linux/kernel/sched.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <linux/smp_lock.h>
  36#include <asm/mmu_context.h>
  37#include <linux/interrupt.h>
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/stop_machine.h>
  61#include <linux/sysctl.h>
  62#include <linux/syscalls.h>
  63#include <linux/times.h>
  64#include <linux/tsacct_kern.h>
  65#include <linux/kprobes.h>
  66#include <linux/delayacct.h>
  67#include <linux/unistd.h>
  68#include <linux/pagemap.h>
  69#include <linux/hrtimer.h>
  70#include <linux/tick.h>
  71#include <linux/debugfs.h>
  72#include <linux/ctype.h>
  73#include <linux/ftrace.h>
  74#include <linux/slab.h>
  75
  76#include <asm/tlb.h>
  77#include <asm/irq_regs.h>
  78#include <asm/mutex.h>
  79
  80#include "sched_cpupri.h"
  81#include "workqueue_sched.h"
  82#include "sched_autogroup.h"
  83
  84#define CREATE_TRACE_POINTS
  85#include <trace/events/sched.h>
  86
  87/*
  88 * Convert user-nice values [ -20 ... 0 ... 19 ]
  89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  90 * and back.
  91 */
  92#define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
  93#define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
  94#define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
  95
  96/*
  97 * 'User priority' is the nice value converted to something we
  98 * can work with better when scaling various scheduler parameters,
  99 * it's a [ 0 ... 39 ] range.
 100 */
 101#define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
 102#define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
 103#define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
 104
 105/*
 106 * Helpers for converting nanosecond timing to jiffy resolution
 107 */
 108#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 109
 110#define NICE_0_LOAD             SCHED_LOAD_SCALE
 111#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
 112
 113/*
 114 * These are the 'tuning knobs' of the scheduler:
 115 *
 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
 117 * Timeslices get refilled after they expire.
 118 */
 119#define DEF_TIMESLICE           (100 * HZ / 1000)
 120
 121/*
 122 * single value that denotes runtime == period, ie unlimited time.
 123 */
 124#define RUNTIME_INF     ((u64)~0ULL)
 125
 126static inline int rt_policy(int policy)
 127{
 128        if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
 129                return 1;
 130        return 0;
 131}
 132
 133static inline int task_has_rt_policy(struct task_struct *p)
 134{
 135        return rt_policy(p->policy);
 136}
 137
 138/*
 139 * This is the priority-queue data structure of the RT scheduling class:
 140 */
 141struct rt_prio_array {
 142        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 143        struct list_head queue[MAX_RT_PRIO];
 144};
 145
 146struct rt_bandwidth {
 147        /* nests inside the rq lock: */
 148        raw_spinlock_t          rt_runtime_lock;
 149        ktime_t                 rt_period;
 150        u64                     rt_runtime;
 151        struct hrtimer          rt_period_timer;
 152};
 153
 154static struct rt_bandwidth def_rt_bandwidth;
 155
 156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
 157
 158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 159{
 160        struct rt_bandwidth *rt_b =
 161                container_of(timer, struct rt_bandwidth, rt_period_timer);
 162        ktime_t now;
 163        int overrun;
 164        int idle = 0;
 165
 166        for (;;) {
 167                now = hrtimer_cb_get_time(timer);
 168                overrun = hrtimer_forward(timer, now, rt_b->rt_period);
 169
 170                if (!overrun)
 171                        break;
 172
 173                idle = do_sched_rt_period_timer(rt_b, overrun);
 174        }
 175
 176        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 177}
 178
 179static
 180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 181{
 182        rt_b->rt_period = ns_to_ktime(period);
 183        rt_b->rt_runtime = runtime;
 184
 185        raw_spin_lock_init(&rt_b->rt_runtime_lock);
 186
 187        hrtimer_init(&rt_b->rt_period_timer,
 188                        CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 189        rt_b->rt_period_timer.function = sched_rt_period_timer;
 190}
 191
 192static inline int rt_bandwidth_enabled(void)
 193{
 194        return sysctl_sched_rt_runtime >= 0;
 195}
 196
 197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 198{
 199        ktime_t now;
 200
 201        if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 202                return;
 203
 204        if (hrtimer_active(&rt_b->rt_period_timer))
 205                return;
 206
 207        raw_spin_lock(&rt_b->rt_runtime_lock);
 208        for (;;) {
 209                unsigned long delta;
 210                ktime_t soft, hard;
 211
 212                if (hrtimer_active(&rt_b->rt_period_timer))
 213                        break;
 214
 215                now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
 216                hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
 217
 218                soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
 219                hard = hrtimer_get_expires(&rt_b->rt_period_timer);
 220                delta = ktime_to_ns(ktime_sub(hard, soft));
 221                __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
 222                                HRTIMER_MODE_ABS_PINNED, 0);
 223        }
 224        raw_spin_unlock(&rt_b->rt_runtime_lock);
 225}
 226
 227#ifdef CONFIG_RT_GROUP_SCHED
 228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 229{
 230        hrtimer_cancel(&rt_b->rt_period_timer);
 231}
 232#endif
 233
 234/*
 235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 236 * detach_destroy_domains and partition_sched_domains.
 237 */
 238static DEFINE_MUTEX(sched_domains_mutex);
 239
 240#ifdef CONFIG_CGROUP_SCHED
 241
 242#include <linux/cgroup.h>
 243
 244struct cfs_rq;
 245
 246static LIST_HEAD(task_groups);
 247
 248/* task group related information */
 249struct task_group {
 250        struct cgroup_subsys_state css;
 251
 252#ifdef CONFIG_FAIR_GROUP_SCHED
 253        /* schedulable entities of this group on each cpu */
 254        struct sched_entity **se;
 255        /* runqueue "owned" by this group on each cpu */
 256        struct cfs_rq **cfs_rq;
 257        unsigned long shares;
 258
 259        atomic_t load_weight;
 260#endif
 261
 262#ifdef CONFIG_RT_GROUP_SCHED
 263        struct sched_rt_entity **rt_se;
 264        struct rt_rq **rt_rq;
 265
 266        struct rt_bandwidth rt_bandwidth;
 267#endif
 268
 269        struct rcu_head rcu;
 270        struct list_head list;
 271
 272        struct task_group *parent;
 273        struct list_head siblings;
 274        struct list_head children;
 275
 276#ifdef CONFIG_SCHED_AUTOGROUP
 277        struct autogroup *autogroup;
 278#endif
 279};
 280
 281/* task_group_lock serializes the addition/removal of task groups */
 282static DEFINE_SPINLOCK(task_group_lock);
 283
 284#ifdef CONFIG_FAIR_GROUP_SCHED
 285
 286# define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
 287
 288/*
 289 * A weight of 0 or 1 can cause arithmetics problems.
 290 * A weight of a cfs_rq is the sum of weights of which entities
 291 * are queued on this cfs_rq, so a weight of a entity should not be
 292 * too large, so as the shares value of a task group.
 293 * (The default weight is 1024 - so there's no practical
 294 *  limitation from this.)
 295 */
 296#define MIN_SHARES      2
 297#define MAX_SHARES      (1UL << 18)
 298
 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
 300#endif
 301
 302/* Default task group.
 303 *      Every task in system belong to this group at bootup.
