linux/kernel/posix-cpu-timers.c
<<
>>
Prefs
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12
  13/*
  14 * Called after updating RLIMIT_CPU to run cpu timer and update
  15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  16 * siglock protection since other code may update expiration cache as
  17 * well.
  18 */
  19void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  20{
  21        cputime_t cputime = secs_to_cputime(rlim_new);
  22
  23        spin_lock_irq(&task->sighand->siglock);
  24        set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  25        spin_unlock_irq(&task->sighand->siglock);
  26}
  27
  28static int check_clock(const clockid_t which_clock)
  29{
  30        int error = 0;
  31        struct task_struct *p;
  32        const pid_t pid = CPUCLOCK_PID(which_clock);
  33
  34        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  35                return -EINVAL;
  36
  37        if (pid == 0)
  38                return 0;
  39
  40        rcu_read_lock();
  41        p = find_task_by_vpid(pid);
  42        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  43                   same_thread_group(p, current) : has_group_leader_pid(p))) {
  44                error = -EINVAL;
  45        }
  46        rcu_read_unlock();
  47
  48        return error;
  49}
  50
  51static inline union cpu_time_count
  52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  53{
  54        union cpu_time_count ret;
  55        ret.sched = 0;          /* high half always zero when .cpu used */
  56        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  57                ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  58        } else {
  59                ret.cpu = timespec_to_cputime(tp);
  60        }
  61        return ret;
  62}
  63
  64static void sample_to_timespec(const clockid_t which_clock,
  65                               union cpu_time_count cpu,
  66                               struct timespec *tp)
  67{
  68        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  69                *tp = ns_to_timespec(cpu.sched);
  70        else
  71                cputime_to_timespec(cpu.cpu, tp);
  72}
  73
  74static inline int cpu_time_before(const clockid_t which_clock,
  75                                  union cpu_time_count now,
  76                                  union cpu_time_count then)
  77{
  78        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  79                return now.sched < then.sched;
  80        }  else {
  81                return cputime_lt(now.cpu, then.cpu);
  82        }
  83}
  84static inline void cpu_time_add(const clockid_t which_clock,
  85                                union cpu_time_count *acc,
  86                                union cpu_time_count val)
  87{
  88        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  89                acc->sched += val.sched;
  90        }  else {
  91                acc->cpu = cputime_add(acc->cpu, val.cpu);
  92        }
  93}
  94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  95                                                union cpu_time_count a,
  96                                                union cpu_time_count b)
  97{
  98        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  99                a.sched -= b.sched;
 100        }  else {
 101                a.cpu = cputime_sub(a.cpu, b.cpu);
 102        }
 103        return a;
 104}
 105
 106/*
 107 * Divide and limit the result to res >= 1
 108 *
 109 * This is necessary to prevent signal delivery starvation, when the result of
 110 * the division would be rounded down to 0.
 111 */
 112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
 113{
 114        cputime_t res = cputime_div(time, div);
 115
 116        return max_t(cputime_t, res, 1);
 117}
 118
 119/*
 120 * Update expiry time from increment, and increase overrun count,
 121 * given the current clock sample.
 122 */
 123static void bump_cpu_timer(struct k_itimer *timer,
 124                                  union cpu_time_count now)
 125{
 126        int i;
 127
 128        if (timer->it.cpu.incr.sched == 0)
 129                return;
 130
 131        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 132                unsigned long long delta, incr;
 133
 134                if (now.sched < timer->it.cpu.expires.sched)
 135                        return;
 136                incr = timer->it.cpu.incr.sched;
 137                delta = now.sched + incr - timer->it.cpu.expires.sched;
 138                /* Don't use (incr*2 < delta), incr*2 might overflow. */
 139                for (i = 0; incr < delta - incr; i++)
 140                        incr = incr << 1;
 141                for (; i >= 0; incr >>= 1, i--) {
 142                        if (delta < incr)
 143                                continue;
 144                        timer->it.cpu.expires.sched += incr;
 145                        timer->it_overrun += 1 << i;
 146                        delta -= incr;
 147                }
 148        } else {
 149                cputime_t delta, incr;
 150
 151                if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
 152                        return;
 153                incr = timer->it.cpu.incr.cpu;
 154                delta = cputime_sub(cputime_add(now.cpu, incr),
 155                                    timer->it.cpu.expires.cpu);
 156                /* Don't use (incr*2 < delta), incr*2 might overflow. */
 157                for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
 158                             incr = cputime_add(incr, incr);
 159                for (; i >= 0; incr = cputime_halve(incr), i--) {
 160                        if (cputime_lt(delta, incr))
 161                                continue;
 162                        timer->it.cpu.expires.cpu =
 163                                cputime_add(timer->it.cpu.expires.cpu, incr);
 164                        timer->it_overrun += 1 << i;
 165                        delta = cputime_sub(delta, incr);
 166                }
 167        }
 168}
 169
 170static inline cputime_t prof_ticks(struct task_struct *p)
 171{
 172        return cputime_add(p->utime, p->stime);
 173}
 174static inline cputime_t virt_ticks(struct task_struct *p)
 175{
 176        return p->utime;
 177}
 178
 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 180{
 181        int error = check_clock(which_clock);
 182        if (!error) {
 183                tp->tv_sec = 0;
 184                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 185                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 186                        /*
 187                         * If sched_clock is using a cycle counter, we
 188                         * don't have any idea of its true resolution
 189                         * exported, but it is much more than 1s/HZ.
 190                         */
 191                        tp->tv_nsec = 1;
 192                }
 193        }
 194        return error;
 195}
 196
 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 198{
 199        /*
 200         * You can never reset a CPU clock, but we check for other errors
 201         * in the call before failing with EPERM.
 202         */
 203        int error = check_clock(which_clock);
 204        if (error == 0) {
 205                error = -EPERM;
 206        }
 207        return error;
 208}
 209
 210
 211/*
 212 * Sample a per-thread clock for the given task.
