linux/kernel/posix-timers.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *                           Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *                           Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38
  39#include <asm/uaccess.h>
  40#include <linux/list.h>
  41#include <linux/init.h>
  42#include <linux/compiler.h>
  43#include <linux/idr.h>
  44#include <linux/posix-timers.h>
  45#include <linux/syscalls.h>
  46#include <linux/wait.h>
  47#include <linux/workqueue.h>
  48#include <linux/module.h>
  49
  50/*
  51 * Management arrays for POSIX timers.   Timers are kept in slab memory
  52 * Timer ids are allocated by an external routine that keeps track of the
  53 * id and the timer.  The external interface is:
  54 *
  55 * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
  56 * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
  57 *                                                    related it to <ptr>
  58 * void idr_remove(struct idr *idp, int id);          to release <id>
  59 * void idr_init(struct idr *idp);                    to initialize <idp>
  60 *                                                    which we supply.
  61 * The idr_get_new *may* call slab for more memory so it must not be
  62 * called under a spin lock.  Likewise idr_remore may release memory
  63 * (but it may be ok to do this under a lock...).
  64 * idr_find is just a memory look up and is quite fast.  A -1 return
  65 * indicates that the requested id does not exist.
  66 */
  67
  68/*
  69 * Lets keep our timers in a slab cache :-)
  70 */
  71static struct kmem_cache *posix_timers_cache;
  72static struct idr posix_timers_id;
  73static DEFINE_SPINLOCK(idr_lock);
  74
  75/*
  76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  77 * SIGEV values.  Here we put out an error if this assumption fails.
  78 */
  79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  80                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  82#endif
  83
  84
  85/*
  86 * The timer ID is turned into a timer address by idr_find().
  87 * Verifying a valid ID consists of:
  88 *
  89 * a) checking that idr_find() returns other than -1.
  90 * b) checking that the timer id matches the one in the timer itself.
  91 * c) that the timer owner is in the callers thread group.
  92 */
  93
  94/*
  95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  96 *          to implement others.  This structure defines the various
  97 *          clocks and allows the possibility of adding others.  We
  98 *          provide an interface to add clocks to the table and expect
  99 *          the "arch" code to add at least one clock that is high
 100 *          resolution.  Here we define the standard CLOCK_REALTIME as a
 101 *          1/HZ resolution clock.
 102 *
 103 * RESOLUTION: Clock resolution is used to round up timer and interval
 104 *          times, NOT to report clock times, which are reported with as
 105 *          much resolution as the system can muster.  In some cases this
 106 *          resolution may depend on the underlying clock hardware and
 107 *          may not be quantifiable until run time, and only then is the
 108 *          necessary code is written.  The standard says we should say
 109 *          something about this issue in the documentation...
 110 *
 111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
 112 *          various clock functions.  For clocks that use the standard
 113 *          system timer code these entries should be NULL.  This will
 114 *          allow dispatch without the overhead of indirect function
 115 *          calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
 116 *          must supply functions here, even if the function just returns
 117 *          ENOSYS.  The standard POSIX timer management code assumes the
 118 *          following: 1.) The k_itimer struct (sched.h) is used for the
 119 *          timer.  2.) The list, it_lock, it_clock, it_id and it_pid
 120 *          fields are not modified by timer code.
 121 *
 122 *          At this time all functions EXCEPT clock_nanosleep can be
 123 *          redirected by the CLOCKS structure.  Clock_nanosleep is in
 124 *          there, but the code ignores it.
 125 *
 126 * Permissions: It is assumed that the clock_settime() function defined
 127 *          for each clock will take care of permission checks.  Some
 128 *          clocks may be set able by any user (i.e. local process
 129 *          clocks) others not.  Currently the only set able clock we
 130 *          have is CLOCK_REALTIME and its high res counter part, both of
 131 *          which we beg off on and pass to do_sys_settimeofday().
 132 */
 133
 134static struct k_clock posix_clocks[MAX_CLOCKS];
 135
 136/*
 137 * These ones are defined below.