 304 */
 305struct task_group root_task_group;
 306
 307#endif  /* CONFIG_CGROUP_SCHED */
 308
 309/* CFS-related fields in a runqueue */
 310struct cfs_rq {
 311        struct load_weight load;
 312        unsigned long nr_running;
 313
 314        u64 exec_clock;
 315        u64 min_vruntime;
 316
 317        struct rb_root tasks_timeline;
 318        struct rb_node *rb_leftmost;
 319
 320        struct list_head tasks;
 321        struct list_head *balance_iterator;
 322
 323        /*
 324         * 'curr' points to currently running entity on this cfs_rq.
 325         * It is set to NULL otherwise (i.e when none are currently running).
 326         */
 327        struct sched_entity *curr, *next, *last;
 328
 329        unsigned int nr_spread_over;
 330
 331#ifdef CONFIG_FAIR_GROUP_SCHED
 332        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
 333
 334        /*
 335         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 336         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 337         * (like users, containers etc.)
 338         *
 339         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 340         * list is used during load balance.
 341         */
 342        int on_list;
 343        struct list_head leaf_cfs_rq_list;
 344        struct task_group *tg;  /* group that "owns" this runqueue */
 345
 346#ifdef CONFIG_SMP
 347        /*
 348         * the part of load.weight contributed by tasks
 349         */
 350        unsigned long task_weight;
 351
 352        /*
 353         *   h_load = weight * f(tg)
 354         *
 355         * Where f(tg) is the recursive weight fraction assigned to
 356         * this group.
 357         */
 358        unsigned long h_load;
 359
 360        /*
 361         * Maintaining per-cpu shares distribution for group scheduling
 362         *
 363         * load_stamp is the last time we updated the load average
 364         * load_last is the last time we updated the load average and saw load
 365         * load_unacc_exec_time is currently unaccounted execution time
 366         */
 367        u64 load_avg;
 368        u64 load_period;
 369        u64 load_stamp, load_last, load_unacc_exec_time;
 370
 371        unsigned long load_contribution;
 372#endif
 373#endif
 374};
 375
 376/* Real-Time classes' related field in a runqueue: */
 377struct rt_rq {
 378        struct rt_prio_array active;
 379        unsigned long rt_nr_running;
 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 381        struct {
 382                int curr; /* highest queued rt task prio */
 383#ifdef CONFIG_SMP
 384                int next; /* next highest */
 385#endif
 386        } highest_prio;
 387#endif
 388#ifdef CONFIG_SMP
 389        unsigned long rt_nr_migratory;
 390        unsigned long rt_nr_total;
 391        int overloaded;
 392        struct plist_head pushable_tasks;
 393#endif
 394        int rt_throttled;
 395        u64 rt_time;
 396        u64 rt_runtime;
 397        /* Nests inside the rq lock: */
 398        raw_spinlock_t rt_runtime_lock;
 399
 400#ifdef CONFIG_RT_GROUP_SCHED
 401        unsigned long rt_nr_boosted;
 402
 403        struct rq *rq;
 404        struct list_head leaf_rt_rq_list;
 405        struct task_group *tg;
 406#endif
 407};
 408
 409#ifdef CONFIG_SMP
 410
 411/*
 412 * We add the notion of a root-domain which will be used to define per-domain
 413 * variables. Each exclusive cpuset essentially defines an island domain by
 414 * fully partitioning the member cpus from any other cpuset. Whenever a new
 415 * exclusive cpuset is created, we also create and attach a new root-domain
 416 * object.
 417 *
 418 */
 419struct root_domain {
 420        atomic_t refcount;
 421        cpumask_var_t span;
 422        cpumask_var_t online;
 423
 424        /*
 425         * The "RT overload" flag: it gets set if a CPU has more than
 426         * one runnable RT task.
 427         */
 428        cpumask_var_t rto_mask;
 429        atomic_t rto_count;
 430        struct cpupri cpupri;
 431};
 432
 433/*
 434 * By default the system creates a single root-domain with all cpus as
 435 * members (mimicking the global state we have today).
 436 */
 437static struct root_domain def_root_domain;
 438
 439#endif /* CONFIG_SMP */
 440
 441/*
 442 * This is the main, per-CPU runqueue data structure.
 443 *
 444 * Locking rule: those places that want to lock multiple runqueues
 445 * (such as the load balancing or the thread migration code), lock
 446 * acquire operations must be ordered by ascending &runqueue.
 447 */
 448struct rq {
 449        /* runqueue lock: */
 450        raw_spinlock_t lock;
 451
 452        /*
 453         * nr_running and cpu_load should be in the same cacheline because
 454         * remote CPUs use both these fields when doing load calculation.
 455         */
 456        unsigned long nr_running;
 457        #define CPU_LOAD_IDX_MAX 5
 458        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 459        unsigned long last_load_update_tick;
 460#ifdef CONFIG_NO_HZ
 461        u64 nohz_stamp;
 462        unsigned char nohz_balance_kick;
 463#endif
 464        unsigned int skip_clock_update;
 465
 466        /* capture load from *all* tasks on this cpu: */
 467        struct load_weight load;
 468        unsigned long nr_load_updates;
 469        u64 nr_switches;
 470
 471        struct cfs_rq cfs;
 472        struct rt_rq rt;
 473
 474#ifdef CONFIG_FAIR_GROUP_SCHED
 475        /* list of leaf cfs_rq on this cpu: */
 476        struct list_head leaf_cfs_rq_list;
 477#endif
 478#ifdef CONFIG_RT_GROUP_SCHED
 479        struct list_head leaf_rt_rq_list;
 480#endif
 481
 482        /*
 483         * This is part of a global counter where only the total sum
 484         * over all CPUs matters. A task can increase this counter on
 485         * one CPU and if it got migrated afterwards it may decrease
 486         * it on another CPU. Always updated under the runqueue lock:
 487         */
 488        unsigned long nr_uninterruptible;
 489
 490        struct task_struct *curr, *idle, *stop;
 491        unsigned long next_balance;
 492        struct mm_struct *prev_mm;
 493
 494        u64 clock;
 495        u64 clock_task;
 496
 497        atomic_t nr_iowait;
 498
 499#ifdef CONFIG_SMP
 500        struct root_domain *rd;
 501        struct sched_domain *sd;
 502
 503        unsigned long cpu_power;
 504
 505        unsigned char idle_at_tick;
 506        /* For active balancing */
 507        int post_schedule;
 508        int active_balance;
 509        int push_cpu;
 510        struct cpu_stop_work active_balance_work;
 511        /* cpu of this runqueue: */
 512        int cpu;
 513        int online;
 514
 515        unsigned long avg_load_per_task;
 516
 517        u64 rt_avg;
 518        u64 age_stamp;
 519        u64 idle_stamp;
 520        u64 avg_idle;
 521#endif
 522
 523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 524        u64 prev_irq_time;
 525#endif
 526
 527        /* calc_load related fields */
 528        unsigned long calc_load_update;
 529        long calc_load_active;
 530
 531#ifdef CONFIG_SCHED_HRTICK
 532#ifdef CONFIG_SMP
 533        int hrtick_csd_pending;
 534        struct call_single_data hrtick_csd;
 535#endif
 536        struct hrtimer hrtick_timer;
 537#endif
 538
 539#ifdef CONFIG_SCHEDSTATS
 540        /* latency stats */
 541        struct sched_info rq_sched_info;
 542        unsigned long long rq_cpu_time;
 543        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 544
 545        /* sys_sched_yield() stats */
 546        unsigned int yld_count;
 547
 548        /* schedule() stats */
 549        unsigned int sched_switch;
 550        unsigned int sched_count;
 551        unsigned int sched_goidle;
 552
 553        /* try_to_wake_up() stats */
 554        unsigned int ttwu_count;
 555        unsigned int ttwu_local;
 556#endif
 557};
 558
 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 560
 561
 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 563
 564static inline int cpu_of(struct rq *rq)
 565{
 566#ifdef CONFIG_SMP
 567        return rq->cpu;
 568#else
 569        return 0;
 570#endif
 571}
 572
 573#define rcu_dereference_check_sched_domain(p) \
 574        rcu_dereference_check((p), \
 575                              rcu_read_lock_sched_held() || \
 576                              lockdep_is_held(&sched_domains_mutex))
 577
 578/*
 579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 580 * See detach_destroy_domains: synchronize_sched for details.
