event,
4177                                     struct perf_mmap_event *mmap_event)
4178{
4179        struct perf_output_handle handle;
4180        struct perf_sample_data sample;
4181        int size = mmap_event->event_id.header.size;
4182        int ret;
4183
4184        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4185        ret = perf_output_begin(&handle, event,
4186                                mmap_event->event_id.header.size, 0, 0);
4187        if (ret)
4188                goto out;
4189
4190        mmap_event->event_id.pid = perf_event_pid(event, current);
4191        mmap_event->event_id.tid = perf_event_tid(event, current);
4192
4193        perf_output_put(&handle, mmap_event->event_id);
4194        perf_output_copy(&handle, mmap_event->file_name,
4195                                   mmap_event->file_size);
4196
4197        perf_event__output_id_sample(event, &handle, &sample);
4198
4199        perf_output_end(&handle);
4200out:
4201        mmap_event->event_id.header.size = size;
4202}
4203
4204static int perf_event_mmap_match(struct perf_event *event,
4205                                   struct perf_mmap_event *mmap_event,
4206                                   int executable)
4207{
4208        if (event->state < PERF_EVENT_STATE_INACTIVE)
4209                return 0;
4210
4211        if (!event_filter_match(event))
4212                return 0;
4213
4214        if ((!executable && event->attr.mmap_data) ||
4215            (executable && event->attr.mmap))
4216                return 1;
4217
4218        return 0;
4219}
4220
4221static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4222                                  struct perf_mmap_event *mmap_event,
4223                                  int executable)
4224{
4225        struct perf_event *event;
4226
4227        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4228                if (perf_event_mmap_match(event, mmap_event, executable))
4229                        perf_event_mmap_output(event, mmap_event);
4230        }
4231}
4232
4233static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4234{
4235        struct perf_cpu_context *cpuctx;
4236        struct perf_event_context *ctx;
4237        struct vm_area_struct *vma = mmap_event->vma;
4238        struct file *file = vma->vm_file;
4239        unsigned int size;
4240        char tmp[16];
4241        char *buf = NULL;
4242        const char *name;
4243        struct pmu *pmu;
4244        int ctxn;
4245
4246        memset(tmp, 0, sizeof(tmp));
4247
4248        if (file) {
4249                /*
4250                 * d_path works from the end of the buffer backwards, so we
4251                 * need to add enough zero bytes after the string to handle
4252                 * the 64bit alignment we do later.
4253                 */
4254                buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4255                if (!buf) {
4256                        name = strncpy(tmp, "//enomem", sizeof(tmp));
4257                        goto got_name;
4258                }
4259                name = d_path(&file->f_path, buf, PATH_MAX);
4260                if (IS_ERR(name)) {
4261                        name = strncpy(tmp, "//toolong", sizeof(tmp));
4262                        goto got_name;
4263                }
4264        } else {
4265                if (arch_vma_name(mmap_event->vma)) {
4266                        name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4267                                       sizeof(tmp));
4268                        goto got_name;
4269                }
4270
4271                if (!vma->vm_mm) {
4272                        name = strncpy(tmp, "[vdso]", sizeof(tmp));
4273                        goto got_name;
4274                } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4275                                vma->vm_end >= vma->vm_mm->brk) {
4276                        name = strncpy(tmp, "[heap]", sizeof(tmp));
4277                        goto got_name;
4278                } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4279                                vma->vm_end >= vma->vm_mm->start_stack) {
4280                        name = strncpy(tmp, "[stack]", sizeof(tmp));
4281                        goto got_name;
4282                }
4283
4284                name = strncpy(tmp, "//anon", sizeof(tmp));
4285                goto got_name;
4286        }
4287
4288got_name:
4289        size = ALIGN(strlen(name)+1, sizeof(u64));
4290
4291        mmap_event->file_name = name;
4292        mmap_event->file_size = size;
4293
4294        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4295
4296        rcu_read_lock();
4297        list_for_each_entry_rcu(pmu, &pmus, entry) {
4298                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4299                if (cpuctx->active_pmu != pmu)
4300                        goto next;
4301                perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4302                                        vma->vm_flags & VM_EXEC);
4303
4304                ctxn = pmu->task_ctx_nr;
4305                if (ctxn < 0)
4306                        goto next;
4307
4308                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4309                if (ctx) {
4310                        perf_event_mmap_ctx(ctx, mmap_event,
4311                                        vma->vm_flags & VM_EXEC);
4312                }
4313next:
4314                put_cpu_ptr(pmu->pmu_cpu_context);
4315        }
4316        rcu_read_unlock();
4317
4318        kfree(buf);
4319}
4320
4321void perf_event_mmap(struct vm_area_struct *vma)
4322{
4323        struct perf_mmap_event mmap_event;
4324
4325        if (!atomic_read(&nr_mmap_events))
4326                return;
4327
4328        mmap_event = (struct perf_mmap_event){
4329                .vma    = vma,
4330                /* .file_name */
4331                /* .file_size */
4332                .event_id  = {
4333                        .header = {
4334                                .type = PERF_RECORD_MMAP,
4335                                .misc = PERF_RECORD_MISC_USER,
4336                                /* .size */
4337                        },
4338                        /* .pid */
4339                        /* .tid */
4340                        .start  = vma->vm_start,
4341                        .len    = vma->vm_end - vma->vm_start,
4342                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4343                },
4344        };
4345
4346        perf_event_mmap_event(&mmap_event);
4347}
4348
4349/*
4350 * IRQ throttle logging
4351 */
4352
4353static void perf_log_throttle(struct perf_event *event, int enable)
4354{
4355        struct perf_output_handle handle;
4356        struct perf_sample_data sample;
4357        int ret;
4358
4359        struct {
4360                struct perf_event_header        header;
4361                u64                             time;
4362                u64                             id;
4363                u64                             stream_id;
4364        } throttle_event = {
4365                .header = {
4366                        .type = PERF_RECORD_THROTTLE,
4367                        .misc = 0,
4368                        .size = sizeof(throttle_event),
4369                },
4370                .time           = perf_clock(),
4371                .id             = primary_event_id(event),
4372                .stream_id      = event->id,
4373        };
4374
4375        if (enable)
4376                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4377
4378        perf_event_header__init_id(&throttle_event.header, &sample, event);
4379
4380        ret = perf_output_begin(&handle, event,
4381                                throttle_event.header.size, 1, 0);
4382        if (ret)
4383                return;
4384
4385        perf_output_put(&handle, throttle_event);
4386        perf_event__output_id_sample(event, &handle, &sample);
4387        perf_output_end(&handle);
4388}
4389
4390/*
4391 * Generic event overflow handling, sampling.
4392 */
4393
4394static int __perf_event_overflow(struct perf_event *event, int nmi,
4395                                   int throttle, struct perf_sample_data *data,
4396                                   struct pt_regs *regs)
4397{
4398        int events = atomic_read(&event->event_limit);
4399        struct hw_perf_event *hwc = &event->hw;
4400        int ret = 0;
4401
4402        /*
4403         * Non-sampling counters might still use the PMI to fold short
4404         * hardware counters, ignore those.
4405         */
4406        if (unlikely(!is_sampling_event(event)))
4407                return 0;
4408
4409        if (!throttle) {
4410                hwc->interrupts++;
4411        } else {
4412                if (hwc->interrupts != MAX_INTERRUPTS) {
4413                        hwc->interrupts++;
4414                        if (HZ * hwc->interrupts >
4415                                        (u64)sysctl_perf_event_sample_rate) {
4416                                hwc->interrupts = MAX_INTERRUPTS;
4417                                perf_log_throttle(event, 0);
4418                                ret = 1;
4419                        }
4420                } else {
4421                        /*
4422                         * Keep re-disabling events even though on the previous
4423                         * pass we disabled it - just in case we raced with a
4424                         * sched-in and the event got enabled again:
4425                         */
4426                        ret = 1;
4427                }
4428        }
4429
4430        if (event->attr.freq) {
4431                u64 now = perf_clock();
4432                s64 delta = now - hwc->freq_time_stamp;
4433
4434                hwc->freq_time_stamp = now;
4435
4436                if (delta > 0 && delta < 2*TICK_NSEC)
4437                        perf_adjust_period(event, delta, hwc->last_period);
4438        }
4439
4440        /*
4441         * XXX event_limit might not quite work as expected on inherited
4442         * events
4443         */
4444
4445        event->pending_kill = POLL_IN;
4446        if (events && atomic_dec_and_test(&event->event_limit)) {
4447                ret = 1;
4448                event->pending_kill = POLL_HUP;
4449                if (nmi) {
4450                        event->pending_disable = 1;
4451                        irq_work_queue(&event->pending);
4452                } else
4453                        perf_event_disable(event);
4454        }
4455
4456        if (event->overflow_handler)
4457                event->overflow_handler(event, nmi, data, regs);
4458        else
4459                perf_event_output(event, nmi, data, regs);
4460
4461        return ret;
4462}
4463
4464int perf_event_overflow(struct perf_event *event, int nmi,
4465                          struct perf_sample_data *data,
4466                          struct pt_regs *regs)
4467{
4468        return __perf_event_overflow(event, nmi, 1, data, regs);
4469}
4470
4471/*
4472 * Generic software event infrastructure
4473 */
4474
4475struct swevent_htable {
4476        struct swevent_hlist            *swevent_hlist;
4477        struct mutex                    hlist_mutex;
4478        int                             hlist_refcount;
4479
4480        /* Recursion avoidance in each contexts */
4481        int                             recursion[PERF_NR_CONTEXTS];
4482};
4483
4484static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4485
4486/*
4487 * We directly increment event->count and keep a second value in
4488 * event->hw.period_left to count intervals. This period event
4489 * is kept in the range [-sample_period, 0] so that we can use the
4490 * sign as trigger.