 138 */
 139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 140                         struct timespec __user *rmtp);
 141static void common_timer_get(struct k_itimer *, struct itimerspec *);
 142static int common_timer_set(struct k_itimer *, int,
 143                            struct itimerspec *, struct itimerspec *);
 144static int common_timer_del(struct k_itimer *timer);
 145
 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 147
 148static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 149
 150#define lock_timer(tid, flags)                                             \
 151({      struct k_itimer *__timr;                                           \
 152        __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 153        __timr;                                                            \
 154})
 155
 156static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 157{
 158        spin_unlock_irqrestore(&timr->it_lock, flags);
 159}
 160
 161/*
 162 * Call the k_clock hook function if non-null, or the default function.
 163 */
 164#define CLOCK_DISPATCH(clock, call, arglist) \
 165        ((clock) < 0 ? posix_cpu_##call arglist : \
 166         (posix_clocks[clock].call != NULL \
 167          ? (*posix_clocks[clock].call) arglist : common_##call arglist))
 168
 169/*
 170 * Default clock hook functions when the struct k_clock passed
 171 * to register_posix_clock leaves a function pointer null.
 172 *
 173 * The function common_CALL is the default implementation for
 174 * the function pointer CALL in struct k_clock.
 175 */
 176
 177static inline int common_clock_getres(const clockid_t which_clock,
 178                                      struct timespec *tp)
 179{
 180        tp->tv_sec = 0;
 181        tp->tv_nsec = posix_clocks[which_clock].res;
 182        return 0;
 183}
 184
 185/*
 186 * Get real time for posix timers
 187 */
 188static int common_clock_get(clockid_t which_clock, struct timespec *tp)
 189{
 190        ktime_get_real_ts(tp);
 191        return 0;
 192}
 193
 194static inline int common_clock_set(const clockid_t which_clock,
 195                                   struct timespec *tp)
 196{
 197        return do_sys_settimeofday(tp, NULL);
 198}
 199
 200static int common_timer_create(struct k_itimer *new_timer)
 201{
 202        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 203        return 0;
 204}
 205
 206static int no_timer_create(struct k_itimer *new_timer)
 207{
 208        return -EOPNOTSUPP;
 209}
 210
 211static int no_nsleep(const clockid_t which_clock, int flags,
 212                     struct timespec *tsave, struct timespec __user *rmtp)
 213{
 214        return -EOPNOTSUPP;
 215}
 216
 217/*
 218 * Return nonzero if we know a priori this clockid_t value is bogus.
 219 */
 220static inline int invalid_clockid(const clockid_t which_clock)
 221{
 222        if (which_clock < 0)    /* CPU clock, posix_cpu_* will check it */
 223                return 0;
 224        if ((unsigned) which_clock >= MAX_CLOCKS)
 225                return 1;
 226        if (posix_clocks[which_clock].clock_getres != NULL)
 227                return 0;
 228        if (posix_clocks[which_clock].res != 0)
 229                return 0;
 230        return 1;
 231}
 232
 233/*
 234 * Get monotonic time for posix timers
 235 */
 236static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 237{
 238        ktime_get_ts(tp);
 239        return 0;
 240}
 241
 242/*
 243 * Get monotonic time for posix timers
 244 */
 245static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
 246{
 247        getrawmonotonic(tp);
 248        return 0;
 249}
 250
 251
 252static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
 253{
 254        *tp = current_kernel_time();
 255        return 0;
 256}
 257
 258static int posix_get_monotonic_coarse(clockid_t which_clock,
 259                                                struct timespec *tp)
 260{
 261        *tp = get_monotonic_coarse();
 262        return 0;
 263}
 264
 265static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
 266{
 267        *tp = ktime_to_timespec(KTIME_LOW_RES);
 268        return 0;
 269}
 270/*
 271 * Initialize everything, well, just everything in Posix clocks/timers ;)
 272 */
 273static __init int init_posix_timers(void)
 274{
 275        struct k_clock clock_realtime = {