 581 *
 582 * The domain tree of any CPU may only be accessed from within
 583 * preempt-disabled sections.
 584 */
 585#define for_each_domain(cpu, __sd) \
 586        for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
 587
 588#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
 589#define this_rq()               (&__get_cpu_var(runqueues))
 590#define task_rq(p)              cpu_rq(task_cpu(p))
 591#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
 592#define raw_rq()                (&__raw_get_cpu_var(runqueues))
 593
 594#ifdef CONFIG_CGROUP_SCHED
 595
 596/*
 597 * Return the group to which this tasks belongs.
 598 *
 599 * We use task_subsys_state_check() and extend the RCU verification
 600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 601 * holds that lock for each task it moves into the cgroup. Therefore
 602 * by holding that lock, we pin the task to the current cgroup.
 603 */
 604static inline struct task_group *task_group(struct task_struct *p)
 605{
 606        struct task_group *tg;
 607        struct cgroup_subsys_state *css;
 608
 609        if (p->flags & PF_EXITING)
 610                return &root_task_group;
 611
 612        css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
 613                        lockdep_is_held(&task_rq(p)->lock));
 614        tg = container_of(css, struct task_group, css);
 615
 616        return autogroup_task_group(p, tg);
 617}
 618
 619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 621{
 622#ifdef CONFIG_FAIR_GROUP_SCHED
 623        p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
 624        p->se.parent = task_group(p)->se[cpu];
 625#endif
 626
 627#ifdef CONFIG_RT_GROUP_SCHED
 628        p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
 629        p->rt.parent = task_group(p)->rt_se[cpu];
 630#endif
 631}
 632
 633#else /* CONFIG_CGROUP_SCHED */
 634
 635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 636static inline struct task_group *task_group(struct task_struct *p)
 637{
 638        return NULL;
 639}
 640
 641#endif /* CONFIG_CGROUP_SCHED */
 642
 643static void update_rq_clock_task(struct rq *rq, s64 delta);
 644
 645static void update_rq_clock(struct rq *rq)
 646{
 647        s64 delta;
 648
 649        if (rq->skip_clock_update)
 650                return;
 651
 652        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 653        rq->clock += delta;
 654        update_rq_clock_task(rq, delta);
 655}
 656
 657/*
 658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 659 */
 660#ifdef CONFIG_SCHED_DEBUG
 661# define const_debug __read_mostly
 662#else
 663# define const_debug static const
 664#endif
 665
 666/**
 667 * runqueue_is_locked
 668 * @cpu: the processor in question.
 669 *
 670 * Returns true if the current cpu runqueue is locked.
 671 * This interface allows printk to be called with the runqueue lock
 672 * held and know whether or not it is OK to wake up the klogd.
 673 */
 674int runqueue_is_locked(int cpu)
 675{
 676        return raw_spin_is_locked(&cpu_rq(cpu)->lock);
 677}
 678
 679/*
 680 * Debugging: various feature bits
 681 */
 682
 683#define SCHED_FEAT(name, enabled)       \
 684        __SCHED_FEAT_##name ,
 685
 686enum {
 687#include "sched_features.h"
 688};
 689
 690#undef SCHED_FEAT
 691
 692#define SCHED_FEAT(name, enabled)       \
 693        (1UL << __SCHED_FEAT_##name) * enabled |
 694
 695const_debug unsigned int sysctl_sched_features =
 696#include "sched_features.h"
 697        0;
 698
 699#undef SCHED_FEAT
 700
 701#ifdef CONFIG_SCHED_DEBUG
 702#define SCHED_FEAT(name, enabled)       \
 703        #name ,
 704
 705static __read_mostly char *sched_feat_names[] = {
 706#include "sched_features.h"
 707        NULL
 708};
 709
 710#undef SCHED_FEAT
 711
 712static int sched_feat_show(struct seq_file *m, void *v)
 713{
 714        int i;
 715
 716        for (i = 0; sched_feat_names[i]; i++) {
 717                if (!(sysctl_sched_features & (1UL << i)))
 718                        seq_puts(m, "NO_");
 719                seq_printf(m, "%s ", sched_feat_names[i]);
 720        }
 721        seq_puts(m, "\n");
 722
 723        return 0;
 724}
 725
 726static ssize_t
 727sched_feat_write(struct file *filp, const char __user *ubuf,
 728                size_t cnt, loff_t *ppos)
 729{
 730        char buf[64];
 731        char *cmp;
 732        int neg = 0;
 733        int i;
 734
 735        if (cnt > 63)
 736                cnt = 63;
 737
 738        if (copy_from_user(&buf, ubuf, cnt))
 739                return -EFAULT;
 740
 741        buf[cnt] = 0;
 742        cmp = strstrip(buf);
 743
 744        if (strncmp(cmp, "NO_", 3) == 0) {
 745                neg = 1;
 746                cmp += 3;
 747        }
 748
 749        for (i = 0; sched_feat_names[i]; i++) {
 750                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 751                        if (neg)
 752                                sysctl_sched_features &= ~(1UL << i);
 753                        else
 754                                sysctl_sched_features |= (1UL << i);
 755                        break;
 756                }
 757        }
 758
 759        if (!sched_feat_names[i])
 760                return -EINVAL;
 761
 762        *ppos += cnt;
 763
 764        return cnt;
 765}
 766
 767static int sched_feat_open(struct inode *inode, struct file *filp)
 768{
 769        return single_open(filp, sched_feat_show, NULL);
 770}
 771
 772static const struct file_operations sched_feat_fops = {
 773        .open           = sched_feat_open,
 774        .write          = sched_feat_write,
 775        .read           = seq_read,
 776        .llseek         = seq_lseek,
 777        .release        = single_release,
 778};
 779
 780static __init int sched_init_debug(void)
 781{
 782        debugfs_create_file("sched_features", 0644, NULL, NULL,
 783                        &sched_feat_fops);
 784
 785        return 0;
 786}
 787late_initcall(sched_init_debug);
 788
 789#endif
 790
 791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 792
 793/*
 794 * Number of tasks to iterate in a single balance run.
 795 * Limited because this is done with IRQs disabled.
 796 */
 797const_debug unsigned int sysctl_sched_nr_migrate = 32;
 798
 799/*
 800 * period over which we average the RT time consumption, measured
 801 * in ms.