4491 */
4492
4493static u64 perf_swevent_set_period(struct perf_event *event)
4494{
4495        struct hw_perf_event *hwc = &event->hw;
4496        u64 period = hwc->last_period;
4497        u64 nr, offset;
4498        s64 old, val;
4499
4500        hwc->last_period = hwc->sample_period;
4501
4502again:
4503        old = val = local64_read(&hwc->period_left);
4504        if (val < 0)
4505                return 0;
4506
4507        nr = div64_u64(period + val, period);
4508        offset = nr * period;
4509        val -= offset;
4510        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4511                goto again;
4512
4513        return nr;
4514}
4515
4516static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4517                                    int nmi, struct perf_sample_data *data,
4518                                    struct pt_regs *regs)
4519{
4520        struct hw_perf_event *hwc = &event->hw;
4521        int throttle = 0;
4522
4523        data->period = event->hw.last_period;
4524        if (!overflow)
4525                overflow = perf_swevent_set_period(event);
4526
4527        if (hwc->interrupts == MAX_INTERRUPTS)
4528                return;
4529
4530        for (; overflow; overflow--) {
4531                if (__perf_event_overflow(event, nmi, throttle,
4532                                            data, regs)) {
4533                        /*
4534                         * We inhibit the overflow from happening when
4535                         * hwc->interrupts == MAX_INTERRUPTS.
4536                         */
4537                        break;
4538                }
4539                throttle = 1;
4540        }
4541}
4542
4543static void perf_swevent_event(struct perf_event *event, u64 nr,
4544                               int nmi, struct perf_sample_data *data,
4545                               struct pt_regs *regs)
4546{
4547        struct hw_perf_event *hwc = &event->hw;
4548
4549        local64_add(nr, &event->count);
4550
4551        if (!regs)
4552                return;
4553
4554        if (!is_sampling_event(event))
4555                return;
4556
4557        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4558                return perf_swevent_overflow(event, 1, nmi, data, regs);
4559
4560        if (local64_add_negative(nr, &hwc->period_left))
4561                return;
4562
4563        perf_swevent_overflow(event, 0, nmi, data, regs);
4564}
4565
4566static int perf_exclude_event(struct perf_event *event,
4567                              struct pt_regs *regs)
4568{
4569        if (event->hw.state & PERF_HES_STOPPED)
4570                return 0;
4571
4572        if (regs) {
4573                if (event->attr.exclude_user && user_mode(regs))
4574                        return 1;
4575
4576                if (event->attr.exclude_kernel && !user_mode(regs))
4577                        return 1;
4578        }
4579
4580        return 0;
4581}
4582
4583static int perf_swevent_match(struct perf_event *event,
4584                                enum perf_type_id type,
4585                                u32 event_id,
4586                                struct perf_sample_data *data,
4587                                struct pt_regs *regs)
4588{
4589        if (event->attr.type != type)
4590                return 0;
4591
4592        if (event->attr.config != event_id)
4593                return 0;
4594
4595        if (perf_exclude_event(event, regs))
4596                return 0;
4597
4598        return 1;
4599}
4600
4601static inline u64 swevent_hash(u64 type, u32 event_id)
4602{
4603        u64 val = event_id | (type << 32);
4604
4605        return hash_64(val, SWEVENT_HLIST_BITS);
4606}
4607
4608static inline struct hlist_head *
4609__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4610{
4611        u64 hash = swevent_hash(type, event_id);
4612
4613        return &hlist->heads[hash];
4614}
4615
4616/* For the read side: events when they trigger */
4617static inline struct hlist_head *
4618find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4619{
4620        struct swevent_hlist *hlist;
4621
4622        hlist = rcu_dereference(swhash->swevent_hlist);
4623        if (!hlist)
4624                return NULL;
4625
4626        return __find_swevent_head(hlist, type, event_id);
4627}
4628
4629/* For the event head insertion and removal in the hlist */
4630static inline struct hlist_head *
4631find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4632{
4633        struct swevent_hlist *hlist;
4634        u32 event_id = event->attr.config;
4635        u64 type = event->attr.type;
4636
4637        /*
4638         * Event scheduling is always serialized against hlist allocation
4639         * and release. Which makes the protected version suitable here.
4640         * The context lock guarantees that.
4641         */
4642        hlist = rcu_dereference_protected(swhash->swevent_hlist,
4643                                          lockdep_is_held(&event->ctx->lock));
4644        if (!hlist)
4645                return NULL;
4646
4647        return __find_swevent_head(hlist, type, event_id);
4648}
4649
4650static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4651                                    u64 nr, int nmi,
4652                                    struct perf_sample_data *data,
4653                                    struct pt_regs *regs)
4654{
4655        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4656        struct perf_event *event;
4657        struct hlist_node *node;
4658        struct hlist_head *head;
4659
4660        rcu_read_lock();
4661        head = find_swevent_head_rcu(swhash, type, event_id);
4662        if (!head)
4663                goto end;
4664
4665        hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4666                if (perf_swevent_match(event, type, event_id, data, regs))
4667                        perf_swevent_event(event, nr, nmi, data, regs);
4668        }
4669end:
4670        rcu_read_unlock();
4671}
4672
4673int perf_swevent_get_recursion_context(void)
4674{
4675        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4676
4677        return get_recursion_context(swhash->recursion);
4678}
4679EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4680
4681inline void perf_swevent_put_recursion_context(int rctx)
4682{
4683        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4684
4685        put_recursion_context(swhash->recursion, rctx);
4686}
4687
4688void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4689                            struct pt_regs *regs, u64 addr)
4690{
4691        struct perf_sample_data data;
4692        int rctx;
4693
4694        preempt_disable_notrace();
4695        rctx = perf_swevent_get_recursion_context();
4696        if (rctx < 0)
4697                return;
4698
4699        perf_sample_data_init(&data, addr);
4700
4701        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4702
4703        perf_swevent_put_recursion_context(rctx);
4704        preempt_enable_notrace();
4705}
4706
4707static void perf_swevent_read(struct perf_event *event)
4708{
4709}
4710
4711static int perf_swevent_add(struct perf_event *event, int flags)
4712{
4713        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4714        struct hw_perf_event *hwc = &event->hw;
4715        struct hlist_head *head;
4716
4717        if (is_sampling_event(event)) {
4718                hwc->last_period = hwc->sample_period;
4719                perf_swevent_set_period(event);
4720        }
4721
4722        hwc->state = !(flags & PERF_EF_START);
4723
4724        head = find_swevent_head(swhash, event);
4725        if (WARN_ON_ONCE(!head))
4726                return -EINVAL;
4727
4728        hlist_add_head_rcu(&event->hlist_entry, head);
4729
4730        return 0;
4731}
4732
4733static void perf_swevent_del(struct perf_event *event, int flags)
4734{
4735        hlist_del_rcu(&event->hlist_entry);
4736}
4737
4738static void perf_swevent_start(struct perf_event *event, int flags)
4739{
4740        event->hw.state = 0;
4741}
4742
4743static void perf_swevent_stop(struct perf_event *event, int flags)
4744{
4745        event->hw.state = PERF_HES_STOPPED;
4746}
4747
4748/* Deref the hlist from the update side */
4749static inline struct swevent_hlist *
4750swevent_hlist_deref(struct swevent_htable *swhash)
4751{
4752        return rcu_dereference_protected(swhash->swevent_hlist,
4753                                         lockdep_is_held(&swhash->hlist_mutex));
4754}
4755
4756static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4757{
4758        struct swevent_hlist *hlist;
4759
4760        hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4761        kfree(hlist);
4762}
4763
4764static void swevent_hlist_release(struct swevent_htable *swhash)
4765{
4766        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4767
4768        if (!hlist)
4769                return;
4770
4771        rcu_assign_pointer(swhash->swevent_hlist, NULL);
4772        call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4773}
4774
4775static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4776{
4777        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4778
4779        mutex_lock(&swhash->hlist_mutex);
4780
4781        if (!--swhash->hlist_refcount)
4782                swevent_hlist_release(swhash);
4783
4784        mutex_unlock(&swhash->hlist_mutex);
4785}
4786
4787static void swevent_hlist_put(struct perf_event *event)
4788{
4789        int cpu;
4790
4791        if (event->cpu != -1) {
4792                swevent_hlist_put_cpu(event, event->cpu);
4793                return;
4794        }
4795
4796        for_each_possible_cpu(cpu)
4797                swevent_hlist_put_cpu(event, cpu);
4798}
4799
4800static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4801{
4802        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4803        int err = 0;
4804
4805        mutex_lock(&swhash->hlist_mutex);
4806
4807        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4808                struct swevent_hlist *hlist;
4809
4810                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4811                if (!hlist) {