 276                .clock_getres = hrtimer_get_res,
 277        };
 278        struct k_clock clock_monotonic = {
 279                .clock_getres = hrtimer_get_res,
 280                .clock_get = posix_ktime_get_ts,
 281                .clock_set = do_posix_clock_nosettime,
 282        };
 283        struct k_clock clock_monotonic_raw = {
 284                .clock_getres = hrtimer_get_res,
 285                .clock_get = posix_get_monotonic_raw,
 286                .clock_set = do_posix_clock_nosettime,
 287                .timer_create = no_timer_create,
 288                .nsleep = no_nsleep,
 289        };
 290        struct k_clock clock_realtime_coarse = {
 291                .clock_getres = posix_get_coarse_res,
 292                .clock_get = posix_get_realtime_coarse,
 293                .clock_set = do_posix_clock_nosettime,
 294                .timer_create = no_timer_create,
 295                .nsleep = no_nsleep,
 296        };
 297        struct k_clock clock_monotonic_coarse = {
 298                .clock_getres = posix_get_coarse_res,
 299                .clock_get = posix_get_monotonic_coarse,
 300                .clock_set = do_posix_clock_nosettime,
 301                .timer_create = no_timer_create,
 302                .nsleep = no_nsleep,
 303        };
 304
 305        register_posix_clock(CLOCK_REALTIME, &clock_realtime);
 306        register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
 307        register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
 308        register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
 309        register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
 310
 311        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 312                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 313                                        NULL);
 314        idr_init(&posix_timers_id);
 315        return 0;
 316}
 317
 318__initcall(init_posix_timers);
 319
 320static void schedule_next_timer(struct k_itimer *timr)
 321{
 322        struct hrtimer *timer = &timr->it.real.timer;
 323
 324        if (timr->it.real.interval.tv64 == 0)
 325                return;
 326
 327        timr->it_overrun += (unsigned int) hrtimer_forward(timer,
 328                                                timer->base->get_time(),
 329                                                timr->it.real.interval);
 330
 331        timr->it_overrun_last = timr->it_overrun;
 332        timr->it_overrun = -1;
 333        ++timr->it_requeue_pending;
 334        hrtimer_restart(timer);
 335}
 336
 337/*
 338 * This function is exported for use by the signal deliver code.  It is
 339 * called just prior to the info block being released and passes that
 340 * block to us.  It's function is to update the overrun entry AND to
 341 * restart the timer.  It should only be called if the timer is to be
 342 * restarted (i.e. we have flagged this in the sys_private entry of the
 343 * info block).
 344 *
 345 * To protect aginst the timer going away while the interrupt is queued,
 346 * we require that the it_requeue_pending flag be set.
 347 */
 348void do_schedule_next_timer(struct siginfo *info)
 349{
 350        struct k_itimer *timr;
 351        unsigned long flags;
 352
 353        timr = lock_timer(info->si_tid, &flags);
 354
 355        if (timr && timr->it_requeue_pending == info->si_sys_private) {
 356                if (timr->it_clock < 0)
 357                        posix_cpu_timer_schedule(timr);
 358                else
 359                        schedule_next_timer(timr);
 360
 361                info->si_overrun += timr->it_overrun_last;
 362        }
 363
 364        if (timr)
 365                unlock_timer(timr, flags);
 366}
 367
 368int posix_timer_event(struct k_itimer *timr, int si_private)
 369{
 370        struct task_struct *task;
 371        int shared, ret = -1;
 372        /*
 373         * FIXME: if ->sigq is queued we can race with
 374         * dequeue_signal()->do_schedule_next_timer().
 375         *
 376         * If dequeue_signal() sees the "right" value of
 377         * si_sys_private it calls do_schedule_next_timer().
 378         * We re-queue ->sigq and drop ->it_lock().
 379         * do_schedule_next_timer() locks the timer
 380         * and re-schedules it while ->sigq is pending.
 381         * Not really bad, but not that we want.
