linux/kernel/profile.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/profile.c
   3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   4 *  with configurable resolution, support for restricting the cpus on
   5 *  which profiling is done, and switching between cpu time and
   6 *  schedule() calls via kernel command line parameters passed at boot.
   7 *
   8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
   9 *      Red Hat, July 2004
  10 *  Consolidation of architecture support code for profiling,
  11 *      William Irwin, Oracle, July 2004
  12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  13 *      to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/profile.h>
  18#include <linux/bootmem.h>
  19#include <linux/notifier.h>
  20#include <linux/mm.h>
  21#include <linux/cpumask.h>
  22#include <linux/cpu.h>
  23#include <linux/highmem.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/vmalloc.h>
  27#include <asm/sections.h>
  28#include <asm/irq_regs.h>
  29#include <asm/ptrace.h>
  30
  31struct profile_hit {
  32        u32 pc, hits;
  33};
  34#define PROFILE_GRPSHIFT        3
  35#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  36#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  37#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  38
  39/* Oprofile timer tick hook */
  40static int (*timer_hook)(struct pt_regs *) __read_mostly;
  41
  42static atomic_t *prof_buffer;
  43static unsigned long prof_len, prof_shift;
  44
  45int prof_on __read_mostly;
  46EXPORT_SYMBOL_GPL(prof_on);
  47
  48static cpumask_var_t prof_cpu_mask;
  49#ifdef CONFIG_SMP
  50static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  51static DEFINE_PER_CPU(int, cpu_profile_flip);
  52static DEFINE_MUTEX(profile_flip_mutex);
  53#endif /* CONFIG_SMP */
  54
  55int profile_setup(char *str)
  56{
  57        static char schedstr[] = "schedule";
  58        static char sleepstr[] = "sleep";
  59        static char kvmstr[] = "kvm";
  60        int par;
  61
  62        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  63#ifdef CONFIG_SCHEDSTATS
  64                prof_on = SLEEP_PROFILING;
  65                if (str[strlen(sleepstr)] == ',')
  66                        str += strlen(sleepstr) + 1;
  67                if (get_option(&str, &par))
  68                        prof_shift = par;
  69                printk(KERN_INFO
  70                        "kernel sleep profiling enabled (shift: %ld)\n",
  71                        prof_shift);
  72#else
  73                printk(KERN_WARNING
  74                        "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  75#endif /* CONFIG_SCHEDSTATS */
  76        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  77                prof_on = SCHED_PROFILING;
  78                if (str[strlen(schedstr)] == ',')
  79                        str += strlen(schedstr) + 1;
  80                if (get_option(&str, &par))
  81                        prof_shift = par;
  82                printk(KERN_INFO
  83                        "kernel schedule profiling enabled (shift: %ld)\n",
  84                        prof_shift);
  85        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  86                prof_on = KVM_PROFILING;
  87                if (str[strlen(kvmstr)] == ',')
  88                        str += strlen(kvmstr) + 1;
  89                if (get_option(&str, &par))
  90                        prof_shift = par;
  91                printk(KERN_INFO
  92                        "kernel KVM profiling enabled (shift: %ld)\n",
  93                        prof_shift);
  94        } else if (get_option(&str, &par)) {
  95                prof_shift = par;
  96                prof_on = CPU_PROFILING;
  97                printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
  98                        prof_shift);
  99        }
 100        return 1;
 101}
 102__setup("profile=", profile_setup);
 103
 104
 105int __ref profile_init(void)
 106{
 107        int buffer_bytes;
 108        if (!prof_on)
 109                return 0;
 110
 111        /* only text is profiled */
 112        prof_len = (_etext - _stext) >> prof_shift;
 113        buffer_bytes = prof_len*sizeof(atomic_t);