4812                        err = -ENOMEM;
4813                        goto exit;
4814                }
4815                rcu_assign_pointer(swhash->swevent_hlist, hlist);
4816        }
4817        swhash->hlist_refcount++;
4818exit:
4819        mutex_unlock(&swhash->hlist_mutex);
4820
4821        return err;
4822}
4823
4824static int swevent_hlist_get(struct perf_event *event)
4825{
4826        int err;
4827        int cpu, failed_cpu;
4828
4829        if (event->cpu != -1)
4830                return swevent_hlist_get_cpu(event, event->cpu);
4831
4832        get_online_cpus();
4833        for_each_possible_cpu(cpu) {
4834                err = swevent_hlist_get_cpu(event, cpu);
4835                if (err) {
4836                        failed_cpu = cpu;
4837                        goto fail;
4838                }
4839        }
4840        put_online_cpus();
4841
4842        return 0;
4843fail:
4844        for_each_possible_cpu(cpu) {
4845                if (cpu == failed_cpu)
4846                        break;
4847                swevent_hlist_put_cpu(event, cpu);
4848        }
4849
4850        put_online_cpus();
4851        return err;
4852}
4853
4854atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4855
4856static void sw_perf_event_destroy(struct perf_event *event)
4857{
4858        u64 event_id = event->attr.config;
4859
4860        WARN_ON(event->parent);
4861
4862        jump_label_dec(&perf_swevent_enabled[event_id]);
4863        swevent_hlist_put(event);
4864}
4865
4866static int perf_swevent_init(struct perf_event *event)
4867{
4868        int event_id = event->attr.config;
4869
4870        if (event->attr.type != PERF_TYPE_SOFTWARE)
4871                return -ENOENT;
4872
4873        switch (event_id) {
4874        case PERF_COUNT_SW_CPU_CLOCK:
4875        case PERF_COUNT_SW_TASK_CLOCK:
4876                return -ENOENT;
4877
4878        default:
4879                break;
4880        }
4881
4882        if (event_id >= PERF_COUNT_SW_MAX)
4883                return -ENOENT;
4884
4885        if (!event->parent) {
4886                int err;
4887
4888                err = swevent_hlist_get(event);
4889                if (err)
4890                        return err;
4891
4892                jump_label_inc(&perf_swevent_enabled[event_id]);
4893                event->destroy = sw_perf_event_destroy;
4894        }
4895
4896        return 0;
4897}
4898
4899static struct pmu perf_swevent = {
4900        .task_ctx_nr    = perf_sw_context,
4901
4902        .event_init     = perf_swevent_init,
4903        .add            = perf_swevent_add,
4904        .del            = perf_swevent_del,
4905        .start          = perf_swevent_start,
4906        .stop           = perf_swevent_stop,
4907        .read           = perf_swevent_read,
4908};
4909
4910#ifdef CONFIG_EVENT_TRACING
4911
4912static int perf_tp_filter_match(struct perf_event *event,
4913                                struct perf_sample_data *data)
4914{
4915        void *record = data->raw->data;
4916
4917        if (likely(!event->filter) || filter_match_preds(event->filter, record))
4918                return 1;
4919        return 0;
4920}
4921
4922static int perf_tp_event_match(struct perf_event *event,
4923                                struct perf_sample_data *data,
4924                                struct pt_regs *regs)
4925{
4926        /*
4927         * All tracepoints are from kernel-space.
4928         */
4929        if (event->attr.exclude_kernel)
4930                return 0;
4931
4932        if (!perf_tp_filter_match(event, data))
4933                return 0;
4934
4935        return 1;
4936}
4937
4938void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4939                   struct pt_regs *regs, struct hlist_head *head, int rctx)
4940{
4941        struct perf_sample_data data;
4942        struct perf_event *event;
4943        struct hlist_node *node;
4944
4945        struct perf_raw_record raw = {
4946                .size = entry_size,
4947                .data = record,
4948        };
4949
4950        perf_sample_data_init(&data, addr);
4951        data.raw = &raw;
4952
4953        hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4954                if (perf_tp_event_match(event, &data, regs))
4955                        perf_swevent_event(event, count, 1, &data, regs);
4956        }
4957
4958        perf_swevent_put_recursion_context(rctx);
4959}
4960EXPORT_SYMBOL_GPL(perf_tp_event);
4961
4962static void tp_perf_event_destroy(struct perf_event *event)
4963{
4964        perf_trace_destroy(event);
4965}
4966
4967static int perf_tp_event_init(struct perf_event *event)
4968{
4969        int err;
4970
4971        if (event->attr.type != PERF_TYPE_TRACEPOINT)
4972                return -ENOENT;
4973
4974        err = perf_trace_init(event);
4975        if (err)
4976                return err;
4977
4978        event->destroy = tp_perf_event_destroy;
4979
4980        return 0;
4981}
4982
4983static struct pmu perf_tracepoint = {
4984        .task_ctx_nr    = perf_sw_context,
4985
4986        .event_init     = perf_tp_event_init,
4987        .add            = perf_trace_add,
4988        .del            = perf_trace_del,
4989        .start          = perf_swevent_start,
4990        .stop           = perf_swevent_stop,
4991        .read           = perf_swevent_read,
4992};
4993
4994static inline void perf_tp_register(void)
4995{
4996        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4997}
4998
4999static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5000{
5001        char *filter_str;
5002        int ret;
5003
5004        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5005                return -EINVAL;
5006
5007        filter_str = strndup_user(arg, PAGE_SIZE);
5008        if (IS_ERR(filter_str))
5009                return PTR_ERR(filter_str);
5010
5011        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5012
5013        kfree(filter_str);
5014        return ret;
5015}
5016
5017static void perf_event_free_filter(struct perf_event *event)
5018{
5019        ftrace_profile_free_filter(event);
5020}
5021
5022#else
5023
5024static inline void perf_tp_register(void)
5025{
5026}
5027
5028static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5029{
5030        return -ENOENT;
5031}
5032
5033static void perf_event_free_filter(struct perf_event *event)
5034{
5035}
5036
5037#endif /* CONFIG_EVENT_TRACING */
5038
5039#ifdef CONFIG_HAVE_HW_BREAKPOINT
5040void perf_bp_event(struct perf_event *bp, void *data)
5041{
5042        struct perf_sample_data sample;
5043        struct pt_regs *regs = data;
5044
5045        perf_sample_data_init(&sample, bp->attr.bp_addr);
5046
5047        if (!bp->hw.state && !perf_exclude_event(bp, regs))
5048                perf_swevent_event(bp, 1, 1, &sample, regs);
5049}
5050#endif
5051
5052/*
5053 * hrtimer based swevent callback
5054 */
5055
5056static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5057{
5058        enum hrtimer_restart ret = HRTIMER_RESTART;
5059        struct perf_sample_data data;
5060        struct pt_regs *regs;
5061        struct perf_event *event;
5062        u64 period;
5063
5064        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5065        event->pmu->read(event);
5066
5067        perf_sample_data_init(&data, 0);
5068        data.period = event->hw.last_period;
5069        regs = get_irq_regs();
5070
5071        if (regs && !perf_exclude_event(event, regs)) {
5072                if (!(event->attr.exclude_idle && current->pid == 0))
5073                        if (perf_event_overflow(event, 0, &data, regs))
5074                                ret = HRTIMER_NORESTART;
5075        }
5076
5077        period = max_t(u64, 10000, event->hw.sample_period);
5078        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5079
5080        return ret;
5081}
5082
5083static void perf_swevent_start_hrtimer(struct perf_event *event)
5084{
5085        struct hw_perf_event *hwc = &event->hw;
5086        s64 period;
5087
5088        if (!is_sampling_event(event))
5089                return;
5090
5091        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5092        hwc->hrtimer.function = perf_swevent_hrtimer;
5093
5094        period = local64_read(&hwc->period_left);
5095        if (period) {
5096                if (period < 0)
5097                        period = 10000;
5098
5099                local64_set(&hwc->period_left, 0);
5100        } else {
5101                period = max_t(u64, 10000, hwc->sample_period);
5102        }
5103        __hrtimer_start_range_ns(&hwc->hrtimer,
5104                                ns_to_ktime(period), 0,
5105                                HRTIMER_MODE_REL_PINNED, 0);
5106}
5107
5108static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5109{
5110        struct hw_perf_event *hwc = &event->hw;
5111
5112        if (is_sampling_event(event)) {
5113                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5114                local64_set(&hwc->period_left, ktime_to_ns(remaining));
5115
5116                hrtimer_cancel(&hwc->hrtimer);
5117        }
5118}
5119
5120/*
5121 * Software event: cpu wall time clock
5122 */
5123
5124static void cpu_clock_event_update(struct perf_event *event)
5125{
5126        s64 prev;
5127        u64 now;
5128
5129        now = local_clock();
5130        prev = local64_xchg(&event->hw.prev_count, now);
5131        local64_add(now - prev, &event->count);
5132}
5133
5134static void cpu_clock_event_start(struct perf_event *event, int flags)
5135{
5136        local64_set(&event->hw.prev_count, local_clock());
5137        perf_swevent_start_hrtimer(event);
5138}
5139
5140static void cpu_clock_event_stop(struct perf_event *event, int flags)
5141{
5142        perf_swevent_cancel_hrtimer(event);
5143        cpu_clock_event_update(event);
5144}
5145
5146static int cpu_clock_event_add(struct perf_event *event, int flags)
5147{
5148        if (flags & PERF_EF_START)
5149                cpu_clock_event_start(event, flags);
5150
5151        return 0;
5152}
5153
5154static void cpu_clock_event_del(struct perf_event *event, int flags)
5155{
5156        cpu_clock_event_stop(event, flags);