 213 */
 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 215                            union cpu_time_count *cpu)
 216{
 217        switch (CPUCLOCK_WHICH(which_clock)) {
 218        default:
 219                return -EINVAL;
 220        case CPUCLOCK_PROF:
 221                cpu->cpu = prof_ticks(p);
 222                break;
 223        case CPUCLOCK_VIRT:
 224                cpu->cpu = virt_ticks(p);
 225                break;
 226        case CPUCLOCK_SCHED:
 227                cpu->sched = task_sched_runtime(p);
 228                break;
 229        }
 230        return 0;
 231}
 232
 233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 234{
 235        struct signal_struct *sig = tsk->signal;
 236        struct task_struct *t;
 237
 238        times->utime = sig->utime;
 239        times->stime = sig->stime;
 240        times->sum_exec_runtime = sig->sum_sched_runtime;
 241
 242        rcu_read_lock();
 243        /* make sure we can trust tsk->thread_group list */
 244        if (!likely(pid_alive(tsk)))
 245                goto out;
 246
 247        t = tsk;
 248        do {
 249                times->utime = cputime_add(times->utime, t->utime);
 250                times->stime = cputime_add(times->stime, t->stime);
 251                times->sum_exec_runtime += t->se.sum_exec_runtime;
 252        } while_each_thread(tsk, t);
 253out:
 254        rcu_read_unlock();
 255}
 256
 257static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 258{
 259        if (cputime_gt(b->utime, a->utime))
 260                a->utime = b->utime;
 261
 262        if (cputime_gt(b->stime, a->stime))
 263                a->stime = b->stime;
 264
 265        if (b->sum_exec_runtime > a->sum_exec_runtime)
 266                a->sum_exec_runtime = b->sum_exec_runtime;
 267}
 268
 269void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 270{
 271        struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 272        struct task_cputime sum;
 273        unsigned long flags;
 274
 275        spin_lock_irqsave(&cputimer->lock, flags);
 276        if (!cputimer->running) {
 277                cputimer->running = 1;
 278                /*
 279                 * The POSIX timer interface allows for absolute time expiry
 280                 * values through the TIMER_ABSTIME flag, therefore we have
 281                 * to synchronize the timer to the clock every time we start
 282                 * it.
 283                 */
 284                thread_group_cputime(tsk, &sum);
 285                update_gt_cputime(&cputimer->cputime, &sum);
 286        }
 287        *times = cputimer->cputime;
 288        spin_unlock_irqrestore(&cputimer->lock, flags);
 289}
 290
 291/*
 292 * Sample a process (thread group) clock for the given group_leader task.
 293 * Must be called with tasklist_lock held for reading.
 294 */
 295static int cpu_clock_sample_group(const clockid_t which_clock,
 296                                  struct task_struct *p,
 297                                  union cpu_time_count *cpu)
 298{
 299        struct task_cputime cputime;
 300
 301        switch (CPUCLOCK_WHICH(which_clock)) {
 302        default:
 303                return -EINVAL;
 304        case CPUCLOCK_PROF:
 305                thread_group_cputime(p, &cputime);
 306                cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 307                break;
 308        case CPUCLOCK_VIRT:
 309                thread_group_cputime(p, &cputime);
 310                cpu->cpu = cputime.utime;
 311                break;
 312        case CPUCLOCK_SCHED:
 313                cpu->sched = thread_group_sched_runtime(p);
 314                break;
 315        }
 316        return 0;
 317}
 318
 319
 320int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 321{
 322        const pid_t pid = CPUCLOCK_PID(which_clock);
 323        int error = -EINVAL;
 324        union cpu_time_count rtn;
 325
 326        if (pid == 0) {
 327                /*
 328                 * Special case constant value for our own clocks.
 329                 * We don't have to do any lookup to find ourselves.
 330                 */
 331                if (CPUCLOCK_PERTHREAD(which_clock)) {
 332                        /*
 333                         * Sampling just ourselves we can do with no locking.
 334                         */
 335                        error = cpu_clock_sample(which_clock,
 336                                                 current, &rtn);
 337                } else {
 338                        read_lock(&tasklist_lock);
 339                        error = cpu_clock_sample_group(which_clock,
 340                                                       current, &rtn);
 341                        read_unlock(&tasklist_lock);
 342                }
 343        } else {
 344                /*
 345                 * Find the given PID, and validate that the caller
 346                 * should be able to see it.
 347                 */
 348                struct task_struct *p;
 349                rcu_read_lock();
 350                p = find_task_by_vpid(pid);
 351                if (p) {
 352                        if (CPUCLOCK_PERTHREAD(which_clock)) {
 353                                if (same_thread_group(p, current)) {
 354                                        error = cpu_clock_sample(which_clock,
 355                                                                 p, &rtn);
 356                                }
 357                        } else {
 358                                read_lock(&tasklist_lock);
 359                                if (thread_group_leader(p) && p->sighand) {
 360                                        error =
 361                                            cpu_clock_sample_group(which_clock,
 362                                                                   p, &rtn);
 363                                }
 364                                read_unlock(&tasklist_lock);
 365                        }
 366                }
 367                rcu_read_unlock();
 368        }
 369
 370        if (error)
 371                return error;
 372        sample_to_timespec(which_clock, rtn, tp);
 373        return 0;
 374}
 375
 376
 377/*
 378 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 379 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 380 * new timer already all-zeros initialized.
 381 */
 382int posix_cpu_timer_create(struct k_itimer *new_timer)
 383{
 384        int ret = 0;
 385        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 386        struct task_struct *p;
 387
 388        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 389                return -EINVAL;
 390
 391        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 392
 393        rcu_read_lock();
 394        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 395                if (pid == 0) {
 396                        p = current;
 397                } else {
 398                        p = find_task_by_vpid(pid);
 399                        if (p && !same_thread_group(p, current))
 400                                p = NULL;
 401                }
 402        } else {
 403                if (pid == 0) {
 404                        p = current->group_leader;
 405                } else {
 406                        p = find_task_by_vpid(pid);
 407                        if (p && !has_group_leader_pid(p))
 408                                p = NULL;
 409                }
 410        }
 411        new_timer->it.cpu.task = p;
 412        if (p) {
 413                get_task_struct(p);
 414        } else {
 415                ret = -EINVAL;
 416        }
 417        rcu_read_unlock();
 418
 419        return ret;
 420}
 421
 422/*
 423 * Clean up a CPU-clock timer that is about to be destroyed.
 424 * This is called from timer deletion with the timer already locked.
 425 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 426 * and try again.  (This happens when the timer is in the middle of firing.)
 427 */
 428int posix_cpu_timer_del(struct k_itimer *timer)
 429{
 430        struct task_struct *p = timer->it.cpu.task;
 431        int ret = 0;
 432
 433        if (likely(p != NULL)) {
 434                read_lock(&tasklist_lock);
 435                if (unlikely(p->sighand == NULL)) {
 436                        /*
 437                         * We raced with the reaping of the task.
 438                         * The deletion should have cleared us off the list.