 382         */
 383        timr->sigq->info.si_sys_private = si_private;
 384
 385        rcu_read_lock();
 386        task = pid_task(timr->it_pid, PIDTYPE_PID);
 387        if (task) {
 388                shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
 389                ret = send_sigqueue(timr->sigq, task, shared);
 390        }
 391        rcu_read_unlock();
 392        /* If we failed to send the signal the timer stops. */
 393        return ret > 0;
 394}
 395EXPORT_SYMBOL_GPL(posix_timer_event);
 396
 397/*
 398 * This function gets called when a POSIX.1b interval timer expires.  It
 399 * is used as a callback from the kernel internal timer.  The
 400 * run_timer_list code ALWAYS calls with interrupts on.
 401
 402 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 403 */
 404static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 405{
 406        struct k_itimer *timr;
 407        unsigned long flags;
 408        int si_private = 0;
 409        enum hrtimer_restart ret = HRTIMER_NORESTART;
 410
 411        timr = container_of(timer, struct k_itimer, it.real.timer);
 412        spin_lock_irqsave(&timr->it_lock, flags);
 413
 414        if (timr->it.real.interval.tv64 != 0)
 415                si_private = ++timr->it_requeue_pending;
 416
 417        if (posix_timer_event(timr, si_private)) {
 418                /*
 419                 * signal was not sent because of sig_ignor
 420                 * we will not get a call back to restart it AND
 421                 * it should be restarted.
 422                 */
 423                if (timr->it.real.interval.tv64 != 0) {
 424                        ktime_t now = hrtimer_cb_get_time(timer);
 425
 426                        /*
 427                         * FIXME: What we really want, is to stop this
 428                         * timer completely and restart it in case the
 429                         * SIG_IGN is removed. This is a non trivial
 430                         * change which involves sighand locking
 431                         * (sigh !), which we don't want to do late in
 432                         * the release cycle.
 433                         *
 434                         * For now we just let timers with an interval
 435                         * less than a jiffie expire every jiffie to
 436                         * avoid softirq starvation in case of SIG_IGN
 437                         * and a very small interval, which would put
 438                         * the timer right back on the softirq pending
 439                         * list. By moving now ahead of time we trick
 440                         * hrtimer_forward() to expire the timer
 441                         * later, while we still maintain the overrun
 442                         * accuracy, but have some inconsistency in
 443                         * the timer_gettime() case. This is at least
 444                         * better than a starved softirq. A more
 445                         * complex fix which solves also another related
 446                         * inconsistency is already in the pipeline.
 447                         */
 448#ifdef CONFIG_HIGH_RES_TIMERS
 449                        {
 450                                ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 451
 452                                if (timr->it.real.interval.tv64 < kj.tv64)
 453                                        now = ktime_add(now, kj);
 454                        }
 455#endif
 456                        timr->it_overrun += (unsigned int)
 457                                hrtimer_forward(timer, now,
 458                                                timr->it.real.interval);
 459                        ret = HRTIMER_RESTART;
 460                        ++timr->it_requeue_pending;
 461                }
 462        }
 463
 464        unlock_timer(timr, flags);
 465        return ret;
 466}
 467
 468static struct pid *good_sigevent(sigevent_t * event)
 469{
 470        struct task_struct *rtn = current->group_leader;
 471
 472        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 473                (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
 474                 !same_thread_group(rtn, current) ||
 475                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 476                return NULL;
 477
 478        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 479            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 480                return NULL;
 481
 482        return task_pid(rtn);
 483}
 484
 485void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
 486{
 487        if ((unsigned) clock_id >= MAX_CLOCKS) {
 488                printk("POSIX clock register failed for clock_id %d\n",
 489                       clock_id);
 490                return;
 491        }
 492
 493        posix_clocks[clock_id] = *new_clock;
 494}
 495EXPORT_SYMBOL_GPL(register_posix_clock);
 496
 497static struct k_itimer * alloc_posix_timer(void)
 498{
 499        struct k_itimer *tmr;
 500        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 501        if (!tmr)