 802 *
 803 * default: 1s
 804 */
 805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 806
 807/*
 808 * period over which we measure -rt task cpu usage in us.
 809 * default: 1s
 810 */
 811unsigned int sysctl_sched_rt_period = 1000000;
 812
 813static __read_mostly int scheduler_running;
 814
 815/*
 816 * part of the period that we allow rt tasks to run in us.
 817 * default: 0.95s
 818 */
 819int sysctl_sched_rt_runtime = 950000;
 820
 821static inline u64 global_rt_period(void)
 822{
 823        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 824}
 825
 826static inline u64 global_rt_runtime(void)
 827{
 828        if (sysctl_sched_rt_runtime < 0)
 829                return RUNTIME_INF;
 830
 831        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 832}
 833
 834#ifndef prepare_arch_switch
 835# define prepare_arch_switch(next)      do { } while (0)
 836#endif
 837#ifndef finish_arch_switch
 838# define finish_arch_switch(prev)       do { } while (0)
 839#endif
 840
 841static inline int task_current(struct rq *rq, struct task_struct *p)
 842{
 843        return rq->curr == p;
 844}
 845
 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 847static inline int task_running(struct rq *rq, struct task_struct *p)
 848{
 849        return task_current(rq, p);
 850}
 851
 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 853{
 854}
 855
 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 857{
 858#ifdef CONFIG_DEBUG_SPINLOCK
 859        /* this is a valid case when another task releases the spinlock */
 860        rq->lock.owner = current;
 861#endif
 862        /*
 863         * If we are tracking spinlock dependencies then we have to
 864         * fix up the runqueue lock - which gets 'carried over' from
 865         * prev into current:
 866         */
 867        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 868
 869        raw_spin_unlock_irq(&rq->lock);
 870}
 871
 872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
 873static inline int task_running(struct rq *rq, struct task_struct *p)
 874{
 875#ifdef CONFIG_SMP
 876        return p->oncpu;
 877#else
 878        return task_current(rq, p);
 879#endif
 880}
 881
 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 883{
 884#ifdef CONFIG_SMP
 885        /*
 886         * We can optimise this out completely for !SMP, because the
 887         * SMP rebalancing from interrupt is the only thing that cares
 888         * here.
 889         */
 890        next->oncpu = 1;
 891#endif
 892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 893        raw_spin_unlock_irq(&rq->lock);
 894#else
 895        raw_spin_unlock(&rq->lock);
 896#endif
 897}
 898
 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 900{
 901#ifdef CONFIG_SMP
 902        /*
 903         * After ->oncpu is cleared, the task can be moved to a different CPU.
 904         * We must ensure this doesn't happen until the switch is completely
 905         * finished.
 906         */
 907        smp_wmb();
 908        prev->oncpu = 0;
 909#endif
 910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 911        local_irq_enable();
 912#endif
 913}
 914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 915
 916/*
 917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 918 * against ttwu().
 919 */
 920static inline int task_is_waking(struct task_struct *p)
 921{
 922        return unlikely(p->state == TASK_WAKING);
 923}
 924
 925/*
 926 * __task_rq_lock - lock the runqueue a given task resides on.
 927 * Must be called interrupts disabled.
 928 */
 929static inline struct rq *__task_rq_lock(struct task_struct *p)
 930        __acquires(rq->lock)
 931{
 932        struct rq *rq;
 933
 934        for (;;) {
 935                rq = task_rq(p);
 936                raw_spin_lock(&rq->lock);
 937                if (likely(rq == task_rq(p)))
 938                        return rq;
 939                raw_spin_unlock(&rq->lock);
 940        }
 941}
 942
 943/*
 944 * task_rq_lock - lock the runqueue a given task resides on and disable
 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
 946 * explicitly disabling preemption.
 947 */
 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 949        __acquires(rq->lock)
 950{
 951        struct rq *rq;
 952
 953        for (;;) {
 954                local_irq_save(*flags);
 955                rq = task_rq(p);
 956                raw_spin_lock(&rq->lock);
 957                if (likely(rq == task_rq(p)))
 958                        return rq;
 959                raw_spin_unlock_irqrestore(&rq->lock, *flags);
 960        }
 961}
 962
 963static void __task_rq_unlock(struct rq *rq)
 964        __releases(rq->lock)
 965{
 966        raw_spin_unlock(&rq->lock);
 967}
 968
 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
 970        __releases(rq->lock)
 971{
 972        raw_spin_unlock_irqrestore(&rq->lock, *flags);
 973}
 974
 975/*
 976 * this_rq_lock - lock this runqueue and disable interrupts.
 977 */
 978static struct rq *this_rq_lock(void)
 979        __acquires(rq->lock)
 980{
 981        struct rq *rq;
 982
 983        local_irq_disable();
 984        rq = this_rq();
 985        raw_spin_lock(&rq->lock);
 986
 987        return rq;
 988}
 989
 990#ifdef CONFIG_SCHED_HRTICK
 991/*
 992 * Use HR-timers to deliver accurate preemption points.
 993 *
 994 * Its all a bit involved since we cannot program an hrt while holding the
 995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 996 * reschedule event.
 997 *
 998 * When we get rescheduled we reprogram the hrtick_timer outside of the
 999 * rq->lock.