5157}
5158
5159static void cpu_clock_event_read(struct perf_event *event)
5160{
5161        cpu_clock_event_update(event);
5162}
5163
5164static int cpu_clock_event_init(struct perf_event *event)
5165{
5166        if (event->attr.type != PERF_TYPE_SOFTWARE)
5167                return -ENOENT;
5168
5169        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5170                return -ENOENT;
5171
5172        return 0;
5173}
5174
5175static struct pmu perf_cpu_clock = {
5176        .task_ctx_nr    = perf_sw_context,
5177
5178        .event_init     = cpu_clock_event_init,
5179        .add            = cpu_clock_event_add,
5180        .del            = cpu_clock_event_del,
5181        .start          = cpu_clock_event_start,
5182        .stop           = cpu_clock_event_stop,
5183        .read           = cpu_clock_event_read,
5184};
5185
5186/*
5187 * Software event: task time clock
5188 */
5189
5190static void task_clock_event_update(struct perf_event *event, u64 now)
5191{
5192        u64 prev;
5193        s64 delta;
5194
5195        prev = local64_xchg(&event->hw.prev_count, now);
5196        delta = now - prev;
5197        local64_add(delta, &event->count);
5198}
5199
5200static void task_clock_event_start(struct perf_event *event, int flags)
5201{
5202        local64_set(&event->hw.prev_count, event->ctx->time);
5203        perf_swevent_start_hrtimer(event);
5204}
5205
5206static void task_clock_event_stop(struct perf_event *event, int flags)
5207{
5208        perf_swevent_cancel_hrtimer(event);
5209        task_clock_event_update(event, event->ctx->time);
5210}
5211
5212static int task_clock_event_add(struct perf_event *event, int flags)
5213{
5214        if (flags & PERF_EF_START)
5215                task_clock_event_start(event, flags);
5216
5217        return 0;
5218}
5219
5220static void task_clock_event_del(struct perf_event *event, int flags)
5221{
5222        task_clock_event_stop(event, PERF_EF_UPDATE);
5223}
5224
5225static void task_clock_event_read(struct perf_event *event)
5226{
5227        u64 time;
5228
5229        if (!in_nmi()) {
5230                update_context_time(event->ctx);
5231                time = event->ctx->time;
5232        } else {
5233                u64 now = perf_clock();
5234                u64 delta = now - event->ctx->timestamp;
5235                time = event->ctx->time + delta;
5236        }
5237
5238        task_clock_event_update(event, time);
5239}
5240
5241static int task_clock_event_init(struct perf_event *event)
5242{
5243        if (event->attr.type != PERF_TYPE_SOFTWARE)
5244                return -ENOENT;
5245
5246        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5247                return -ENOENT;
5248
5249        return 0;
5250}
5251
5252static struct pmu perf_task_clock = {
5253        .task_ctx_nr    = perf_sw_context,
5254
5255        .event_init     = task_clock_event_init,
5256        .add            = task_clock_event_add,
5257        .del            = task_clock_event_del,
5258        .start          = task_clock_event_start,
5259        .stop           = task_clock_event_stop,
5260        .read           = task_clock_event_read,
5261};
5262
5263static void perf_pmu_nop_void(struct pmu *pmu)
5264{
5265}
5266
5267static int perf_pmu_nop_int(struct pmu *pmu)
5268{
5269        return 0;
5270}
5271
5272static void perf_pmu_start_txn(struct pmu *pmu)
5273{
5274        perf_pmu_disable(pmu);
5275}
5276
5277static int perf_pmu_commit_txn(struct pmu *pmu)
5278{
5279        perf_pmu_enable(pmu);
5280        return 0;
5281}
5282
5283static void perf_pmu_cancel_txn(struct pmu *pmu)
5284{
5285        perf_pmu_enable(pmu);
5286}
5287
5288/*
5289 * Ensures all contexts with the same task_ctx_nr have the same
5290 * pmu_cpu_context too.
5291 */
5292static void *find_pmu_context(int ctxn)
5293{
5294        struct pmu *pmu;
5295
5296        if (ctxn < 0)
5297                return NULL;
5298
5299        list_for_each_entry(pmu, &pmus, entry) {
5300                if (pmu->task_ctx_nr == ctxn)
5301                        return pmu->pmu_cpu_context;
5302        }
5303
5304        return NULL;
5305}
5306
5307static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5308{
5309        int cpu;
5310
5311        for_each_possible_cpu(cpu) {
5312                struct perf_cpu_context *cpuctx;
5313
5314                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5315
5316                if (cpuctx->active_pmu == old_pmu)
5317                        cpuctx->active_pmu = pmu;
5318        }
5319}
5320
5321static void free_pmu_context(struct pmu *pmu)
5322{
5323        struct pmu *i;
5324
5325        mutex_lock(&pmus_lock);
5326        /*
5327         * Like a real lame refcount.
5328         */
5329        list_for_each_entry(i, &pmus, entry) {
5330                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5331                        update_pmu_context(i, pmu);
5332                        goto out;
5333                }
5334        }
5335
5336        free_percpu(pmu->pmu_cpu_context);
5337out:
5338        mutex_unlock(&pmus_lock);
5339}
5340static struct idr pmu_idr;
5341
5342static ssize_t
5343type_show(struct device *dev, struct device_attribute *attr, char *page)
5344{
5345        struct pmu *pmu = dev_get_drvdata(dev);
5346
5347        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5348}
5349
5350static struct device_attribute pmu_dev_attrs[] = {
5351       __ATTR_RO(type),
5352       __ATTR_NULL,
5353};
5354
5355static int pmu_bus_running;
5356static struct bus_type pmu_bus = {
5357        .name           = "event_source",
5358        .dev_attrs      = pmu_dev_attrs,
5359};
5360
5361static void pmu_dev_release(struct device *dev)
5362{
5363        kfree(dev);
5364}
5365
5366static int pmu_dev_alloc(struct pmu *pmu)
5367{
5368        int ret = -ENOMEM;
5369
5370        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5371        if (!pmu->dev)
5372                goto out;
5373
5374        device_initialize(pmu->dev);
5375        ret = dev_set_name(pmu->dev, "%s", pmu->name);
5376        if (ret)
5377                goto free_dev;
5378
5379        dev_set_drvdata(pmu->dev, pmu);
5380        pmu->dev->bus = &pmu_bus;
5381        pmu->dev->release = pmu_dev_release;
5382        ret = device_add(pmu->dev);
5383        if (ret)
5384                goto free_dev;
5385
5386out:
5387        return ret;
5388
5389free_dev:
5390        put_device(pmu->dev);
5391        goto out;
5392}
5393
5394static struct lock_class_key cpuctx_mutex;
5395
5396int perf_pmu_register(struct pmu *pmu, char *name, int type)
5397{
5398        int cpu, ret;
5399
5400        mutex_lock(&pmus_lock);
5401        ret = -ENOMEM;
5402        pmu->pmu_disable_count = alloc_percpu(int);
5403        if (!pmu->pmu_disable_count)
5404                goto unlock;
5405
5406        pmu->type = -1;
5407        if (!name)
5408                goto skip_type;
5409        pmu->name = name;
5410
5411        if (type < 0) {
5412                int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5413                if (!err)
5414                        goto free_pdc;
5415
5416                err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5417                if (err) {
5418                        ret = err;
5419                        goto free_pdc;
5420                }
5421        }
5422        pmu->type = type;
5423
5424        if (pmu_bus_running) {
5425                ret = pmu_dev_alloc(pmu);
5426                if (ret)
5427                        goto free_idr;
5428        }
5429
5430skip_type:
5431        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5432        if (pmu->pmu_cpu_context)
5433                goto got_cpu_context;
5434
5435        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5436        if (!pmu->pmu_cpu_context)
5437                goto free_dev;
5438
5439        for_each_possible_cpu(cpu) {
5440                struct perf_cpu_context *cpuctx;
5441
5442                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5443                __perf_event_init_context(&cpuctx->ctx);
5444                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5445                cpuctx->ctx.type = cpu_context;
5446                cpuctx->ctx.pmu = pmu;
5447                cpuctx->jiffies_interval = 1;
5448                INIT_LIST_HEAD(&cpuctx->rotation_list);
5449                cpuctx->active_pmu = pmu;
5450        }
5451
5452got_cpu_context:
5453        if (!pmu->start_txn) {
5454                if (pmu->pmu_enable) {
5455                        /*
5456                         * If we have pmu_enable/pmu_disable calls, install
5457                         * transaction stubs that use that to try and batch
5458                         * hardware accesses.
5459                         */
5460                        pmu->start_txn  = perf_pmu_start_txn;
5461                        pmu->commit_txn = perf_pmu_commit_txn;
5462                        pmu->cancel_txn = perf_pmu_cancel_txn;
5463                } else {
5464                        pmu->start_txn  = perf_pmu_nop_void;
5465                        pmu->commit_txn = perf_pmu_nop_int;
5466                        pmu->cancel_txn = perf_pmu_nop_void;
5467                }
5468        }
5469
5470        if (!pmu->pmu_enable) {
5471                pmu->pmu_enable  = perf_pmu_nop_void;
5472                pmu->pmu_disable = perf_pmu_nop_void;
5473        }
5474
5475        list_add_rcu(&pmu->entry, &pmus);
5476        ret = 0;
5477unlock:
5478        mutex_unlock(&pmus_lock);
5479
5480        return ret;
5481
5482free_dev:
5483        device_del(pmu->dev);
5484        put_device(pmu->dev);
5485
5486free_idr:
5487        if (pmu->type >= PERF_TYPE_MAX)
5488                idr_remove(&pmu_idr, pmu->type);
5489
5490free_pdc:
5491        free_percpu(pmu->pmu_disable_count);
5492        goto unlock;
5493}
5494
5495void perf_pmu_unregister(struct pmu *pmu)
5496{
5497        mutex_lock(&pmus_lock);
5498        list_del_rcu(&pmu->entry);
5499        mutex_unlock(&pmus_lock);
5500
5501        /*
5502         * We dereference the pmu list under both SRCU and regular RCU, so
5503         * synchronize against both of those.