 502                return tmr;
 503        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 504                kmem_cache_free(posix_timers_cache, tmr);
 505                return NULL;
 506        }
 507        memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
 508        return tmr;
 509}
 510
 511#define IT_ID_SET       1
 512#define IT_ID_NOT_SET   0
 513static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 514{
 515        if (it_id_set) {
 516                unsigned long flags;
 517                spin_lock_irqsave(&idr_lock, flags);
 518                idr_remove(&posix_timers_id, tmr->it_id);
 519                spin_unlock_irqrestore(&idr_lock, flags);
 520        }
 521        put_pid(tmr->it_pid);
 522        sigqueue_free(tmr->sigq);
 523        kmem_cache_free(posix_timers_cache, tmr);
 524}
 525
 526/* Create a POSIX.1b interval timer. */
 527
 528SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 529                struct sigevent __user *, timer_event_spec,
 530                timer_t __user *, created_timer_id)
 531{
 532        struct k_itimer *new_timer;
 533        int error, new_timer_id;
 534        sigevent_t event;
 535        int it_id_set = IT_ID_NOT_SET;
 536
 537        if (invalid_clockid(which_clock))
 538                return -EINVAL;
 539
 540        new_timer = alloc_posix_timer();
 541        if (unlikely(!new_timer))
 542                return -EAGAIN;
 543
 544        spin_lock_init(&new_timer->it_lock);
 545 retry:
 546        if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
 547                error = -EAGAIN;
 548                goto out;
 549        }
 550        spin_lock_irq(&idr_lock);
 551        error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
 552        spin_unlock_irq(&idr_lock);
 553        if (error) {
 554                if (error == -EAGAIN)
 555                        goto retry;
 556                /*
 557                 * Weird looking, but we return EAGAIN if the IDR is
 558                 * full (proper POSIX return value for this)
 559                 */
 560                error = -EAGAIN;
 561                goto out;
 562        }
 563
 564        it_id_set = IT_ID_SET;
 565        new_timer->it_id = (timer_t) new_timer_id;
 566        new_timer->it_clock = which_clock;
 567        new_timer->it_overrun = -1;
 568
 569        if (timer_event_spec) {
 570                if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 571                        error = -EFAULT;
 572                        goto out;
 573                }
 574                rcu_read_lock();
 575                new_timer->it_pid = get_pid(good_sigevent(&event));
 576                rcu_read_unlock();
 577                if (!new_timer->it_pid) {
 578                        error = -EINVAL;
 579                        goto out;
 580                }
 581        } else {
 582                event.sigev_notify = SIGEV_SIGNAL;
 583                event.sigev_signo = SIGALRM;
 584                event.sigev_value.sival_int = new_timer->it_id;
 585                new_timer->it_pid = get_pid(task_tgid(current));
 586        }
 587
 588        new_timer->it_sigev_notify     = event.sigev_notify;
 589        new_timer->sigq->info.si_signo = event.sigev_signo;
 590        new_timer->sigq->info.si_value = event.sigev_value;
 591        new_timer->sigq->info.si_tid   = new_timer->it_id;
 592        new_timer->sigq->info.si_code  = SI_TIMER;
 593
 594        if (copy_to_user(created_timer_id,
 595                         &new_timer_id, sizeof (new_timer_id))) {
 596                error = -EFAULT;
 597                goto out;
 598        }
 599
 600        error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
 601        if (error)
 602                goto out;
 603
 604        spin_lock_irq(&current->sighand->siglock);
 605        new_timer->it_signal = current->signal;
 606        list_add(&new_timer->list, &current->signal->posix_timers);
 607        spin_unlock_irq(&current->sighand->siglock);
 608
 609        return 0;
 610        /*
 611         * In the case of the timer belonging to another task, after
 612         * the task is unlocked, the timer is owned by the other task
 613         * and may cease to exist at any time.  Don't use or modify
 614         * new_timer after the unlock call.
 615         */
 616out:
 617        release_posix_timer(new_timer, it_id_set);
 618        return error;
 619}
 620
 621/*
 622 * Locking issues: We need to protect the result of the id look up until
 623 * we get the timer locked down so it is not deleted under us.  The
 624 * removal is done under the idr spinlock so we use that here to bridge
 625 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 626 * be release with out holding the timer lock.
 627 */
 628static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 629{
 630        struct k_itimer *timr;
 631        /*
 632         * Watch out here.  We do a irqsave on the idr_lock and pass the
 633         * flags part over to the timer lock.  Must not let interrupts in
 634         * while we are moving the lock.