 439                         */
 440                        BUG_ON(!list_empty(&timer->it.cpu.entry));
 441                } else {
 442                        spin_lock(&p->sighand->siglock);
 443                        if (timer->it.cpu.firing)
 444                                ret = TIMER_RETRY;
 445                        else
 446                                list_del(&timer->it.cpu.entry);
 447                        spin_unlock(&p->sighand->siglock);
 448                }
 449                read_unlock(&tasklist_lock);
 450
 451                if (!ret)
 452                        put_task_struct(p);
 453        }
 454
 455        return ret;
 456}
 457
 458/*
 459 * Clean out CPU timers still ticking when a thread exited.  The task
 460 * pointer is cleared, and the expiry time is replaced with the residual
 461 * time for later timer_gettime calls to return.
 462 * This must be called with the siglock held.
 463 */
 464static void cleanup_timers(struct list_head *head,
 465                           cputime_t utime, cputime_t stime,
 466                           unsigned long long sum_exec_runtime)
 467{
 468        struct cpu_timer_list *timer, *next;
 469        cputime_t ptime = cputime_add(utime, stime);
 470
 471        list_for_each_entry_safe(timer, next, head, entry) {
 472                list_del_init(&timer->entry);
 473                if (cputime_lt(timer->expires.cpu, ptime)) {
 474                        timer->expires.cpu = cputime_zero;
 475                } else {
 476                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
 477                                                         ptime);
 478                }
 479        }
 480
 481        ++head;
 482        list_for_each_entry_safe(timer, next, head, entry) {
 483                list_del_init(&timer->entry);
 484                if (cputime_lt(timer->expires.cpu, utime)) {
 485                        timer->expires.cpu = cputime_zero;
 486                } else {
 487                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
 488                                                         utime);
 489                }
 490        }
 491
 492        ++head;
 493        list_for_each_entry_safe(timer, next, head, entry) {
 494                list_del_init(&timer->entry);
 495                if (timer->expires.sched < sum_exec_runtime) {
 496                        timer->expires.sched = 0;
 497                } else {
 498                        timer->expires.sched -= sum_exec_runtime;
 499                }
 500        }
 501}
 502
 503/*
 504 * These are both called with the siglock held, when the current thread
 505 * is being reaped.  When the final (leader) thread in the group is reaped,
 506 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 507 */
 508void posix_cpu_timers_exit(struct task_struct *tsk)
 509{
 510        cleanup_timers(tsk->cpu_timers,
 511                       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
 512
 513}
 514void posix_cpu_timers_exit_group(struct task_struct *tsk)
 515{
 516        struct signal_struct *const sig = tsk->signal;
 517
 518        cleanup_timers(tsk->signal->cpu_timers,
 519                       cputime_add(tsk->utime, sig->utime),
 520                       cputime_add(tsk->stime, sig->stime),
 521                       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
 522}
 523
 524static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 525{
 526        /*
 527         * That's all for this thread or process.
 528         * We leave our residual in expires to be reported.
 529         */
 530        put_task_struct(timer->it.cpu.task);
 531        timer->it.cpu.task = NULL;
 532        timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 533                                             timer->it.cpu.expires,
 534                                             now);
 535}
 536
 537static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 538{
 539        return cputime_eq(expires, cputime_zero) ||
 540               cputime_gt(expires, new_exp);
 541}
 542
 543/*
 544 * Insert the timer on the appropriate list before any timers that
 545 * expire later.  This must be called with the tasklist_lock held
 546 * for reading, interrupts disabled and p->sighand->siglock taken.
 547 */
 548static void arm_timer(struct k_itimer *timer)
 549{
 550        struct task_struct *p = timer->it.cpu.task;
 551        struct list_head *head, *listpos;
 552        struct task_cputime *cputime_expires;
 553        struct cpu_timer_list *const nt = &timer->it.cpu;
 554        struct cpu_timer_list *next;
 555
 556        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 557                head = p->cpu_timers;
 558                cputime_expires = &p->cputime_expires;
 559        } else {
 560                head = p->signal->cpu_timers;
 561                cputime_expires = &p->signal->cputime_expires;
 562        }
 563        head += CPUCLOCK_WHICH(timer->it_clock);
 564
 565        listpos = head;
 566        list_for_each_entry(next, head, entry) {
 567                if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
 568                        break;
 569                listpos = &next->entry;
 570        }
 571        list_add(&nt->entry, listpos);
 572
 573        if (listpos == head) {
 574                union cpu_time_count *exp = &nt->expires;
 575
 576                /*
 577                 * We are the new earliest-expiring POSIX 1.b timer, hence
 578                 * need to update expiration cache. Take into account that
 579                 * for process timers we share expiration cache with itimers
 580                 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 581                 */
 582
 583                switch (CPUCLOCK_WHICH(timer->it_clock)) {
 584                case CPUCLOCK_PROF:
 585                        if (expires_gt(cputime_expires->prof_exp, exp->cpu))
 586                                cputime_expires->prof_exp = exp->cpu;
 587                        break;
 588                case CPUCLOCK_VIRT:
 589                        if (expires_gt(cputime_expires->virt_exp, exp->cpu))
 590                                cputime_expires->virt_exp = exp->cpu;
 591                        break;
 592                case CPUCLOCK_SCHED:
 593                        if (cputime_expires->sched_exp == 0 ||
 594                            cputime_expires->sched_exp > exp->sched)
 595                                cputime_expires->sched_exp = exp->sched;
 596                        break;
 597                }
 598        }
 599}
 600
 601/*
 602 * The timer is locked, fire it and arrange for its reload.
 603 */
 604static void cpu_timer_fire(struct k_itimer *timer)
 605{
 606        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 607                /*
 608                 * User don't want any signal.
 609                 */
 610                timer->it.cpu.expires.sched = 0;
 611        } else if (unlikely(timer->sigq == NULL)) {
 612                /*
 613                 * This a special case for clock_nanosleep,
 614                 * not a normal timer from sys_timer_create.
 615                 */
 616                wake_up_process(timer->it_process);
 617                timer->it.cpu.expires.sched = 0;
 618        } else if (timer->it.cpu.incr.sched == 0) {
 619                /*
 620                 * One-shot timer.  Clear it as soon as it's fired.
 621                 */
 622                posix_timer_event(timer, 0);
 623                timer->it.cpu.expires.sched = 0;
 624        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 625                /*
 626                 * The signal did not get queued because the signal
 627                 * was ignored, so we won't get any callback to
 628                 * reload the timer.  But we need to keep it
 629                 * ticking in case the signal is deliverable next time.
 630                 */
 631                posix_cpu_timer_schedule(timer);
 632        }
 633}
 634
 635/*
 636 * Sample a process (thread group) timer for the given group_leader task.
 637 * Must be called with tasklist_lock held for reading.