5504         */
5505        synchronize_srcu(&pmus_srcu);
5506        synchronize_rcu();
5507
5508        free_percpu(pmu->pmu_disable_count);
5509        if (pmu->type >= PERF_TYPE_MAX)
5510                idr_remove(&pmu_idr, pmu->type);
5511        device_del(pmu->dev);
5512        put_device(pmu->dev);
5513        free_pmu_context(pmu);
5514}
5515
5516struct pmu *perf_init_event(struct perf_event *event)
5517{
5518        struct pmu *pmu = NULL;
5519        int idx;
5520
5521        idx = srcu_read_lock(&pmus_srcu);
5522
5523        rcu_read_lock();
5524        pmu = idr_find(&pmu_idr, event->attr.type);
5525        rcu_read_unlock();
5526        if (pmu)
5527                goto unlock;
5528
5529        list_for_each_entry_rcu(pmu, &pmus, entry) {
5530                int ret = pmu->event_init(event);
5531                if (!ret)
5532                        goto unlock;
5533
5534                if (ret != -ENOENT) {
5535                        pmu = ERR_PTR(ret);
5536                        goto unlock;
5537                }
5538        }
5539        pmu = ERR_PTR(-ENOENT);
5540unlock:
5541        srcu_read_unlock(&pmus_srcu, idx);
5542
5543        return pmu;
5544}
5545
5546/*
5547 * Allocate and initialize a event structure
5548 */
5549static struct perf_event *
5550perf_event_alloc(struct perf_event_attr *attr, int cpu,
5551                 struct task_struct *task,
5552                 struct perf_event *group_leader,
5553                 struct perf_event *parent_event,
5554                 perf_overflow_handler_t overflow_handler)
5555{
5556        struct pmu *pmu;
5557        struct perf_event *event;
5558        struct hw_perf_event *hwc;
5559        long err;
5560
5561        if ((unsigned)cpu >= nr_cpu_ids) {
5562                if (!task || cpu != -1)
5563                        return ERR_PTR(-EINVAL);
5564        }
5565
5566        event = kzalloc(sizeof(*event), GFP_KERNEL);
5567        if (!event)
5568                return ERR_PTR(-ENOMEM);
5569
5570        /*
5571         * Single events are their own group leaders, with an
5572         * empty sibling list:
5573         */
5574        if (!group_leader)
5575                group_leader = event;
5576
5577        mutex_init(&event->child_mutex);
5578        INIT_LIST_HEAD(&event->child_list);
5579
5580        INIT_LIST_HEAD(&event->group_entry);
5581        INIT_LIST_HEAD(&event->event_entry);
5582        INIT_LIST_HEAD(&event->sibling_list);
5583        init_waitqueue_head(&event->waitq);
5584        init_irq_work(&event->pending, perf_pending_event);
5585
5586        mutex_init(&event->mmap_mutex);
5587
5588        event->cpu              = cpu;
5589        event->attr             = *attr;
5590        event->group_leader     = group_leader;
5591        event->pmu              = NULL;
5592        event->oncpu            = -1;
5593
5594        event->parent           = parent_event;
5595
5596        event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5597        event->id               = atomic64_inc_return(&perf_event_id);
5598
5599        event->state            = PERF_EVENT_STATE_INACTIVE;
5600
5601        if (task) {
5602                event->attach_state = PERF_ATTACH_TASK;
5603#ifdef CONFIG_HAVE_HW_BREAKPOINT
5604                /*
5605                 * hw_breakpoint is a bit difficult here..
5606                 */
5607                if (attr->type == PERF_TYPE_BREAKPOINT)
5608                        event->hw.bp_target = task;
5609#endif
5610        }
5611
5612        if (!overflow_handler && parent_event)
5613                overflow_handler = parent_event->overflow_handler;
5614
5615        event->overflow_handler = overflow_handler;
5616
5617        if (attr->disabled)
5618                event->state = PERF_EVENT_STATE_OFF;
5619
5620        pmu = NULL;
5621
5622        hwc = &event->hw;
5623        hwc->sample_period = attr->sample_period;
5624        if (attr->freq && attr->sample_freq)
5625                hwc->sample_period = 1;
5626        hwc->last_period = hwc->sample_period;
5627
5628        local64_set(&hwc->period_left, hwc->sample_period);
5629
5630        /*
5631         * we currently do not support PERF_FORMAT_GROUP on inherited events
5632         */
5633        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5634                goto done;
5635
5636        pmu = perf_init_event(event);
5637
5638done:
5639        err = 0;
5640        if (!pmu)
5641                err = -EINVAL;
5642        else if (IS_ERR(pmu))
5643                err = PTR_ERR(pmu);
5644
5645        if (err) {
5646                if (event->ns)
5647                        put_pid_ns(event->ns);
5648                kfree(event);
5649                return ERR_PTR(err);
5650        }
5651
5652        event->pmu = pmu;
5653
5654        if (!event->parent) {
5655                if (event->attach_state & PERF_ATTACH_TASK)
5656                        jump_label_inc(&perf_task_events);
5657                if (event->attr.mmap || event->attr.mmap_data)
5658                        atomic_inc(&nr_mmap_events);
5659                if (event->attr.comm)
5660                        atomic_inc(&nr_comm_events);
5661                if (event->attr.task)
5662                        atomic_inc(&nr_task_events);
5663                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5664                        err = get_callchain_buffers();
5665                        if (err) {
5666                                free_event(event);
5667                                return ERR_PTR(err);
5668                        }
5669                }
5670        }
5671
5672        return event;
5673}
5674
5675static int perf_copy_attr(struct perf_event_attr __user *uattr,
5676                          struct perf_event_attr *attr)
5677{
5678        u32 size;
5679        int ret;
5680
5681        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5682                return -EFAULT;
5683
5684        /*
5685         * zero the full structure, so that a short copy will be nice.
5686         */
5687        memset(attr, 0, sizeof(*attr));
5688
5689        ret = get_user(size, &uattr->size);
5690        if (ret)
5691                return ret;
5692
5693        if (size > PAGE_SIZE)   /* silly large */
5694                goto err_size;
5695
5696        if (!size)              /* abi compat */
5697                size = PERF_ATTR_SIZE_VER0;
5698
5699        if (size < PERF_ATTR_SIZE_VER0)
5700                goto err_size;
5701
5702        /*
5703         * If we're handed a bigger struct than we know of,
5704         * ensure all the unknown bits are 0 - i.e. new
5705         * user-space does not rely on any kernel feature
5706         * extensions we dont know about yet.
5707         */
5708        if (size > sizeof(*attr)) {
5709                unsigned char __user *addr;
5710                unsigned char __user *end;
5711                unsigned char val;
5712
5713                addr = (void __user *)uattr + sizeof(*attr);
5714                end  = (void __user *)uattr + size;
5715
5716                for (; addr < end; addr++) {
5717                        ret = get_user(val, addr);
5718                        if (ret)
5719                                return ret;
5720                        if (val)
5721                                goto err_size;
5722                }
5723                size = sizeof(*attr);
5724        }
5725
5726        ret = copy_from_user(attr, uattr, size);
5727        if (ret)
5728                return -EFAULT;
5729
5730        /*
5731         * If the type exists, the corresponding creation will verify
5732         * the attr->config.
5733         */
5734        if (attr->type >= PERF_TYPE_MAX)
5735                return -EINVAL;
5736
5737        if (attr->__reserved_1)
5738                return -EINVAL;
5739
5740        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5741                return -EINVAL;
5742
5743        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5744                return -EINVAL;
5745
5746out:
5747        return ret;
5748
5749err_size:
5750        put_user(sizeof(*attr), &uattr->size);
5751        ret = -E2BIG;
5752        goto out;
5753}
5754
5755static int
5756perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5757{
5758        struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5759        int ret = -EINVAL;
5760
5761        if (!output_event)
5762                goto set;
5763
5764        /* don't allow circular references */
5765        if (event == output_event)
5766                goto out;
5767
5768        /*
5769         * Don't allow cross-cpu buffers
5770         */
5771        if (output_event->cpu != event->cpu)
5772                goto out;
5773
5774        /*
5775         * If its not a per-cpu buffer, it must be the same task.