 635         */
 636        spin_lock_irqsave(&idr_lock, *flags);
 637        timr = idr_find(&posix_timers_id, (int)timer_id);
 638        if (timr) {
 639                spin_lock(&timr->it_lock);
 640                if (timr->it_signal == current->signal) {
 641                        spin_unlock(&idr_lock);
 642                        return timr;
 643                }
 644                spin_unlock(&timr->it_lock);
 645        }
 646        spin_unlock_irqrestore(&idr_lock, *flags);
 647
 648        return NULL;
 649}
 650
 651/*
 652 * Get the time remaining on a POSIX.1b interval timer.  This function
 653 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 654 * mess with irq.
 655 *
 656 * We have a couple of messes to clean up here.  First there is the case
 657 * of a timer that has a requeue pending.  These timers should appear to
 658 * be in the timer list with an expiry as if we were to requeue them
 659 * now.
 660 *
 661 * The second issue is the SIGEV_NONE timer which may be active but is
 662 * not really ever put in the timer list (to save system resources).
 663 * This timer may be expired, and if so, we will do it here.  Otherwise
 664 * it is the same as a requeue pending timer WRT to what we should
 665 * report.
 666 */
 667static void
 668common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 669{
 670        ktime_t now, remaining, iv;
 671        struct hrtimer *timer = &timr->it.real.timer;
 672
 673        memset(cur_setting, 0, sizeof(struct itimerspec));
 674
 675        iv = timr->it.real.interval;
 676
 677        /* interval timer ? */
 678        if (iv.tv64)
 679                cur_setting->it_interval = ktime_to_timespec(iv);
 680        else if (!hrtimer_active(timer) &&
 681                 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 682                return;
 683
 684        now = timer->base->get_time();
 685
 686        /*
 687         * When a requeue is pending or this is a SIGEV_NONE
 688         * timer move the expiry time forward by intervals, so
 689         * expiry is > now.
 690         */
 691        if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 692            (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 693                timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
 694
 695        remaining = ktime_sub(hrtimer_get_expires(timer), now);
 696        /* Return 0 only, when the timer is expired and not pending */
 697        if (remaining.tv64 <= 0) {
 698                /*
 699                 * A single shot SIGEV_NONE timer must return 0, when
 700                 * it is expired !
 701                 */
 702                if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 703                        cur_setting->it_value.tv_nsec = 1;
 704        } else
 705                cur_setting->it_value = ktime_to_timespec(remaining);
 706}
 707
 708/* Get the time remaining on a POSIX.1b interval timer. */
 709SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 710                struct itimerspec __user *, setting)
 711{
 712        struct k_itimer *timr;
 713        struct itimerspec cur_setting;
 714        unsigned long flags;
 715
 716        timr = lock_timer(timer_id, &flags);
 717        if (!timr)
 718                return -EINVAL;
 719
 720        CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
 721
 722        unlock_timer(timr, flags);
 723
 724        if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 725                return -EFAULT;
 726
 727        return 0;
 728}
 729
 730/*
 731 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 732 * be the overrun of the timer last delivered.  At the same time we are
 733 * accumulating overruns on the next timer.  The overrun is frozen when
 734 * the signal is delivered, either at the notify time (if the info block
 735 * is not queued) or at the actual delivery time (as we are informed by
 736 * the call back to do_schedule_next_timer().  So all we need to do is
 737 * to pick up the frozen overrun.