 114
 115        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 116                return -ENOMEM;
 117
 118        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 119
 120        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 121        if (prof_buffer)
 122                return 0;
 123
 124        prof_buffer = alloc_pages_exact(buffer_bytes,
 125                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 126        if (prof_buffer)
 127                return 0;
 128
 129        prof_buffer = vmalloc(buffer_bytes);
 130        if (prof_buffer) {
 131                memset(prof_buffer, 0, buffer_bytes);
 132                return 0;
 133        }
 134
 135        free_cpumask_var(prof_cpu_mask);
 136        return -ENOMEM;
 137}
 138
 139/* Profile event notifications */
 140
 141static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 142static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 143static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 144
 145void profile_task_exit(struct task_struct *task)
 146{
 147        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 148}
 149
 150int profile_handoff_task(struct task_struct *task)
 151{
 152        int ret;
 153        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 154        return (ret == NOTIFY_OK) ? 1 : 0;
 155}
 156
 157void profile_munmap(unsigned long addr)
 158{
 159        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 160}
 161
 162int task_handoff_register(struct notifier_block *n)
 163{
 164        return atomic_notifier_chain_register(&task_free_notifier, n);
 165}
 166EXPORT_SYMBOL_GPL(task_handoff_register);
 167
 168int task_handoff_unregister(struct notifier_block *n)
 169{
 170        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 171}
 172EXPORT_SYMBOL_GPL(task_handoff_unregister);
 173
 174int profile_event_register(enum profile_type type, struct notifier_block *n)
 175{
 176        int err = -EINVAL;
 177
 178        switch (type) {
 179        case PROFILE_TASK_EXIT:
 180                err = blocking_notifier_chain_register(
 181                                &task_exit_notifier, n);
 182                break;
 183        case PROFILE_MUNMAP:
 184                err = blocking_notifier_chain_register(
 185                                &munmap_notifier, n);
 186                break;
 187        }
 188
 189        return err;
 190}
 191EXPORT_SYMBOL_GPL(profile_event_register);
 192
 193int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 194{
 195        int err = -EINVAL;
 196
 197        switch (type) {
 198        case PROFILE_TASK_EXIT:
 199                err = blocking_notifier_chain_unregister(
 200                                &task_exit_notifier, n);
 201                break;
 202        case PROFILE_MUNMAP:
 203                err = blocking_notifier_chain_unregister(
 204                                &munmap_notifier, n);
 205                break;
 206        }
 207
 208        return err;
 209}
 210EXPORT_SYMBOL_GPL(profile_event_unregister);
 211
 212int register_timer_hook(int (*hook)(struct pt_regs *))
 213{
 214        if (timer_hook)
 215                return -EBUSY;
 216        timer_hook = hook;
 217        return 0;
 218}
 219EXPORT_SYMBOL_GPL(register_timer_hook);
 220
 221void unregister_timer_hook(int (*hook)(struct pt_regs *))
 222{
 223        WARN_ON(hook != timer_hook);
 224        timer_hook = NULL;
 225        /* make sure all CPUs see the NULL hook */
 226        synchronize_sched();  /* Allow ongoing interrupts to complete. */
 227}
 228EXPORT_SYMBOL_GPL(unregister_timer_hook);
 229
 230
 231#ifdef CONFIG_SMP
 232/*
 233 * Each cpu has a pair of open-addressed hashtables for pending
 234 * profile hits. read_profile() IPI's all cpus to request them
 235 * to flip buffers and flushes their contents to prof_buffer itself.
 236 * Flip requests are serialized by the profile_flip_mutex. The sole
 237 * use of having a second hashtable is for avoiding cacheline
 238 * contention that would otherwise happen during flushes of pending
 239 * profile hits required for the accuracy of reported profile hits
 240 * and so resurrect the interrupt livelock issue.