1000 */
1001
1002/*
1003 * Use hrtick when:
1004 *  - enabled by features
1005 *  - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009        if (!sched_feat(HRTICK))
1010                return 0;
1011        if (!cpu_active(cpu_of(rq)))
1012                return 0;
1013        return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
1016static void hrtick_clear(struct rq *rq)
1017{
1018        if (hrtimer_active(&rq->hrtick_timer))
1019                hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
1032        raw_spin_lock(&rq->lock);
1033        update_rq_clock(rq);
1034        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035        raw_spin_unlock(&rq->lock);
1036
1037        return HRTIMER_NORESTART;
1038}
1039
1040#ifdef CONFIG_SMP
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
1045{
1046        struct rq *rq = arg;
1047
1048        raw_spin_lock(&rq->lock);
1049        hrtimer_restart(&rq->hrtick_timer);
1050        rq->hrtick_csd_pending = 0;
1051        raw_spin_unlock(&rq->lock);
1052}
1053
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
1060{
1061        struct hrtimer *timer = &rq->hrtick_timer;
1062        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063
1064        hrtimer_set_expires(timer, time);
1065
1066        if (rq == this_rq()) {
1067                hrtimer_restart(timer);
1068        } else if (!rq->hrtick_csd_pending) {
1069                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070                rq->hrtick_csd_pending = 1;
1071        }
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077        int cpu = (int)(long)hcpu;
1078
1079        switch (action) {
1080        case CPU_UP_CANCELED:
1081        case CPU_UP_CANCELED_FROZEN:
1082        case CPU_DOWN_PREPARE:
1083        case CPU_DOWN_PREPARE_FROZEN:
1084        case CPU_DEAD:
1085        case CPU_DEAD_FROZEN:
1086                hrtick_clear(cpu_rq(cpu));
1087                return NOTIFY_OK;
1088        }
1089
1090        return NOTIFY_DONE;
1091}
1092
1093static __init void init_hrtick(void)
1094{
1095        hotcpu_notifier(hotplug_hrtick, 0);
1096}
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
1105        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106                        HRTIMER_MODE_REL_PINNED, 0);
1107}
1108
1109static inline void init_hrtick(void)
1110{
1111}
1112#endif /* CONFIG_SMP */
1113
1114static void init_rq_hrtick(struct rq *rq)
1115{
1116#ifdef CONFIG_SMP
1117        rq->hrtick_csd_pending = 0;
1118
1119        rq->hrtick_csd.flags = 0;
1120        rq->hrtick_csd.func = __hrtick_start;
1121        rq->hrtick_csd.info = rq;
1122#endif
1123
1124        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125        rq->hrtick_timer.function = hrtick;
1126}
1127#else   /* CONFIG_SCHED_HRTICK */
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
1136static inline void init_hrtick(void)
1137{
1138}
1139#endif  /* CONFIG_SCHED_HRTICK */
1140
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
1154static void resched_task(struct task_struct *p)
1155{
1156        int cpu;
1157
1158        assert_raw_spin_locked(&task_rq(p)->lock);
1159
1160        if (test_tsk_need_resched(p))
1161                return;
1162
1163        set_tsk_need_resched(p);
1164
1165        cpu = task_cpu(p);
1166        if (cpu == smp_processor_id())
1167                return;
1168
1169        /* NEED_RESCHED must be visible before we test polling */
1170        smp_mb();
1171        if (!tsk_is_polling(p))
1172                smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177        struct rq *rq = cpu_rq(cpu);
1178        unsigned long flags;
1179
1180        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1181                return;
1182        resched_task(cpu_curr(cpu));
1183        raw_spin_unlock_irqrestore(&rq->lock, flags);
1184}
1185
1186#ifdef CONFIG_NO_HZ
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu.  This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197        int cpu = smp_processor_id();
1198        int i;
1199        struct sched_domain *sd;
1200
1201        for_each_domain(cpu, sd) {
1202                for_each_cpu(i, sched_domain_span(sd))
1203                        if (!idle_cpu(i))
1204                                return i;
1205        }
1206        return cpu;
1207}
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220        struct rq *rq = cpu_rq(cpu);
1221
1222        if (cpu == smp_processor_id())
1223                return;
1224
1225        /*
1226         * This is safe, as this function is called with the timer
1227         * wheel base lock of (cpu) held. When the CPU is on the way
1228         * to idle and has not yet set rq->curr to idle then it will
1229         * be serialized on the timer wheel base lock and take the new
1230         * timer into account automatically.
1231         */
1232        if (rq->curr != rq->idle)
1233                return;
1234
1235        /*
1236         * We can set TIF_RESCHED on the idle task of the other CPU
1237         * lockless. The worst case is that the other CPU runs the
1238         * idle task through an additional NOOP schedule()
1239         */
1240        set_tsk_need_resched(rq->idle);
1241
1242        /* NEED_RESCHED must be visible before we test polling */
1243        smp_mb();
1244        if (!tsk_is_polling(rq->idle))
1245                smp_send_reschedule(cpu);
1246}
1247
1248#endif /* CONFIG_NO_HZ */
1249
1250static u64 sched_avg_period(void)
1251{
1252        return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257        s64 period = sched_avg_period();
1258
1259        while ((s64)(rq->clock - rq->age_stamp) > period) {
1260                /*
1261                 * Inline assembly required to prevent the compiler
1262                 * optimising this loop into a divmod call.
1263                 * See __iter_div_u64_rem() for another example of this.
1264                 */
1265                asm("" : "+rm" (rq->age_stamp));
1266                rq->age_stamp += period;
1267                rq->rt_avg /= 2;
1268        }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273        rq->rt_avg += rt_delta;
1274        sched_avg_update(rq);
1275}
1276
1277#else /* !CONFIG_SMP */
1278static void resched_task(struct task_struct *p)
1279{
1280        assert_raw_spin_locked(&task_rq(p)->lock);
1281        set_tsk_need_resched(p);
1282}
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
1291#endif /* CONFIG_SMP */
1292
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST    (~0UL)
1295#else
1296# define WMULT_CONST    (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT     32
1300
1301/*
1302 * Shift right and round:
1303 */
1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1305
1306/*
1307 * delta *= weight / lw
1308 */
1309static unsigned long
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311                struct load_weight *lw)
1312{
1313        u64 tmp;
1314
1315        if (!lw->inv_weight) {
1316                if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317                        lw->inv_weight = 1;
1318                else
1319                        lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320                                / (lw->weight+1);
1321        }
1322
1323        tmp = (u64)delta_exec * weight;
1324        /*
1325         * Check whether we'd overflow the 64-bit multiplication:
1326         */
1327        if (unlikely(tmp > WMULT_CONST))
1328                tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329                        WMULT_SHIFT/2);
1330        else
1331                tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332
1333        return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334}
1335
1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337{
1338        lw->weight += inc;
1339        lw->inv_weight = 0;
1340}
1341
1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343{
1344        lw->weight -= dec;
1345        lw->inv_weight = 0;
1346}
1347
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350        lw->weight = w;
1351        lw->inv_weight = 0;
1352}
1353
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
1363#define WEIGHT_IDLEPRIO                3
1364#define WMULT_IDLEPRIO         1431655765
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
1377 */
1378static const int prio_to_weight[40] = {
1379 /* -20 */     88761,     71755,     56483,     46273,     36291,
1380 /* -15 */     29154,     23254,     18705,     14949,     11916,
1381 /* -10 */      9548,      7620,      6100,      4904,      3906,
1382 /*  -5 */      3121,      2501,      1991,      1586,      1277,
1383 /*   0 */      1024,       820,       655,       526,       423,
1384 /*   5 */       335,       272,       215,       172,       137,
1385 /*  10 */       110,        87,        70,        56,        45,
1386 /*  15 */        36,        29,        23,        18,        15,
1387};
1388
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
1396static const u32 prio_to_wmult[40] = {
1397 /* -20 */     48388,     59856,     76040,     92818,    118348,
1398 /* -15 */    147320,    184698,    229616,    287308,    360437,
1399 /* -10 */    449829,    563644,    704093,    875809,   1099582,
1400 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1401 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1402 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1403 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1404 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1405};
1406
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409        CPUACCT_STAT_USER,      /* ... user mode */
1410        CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
1411
1412        CPUACCT_STAT_NSTATS,
1413};
1414
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418                enum cpuacct_stat_index idx, cputime_t val);
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422                enum cpuacct_stat_index idx, cputime_t val) {}
1423#endif
1424
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427        update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432        update_load_sub(&rq->load, load);
1433}
1434
1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436typedef int (*tg_visitor)(struct task_group *, void *);
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443{
1444        struct task_group *parent, *child;
1445        int ret;
1446
1447        rcu_read_lock();
1448        parent = &root_task_group;
1449down:
1450        ret = (*down)(parent, data);
1451        if (ret)
1452                goto out_unlock;
1453        list_for_each_entry_rcu(child, &parent->children, siblings) {
1454                parent = child;
1455                goto down;
1456
1457up:
1458                continue;
1459        }
1460        ret = (*up)(parent, data);
1461        if (ret)
1462                goto out_unlock;
1463
1464        child = parent;
1465        parent = parent->parent;
1466        if (parent)
1467                goto up;
1468out_unlock:
1469        rcu_read_unlock();
1470
1471        return ret;
1472}
1473
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476        return 0;
1477}
1478#endif
1479
1480#ifdef CONFIG_SMP
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484        return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496        struct rq *rq = cpu_rq(cpu);
1497        unsigned long total = weighted_cpuload(cpu);
1498
1499        if (type == 0 || !sched_feat(LB_BIAS))
1500                return total;
1501
1502        return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511        struct rq *rq = cpu_rq(cpu);
1512        unsigned long total = weighted_cpuload(cpu);
1513
1514        if (type == 0 || !sched_feat(LB_BIAS))
1515                return total;
1516
1517        return max(rq->cpu_load[type-1], total);
1518}
1519
1520static unsigned long power_of(int cpu)
1521{
1522        return cpu_rq(cpu)->cpu_power;
1523}
1524
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529        struct rq *rq = cpu_rq(cpu);
1530        unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1531
1532        if (nr_running)
1533                rq->avg_load_per_task = rq->load.weight / nr_running;
1534        else
1535                rq->avg_load_per_task = 0;
1536
1537        return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
1541
1542/*
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1546 */
1547static int tg_load_down(struct task_group *tg, void *data)
1548{
1549        unsigned long load;
1550        long cpu = (long)data;
1551
1552        if (!tg->parent) {
1553                load = cpu_rq(cpu)->load.weight;
1554        } else {
1555                load = tg->parent->cfs_rq[cpu]->h_load;
1556                load *= tg->se[cpu]->load.weight;
1557                load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558        }
1559
1560        tg->cfs_rq[cpu]->h_load = load;
1561
1562        return 0;
1563}
1564
1565static void update_h_load(long cpu)
1566{
1567        walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568}
1569
1570#endif
1571
1572#ifdef CONFIG_PREEMPT
1573
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
1576/*
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations.  This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below.  However, it
1582 * also adds more overhead and therefore may reduce throughput.