 738 */
 739SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 740{
 741        struct k_itimer *timr;
 742        int overrun;
 743        unsigned long flags;
 744
 745        timr = lock_timer(timer_id, &flags);
 746        if (!timr)
 747                return -EINVAL;
 748
 749        overrun = timr->it_overrun_last;
 750        unlock_timer(timr, flags);
 751
 752        return overrun;
 753}
 754
 755/* Set a POSIX.1b interval timer. */
 756/* timr->it_lock is taken. */
 757static int
 758common_timer_set(struct k_itimer *timr, int flags,
 759                 struct itimerspec *new_setting, struct itimerspec *old_setting)
 760{
 761        struct hrtimer *timer = &timr->it.real.timer;
 762        enum hrtimer_mode mode;
 763
 764        if (old_setting)
 765                common_timer_get(timr, old_setting);
 766
 767        /* disable the timer */
 768        timr->it.real.interval.tv64 = 0;
 769        /*
 770         * careful here.  If smp we could be in the "fire" routine which will
 771         * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 772         */
 773        if (hrtimer_try_to_cancel(timer) < 0)
 774                return TIMER_RETRY;
 775
 776        timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 777                ~REQUEUE_PENDING;
 778        timr->it_overrun_last = 0;
 779
 780        /* switch off the timer when it_value is zero */
 781        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 782                return 0;
 783
 784        mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 785        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 786        timr->it.real.timer.function = posix_timer_fn;
 787
 788        hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
 789
 790        /* Convert interval */
 791        timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 792
 793        /* SIGEV_NONE timers are not queued ! See common_timer_get */
 794        if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 795                /* Setup correct expiry time for relative timers */
 796                if (mode == HRTIMER_MODE_REL) {
 797                        hrtimer_add_expires(timer, timer->base->get_time());
 798                }
 799                return 0;
 800        }
 801
 802        hrtimer_start_expires(timer, mode);
 803        return 0;
 804}
 805
 806/* Set a POSIX.1b interval timer */
 807SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 808                const struct itimerspec __user *, new_setting,
 809                struct itimerspec __user *, old_setting)
 810{
 811        struct k_itimer *timr;
 812        struct itimerspec new_spec, old_spec;
 813        int error = 0;
 814        unsigned long flag;
 815        struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 816
 817        if (!new_setting)
 818                return -EINVAL;
 819
 820        if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 821                return -EFAULT;
 822
 823        if (!timespec_valid(&new_spec.it_interval) ||
 824            !timespec_valid(&new_spec.it_value))
 825                return -EINVAL;
 826retry:
 827        timr = lock_timer(timer_id, &flag);
 828        if (!timr)
 829                return -EINVAL;
 830
 831        error = CLOCK_DISPATCH(timr->it_clock, timer_set,
 832                               (timr, flags, &new_spec, rtn));
 833
 834        unlock_timer(timr, flag);
 835        if (error == TIMER_RETRY) {
 836                rtn = NULL;     // We already got the old time...
 837                goto retry;
 838        }
 839
 840        if (old_setting && !error &&
 841            copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 842                error = -EFAULT;
 843
 844        return error;
 845}
 846
 847static inline int common_timer_del(struct k_itimer *timer)
 848{
 849        timer->it.real.interval.tv64 = 0;
 850
 851        if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 852                return TIMER_RETRY;
 853        return 0;
 854}
 855
 856static inline int timer_delete_hook(struct k_itimer *timer)
 857{
 858        return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
 859}
 860
 861/* Delete a POSIX.1b interval timer. */
 862SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 863{
 864        struct k_itimer *timer;
 865        unsigned long flags;
 866
 867retry_delete:
 868        timer = lock_timer(timer_id, &flags);
 869        if (!timer)
 870                return -EINVAL;
 871
 872        if (timer_delete_hook(timer) == TIMER_RETRY) {
 873                unlock_timer(timer, flags);
 874                goto retry_delete;
 875        }
 876
 877        spin_lock(&current->sighand->siglock);
 878        list_del(&timer->list);
 879        spin_unlock(&current->sighand->siglock);
 880        /*
 881         * This keeps any tasks waiting on the spin lock from thinking
 882         * they got something (see the lock code above).
 883         */
 884        timer->it_signal = NULL;
 885
 886        unlock_timer(timer, flags);
 887        release_posix_timer(timer, IT_ID_SET);
 888        return 0;
 889}
 890
 891/*
 892 * return timer owned by the process, used by exit_itimers
 893 */
 894static void itimer_delete(struct k_itimer *timer)
 895{
 896        unsigned long flags;
 897
 898retry_delete:
 899        spin_lock_irqsave(&timer->it_lock, flags);
 900
 901        if (timer_delete_hook(timer) == TIMER_RETRY) {
 902                unlock_timer(timer, flags);
 903                goto retry_delete;
 904        }
 905        list_del(&timer->list);
 906        /*
 907         * This keeps any tasks waiting on the spin lock from thinking
 908         * they got something (see the lock code above).