 241 *
 242 * The open-addressed hashtables are indexed by profile buffer slot
 243 * and hold the number of pending hits to that profile buffer slot on
 244 * a cpu in an entry. When the hashtable overflows, all pending hits
 245 * are accounted to their corresponding profile buffer slots with
 246 * atomic_add() and the hashtable emptied. As numerous pending hits
 247 * may be accounted to a profile buffer slot in a hashtable entry,
 248 * this amortizes a number of atomic profile buffer increments likely
 249 * to be far larger than the number of entries in the hashtable,
 250 * particularly given that the number of distinct profile buffer
 251 * positions to which hits are accounted during short intervals (e.g.
 252 * several seconds) is usually very small. Exclusion from buffer
 253 * flipping is provided by interrupt disablement (note that for
 254 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 255 * process context).
 256 * The hash function is meant to be lightweight as opposed to strong,
 257 * and was vaguely inspired by ppc64 firmware-supported inverted
 258 * pagetable hash functions, but uses a full hashtable full of finite
 259 * collision chains, not just pairs of them.
 260 *
 261 * -- wli
 262 */
 263static void __profile_flip_buffers(void *unused)
 264{
 265        int cpu = smp_processor_id();
 266
 267        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 268}
 269
 270static void profile_flip_buffers(void)
 271{
 272        int i, j, cpu;
 273
 274        mutex_lock(&profile_flip_mutex);
 275        j = per_cpu(cpu_profile_flip, get_cpu());
 276        put_cpu();
 277        on_each_cpu(__profile_flip_buffers, NULL, 1);
 278        for_each_online_cpu(cpu) {
 279                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 280                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 281                        if (!hits[i].hits) {
 282                                if (hits[i].pc)
 283                                        hits[i].pc = 0;
 284                                continue;
 285                        }
 286                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 287                        hits[i].hits = hits[i].pc = 0;
 288                }
 289        }
 290        mutex_unlock(&profile_flip_mutex);
 291}
 292
 293static void profile_discard_flip_buffers(void)
 294{
 295        int i, cpu;
 296
 297        mutex_lock(&profile_flip_mutex);
 298        i = per_cpu(cpu_profile_flip, get_cpu());
 299        put_cpu();
 300        on_each_cpu(__profile_flip_buffers, NULL, 1);
 301        for_each_online_cpu(cpu) {
 302                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 303                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 304        }
 305        mutex_unlock(&profile_flip_mutex);
 306}
 307
 308void profile_hits(int type, void *__pc, unsigned int nr_hits)
 309{
 310        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 311        int i, j, cpu;
 312        struct profile_hit *hits;
 313
 314        if (prof_on != type || !prof_buffer)
 315                return;
 316        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 317        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 318        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 319        cpu = get_cpu();
 320        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 321        if (!hits) {
 322                put_cpu();
 323                return;
 324        }
 325        /*
 326         * We buffer the global profiler buffer into a per-CPU
 327         * queue and thus reduce the number of global (and possibly
 328         * NUMA-alien) accesses. The write-queue is self-coalescing:
 329         */
 330        local_irq_save(flags);
 331        do {
 332                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 333                        if (hits[i + j].pc == pc) {
 334                                hits[i + j].hits += nr_hits;
 335                                goto out;
 336                        } else if (!hits[i + j].hits) {
 337                                hits[i + j].pc = pc;
 338                                hits[i + j].hits = nr_hits;
 339                                goto out;
 340                        }
 341                }
 342                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 343        } while (i != primary);
 344
 345        /*
 346         * Add the current hit(s) and flush the write-queue out
 347         * to the global buffer:
 348         */
 349        atomic_add(nr_hits, &prof_buffer[pc]);
 350        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 351                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 352                hits[i].pc = hits[i].hits = 0;
 353        }
 354out:
 355        local_irq_restore(flags);
 356        put_cpu();
 357}
 358
 359static int __cpuinit profile_cpu_callback(struct notifier_block *info,
 360                                        unsigned long action, void *__cpu)
 361{
 362        int node, cpu = (unsigned long)__cpu;
 363        struct page *page;
 364
 365        switch (action) {
 366        case CPU_UP_PREPARE:
 367        case CPU_UP_PREPARE_FROZEN:
 368                node = cpu_to_mem(cpu);
 369                per_cpu(cpu_profile_flip, cpu) = 0;
 370                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 371                        page = alloc_pages_exact_node(node,
 372                                        GFP_KERNEL | __GFP_ZERO,
 373                                        0);
 374                        if (!page)
 375                                return notifier_from_errno(-ENOMEM);
 376                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 377                }
 378                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 379                        page = alloc_pages_exact_node(node,
 380                                        GFP_KERNEL | __GFP_ZERO,
 381                                        0);
 382                        if (!page)
 383                                goto out_free;
 384                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 385                }
 386                break;
 387out_free:
 388                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 389                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 390                __free_page(page);
 391                return notifier_from_errno(-ENOMEM);
 392        case CPU_ONLINE:
 393        case CPU_ONLINE_FROZEN:
 394                if (prof_cpu_mask != NULL)
 395                        cpumask_set_cpu(cpu, prof_cpu_mask);
 396                break;
 397        case CPU_UP_CANCELED:
 398        case CPU_UP_CANCELED_FROZEN:
 399        case CPU_DEAD:
 400        case CPU_DEAD_FROZEN:
 401                if (prof_cpu_mask != NULL)
 402                        cpumask_clear_cpu(cpu, prof_cpu_mask);
 403                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 404                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 405                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 406                        __free_page(page);
 407                }
 408                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 409                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 410                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 411                        __free_page(page);
 412                }
 413                break;
 414        }
 415        return NOTIFY_OK;
 416}
 417#else /* !CONFIG_SMP */
 418#define profile_flip_buffers()          do { } while (0)
 419#define profile_discard_flip_buffers()  do { } while (0)
 420#define profile_cpu_callback            NULL
 421
 422void profile_hits(int type, void *__pc, unsigned int nr_hits)
 423{
 424        unsigned long pc;
 425
 426        if (prof_on != type || !prof_buffer)
 427                return;
 428        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 429        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 430}
 431#endif /* !CONFIG_SMP */
 432EXPORT_SYMBOL_GPL(profile_hits);
 433
 434void profile_tick(int type)
 435{
 436        struct pt_regs *regs = get_irq_regs();
 437
 438        if (type == CPU_PROFILING && timer_hook)
 439                timer_hook(regs);
 440        if (!user_mode(regs) && prof_cpu_mask != NULL &&
 441            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 442                profile_hit(type, (void *)profile_pc(regs));
 443}
 444
 445#ifdef CONFIG_PROC_FS
 446#include <linux/proc_fs.h>
 447#include <linux/seq_file.h>
 448#include <asm/uaccess.h>
 449
 450static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 451{
 452        seq_cpumask(m, prof_cpu_mask);
 453        seq_putc(m, '\n');
 454        return 0;
 455}
 456
 457static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 458{
 459        return single_open(file, prof_cpu_mask_proc_show, NULL);
 460}
 461
 462static ssize_t prof_cpu_mask_proc_write(struct file *file,
 463        const char __user *buffer, size_t count, loff_t *pos)
 464{
 465        cpumask_var_t new_value;
 466        int err;
 467
 468        if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 469                return -ENOMEM;
 470
 471        err = cpumask_parse_user(buffer, count, new_value);
 472        if (!err) {
 473                cpumask_copy(prof_cpu_mask, new_value);
 474                err = count;
 475        }
 476        free_cpumask_var(new_value);
 477        return err;
 478}
 479
 480static const struct file_operations prof_cpu_mask_proc_fops = {
 481        .open           = prof_cpu_mask_proc_open,
 482        .read           = seq_read,
 483        .llseek         = seq_lseek,
 484        .release        = single_release,
 485        .write          = prof_cpu_mask_proc_write,
 486};
 487
 488void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
 489{
 490        /* create /proc/irq/prof_cpu_mask */
 491        proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
 492}
 493
 494/*
 495 * This function accesses profiling information. The returned data is
 496 * binary: the sampling step and the actual contents of the profile
 497 * buffer. Use of the program readprofile is recommended in order to
 498 * get meaningful info out of these data.