1583 */
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585        __releases(this_rq->lock)
1586        __acquires(busiest->lock)
1587        __acquires(this_rq->lock)
1588{
1589        raw_spin_unlock(&this_rq->lock);
1590        double_rq_lock(this_rq, busiest);
1591
1592        return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry.  This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604        __releases(this_rq->lock)
1605        __acquires(busiest->lock)
1606        __acquires(this_rq->lock)
1607{
1608        int ret = 0;
1609
1610        if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611                if (busiest < this_rq) {
1612                        raw_spin_unlock(&this_rq->lock);
1613                        raw_spin_lock(&busiest->lock);
1614                        raw_spin_lock_nested(&this_rq->lock,
1615                                              SINGLE_DEPTH_NESTING);
1616                        ret = 1;
1617                } else
1618                        raw_spin_lock_nested(&busiest->lock,
1619                                              SINGLE_DEPTH_NESTING);
1620        }
1621        return ret;
1622}
1623
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631        if (unlikely(!irqs_disabled())) {
1632                /* printk() doesn't work good under rq->lock */
1633                raw_spin_unlock(&this_rq->lock);
1634                BUG_ON(1);
1635        }
1636
1637        return _double_lock_balance(this_rq, busiest);
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641        __releases(busiest->lock)
1642{
1643        raw_spin_unlock(&busiest->lock);
1644        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654        __acquires(rq1->lock)
1655        __acquires(rq2->lock)
1656{
1657        BUG_ON(!irqs_disabled());
1658        if (rq1 == rq2) {
1659                raw_spin_lock(&rq1->lock);
1660                __acquire(rq2->lock);   /* Fake it out ;) */
1661        } else {
1662                if (rq1 < rq2) {
1663                        raw_spin_lock(&rq1->lock);
1664                        raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665                } else {
1666                        raw_spin_lock(&rq2->lock);
1667                        raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668                }
1669        }
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679        __releases(rq1->lock)
1680        __releases(rq2->lock)
1681{
1682        raw_spin_unlock(&rq1->lock);
1683        if (rq1 != rq2)
1684                raw_spin_unlock(&rq2->lock);
1685        else
1686                __release(rq2->lock);
1687}
1688
1689#endif
1690
1691static void calc_load_account_idle(struct rq *this_rq);
1692static void update_sysctl(void);
1693static int get_update_sysctl_factor(void);
1694static void update_cpu_load(struct rq *this_rq);
1695
1696static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697{
1698        set_task_rq(p, cpu);
1699#ifdef CONFIG_SMP
1700        /*
1701         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702         * successfuly executed on another CPU. We must ensure that updates of
1703         * per-task data have been completed by this moment.
1704         */
1705        smp_wmb();
1706        task_thread_info(p)->cpu = cpu;
1707#endif
1708}
1709
1710static const struct sched_class rt_sched_class;
1711
1712#define sched_class_highest (&stop_sched_class)
1713#define for_each_class(class) \
1714   for (class = sched_class_highest; class; class = class->next)
1715
1716#include "sched_stats.h"
1717
1718static void inc_nr_running(struct rq *rq)
1719{
1720        rq->nr_running++;
1721}
1722
1723static void dec_nr_running(struct rq *rq)
1724{
1725        rq->nr_running--;
1726}
1727
1728static void set_load_weight(struct task_struct *p)
1729{
1730        /*
1731         * SCHED_IDLE tasks get minimal weight:
1732         */
1733        if (p->policy == SCHED_IDLE) {
1734                p->se.load.weight = WEIGHT_IDLEPRIO;
1735                p->se.load.inv_weight = WMULT_IDLEPRIO;
1736                return;
1737        }
1738
1739        p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740        p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741}
1742
1743static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1744{
1745        update_rq_clock(rq);
1746        sched_info_queued(p);
1747        p->sched_class->enqueue_task(rq, p, flags);
1748        p->se.on_rq = 1;
1749}
1750
1751static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1752{
1753        update_rq_clock(rq);
1754        sched_info_dequeued(p);
1755        p->sched_class->dequeue_task(rq, p, flags);
1756        p->se.on_rq = 0;
1757}
1758
1759/*
1760 * activate_task - move a task to the runqueue.
1761 */
1762static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1763{
1764        if (task_contributes_to_load(p))
1765                rq->nr_uninterruptible--;
1766
1767        enqueue_task(rq, p, flags);
1768        inc_nr_running(rq);
1769}
1770
1771/*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
1774static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1775{
1776        if (task_contributes_to_load(p))
1777                rq->nr_uninterruptible++;
1778
1779        dequeue_task(rq, p, flags);
1780        dec_nr_running(rq);
1781}
1782
1783#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
1785/*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
1795 */
1796static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799static DEFINE_PER_CPU(u64, irq_start_time);
1800static int sched_clock_irqtime;
1801
1802void enable_sched_clock_irqtime(void)
1803{
1804        sched_clock_irqtime = 1;
1805}
1806
1807void disable_sched_clock_irqtime(void)
1808{
1809        sched_clock_irqtime = 0;
1810}
1811
1812#ifndef CONFIG_64BIT
1813static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815static inline void irq_time_write_begin(void)
1816{
1817        __this_cpu_inc(irq_time_seq.sequence);
1818        smp_wmb();
1819}
1820
1821static inline void irq_time_write_end(void)
1822{
1823        smp_wmb();
1824        __this_cpu_inc(irq_time_seq.sequence);
1825}
1826
1827static inline u64 irq_time_read(int cpu)
1828{
1829        u64 irq_time;
1830        unsigned seq;
1831
1832        do {
1833                seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834                irq_time = per_cpu(cpu_softirq_time, cpu) +
1835                           per_cpu(cpu_hardirq_time, cpu);
1836        } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838        return irq_time;
1839}
1840#else /* CONFIG_64BIT */
1841static inline void irq_time_write_begin(void)
1842{
1843}
1844
1845static inline void irq_time_write_end(void)
1846{
1847}
1848
1849static inline u64 irq_time_read(int cpu)
1850{
1851        return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852}
1853#endif /* CONFIG_64BIT */
1854
1855/*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
1859void account_system_vtime(struct task_struct *curr)
1860{
1861        unsigned long flags;
1862        s64 delta;
1863        int cpu;
1864
1865        if (!sched_clock_irqtime)
1866                return;
1867
1868        local_irq_save(flags);
1869
1870        cpu = smp_processor_id();
1871        delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872        __this_cpu_add(irq_start_time, delta);
1873
1874        irq_time_write_begin();
1875        /*
1876         * We do not account for softirq time from ksoftirqd here.