 638 */
 639static int cpu_timer_sample_group(const clockid_t which_clock,
 640                                  struct task_struct *p,
 641                                  union cpu_time_count *cpu)
 642{
 643        struct task_cputime cputime;
 644
 645        thread_group_cputimer(p, &cputime);
 646        switch (CPUCLOCK_WHICH(which_clock)) {
 647        default:
 648                return -EINVAL;
 649        case CPUCLOCK_PROF:
 650                cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 651                break;
 652        case CPUCLOCK_VIRT:
 653                cpu->cpu = cputime.utime;
 654                break;
 655        case CPUCLOCK_SCHED:
 656                cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
 657                break;
 658        }
 659        return 0;
 660}
 661
 662/*
 663 * Guts of sys_timer_settime for CPU timers.
 664 * This is called with the timer locked and interrupts disabled.
 665 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 666 * and try again.  (This happens when the timer is in the middle of firing.)
 667 */
 668int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 669                        struct itimerspec *new, struct itimerspec *old)
 670{
 671        struct task_struct *p = timer->it.cpu.task;
 672        union cpu_time_count old_expires, new_expires, old_incr, val;
 673        int ret;
 674
 675        if (unlikely(p == NULL)) {
 676                /*
 677                 * Timer refers to a dead task's clock.
 678                 */
 679                return -ESRCH;
 680        }
 681
 682        new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 683
 684        read_lock(&tasklist_lock);
 685        /*
 686         * We need the tasklist_lock to protect against reaping that
 687         * clears p->sighand.  If p has just been reaped, we can no
 688         * longer get any information about it at all.
 689         */
 690        if (unlikely(p->sighand == NULL)) {
 691                read_unlock(&tasklist_lock);
 692                put_task_struct(p);
 693                timer->it.cpu.task = NULL;
 694                return -ESRCH;
 695        }
 696
 697        /*
 698         * Disarm any old timer after extracting its expiry time.
 699         */
 700        BUG_ON(!irqs_disabled());
 701
 702        ret = 0;
 703        old_incr = timer->it.cpu.incr;
 704        spin_lock(&p->sighand->siglock);
 705        old_expires = timer->it.cpu.expires;
 706        if (unlikely(timer->it.cpu.firing)) {
 707                timer->it.cpu.firing = -1;
 708                ret = TIMER_RETRY;
 709        } else
 710                list_del_init(&timer->it.cpu.entry);
 711
 712        /*
 713         * We need to sample the current value to convert the new
 714         * value from to relative and absolute, and to convert the
 715         * old value from absolute to relative.  To set a process
 716         * timer, we need a sample to balance the thread expiry
 717         * times (in arm_timer).  With an absolute time, we must
 718         * check if it's already passed.  In short, we need a sample.
 719         */
 720        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 721                cpu_clock_sample(timer->it_clock, p, &val);
 722        } else {
 723                cpu_timer_sample_group(timer->it_clock, p, &val);
 724        }
 725
 726        if (old) {
 727                if (old_expires.sched == 0) {
 728                        old->it_value.tv_sec = 0;
 729                        old->it_value.tv_nsec = 0;
 730                } else {
 731                        /*
 732                         * Update the timer in case it has
 733                         * overrun already.  If it has,
 734                         * we'll report it as having overrun
 735                         * and with the next reloaded timer
 736                         * already ticking, though we are
 737                         * swallowing that pending
 738                         * notification here to install the
 739                         * new setting.
 740                         */
 741                        bump_cpu_timer(timer, val);
 742                        if (cpu_time_before(timer->it_clock, val,
 743                                            timer->it.cpu.expires)) {
 744                                old_expires = cpu_time_sub(
 745                                        timer->it_clock,
 746                                        timer->it.cpu.expires, val);
 747                                sample_to_timespec(timer->it_clock,
 748                                                   old_expires,
 749                                                   &old->it_value);
 750                        } else {
 751                                old->it_value.tv_nsec = 1;
 752                                old->it_value.tv_sec = 0;
 753                        }
 754                }
 755        }
 756
 757        if (unlikely(ret)) {
 758                /*
 759                 * We are colliding with the timer actually firing.
 760                 * Punt after filling in the timer's old value, and
 761                 * disable this firing since we are already reporting
 762                 * it as an overrun (thanks to bump_cpu_timer above).
 763                 */
 764                spin_unlock(&p->sighand->siglock);
 765                read_unlock(&tasklist_lock);
 766                goto out;
 767        }
 768
 769        if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 770                cpu_time_add(timer->it_clock, &new_expires, val);
 771        }
 772
 773        /*
 774         * Install the new expiry time (or zero).
 775         * For a timer with no notification action, we don't actually
 776         * arm the timer (we'll just fake it for timer_gettime).
 777         */
 778        timer->it.cpu.expires = new_expires;
 779        if (new_expires.sched != 0 &&
 780            cpu_time_before(timer->it_clock, val, new_expires)) {
 781                arm_timer(timer);
 782        }
 783
 784        spin_unlock(&p->sighand->siglock);
 785        read_unlock(&tasklist_lock);
 786
 787        /*
 788         * Install the new reload setting, and
 789         * set up the signal and overrun bookkeeping.
 790         */
 791        timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 792                                                &new->it_interval);
 793
 794        /*
 795         * This acts as a modification timestamp for the timer,
 796         * so any automatic reload attempt will punt on seeing
 797         * that we have reset the timer manually.
 798         */
 799        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 800                ~REQUEUE_PENDING;
 801        timer->it_overrun_last = 0;
 802        timer->it_overrun = -1;
 803
 804        if (new_expires.sched != 0 &&
 805            !cpu_time_before(timer->it_clock, val, new_expires)) {
 806                /*
 807                 * The designated time already passed, so we notify
 808                 * immediately, even if the thread never runs to
 809                 * accumulate more time on this clock.
 810                 */
 811                cpu_timer_fire(timer);
 812        }
 813
 814        ret = 0;
 815 out:
 816        if (old) {
 817                sample_to_timespec(timer->it_clock,
 818                                   old_incr, &old->it_interval);
 819        }
 820        return ret;
 821}
 822
 823void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 824{
 825        union cpu_time_count now;
 826        struct task_struct *p = timer->it.cpu.task;
 827        int clear_dead;
 828
 829        /*
 830         * Easy part: convert the reload time.
 831         */
 832        sample_to_timespec(timer->it_clock,
 833                           timer->it.cpu.incr, &itp->it_interval);
 834
 835        if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
 836                itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 837                return;
 838        }
 839
 840        if (unlikely(p == NULL)) {
 841                /*
 842                 * This task already died and the timer will never fire.