5776         */
5777        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5778                goto out;
5779
5780set:
5781        mutex_lock(&event->mmap_mutex);
5782        /* Can't redirect output if we've got an active mmap() */
5783        if (atomic_read(&event->mmap_count))
5784                goto unlock;
5785
5786        if (output_event) {
5787                /* get the buffer we want to redirect to */
5788                buffer = perf_buffer_get(output_event);
5789                if (!buffer)
5790                        goto unlock;
5791        }
5792
5793        old_buffer = event->buffer;
5794        rcu_assign_pointer(event->buffer, buffer);
5795        ret = 0;
5796unlock:
5797        mutex_unlock(&event->mmap_mutex);
5798
5799        if (old_buffer)
5800                perf_buffer_put(old_buffer);
5801out:
5802        return ret;
5803}
5804
5805/**
5806 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5807 *
5808 * @attr_uptr:  event_id type attributes for monitoring/sampling
5809 * @pid:                target pid
5810 * @cpu:                target cpu
5811 * @group_fd:           group leader event fd
5812 */
5813SYSCALL_DEFINE5(perf_event_open,
5814                struct perf_event_attr __user *, attr_uptr,
5815                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5816{
5817        struct perf_event *group_leader = NULL, *output_event = NULL;
5818        struct perf_event *event, *sibling;
5819        struct perf_event_attr attr;
5820        struct perf_event_context *ctx;
5821        struct file *event_file = NULL;
5822        struct file *group_file = NULL;
5823        struct task_struct *task = NULL;
5824        struct pmu *pmu;
5825        int event_fd;
5826        int move_group = 0;
5827        int fput_needed = 0;
5828        int err;
5829
5830        /* for future expandability... */
5831        if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5832                return -EINVAL;
5833
5834        err = perf_copy_attr(attr_uptr, &attr);
5835        if (err)
5836                return err;
5837
5838        if (!attr.exclude_kernel) {
5839                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5840                        return -EACCES;
5841        }
5842
5843        if (attr.freq) {
5844                if (attr.sample_freq > sysctl_perf_event_sample_rate)
5845                        return -EINVAL;
5846        }
5847
5848        event_fd = get_unused_fd_flags(O_RDWR);
5849        if (event_fd < 0)
5850                return event_fd;
5851
5852        if (group_fd != -1) {
5853                group_leader = perf_fget_light(group_fd, &fput_needed);
5854                if (IS_ERR(group_leader)) {
5855                        err = PTR_ERR(group_leader);
5856                        goto err_fd;
5857                }
5858                group_file = group_leader->filp;
5859                if (flags & PERF_FLAG_FD_OUTPUT)
5860                        output_event = group_leader;
5861                if (flags & PERF_FLAG_FD_NO_GROUP)
5862                        group_leader = NULL;
5863        }
5864
5865        if (pid != -1) {
5866                task = find_lively_task_by_vpid(pid);
5867                if (IS_ERR(task)) {
5868                        err = PTR_ERR(task);
5869                        goto err_group_fd;
5870                }
5871        }
5872
5873        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5874        if (IS_ERR(event)) {
5875                err = PTR_ERR(event);
5876                goto err_task;
5877        }
5878
5879        /*
5880         * Special case software events and allow them to be part of
5881         * any hardware group.
5882         */
5883        pmu = event->pmu;
5884
5885        if (group_leader &&
5886            (is_software_event(event) != is_software_event(group_leader))) {
5887                if (is_software_event(event)) {
5888                        /*
5889                         * If event and group_leader are not both a software
5890                         * event, and event is, then group leader is not.
5891                         *
5892                         * Allow the addition of software events to !software
5893                         * groups, this is safe because software events never
5894                         * fail to schedule.
5895                         */
5896                        pmu = group_leader->pmu;
5897                } else if (is_software_event(group_leader) &&
5898                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5899                        /*
5900                         * In case the group is a pure software group, and we
5901                         * try to add a hardware event, move the whole group to
5902                         * the hardware context.
5903                         */
5904                        move_group = 1;
5905                }
5906        }
5907
5908        /*
5909         * Get the target context (task or percpu):
5910         */
5911        ctx = find_get_context(pmu, task, cpu);
5912        if (IS_ERR(ctx)) {
5913                err = PTR_ERR(ctx);
5914                goto err_alloc;
5915        }
5916
5917        /*
5918         * Look up the group leader (we will attach this event to it):
5919         */
5920        if (group_leader) {
5921                err = -EINVAL;
5922
5923                /*
5924                 * Do not allow a recursive hierarchy (this new sibling
5925                 * becoming part of another group-sibling):
5926                 */
5927                if (group_leader->group_leader != group_leader)
5928                        goto err_context;
5929                /*
5930                 * Do not allow to attach to a group in a different
5931                 * task or CPU context:
5932                 */
5933                if (move_group) {
5934                        if (group_leader->ctx->type != ctx->type)
5935                                goto err_context;
5936                } else {
5937                        if (group_leader->ctx != ctx)
5938                                goto err_context;
5939                }
5940
5941                /*
5942                 * Only a group leader can be exclusive or pinned
5943                 */
5944                if (attr.exclusive || attr.pinned)
5945                        goto err_context;
5946        }
5947
5948        if (output_event) {
5949                err = perf_event_set_output(event, output_event);
5950                if (err)
5951                        goto err_context;
5952        }
5953
5954        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5955        if (IS_ERR(event_file)) {
5956                err = PTR_ERR(event_file);
5957                goto err_context;
5958        }
5959
5960        if (move_group) {
5961                struct perf_event_context *gctx = group_leader->ctx;
5962
5963                mutex_lock(&gctx->mutex);
5964                perf_event_remove_from_context(group_leader);
5965                list_for_each_entry(sibling, &group_leader->sibling_list,
5966                                    group_entry) {
5967                        perf_event_remove_from_context(sibling);
5968                        put_ctx(gctx);
5969                }
5970                mutex_unlock(&gctx->mutex);
5971                put_ctx(gctx);
5972        }
5973
5974        event->filp = event_file;
5975        WARN_ON_ONCE(ctx->parent_ctx);
5976        mutex_lock(&ctx->mutex);
5977
5978        if (move_group) {
5979                perf_install_in_context(ctx, group_leader, cpu);
5980                get_ctx(ctx);
5981                list_for_each_entry(sibling, &group_leader->sibling_list,
5982                                    group_entry) {
5983                        perf_install_in_context(ctx, sibling, cpu);
5984                        get_ctx(ctx);
5985                }
5986        }
5987
5988        perf_install_in_context(ctx, event, cpu);
5989        ++ctx->generation;
5990        mutex_unlock(&ctx->mutex);
5991
5992        event->owner = current;
5993
5994        mutex_lock(&current->perf_event_mutex);
5995        list_add_tail(&event->owner_entry, &current->perf_event_list);
5996        mutex_unlock(&current->perf_event_mutex);
5997
5998        /*
5999         * Precalculate sample_data sizes
6000         */
6001        perf_event__header_size(event);
6002        perf_event__id_header_size(event);
6003
6004        /*
6005         * Drop the reference on the group_event after placing the
6006         * new event on the sibling_list. This ensures destruction
6007         * of the group leader will find the pointer to itself in
6008         * perf_group_detach().
6009         */
6010        fput_light(group_file, fput_needed);
6011        fd_install(event_fd, event_file);
6012        return event_fd;
6013
6014err_context:
6015        put_ctx(ctx);
6016err_alloc:
6017        free_event(event);
6018err_task:
6019        if (task)
6020                put_task_struct(task);
6021err_group_fd:
6022        fput_light(group_file, fput_needed);
6023err_fd:
6024        put_unused_fd(event_fd);
6025        return err;
6026}
6027
6028/**
6029 * perf_event_create_kernel_counter
6030 *
6031 * @attr: attributes of the counter to create
6032 * @cpu: cpu in which the counter is bound
6033 * @task: task to profile (NULL for percpu)
6034 */
6035struct perf_event *
6036perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6037                                 struct task_struct *task,
6038                                 perf_overflow_handler_t overflow_handler)
6039{
6040        struct perf_event_context *ctx;
6041        struct perf_event *event;
6042        int err;
6043
6044        /*
6045         * Get the target context (task or percpu):
6046         */
6047
6048        event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6049        if (IS_ERR(event)) {
6050                err = PTR_ERR(event);
6051                goto err;
6052        }
6053
6054        ctx = find_get_context(event->pmu, task, cpu);
6055        if (IS_ERR(ctx)) {
6056                err = PTR_ERR(ctx);
6057                goto err_free;
6058        }
6059
6060        event->filp = NULL;
6061        WARN_ON_ONCE(ctx->parent_ctx);
6062        mutex_lock(&ctx->mutex);
6063        perf_install_in_context(ctx, event, cpu);
6064        ++ctx->generation;
6065        mutex_unlock(&ctx->mutex);
6066
6067        return event;
6068
6069err_free:
6070        free_event(event);
6071err:
6072        return ERR_PTR(err);
6073}
6074EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6075
6076static void sync_child_event(struct perf_event *child_event,
6077                               struct task_struct *child)
6078{
6079        struct perf_event *parent_event = child_event->parent;
6080        u64 child_val;
6081
6082        if (child_event->attr.inherit_stat)
6083                perf_event_read_event(child_event, child);
6084
6085        child_val = perf_event_count(child_event);
6086
6087        /*
6088         * Add back the child's count to the parent's count:
6089         */
6090        atomic64_add(child_val, &parent_event->child_count);
6091        atomic64_add(child_event->total_time_enabled,
6092                     &parent_event->child_total_time_enabled);
6093        atomic64_add(child_event->total_time_running,
6094                     &parent_event->child_total_time_running);
6095
6096        /*
6097         * Remove this event from the parent's list
6098         */
6099        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6100        mutex_lock(&parent_event->child_mutex);
6101        list_del_init(&child_event->child_list);
6102        mutex_unlock(&parent_event->child_mutex);
6103
6104        /*
6105         * Release the parent event, if this was the last
6106         * reference to it.