1877         * We want to continue accounting softirq time to ksoftirqd thread
1878         * in that case, so as not to confuse scheduler with a special task
1879         * that do not consume any time, but still wants to run.
1880         */
1881        if (hardirq_count())
1882                __this_cpu_add(cpu_hardirq_time, delta);
1883        else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1884                __this_cpu_add(cpu_softirq_time, delta);
1885
1886        irq_time_write_end();
1887        local_irq_restore(flags);
1888}
1889EXPORT_SYMBOL_GPL(account_system_vtime);
1890
1891static void update_rq_clock_task(struct rq *rq, s64 delta)
1892{
1893        s64 irq_delta;
1894
1895        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1896
1897        /*
1898         * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899         * this case when a previous update_rq_clock() happened inside a
1900         * {soft,}irq region.
1901         *
1902         * When this happens, we stop ->clock_task and only update the
1903         * prev_irq_time stamp to account for the part that fit, so that a next
1904         * update will consume the rest. This ensures ->clock_task is
1905         * monotonic.
1906         *
1907         * It does however cause some slight miss-attribution of {soft,}irq
1908         * time, a more accurate solution would be to update the irq_time using
1909         * the current rq->clock timestamp, except that would require using
1910         * atomic ops.
1911         */
1912        if (irq_delta > delta)
1913                irq_delta = delta;
1914
1915        rq->prev_irq_time += irq_delta;
1916        delta -= irq_delta;
1917        rq->clock_task += delta;
1918
1919        if (irq_delta && sched_feat(NONIRQ_POWER))
1920                sched_rt_avg_update(rq, irq_delta);
1921}
1922
1923#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1924
1925static void update_rq_clock_task(struct rq *rq, s64 delta)
1926{
1927        rq->clock_task += delta;
1928}
1929
1930#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1931
1932#include "sched_idletask.c"
1933#include "sched_fair.c"
1934#include "sched_rt.c"
1935#include "sched_autogroup.c"
1936#include "sched_stoptask.c"
1937#ifdef CONFIG_SCHED_DEBUG
1938# include "sched_debug.c"
1939#endif
1940
1941void sched_set_stop_task(int cpu, struct task_struct *stop)
1942{
1943        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1944        struct task_struct *old_stop = cpu_rq(cpu)->stop;
1945
1946        if (stop) {
1947                /*
1948                 * Make it appear like a SCHED_FIFO task, its something
1949                 * userspace knows about and won't get confused about.
1950                 *
1951                 * Also, it will make PI more or less work without too
1952                 * much confusion -- but then, stop work should not
1953                 * rely on PI working anyway.
1954                 */
1955                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1956
1957                stop->sched_class = &stop_sched_class;
1958        }
1959
1960        cpu_rq(cpu)->stop = stop;
1961
1962        if (old_stop) {
1963                /*
1964                 * Reset it back to a normal scheduling class so that
1965                 * it can die in pieces.
1966                 */
1967                old_stop->sched_class = &rt_sched_class;
1968        }
1969}
1970
1971/*
1972 * __normal_prio - return the priority that is based on the static prio
1973 */
1974static inline int __normal_prio(struct task_struct *p)
1975{
1976        return p->static_prio;
1977}
1978
1979/*
1980 * Calculate the expected normal priority: i.e. priority
1981 * without taking RT-inheritance into account. Might be
1982 * boosted by interactivity modifiers. Changes upon fork,
1983 * setprio syscalls, and whenever the interactivity
1984 * estimator recalculates.
1985 */
1986static inline int normal_prio(struct task_struct *p)
1987{
1988        int prio;
1989
1990        if (task_has_rt_policy(p))
1991                prio = MAX_RT_PRIO-1 - p->rt_priority;
1992        else
1993                prio = __normal_prio(p);
1994        return prio;
1995}
1996
1997/*
1998 * Calculate the current priority, i.e. the priority
1999 * taken into account by the scheduler. This value might
2000 * be boosted by RT tasks, or might be boosted by
2001 * interactivity modifiers. Will be RT if the task got
2002 * RT-boosted. If not then it returns p->normal_prio.
2003 */
2004static int effective_prio(struct task_struct *p)
2005{
2006        p->normal_prio = normal_prio(p);
2007        /*
2008         * If we are RT tasks or we were boosted to RT priority,
2009         * keep the priority unchanged. Otherwise, update priority
2010         * to the normal priority:
2011         */
2012        if (!rt_prio(p->prio))
2013                return p->normal_prio;
2014        return p->prio;
2015}
2016
2017/**
2018 * task_curr - is this task currently executing on a CPU?
2019 * @p: the task in question.
2020 */
2021inline int task_curr(const struct task_struct *p)
2022{
2023        return cpu_curr(task_cpu(p)) == p;
2024}
2025
2026static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2027                                       const struct sched_class *prev_class,
2028                                       int oldprio, int running)
2029{
2030        if (prev_class != p->sched_class) {
2031                if (prev_class->switched_from)
2032                        prev_class->switched_from(rq, p, running);
2033                p->sched_class->switched_to(rq, p, running);
2034        } else
2035                p->sched_class->prio_changed(rq, p, oldprio, running);
2036}
2037
2038static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2039{
2040        const struct sched_class *class;
2041
2042        if (p->sched_class == rq->curr->sched_class) {
2043                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2044        } else {
2045                for_each_class(class) {
2046                        if (class == rq->curr->sched_class)
2047                                break;
2048                        if (class == p->sched_class) {
2049                                resched_task(rq->curr);
2050                                break;
2051                        }
2052                }
2053        }
2054
2055        /*
2056         * A queue event has occurred, and we're going to schedule.  In
2057         * this case, we can save a useless back to back clock update.
2058         */
2059        if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2060                rq->skip_clock_update = 1;
2061}
2062
2063#ifdef CONFIG_SMP
2064/*
2065 * Is this task likely cache-hot:
2066 */
2067static int
2068task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2069{
2070        s64 delta;
2071
2072        if (p->sched_class != &fair_sched_class)
2073                return 0;
2074
2075        if (unlikely(p->policy == SCHED_IDLE))
2076                return 0;
2077
2078        /*
2079         * Buddy candidates are cache hot:
2080         */
2081        if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2082                        (&p->se == cfs_rq_of(&p->se)->next ||
2083                         &p->se == cfs_rq_of(&p->se)->last))
2084                return 1;
2085
2086        if (sysctl_sched_migration_cost == -1)
2087                return 1;
2088        if (sysctl_sched_migration_cost == 0)
2089                return 0;
2090
2091        delta = now - p->se.exec_start;
2092
2093        return delta < (s64)sysctl_sched_migration_cost;
2094}
2095
2096void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2097{
2098#ifdef CONFIG_SCHED_DEBUG
2099        /*
2100         * We should never call set_task_cpu() on a blocked task,
2101         * ttwu() will sort out the placement.