 843                 * In this case, expires is actually the dead value.
 844                 */
 845        dead:
 846                sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 847                                   &itp->it_value);
 848                return;
 849        }
 850
 851        /*
 852         * Sample the clock to take the difference with the expiry time.
 853         */
 854        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 855                cpu_clock_sample(timer->it_clock, p, &now);
 856                clear_dead = p->exit_state;
 857        } else {
 858                read_lock(&tasklist_lock);
 859                if (unlikely(p->sighand == NULL)) {
 860                        /*
 861                         * The process has been reaped.
 862                         * We can't even collect a sample any more.
 863                         * Call the timer disarmed, nothing else to do.
 864                         */
 865                        put_task_struct(p);
 866                        timer->it.cpu.task = NULL;
 867                        timer->it.cpu.expires.sched = 0;
 868                        read_unlock(&tasklist_lock);
 869                        goto dead;
 870                } else {
 871                        cpu_timer_sample_group(timer->it_clock, p, &now);
 872                        clear_dead = (unlikely(p->exit_state) &&
 873                                      thread_group_empty(p));
 874                }
 875                read_unlock(&tasklist_lock);
 876        }
 877
 878        if (unlikely(clear_dead)) {
 879                /*
 880                 * We've noticed that the thread is dead, but
 881                 * not yet reaped.  Take this opportunity to
 882                 * drop our task ref.
 883                 */
 884                clear_dead_task(timer, now);
 885                goto dead;
 886        }
 887
 888        if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 889                sample_to_timespec(timer->it_clock,
 890                                   cpu_time_sub(timer->it_clock,
 891                                                timer->it.cpu.expires, now),
 892                                   &itp->it_value);
 893        } else {
 894                /*
 895                 * The timer should have expired already, but the firing
 896                 * hasn't taken place yet.  Say it's just about to expire.
 897                 */
 898                itp->it_value.tv_nsec = 1;
 899                itp->it_value.tv_sec = 0;
 900        }
 901}
 902
 903/*
 904 * Check for any per-thread CPU timers that have fired and move them off
 905 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 906 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 907 */
 908static void check_thread_timers(struct task_struct *tsk,
 909                                struct list_head *firing)
 910{
 911        int maxfire;
 912        struct list_head *timers = tsk->cpu_timers;
 913        struct signal_struct *const sig = tsk->signal;
 914        unsigned long soft;
 915
 916        maxfire = 20;
 917        tsk->cputime_expires.prof_exp = cputime_zero;
 918        while (!list_empty(timers)) {
 919                struct cpu_timer_list *t = list_first_entry(timers,
 920                                                      struct cpu_timer_list,
 921                                                      entry);
 922                if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
 923                        tsk->cputime_expires.prof_exp = t->expires.cpu;
 924                        break;
 925                }
 926                t->firing = 1;
 927                list_move_tail(&t->entry, firing);
 928        }
 929
 930        ++timers;
 931        maxfire = 20;
 932        tsk->cputime_expires.virt_exp = cputime_zero;
 933        while (!list_empty(timers)) {
 934                struct cpu_timer_list *t = list_first_entry(timers,
 935                                                      struct cpu_timer_list,
 936                                                      entry);
 937                if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
 938                        tsk->cputime_expires.virt_exp = t->expires.cpu;
 939                        break;
 940                }
 941                t->firing = 1;
 942                list_move_tail(&t->entry, firing);
 943        }
 944
 945        ++timers;
 946        maxfire = 20;
 947        tsk->cputime_expires.sched_exp = 0;
 948        while (!list_empty(timers)) {
 949                struct cpu_timer_list *t = list_first_entry(timers,
 950                                                      struct cpu_timer_list,
 951                                                      entry);
 952                if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
 953                        tsk->cputime_expires.sched_exp = t->expires.sched;
 954                        break;
 955                }
 956                t->firing = 1;
 957                list_move_tail(&t->entry, firing);
 958        }
 959
 960        /*
 961         * Check for the special case thread timers.
 962         */
 963        soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 964        if (soft != RLIM_INFINITY) {
 965                unsigned long hard =
 966                        ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 967
 968                if (hard != RLIM_INFINITY &&
 969                    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 970                        /*
 971                         * At the hard limit, we just die.
 972                         * No need to calculate anything else now.
 973                         */
 974                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 975                        return;
 976                }
 977                if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 978                        /*
 979                         * At the soft limit, send a SIGXCPU every second.
 980                         */
 981                        if (soft < hard) {
 982                                soft += USEC_PER_SEC;
 983                                sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 984                        }
 985                        printk(KERN_INFO
 986                                "RT Watchdog Timeout: %s[%d]\n",
 987                                tsk->comm, task_pid_nr(tsk));
 988                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 989                }
 990        }
 991}
 992
 993static void stop_process_timers(struct signal_struct *sig)
 994{
 995        struct thread_group_cputimer *cputimer = &sig->cputimer;
 996        unsigned long flags;
 997
 998        spin_lock_irqsave(&cputimer->lock, flags);
 999        cputimer->running = 0;
1000        spin_unlock_irqrestore(&cputimer->lock, flags);
1001}
1002
1003static u32 onecputick;
1004
1005static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1006                             cputime_t *expires, cputime_t cur_time, int signo)
1007{
1008        if (cputime_eq(it->expires, cputime_zero))
1009                return;
1010
1011        if (cputime_ge(cur_time, it->expires)) {
1012                if (!cputime_eq(it->incr, cputime_zero)) {
1013                        it->expires = cputime_add(it->expires, it->incr);
1014                        it->error += it->incr_error;
1015                        if (it->error >= onecputick) {
1016                                it->expires = cputime_sub(it->expires,
1017                                                          cputime_one_jiffy);
1018                                it->error -= onecputick;
1019                        }
1020                } else {
1021                        it->expires = cputime_zero;
1022                }
1023
1024                trace_itimer_expire(signo == SIGPROF ?
1025                                    ITIMER_PROF : ITIMER_VIRTUAL,
1026                                    tsk->signal->leader_pid, cur_time);
1027                __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1028        }
1029
1030        if (!cputime_eq(it->expires, cputime_zero) &&
1031            (cputime_eq(*expires, cputime_zero) ||
1032             cputime_lt(it->expires, *expires))) {
1033                *expires = it->expires;
1034        }
1035}
1036
1037/**
1038 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1039 *
1040 * @cputime:    The struct to compare.
1041 *
1042 * Checks @cputime to see if all fields are zero.  Returns true if all fields
1043 * are zero, false if any field is nonzero.