 909         */
 910        timer->it_signal = NULL;
 911
 912        unlock_timer(timer, flags);
 913        release_posix_timer(timer, IT_ID_SET);
 914}
 915
 916/*
 917 * This is called by do_exit or de_thread, only when there are no more
 918 * references to the shared signal_struct.
 919 */
 920void exit_itimers(struct signal_struct *sig)
 921{
 922        struct k_itimer *tmr;
 923
 924        while (!list_empty(&sig->posix_timers)) {
 925                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 926                itimer_delete(tmr);
 927        }
 928}
 929
 930/* Not available / possible... functions */
 931int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
 932{
 933        return -EINVAL;
 934}
 935EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
 936
 937int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
 938                               struct timespec *t, struct timespec __user *r)
 939{
 940#ifndef ENOTSUP
 941        return -EOPNOTSUPP;     /* aka ENOTSUP in userland for POSIX */
 942#else  /*  parisc does define it separately.  */
 943        return -ENOTSUP;
 944#endif
 945}
 946EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
 947
 948SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
 949                const struct timespec __user *, tp)
 950{
 951        struct timespec new_tp;
 952
 953        if (invalid_clockid(which_clock))
 954                return -EINVAL;
 955        if (copy_from_user(&new_tp, tp, sizeof (*tp)))
 956                return -EFAULT;
 957
 958        return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
 959}
 960
 961SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
 962                struct timespec __user *,tp)
 963{
 964        struct timespec kernel_tp;
 965        int error;
 966
 967        if (invalid_clockid(which_clock))
 968                return -EINVAL;
 969        error = CLOCK_DISPATCH(which_clock, clock_get,
 970                               (which_clock, &kernel_tp));
 971        if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
 972                error = -EFAULT;
 973
 974        return error;
 975
 976}
 977
 978SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
 979                struct timespec __user *, tp)
 980{
 981        struct timespec rtn_tp;
 982        int error;
 983
 984        if (invalid_clockid(which_clock))
 985                return -EINVAL;
 986
 987        error = CLOCK_DISPATCH(which_clock, clock_getres,
 988                               (which_clock, &rtn_tp));
 989
 990        if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
 991                error = -EFAULT;
 992        }
 993
 994        return error;
 995}
 996
 997/*
 998 * nanosleep for monotonic and realtime clocks
 999 */
1000static int common_nsleep(const clockid_t which_clock, int flags,
1001                         struct timespec *tsave, struct timespec __user *rmtp)
1002{
1003        return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1004                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1005                                 which_clock);
1006}
1007
1008SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1009                const struct timespec __user *, rqtp,
1010                struct timespec __user *, rmtp)
1011{
1012        struct timespec t;
1013
1014        if (invalid_clockid(which_clock))
1015                return -EINVAL;
1016
1017        if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1018                return -EFAULT;
1019
1020        if (!timespec_valid(&t))
1021                return -EINVAL;
1022
1023        return CLOCK_DISPATCH(which_clock, nsleep,
1024                              (which_clock, flags, &t, rmtp));
1025}
1026
1027/*
1028 * nanosleep_restart for monotonic and realtime clocks
1029 */
1030static int common_nsleep_restart(struct restart_block *restart_block)
1031{
1032        return hrtimer_nanosleep_restart(restart_block);
1033}
1034
1035/*
1036 * This will restart clock_nanosleep. This is required only by
1037 * compat_clock_nanosleep_restart for now.
1038 */
1039long
1040clock_nanosleep_restart(struct restart_block *restart_block)
1041{
1042        clockid_t which_clock = restart_block->arg0;
1043
1044        return CLOCK_DISPATCH(which_clock, nsleep_restart,
1045                              (restart_block));
1046}
1047