 499 */
 500static ssize_t
 501read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 502{
 503        unsigned long p = *ppos;
 504        ssize_t read;
 505        char *pnt;
 506        unsigned int sample_step = 1 << prof_shift;
 507
 508        profile_flip_buffers();
 509        if (p >= (prof_len+1)*sizeof(unsigned int))
 510                return 0;
 511        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 512                count = (prof_len+1)*sizeof(unsigned int) - p;
 513        read = 0;
 514
 515        while (p < sizeof(unsigned int) && count > 0) {
 516                if (put_user(*((char *)(&sample_step)+p), buf))
 517                        return -EFAULT;
 518                buf++; p++; count--; read++;
 519        }
 520        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 521        if (copy_to_user(buf, (void *)pnt, count))
 522                return -EFAULT;
 523        read += count;
 524        *ppos += read;
 525        return read;
 526}
 527
 528/*
 529 * Writing to /proc/profile resets the counters
 530 *
 531 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 532 * interrupt frequency, on architectures that support this.
 533 */
 534static ssize_t write_profile(struct file *file, const char __user *buf,
 535                             size_t count, loff_t *ppos)
 536{
 537#ifdef CONFIG_SMP
 538        extern int setup_profiling_timer(unsigned int multiplier);
 539
 540        if (count == sizeof(int)) {
 541                unsigned int multiplier;
 542
 543                if (copy_from_user(&multiplier, buf, sizeof(int)))
 544                        return -EFAULT;
 545
 546                if (setup_profiling_timer(multiplier))
 547                        return -EINVAL;
 548        }
 549#endif
 550        profile_discard_flip_buffers();
 551        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 552        return count;
 553}
 554
 555static const struct file_operations proc_profile_operations = {
 556        .read           = read_profile,
 557        .write          = write_profile,
 558        .llseek         = default_llseek,
 559};
 560
 561#ifdef CONFIG_SMP
 562static void profile_nop(void *unused)
 563{
 564}
 565
 566static int create_hash_tables(void)
 567{
 568        int cpu;
 569
 570        for_each_online_cpu(cpu) {
 571                int node = cpu_to_mem(cpu);
 572                struct page *page;
 573
 574                page = alloc_pages_exact_node(node,
 575                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 576                                0);
 577                if (!page)
 578                        goto out_cleanup;
 579                per_cpu(cpu_profile_hits, cpu)[1]
 580                                = (struct profile_hit *)page_address(page);
 581                page = alloc_pages_exact_node(node,
 582                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 583                                0);
 584                if (!page)
 585                        goto out_cleanup;
 586                per_cpu(cpu_profile_hits, cpu)[0]
 587                                = (struct profile_hit *)page_address(page);
 588        }
 589        return 0;
 590out_cleanup:
 591        prof_on = 0;
 592        smp_mb();
 593        on_each_cpu(profile_nop, NULL, 1);
 594        for_each_online_cpu(cpu) {
 595                struct page *page;
 596
 597                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 598                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 599                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 600                        __free_page(page);
 601                }
 602                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 603                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 604                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 605                        __free_page(page);
 606                }
 607        }
 608        return -1;
 609}
 610#else
 611#define create_hash_tables()                    ({ 0; })
 612#endif
 613
 614int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 615{
 616        struct proc_dir_entry *entry;
 617
 618        if (!prof_on)
 619                return 0;
 620        if (create_hash_tables())
 621                return -ENOMEM;
 622        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 623                            NULL, &proc_profile_operations);
 624        if (!entry)
 625                return 0;
 626        entry->size = (1+prof_len) * sizeof(atomic_t);
 627        hotcpu_notifier(profile_cpu_callback, 0);
 628        return 0;
 629}
 630module_init(create_proc_profile);
 631#endif /* CONFIG_PROC_FS */
 632