1044 */
1045static inline int task_cputime_zero(const struct task_cputime *cputime)
1046{
1047        if (cputime_eq(cputime->utime, cputime_zero) &&
1048            cputime_eq(cputime->stime, cputime_zero) &&
1049            cputime->sum_exec_runtime == 0)
1050                return 1;
1051        return 0;
1052}
1053
1054/*
1055 * Check for any per-thread CPU timers that have fired and move them
1056 * off the tsk->*_timers list onto the firing list.  Per-thread timers
1057 * have already been taken off.
1058 */
1059static void check_process_timers(struct task_struct *tsk,
1060                                 struct list_head *firing)
1061{
1062        int maxfire;
1063        struct signal_struct *const sig = tsk->signal;
1064        cputime_t utime, ptime, virt_expires, prof_expires;
1065        unsigned long long sum_sched_runtime, sched_expires;
1066        struct list_head *timers = sig->cpu_timers;
1067        struct task_cputime cputime;
1068        unsigned long soft;
1069
1070        /*
1071         * Collect the current process totals.
1072         */
1073        thread_group_cputimer(tsk, &cputime);
1074        utime = cputime.utime;
1075        ptime = cputime_add(utime, cputime.stime);
1076        sum_sched_runtime = cputime.sum_exec_runtime;
1077        maxfire = 20;
1078        prof_expires = cputime_zero;
1079        while (!list_empty(timers)) {
1080                struct cpu_timer_list *tl = list_first_entry(timers,
1081                                                      struct cpu_timer_list,
1082                                                      entry);
1083                if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1084                        prof_expires = tl->expires.cpu;
1085                        break;
1086                }
1087                tl->firing = 1;
1088                list_move_tail(&tl->entry, firing);
1089        }
1090
1091        ++timers;
1092        maxfire = 20;
1093        virt_expires = cputime_zero;
1094        while (!list_empty(timers)) {
1095                struct cpu_timer_list *tl = list_first_entry(timers,
1096                                                      struct cpu_timer_list,
1097                                                      entry);
1098                if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1099                        virt_expires = tl->expires.cpu;
1100                        break;
1101                }
1102                tl->firing = 1;
1103                list_move_tail(&tl->entry, firing);
1104        }
1105
1106        ++timers;
1107        maxfire = 20;
1108        sched_expires = 0;
1109        while (!list_empty(timers)) {
1110                struct cpu_timer_list *tl = list_first_entry(timers,
1111                                                      struct cpu_timer_list,
1112                                                      entry);
1113                if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1114                        sched_expires = tl->expires.sched;
1115                        break;
1116                }
1117                tl->firing = 1;
1118                list_move_tail(&tl->entry, firing);
1119        }
1120
1121        /*
1122         * Check for the special case process timers.
1123         */
1124        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1125                         SIGPROF);
1126        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1127                         SIGVTALRM);
1128        soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1129        if (soft != RLIM_INFINITY) {
1130                unsigned long psecs = cputime_to_secs(ptime);
1131                unsigned long hard =
1132                        ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1133                cputime_t x;
1134                if (psecs >= hard) {
1135                        /*
1136                         * At the hard limit, we just die.
1137                         * No need to calculate anything else now.
1138                         */
1139                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1140                        return;
1141                }
1142                if (psecs >= soft) {
1143                        /*
1144                         * At the soft limit, send a SIGXCPU every second.
1145                         */
1146                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1147                        if (soft < hard) {
1148                                soft++;
1149                                sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1150                        }
1151                }
1152                x = secs_to_cputime(soft);
1153                if (cputime_eq(prof_expires, cputime_zero) ||
1154                    cputime_lt(x, prof_expires)) {
1155                        prof_expires = x;
1156                }
1157        }
1158
1159        sig->cputime_expires.prof_exp = prof_expires;
1160        sig->cputime_expires.virt_exp = virt_expires;
1161        sig->cputime_expires.sched_exp = sched_expires;
1162        if (task_cputime_zero(&sig->cputime_expires))
1163                stop_process_timers(sig);
1164}
1165
1166/*
1167 * This is called from the signal code (via do_schedule_next_timer)
1168 * when the last timer signal was delivered and we have to reload the timer.
1169 */
1170void posix_cpu_timer_schedule(struct k_itimer *timer)
1171{
1172        struct task_struct *p = timer->it.cpu.task;
1173        union cpu_time_count now;
1174
1175        if (unlikely(p == NULL))
1176                /*
1177                 * The task was cleaned up already, no future firings.
1178                 */
1179                goto out;
1180
1181        /*
1182         * Fetch the current sample and update the timer's expiry time.
1183         */
1184        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1185                cpu_clock_sample(timer->it_clock, p, &now);
1186                bump_cpu_timer(timer, now);
1187                if (unlikely(p->exit_state)) {
1188                        clear_dead_task(timer, now);
1189                        goto out;
1190                }
1191                read_lock(&tasklist_lock); /* arm_timer needs it.  */
1192                spin_lock(&p->sighand->siglock);
1193        } else {
1194                read_lock(&tasklist_lock);
1195                if (unlikely(p->sighand == NULL)) {
1196                        /*
1197                         * The process has been reaped.
1198                         * We can't even collect a sample any more.
1199                         */
1200                        put_task_struct(p);
1201                        timer->it.cpu.task = p = NULL;
1202                        timer->it.cpu.expires.sched = 0;
1203                        goto out_unlock;
1204                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1205                        /*
1206                         * We've noticed that the thread is dead, but
1207                         * not yet reaped.  Take this opportunity to
1208                         * drop our task ref.
1209                         */
1210                        clear_dead_task(timer, now);
1211                        goto out_unlock;
1212                }
1213                spin_lock(&p->sighand->siglock);
1214                cpu_timer_sample_group(timer->it_clock, p, &now);
1215                bump_cpu_timer(timer, now);
1216                /* Leave the tasklist_lock locked for the call below.  */
1217        }
1218
1219        /*
1220         * Now re-arm for the new expiry time.
1221         */
1222        BUG_ON(!irqs_disabled());
1223        arm_timer(timer);
1224        spin_unlock(&p->sighand->siglock);
1225
1226out_unlock:
1227        read_unlock(&tasklist_lock);
1228
1229out:
1230        timer->it_overrun_last = timer->it_overrun;
1231        timer->it_overrun = -1;
1232        ++timer->it_requeue_pending;
1233}
1234
1235/**
1236 * task_cputime_expired - Compare two task_cputime entities.
1237 *
1238 * @sample:     The task_cputime structure to be checked for expiration.