6107         */
6108        fput(parent_event->filp);
6109}
6110
6111static void
6112__perf_event_exit_task(struct perf_event *child_event,
6113                         struct perf_event_context *child_ctx,
6114                         struct task_struct *child)
6115{
6116        struct perf_event *parent_event;
6117
6118        perf_event_remove_from_context(child_event);
6119
6120        parent_event = child_event->parent;
6121        /*
6122         * It can happen that parent exits first, and has events
6123         * that are still around due to the child reference. These
6124         * events need to be zapped - but otherwise linger.
6125         */
6126        if (parent_event) {
6127                sync_child_event(child_event, child);
6128                free_event(child_event);
6129        }
6130}
6131
6132static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6133{
6134        struct perf_event *child_event, *tmp;
6135        struct perf_event_context *child_ctx;
6136        unsigned long flags;
6137
6138        if (likely(!child->perf_event_ctxp[ctxn])) {
6139                perf_event_task(child, NULL, 0);
6140                return;
6141        }
6142
6143        local_irq_save(flags);
6144        /*
6145         * We can't reschedule here because interrupts are disabled,
6146         * and either child is current or it is a task that can't be
6147         * scheduled, so we are now safe from rescheduling changing
6148         * our context.
6149         */
6150        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6151        task_ctx_sched_out(child_ctx, EVENT_ALL);
6152
6153        /*
6154         * Take the context lock here so that if find_get_context is
6155         * reading child->perf_event_ctxp, we wait until it has
6156         * incremented the context's refcount before we do put_ctx below.
6157         */
6158        raw_spin_lock(&child_ctx->lock);
6159        child->perf_event_ctxp[ctxn] = NULL;
6160        /*
6161         * If this context is a clone; unclone it so it can't get
6162         * swapped to another process while we're removing all
6163         * the events from it.
6164         */
6165        unclone_ctx(child_ctx);
6166        update_context_time(child_ctx);
6167        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6168
6169        /*
6170         * Report the task dead after unscheduling the events so that we
6171         * won't get any samples after PERF_RECORD_EXIT. We can however still
6172         * get a few PERF_RECORD_READ events.
6173         */
6174        perf_event_task(child, child_ctx, 0);
6175
6176        /*
6177         * We can recurse on the same lock type through:
6178         *
6179         *   __perf_event_exit_task()
6180         *     sync_child_event()
6181         *       fput(parent_event->filp)
6182         *         perf_release()
6183         *           mutex_lock(&ctx->mutex)
6184         *
6185         * But since its the parent context it won't be the same instance.
6186         */
6187        mutex_lock(&child_ctx->mutex);
6188
6189again:
6190        list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6191                                 group_entry)
6192                __perf_event_exit_task(child_event, child_ctx, child);
6193
6194        list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6195                                 group_entry)
6196                __perf_event_exit_task(child_event, child_ctx, child);
6197
6198        /*
6199         * If the last event was a group event, it will have appended all
6200         * its siblings to the list, but we obtained 'tmp' before that which
6201         * will still point to the list head terminating the iteration.
6202         */
6203        if (!list_empty(&child_ctx->pinned_groups) ||
6204            !list_empty(&child_ctx->flexible_groups))
6205                goto again;
6206
6207        mutex_unlock(&child_ctx->mutex);
6208
6209        put_ctx(child_ctx);
6210}
6211
6212/*
6213 * When a child task exits, feed back event values to parent events.
6214 */
6215void perf_event_exit_task(struct task_struct *child)
6216{
6217        struct perf_event *event, *tmp;
6218        int ctxn;
6219
6220        mutex_lock(&child->perf_event_mutex);
6221        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6222                                 owner_entry) {
6223                list_del_init(&event->owner_entry);
6224
6225                /*
6226                 * Ensure the list deletion is visible before we clear
6227                 * the owner, closes a race against perf_release() where
6228                 * we need to serialize on the owner->perf_event_mutex.
6229                 */
6230                smp_wmb();
6231                event->owner = NULL;
6232        }
6233        mutex_unlock(&child->perf_event_mutex);
6234
6235        for_each_task_context_nr(ctxn)
6236                perf_event_exit_task_context(child, ctxn);
6237}
6238
6239static void perf_free_event(struct perf_event *event,
6240                            struct perf_event_context *ctx)
6241{
6242        struct perf_event *parent = event->parent;
6243
6244        if (WARN_ON_ONCE(!parent))
6245                return;
6246
6247        mutex_lock(&parent->child_mutex);
6248        list_del_init(&event->child_list);
6249        mutex_unlock(&parent->child_mutex);
6250
6251        fput(parent->filp);
6252
6253        perf_group_detach(event);
6254        list_del_event(event, ctx);
6255        free_event(event);
6256}
6257
6258/*
6259 * free an unexposed, unused context as created by inheritance by
6260 * perf_event_init_task below, used by fork() in case of fail.
6261 */
6262void perf_event_free_task(struct task_struct *task)
6263{
6264        struct perf_event_context *ctx;
6265        struct perf_event *event, *tmp;
6266        int ctxn;
6267
6268        for_each_task_context_nr(ctxn) {
6269                ctx = task->perf_event_ctxp[ctxn];
6270                if (!ctx)
6271                        continue;
6272
6273                mutex_lock(&ctx->mutex);
6274again:
6275                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6276                                group_entry)
6277                        perf_free_event(event, ctx);
6278
6279                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6280                                group_entry)
6281                        perf_free_event(event, ctx);
6282
6283                if (!list_empty(&ctx->pinned_groups) ||
6284                                !list_empty(&ctx->flexible_groups))
6285                        goto again;
6286
6287                mutex_unlock(&ctx->mutex);
6288
6289                put_ctx(ctx);
6290        }
6291}
6292
6293void perf_event_delayed_put(struct task_struct *task)
6294{
6295        int ctxn;
6296
6297        for_each_task_context_nr(ctxn)
6298                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6299}
6300
6301/*
6302 * inherit a event from parent task to child task:
6303 */
6304static struct perf_event *
6305inherit_event(struct perf_event *parent_event,
6306              struct task_struct *parent,
6307              struct perf_event_context *parent_ctx,
6308              struct task_struct *child,
6309              struct perf_event *group_leader,
6310              struct perf_event_context *child_ctx)
6311{
6312        struct perf_event *child_event;
6313        unsigned long flags;
6314
6315        /*
6316         * Instead of creating recursive hierarchies of events,
6317         * we link inherited events back to the original parent,
6318         * which has a filp for sure, which we use as the reference
6319         * count:
6320         */
6321        if (parent_event->parent)
6322                parent_event = parent_event->parent;
6323
6324        child_event = perf_event_alloc(&parent_event->attr,
6325                                           parent_event->cpu,
6326                                           child,
6327                                           group_leader, parent_event,
6328                                           NULL);
6329        if (IS_ERR(child_event))
6330                return child_event;
6331        get_ctx(child_ctx);
6332
6333        /*
6334         * Make the child state follow the state of the parent event,
6335         * not its attr.disabled bit.  We hold the parent's mutex,
6336         * so we won't race with perf_event_{en, dis}able_family.
6337         */
6338        if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6339                child_event->state = PERF_EVENT_STATE_INACTIVE;
6340        else
6341                child_event->state = PERF_EVENT_STATE_OFF;
6342
6343        if (parent_event->attr.freq) {
6344                u64 sample_period = parent_event->hw.sample_period;
6345                struct hw_perf_event *hwc = &child_event->hw;
6346
6347                hwc->sample_period = sample_period;
6348                hwc->last_period   = sample_period;
6349
6350                local64_set(&hwc->period_left, sample_period);
6351        }
6352
6353        child_event->ctx = child_ctx;
6354        child_event->overflow_handler = parent_event->overflow_handler;
6355
6356        /*
6357         * Precalculate sample_data sizes
6358         */
6359        perf_event__header_size(child_event);
6360        perf_event__id_header_size(child_event);
6361
6362        /*
6363         * Link it up in the child's context:
6364         */
6365        raw_spin_lock_irqsave(&child_ctx->lock, flags);
6366        add_event_to_ctx(child_event, child_ctx);
6367        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6368
6369        /*
6370         * Get a reference to the parent filp - we will fput it
6371         * when the child event exits. This is safe to do because
6372         * we are in the parent and we know that the filp still
6373         * exists and has a nonzero count:
6374         */
6375        atomic_long_inc(&parent_event->filp->f_count);
6376
6377        /*
6378         * Link this into the parent event's child list
6379         */
6380        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6381        mutex_lock(&parent_event->child_mutex);
6382        list_add_tail(&child_event->child_list, &parent_event->child_list);
6383        mutex_unlock(&parent_event->child_mutex);
6384
6385        return child_event;
6386}
6387
6388static int inherit_group(struct perf_event *parent_event,
6389              struct task_struct *parent,
6390              struct perf_event_context *parent_ctx,
6391              struct task_struct *child,
6392              struct perf_event_context *child_ctx)
6393{
6394        struct perf_event *leader;
6395        struct perf_event *sub;
6396        struct perf_event *child_ctr;
6397
6398        leader = inherit_event(parent_event, parent, parent_ctx,
6399                                 child, NULL, child_ctx);
6400        if (IS_ERR(leader))
6401                return PTR_ERR(leader);
6402        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6403                child_ctr = inherit_event(sub, parent, parent_ctx,
6404                                            child, leader, child_ctx);
6405                if (IS_ERR(child_ctr))
6406                        return PTR_ERR(child_ctr);
6407        }
6408        return 0;
6409}
6410
6411static int
6412inherit_task_group(struct perf_event *event, struct task_struct *parent,
6413                   struct perf_event_context *parent_ctx,
6414                   struct task_struct *child, int ctxn,
6415                   int *inherited_all)
6416{
6417        int ret;
6418        struct perf_event_context *child_ctx;
6419
6420        if (!event->attr.inherit) {
6421                *inherited_all = 0;
6422                return 0;
6423        }
6424
6425        child_ctx = child->perf_event_ctxp[ctxn];
6426        if (!child_ctx) {
6427                /*
6428                 * This is executed from the parent task context, so
6429                 * inherit events that have been marked for cloning.