1239 * @expires:    Expiration times, against which @sample will be checked.
1240 *
1241 * Checks @sample against @expires to see if any field of @sample has expired.
1242 * Returns true if any field of the former is greater than the corresponding
1243 * field of the latter if the latter field is set.  Otherwise returns false.
1244 */
1245static inline int task_cputime_expired(const struct task_cputime *sample,
1246                                        const struct task_cputime *expires)
1247{
1248        if (!cputime_eq(expires->utime, cputime_zero) &&
1249            cputime_ge(sample->utime, expires->utime))
1250                return 1;
1251        if (!cputime_eq(expires->stime, cputime_zero) &&
1252            cputime_ge(cputime_add(sample->utime, sample->stime),
1253                       expires->stime))
1254                return 1;
1255        if (expires->sum_exec_runtime != 0 &&
1256            sample->sum_exec_runtime >= expires->sum_exec_runtime)
1257                return 1;
1258        return 0;
1259}
1260
1261/**
1262 * fastpath_timer_check - POSIX CPU timers fast path.
1263 *
1264 * @tsk:        The task (thread) being checked.
1265 *
1266 * Check the task and thread group timers.  If both are zero (there are no
1267 * timers set) return false.  Otherwise snapshot the task and thread group
1268 * timers and compare them with the corresponding expiration times.  Return
1269 * true if a timer has expired, else return false.
1270 */
1271static inline int fastpath_timer_check(struct task_struct *tsk)
1272{
1273        struct signal_struct *sig;
1274
1275        if (!task_cputime_zero(&tsk->cputime_expires)) {
1276                struct task_cputime task_sample = {
1277                        .utime = tsk->utime,
1278                        .stime = tsk->stime,
1279                        .sum_exec_runtime = tsk->se.sum_exec_runtime
1280                };
1281
1282                if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1283                        return 1;
1284        }
1285
1286        sig = tsk->signal;
1287        if (sig->cputimer.running) {
1288                struct task_cputime group_sample;
1289
1290                spin_lock(&sig->cputimer.lock);
1291                group_sample = sig->cputimer.cputime;
1292                spin_unlock(&sig->cputimer.lock);
1293
1294                if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1295                        return 1;
1296        }
1297
1298        return 0;
1299}
1300
1301/*
1302 * This is called from the timer interrupt handler.  The irq handler has
1303 * already updated our counts.  We need to check if any timers fire now.
1304 * Interrupts are disabled.
1305 */
1306void run_posix_cpu_timers(struct task_struct *tsk)
1307{
1308        LIST_HEAD(firing);
1309        struct k_itimer *timer, *next;
1310        unsigned long flags;
1311
1312        BUG_ON(!irqs_disabled());
1313
1314        /*
1315         * The fast path checks that there are no expired thread or thread
1316         * group timers.  If that's so, just return.
1317         */
1318        if (!fastpath_timer_check(tsk))
1319                return;
1320
1321        if (!lock_task_sighand(tsk, &flags))
1322                return;
1323        /*
1324         * Here we take off tsk->signal->cpu_timers[N] and
1325         * tsk->cpu_timers[N] all the timers that are firing, and
1326         * put them on the firing list.
1327         */
1328        check_thread_timers(tsk, &firing);
1329        /*
1330         * If there are any active process wide timers (POSIX 1.b, itimers,
1331         * RLIMIT_CPU) cputimer must be running.
1332         */
1333        if (tsk->signal->cputimer.running)
1334                check_process_timers(tsk, &firing);
1335
1336        /*
1337         * We must release these locks before taking any timer's lock.
1338         * There is a potential race with timer deletion here, as the
1339         * siglock now protects our private firing list.  We have set
1340         * the firing flag in each timer, so that a deletion attempt
1341         * that gets the timer lock before we do will give it up and
1342         * spin until we've taken care of that timer below.
1343         */
1344        unlock_task_sighand(tsk, &flags);
1345
1346        /*
1347         * Now that all the timers on our list have the firing flag,
1348         * noone will touch their list entries but us.  We'll take
1349         * each timer's lock before clearing its firing flag, so no
1350         * timer call will interfere.
1351         */
1352        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1353                int cpu_firing;
1354
1355                spin_lock(&timer->it_lock);
1356                list_del_init(&timer->it.cpu.entry);
1357                cpu_firing = timer->it.cpu.firing;
1358                timer->it.cpu.firing = 0;
1359                /*
1360                 * The firing flag is -1 if we collided with a reset
1361                 * of the timer, which already reported this
1362                 * almost-firing as an overrun.  So don't generate an event.
1363                 */
1364                if (likely(cpu_firing >= 0))
1365                        cpu_timer_fire(timer);
1366                spin_unlock(&timer->it_lock);
1367        }
1368}
1369
1370/*
1371 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1372 * The tsk->sighand->siglock must be held by the caller.
1373 */
1374void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1375                           cputime_t *newval, cputime_t *oldval)
1376{
1377        union cpu_time_count now;
1378
1379        BUG_ON(clock_idx == CPUCLOCK_SCHED);
1380        cpu_timer_sample_group(clock_idx, tsk, &now);
1381
1382        if (oldval) {
1383                /*
1384                 * We are setting itimer. The *oldval is absolute and we update
1385                 * it to be relative, *newval argument is relative and we update
1386                 * it to be absolute.
1387                 */
1388                if (!cputime_eq(*oldval, cputime_zero)) {
1389                        if (cputime_le(*oldval, now.cpu)) {
1390                                /* Just about to fire. */
1391                                *oldval = cputime_one_jiffy;
1392                        } else {
1393                                *oldval = cputime_sub(*oldval, now.cpu);
1394                        }
1395                }
1396
1397                if (cputime_eq(*newval, cputime_zero))
1398                        return;
1399                *newval = cputime_add(*newval, now.cpu);
1400        }
1401
1402        /*
1403         * Update expiration cache if we are the earliest timer, or eventually
1404         * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1405         */
1406        switch (clock_idx) {
1407        case CPUCLOCK_PROF:
1408                if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1409                        tsk->signal->cputime_expires.prof_exp = *newval;
1410                break;
1411        case CPUCLOCK_VIRT:
1412                if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1413                        tsk->signal->cputime_expires.virt_exp = *newval;
1414                break;
1415        }
1416}
1417
1418static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1419                            struct timespec *rqtp, struct itimerspec *it)
1420{
1421        struct k_itimer timer;
1422        int error;
1423
1424        /*
1425         * Set up a temporary timer and then wait for it to go off.
1426         */
1427        memset(&timer, 0, sizeof timer);
1428        spin_lock_init(&timer.it_lock);
1429        timer.it_clock = which_clock;
1430        timer.it_overrun = -1;
1431        error = posix_cpu_timer_create(&timer);
1432        timer.it_process = current;
1433        if (!error) {
1434                static struct itimerspec zero_it;
1435
1436                memset(it, 0, sizeof *it);
1437                it->it_value = *rqtp;
1438
1439                spin_lock_irq(&timer.it_lock);
1440                error = posix_cpu_timer_set(&timer, flags, it, NULL);
1441                if (error) {
1442                        spin_unlock_irq(&timer.it_lock);
1443                        return error;
1444                }
1445
1446                while (!signal_pending(current)) {
1447                        if (timer.it.cpu.expires.sched == 0) {
1448                                /*
1449                                 * Our timer fired and was reset.
1450                                 */
1451                                spin_unlock_irq(&timer.it_lock);
1452                                return 0;
1453                        }
1454
1455                        /*
1456                         * Block until cpu_timer_fire (or a signal) wakes us.
1457                         */
1458                        __set_current_state(TASK_INTERRUPTIBLE);
1459                        spin_unlock_irq(&timer.it_lock);
1460                        schedule();
1461                        spin_lock_irq(&timer.it_lock);
1462                }
1463
1464                /*
1465                 * We were interrupted by a signal.
1466                 */
1467                sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1468                posix_cpu_timer_set(&timer, 0, &zero_it, it);
1469                spin_unlock_irq(&timer.it_lock);
1470
1471                if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1472                        /*
1473                         * It actually did fire already.
1474                         */
1475                        return 0;
1476                }
1477
1478                error = -ERESTART_RESTARTBLOCK;
1479        }
1480
1481        return error;
1482}
1483
1484int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1485                     struct timespec *rqtp, struct timespec __user *rmtp)
1486{
1487        struct restart_block *restart_block =
1488            &current_thread_info()->restart_block;
1489        struct itimerspec it;
1490        int error;
1491
1492        /*
1493         * Diagnose required errors first.
1494         */
1495        if (CPUCLOCK_PERTHREAD(which_clock) &&
1496            (CPUCLOCK_PID(which_clock) == 0 ||
1497             CPUCLOCK_PID(which_clock) == current->pid))
1498                return -EINVAL;
1499
1500        error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1501
1502        if (error == -ERESTART_RESTARTBLOCK) {
1503
1504                if (flags & TIMER_ABSTIME)
1505                        return -ERESTARTNOHAND;
1506                /*
1507                 * Report back to the user the time still remaining.
1508                 */
1509                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1510                        return -EFAULT;
1511
1512                restart_block->fn = posix_cpu_nsleep_restart;
1513                restart_block->arg0 = which_clock;
1514                restart_block->arg1 = (unsigned long) rmtp;
1515                restart_block->arg2 = rqtp->tv_sec;
1516                restart_block->arg3 = rqtp->tv_nsec;
1517        }
1518        return error;
1519}
1520
1521long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1522{
1523        clockid_t which_clock = restart_block->arg0;
1524        struct timespec __user *rmtp;
1525        struct timespec t;
1526        struct itimerspec it;
1527        int error;
1528
1529        rmtp = (struct timespec __user *) restart_block->arg1;
1530        t.tv_sec = restart_block->arg2;
1531        t.tv_nsec = restart_block->arg3;
1532
1533        restart_block->fn = do_no_restart_syscall;
1534        error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1535
1536        if (error == -ERESTART_RESTARTBLOCK) {
1537                /*
1538                 * Report back to the user the time still remaining.
1539                 */
1540                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1541                        return -EFAULT;
1542
1543                restart_block->fn = posix_cpu_nsleep_restart;
1544                restart_block->arg0 = which_clock;
1545                restart_block->arg1 = (unsigned long) rmtp;
1546                restart_block->arg2 = t.tv_sec;
1547                restart_block->arg3 = t.tv_nsec;
1548        }
1549        return error;
1550
1551}
1552
1553
1554#define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1555#define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1556
1557static int process_cpu_clock_getres(const clockid_t which_clock,
1558                                    struct timespec *tp)
1559{
1560        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1561}
1562static int process_cpu_clock_get(const clockid_t which_clock,
1563                                 struct timespec *tp)
1564{
1565        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1566}
1567static int process_cpu_timer_create(struct k_itimer *timer)
1568{
1569        timer->it_clock = PROCESS_CLOCK;
1570        return posix_cpu_timer_create(timer);
1571}
1572static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1573                              struct timespec *rqtp,
1574                              struct timespec __user *rmtp)
1575{
1576        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1577}
1578static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1579{
1580        return -EINVAL;
1581}
1582static int thread_cpu_clock_getres(const clockid_t which_clock,
1583                                   struct timespec *tp)
1584{
1585        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1586}
1587static int thread_cpu_clock_get(const clockid_t which_clock,
1588                                struct timespec *tp)
1589{
1590        return posix_cpu_clock_get(THREAD_CLOCK, tp);
1591}
1592static int thread_cpu_timer_create(struct k_itimer *timer)
1593{
1594        timer->it_clock = THREAD_CLOCK;
1595        return posix_cpu_timer_create(timer);
1596}
1597static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1598                              struct timespec *rqtp, struct timespec __user *rmtp)
1599{
1600        return -EINVAL;
1601}
1602static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1603{
1604        return -EINVAL;
1605}
1606
1607static __init int init_posix_cpu_timers(void)
1608{
1609        struct k_clock process = {
1610                .clock_getres = process_cpu_clock_getres,
1611                .clock_get = process_cpu_clock_get,
1612                .clock_set = do_posix_clock_nosettime,
1613                .timer_create = process_cpu_timer_create,
1614                .nsleep = process_cpu_nsleep,
1615                .nsleep_restart = process_cpu_nsleep_restart,
1616        };
1617        struct k_clock thread = {
1618                .clock_getres = thread_cpu_clock_getres,
1619                .clock_get = thread_cpu_clock_get,
1620                .clock_set = do_posix_clock_nosettime,
1621                .timer_create = thread_cpu_timer_create,
1622                .nsleep = thread_cpu_nsleep,
1623                .nsleep_restart = thread_cpu_nsleep_restart,
1624        };
1625        struct timespec ts;
1626
1627        register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1628        register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1629
1630        cputime_to_timespec(cputime_one_jiffy, &ts);
1631        onecputick = ts.tv_nsec;
1632        WARN_ON(ts.tv_sec != 0);
1633
1634        return 0;
1635}
1636__initcall(init_posix_cpu_timers);
1637