6430                 * First allocate and initialize a context for the
6431                 * child.
6432                 */
6433
6434                child_ctx = alloc_perf_context(event->pmu, child);
6435                if (!child_ctx)
6436                        return -ENOMEM;
6437
6438                child->perf_event_ctxp[ctxn] = child_ctx;
6439        }
6440
6441        ret = inherit_group(event, parent, parent_ctx,
6442                            child, child_ctx);
6443
6444        if (ret)
6445                *inherited_all = 0;
6446
6447        return ret;
6448}
6449
6450/*
6451 * Initialize the perf_event context in task_struct
6452 */
6453int perf_event_init_context(struct task_struct *child, int ctxn)
6454{
6455        struct perf_event_context *child_ctx, *parent_ctx;
6456        struct perf_event_context *cloned_ctx;
6457        struct perf_event *event;
6458        struct task_struct *parent = current;
6459        int inherited_all = 1;
6460        unsigned long flags;
6461        int ret = 0;
6462
6463        if (likely(!parent->perf_event_ctxp[ctxn]))
6464                return 0;
6465
6466        /*
6467         * If the parent's context is a clone, pin it so it won't get
6468         * swapped under us.
6469         */
6470        parent_ctx = perf_pin_task_context(parent, ctxn);
6471
6472        /*
6473         * No need to check if parent_ctx != NULL here; since we saw
6474         * it non-NULL earlier, the only reason for it to become NULL
6475         * is if we exit, and since we're currently in the middle of
6476         * a fork we can't be exiting at the same time.
6477         */
6478
6479        /*
6480         * Lock the parent list. No need to lock the child - not PID
6481         * hashed yet and not running, so nobody can access it.
6482         */
6483        mutex_lock(&parent_ctx->mutex);
6484
6485        /*
6486         * We dont have to disable NMIs - we are only looking at
6487         * the list, not manipulating it:
6488         */
6489        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6490                ret = inherit_task_group(event, parent, parent_ctx,
6491                                         child, ctxn, &inherited_all);
6492                if (ret)
6493                        break;
6494        }
6495
6496        /*
6497         * We can't hold ctx->lock when iterating the ->flexible_group list due
6498         * to allocations, but we need to prevent rotation because
6499         * rotate_ctx() will change the list from interrupt context.
6500         */
6501        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6502        parent_ctx->rotate_disable = 1;
6503        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6504
6505        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6506                ret = inherit_task_group(event, parent, parent_ctx,
6507                                         child, ctxn, &inherited_all);
6508                if (ret)
6509                        break;
6510        }
6511
6512        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6513        parent_ctx->rotate_disable = 0;
6514
6515        child_ctx = child->perf_event_ctxp[ctxn];
6516
6517        if (child_ctx && inherited_all) {
6518                /*
6519                 * Mark the child context as a clone of the parent
6520                 * context, or of whatever the parent is a clone of.
6521                 *
6522                 * Note that if the parent is a clone, the holding of
6523                 * parent_ctx->lock avoids it from being uncloned.
6524                 */
6525                cloned_ctx = parent_ctx->parent_ctx;
6526                if (cloned_ctx) {
6527                        child_ctx->parent_ctx = cloned_ctx;
6528                        child_ctx->parent_gen = parent_ctx->parent_gen;
6529                } else {
6530                        child_ctx->parent_ctx = parent_ctx;
6531                        child_ctx->parent_gen = parent_ctx->generation;
6532                }
6533                get_ctx(child_ctx->parent_ctx);
6534        }
6535
6536        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6537        mutex_unlock(&parent_ctx->mutex);
6538
6539        perf_unpin_context(parent_ctx);
6540
6541        return ret;
6542}
6543
6544/*
6545 * Initialize the perf_event context in task_struct
6546 */
6547int perf_event_init_task(struct task_struct *child)
6548{
6549        int ctxn, ret;
6550
6551        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6552        mutex_init(&child->perf_event_mutex);
6553        INIT_LIST_HEAD(&child->perf_event_list);
6554
6555        for_each_task_context_nr(ctxn) {
6556                ret = perf_event_init_context(child, ctxn);
6557                if (ret)
6558                        return ret;
6559        }
6560
6561        return 0;
6562}
6563
6564static void __init perf_event_init_all_cpus(void)
6565{
6566        struct swevent_htable *swhash;
6567        int cpu;
6568
6569        for_each_possible_cpu(cpu) {
6570                swhash = &per_cpu(swevent_htable, cpu);
6571                mutex_init(&swhash->hlist_mutex);
6572                INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6573        }
6574}
6575
6576static void __cpuinit perf_event_init_cpu(int cpu)
6577{
6578        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6579
6580        mutex_lock(&swhash->hlist_mutex);
6581        if (swhash->hlist_refcount > 0) {
6582                struct swevent_hlist *hlist;
6583
6584                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6585                WARN_ON(!hlist);
6586                rcu_assign_pointer(swhash->swevent_hlist, hlist);
6587        }
6588        mutex_unlock(&swhash->hlist_mutex);
6589}
6590
6591#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6592static void perf_pmu_rotate_stop(struct pmu *pmu)
6593{
6594        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6595
6596        WARN_ON(!irqs_disabled());
6597
6598        list_del_init(&cpuctx->rotation_list);
6599}
6600
6601static void __perf_event_exit_context(void *__info)
6602{
6603        struct perf_event_context *ctx = __info;
6604        struct perf_event *event, *tmp;
6605
6606        perf_pmu_rotate_stop(ctx->pmu);
6607
6608        list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6609                __perf_event_remove_from_context(event);
6610        list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6611                __perf_event_remove_from_context(event);
6612}
6613
6614static void perf_event_exit_cpu_context(int cpu)
6615{
6616        struct perf_event_context *ctx;
6617        struct pmu *pmu;
6618        int idx;
6619
6620        idx = srcu_read_lock(&pmus_srcu);
6621        list_for_each_entry_rcu(pmu, &pmus, entry) {
6622                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6623
6624                mutex_lock(&ctx->mutex);
6625                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6626                mutex_unlock(&ctx->mutex);
6627        }
6628        srcu_read_unlock(&pmus_srcu, idx);
6629}
6630
6631static void perf_event_exit_cpu(int cpu)
6632{
6633        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6634
6635        mutex_lock(&swhash->hlist_mutex);
6636        swevent_hlist_release(swhash);
6637        mutex_unlock(&swhash->hlist_mutex);
6638
6639        perf_event_exit_cpu_context(cpu);
6640}
6641#else
6642static inline void perf_event_exit_cpu(int cpu) { }
6643#endif
6644
6645static int
6646perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6647{
6648        int cpu;
6649
6650        for_each_online_cpu(cpu)
6651                perf_event_exit_cpu(cpu);
6652
6653        return NOTIFY_OK;
6654}
6655
6656/*
6657 * Run the perf reboot notifier at the very last possible moment so that
6658 * the generic watchdog code runs as long as possible.
6659 */
6660static struct notifier_block perf_reboot_notifier = {
6661        .notifier_call = perf_reboot,
6662        .priority = INT_MIN,
6663};
6664
6665static int __cpuinit
6666perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6667{
6668        unsigned int cpu = (long)hcpu;
6669
6670        switch (action & ~CPU_TASKS_FROZEN) {
6671
6672        case CPU_UP_PREPARE:
6673        case CPU_DOWN_FAILED:
6674                perf_event_init_cpu(cpu);
6675                break;
6676
6677        case CPU_UP_CANCELED:
6678        case CPU_DOWN_PREPARE:
6679                perf_event_exit_cpu(cpu);
6680                break;
6681
6682        default:
6683                break;
6684        }
6685
6686        return NOTIFY_OK;
6687}
6688
6689void __init perf_event_init(void)
6690{
6691        int ret;
6692
6693        idr_init(&pmu_idr);
6694
6695        perf_event_init_all_cpus();
6696        init_srcu_struct(&pmus_srcu);
6697        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6698        perf_pmu_register(&perf_cpu_clock, NULL, -1);
6699        perf_pmu_register(&perf_task_clock, NULL, -1);
6700        perf_tp_register();
6701        perf_cpu_notifier(perf_cpu_notify);
6702        register_reboot_notifier(&perf_reboot_notifier);
6703
6704        ret = init_hw_breakpoint();
6705        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6706}
6707
6708static int __init perf_event_sysfs_init(void)
6709{
6710        struct pmu *pmu;
6711        int ret;
6712
6713        mutex_lock(&pmus_lock);
6714
6715        ret = bus_register(&pmu_bus);
6716        if (ret)
6717                goto unlock;
6718
6719        list_for_each_entry(pmu, &pmus, entry) {
6720                if (!pmu->name || pmu->type < 0)
6721                        continue;
6722
6723                ret = pmu_dev_alloc(pmu);
6724                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6725        }
6726        pmu_bus_running = 1;
6727        ret = 0;
6728
6729unlock:
6730        mutex_unlock(&pmus_lock);
6731
6732        return ret;
6733}
6734device_initcall(perf_event_sysfs_init);
6735