2102         */
2103        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2104                        !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2105#endif
2106
2107        trace_sched_migrate_task(p, new_cpu);
2108
2109        if (task_cpu(p) != new_cpu) {
2110                p->se.nr_migrations++;
2111                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2112        }
2113
2114        __set_task_cpu(p, new_cpu);
2115}
2116
2117struct migration_arg {
2118        struct task_struct *task;
2119        int dest_cpu;
2120};
2121
2122static int migration_cpu_stop(void *data);
2123
2124/*
2125 * The task's runqueue lock must be held.
2126 * Returns true if you have to wait for migration thread.
2127 */
2128static bool migrate_task(struct task_struct *p, struct rq *rq)
2129{
2130        /*
2131         * If the task is not on a runqueue (and not running), then
2132         * the next wake-up will properly place the task.
2133         */
2134        return p->se.on_rq || task_running(rq, p);
2135}
2136
2137/*
2138 * wait_task_inactive - wait for a thread to unschedule.
2139 *
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change.  If it changes, i.e. @p might have woken up,
2142 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count).  If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2146 *
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2152 */
2153unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2154{
2155        unsigned long flags;
2156        int running, on_rq;
2157        unsigned long ncsw;
2158        struct rq *rq;
2159
2160        for (;;) {
2161                /*
2162                 * We do the initial early heuristics without holding
2163                 * any task-queue locks at all. We'll only try to get
2164                 * the runqueue lock when things look like they will
2165                 * work out!
2166                 */
2167                rq = task_rq(p);
2168
2169                /*
2170                 * If the task is actively running on another CPU
2171                 * still, just relax and busy-wait without holding
2172                 * any locks.
2173                 *
2174                 * NOTE! Since we don't hold any locks, it's not
2175                 * even sure that "rq" stays as the right runqueue!
2176                 * But we don't care, since "task_running()" will
2177                 * return false if the runqueue has changed and p
2178                 * is actually now running somewhere else!
2179                 */
2180                while (task_running(rq, p)) {
2181                        if (match_state && unlikely(p->state != match_state))
2182                                return 0;
2183                        cpu_relax();
2184                }
2185
2186                /*
2187                 * Ok, time to look more closely! We need the rq
2188                 * lock now, to be *sure*. If we're wrong, we'll
2189                 * just go back and repeat.
2190                 */
2191                rq = task_rq_lock(p, &flags);
2192                trace_sched_wait_task(p);
2193                running = task_running(rq, p);
2194                on_rq = p->se.on_rq;
2195                ncsw = 0;
2196                if (!match_state || p->state == match_state)
2197                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2198                task_rq_unlock(rq, &flags);
2199
2200                /*
2201                 * If it changed from the expected state, bail out now.
2202                 */
2203                if (unlikely(!ncsw))
2204                        break;
2205
2206                /*
2207                 * Was it really running after all now that we
2208                 * checked with the proper locks actually held?
2209                 *
2210                 * Oops. Go back and try again..
2211                 */
2212                if (unlikely(running)) {
2213                        cpu_relax();
2214                        continue;
2215                }
2216
2217                /*
2218                 * It's not enough that it's not actively running,
2219                 * it must be off the runqueue _entirely_, and not
2220                 * preempted!
2221                 *
2222                 * So if it was still runnable (but just not actively
2223                 * running right now), it's preempted, and we should
2224                 * yield - it could be a while.
2225                 */
2226                if (unlikely(on_rq)) {
2227                        schedule_timeout_uninterruptible(1);
2228                        continue;
2229                }
2230
2231                /*
2232                 * Ahh, all good. It wasn't running, and it wasn't
2233                 * runnable, which means that it will never become
2234                 * running in the future either. We're all done!
2235                 */
2236                break;
2237        }
2238
2239        return ncsw;
2240}
2241
2242/***
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2245 *
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2248 *
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2253 * achieved as well.
2254 */
2255void kick_process(struct task_struct *p)
2256{
2257        int cpu;
2258
2259        preempt_disable();
2260        cpu = task_cpu(p);
2261        if ((cpu != smp_processor_id()) && task_curr(p))
2262                smp_send_reschedule(cpu);
2263        preempt_enable();
2264}
2265EXPORT_SYMBOL_GPL(kick_process);
2266#endif /* CONFIG_SMP */
2267
2268/**
2269 * task_oncpu_function_call - call a function on the cpu on which a task runs
2270 * @p:          the task to evaluate
2271 * @func:       the function to be called
2272 * @info:       the function call argument
2273 *
2274 * Calls the function @func when the task is currently running. This might
2275 * be on the current CPU, which just calls the function directly
2276 */
2277void task_oncpu_function_call(struct task_struct *p,
2278                              void (*func) (void *info), void *info)
2279{
2280        int cpu;
2281
2282        preempt_disable();
2283        cpu = task_cpu(p);
2284        if (task_curr(p))
2285                smp_call_function_single(cpu, func, info, 1);
2286        preempt_enable();
2287}
2288
2289#ifdef CONFIG_SMP
2290/*
2291 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2292 */
2293static int select_fallback_rq(int cpu, struct task_struct *p)
2294{
2295        int dest_cpu;
2296        const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2297
2298        /* Look for allowed, online CPU in same node. */
2299        for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2300                if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2301                        return dest_cpu;
2302
2303        /* Any allowed, online CPU? */
2304        dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2305        if (dest_cpu < nr_cpu_ids)
2306                return dest_cpu;
2307
2308        /* No more Mr. Nice Guy. */
2309        dest_cpu = cpuset_cpus_allowed_fallback(p);
2310        /*
2311         * Don't tell them about moving exiting tasks or
2312         * kernel threads (both mm NULL), since they never
2313         * leave kernel.
2314         */
2315        if (p->mm && printk_ratelimit()) {
2316                printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2317                                task_pid_nr(p), p->comm, cpu);
2318        }
2319
2320        return dest_cpu;
2321}
2322
2323/*
2324 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2325 */
2326static inline
2327int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2328{
2329        int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2330
2331        /*
2332         * In order not to call set_task_cpu() on a blocking task we need
2333         * to rely on ttwu() to place the task on a valid ->cpus_allowed
2334         * cpu.
2335         *
2336         * Since this is common to all placement strategies, this lives here.
2337         *
2338         * [ this allows ->select_task() to simply return task_cpu(p) and
2339         *   not worry about this generic constraint ]
2340         */
2341        if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2342                     !cpu_online(cpu)))
2343                cpu = select_fallback_rq(task_cpu(p), p);
2344
2345        return cpu;
2346}
2347
2348static void update_avg(u64 *avg, u64 sample)
2349{
2350        s64 diff = sample - *avg;
2351        *avg += diff >> 3;
2352}
2353#endif
2354
2355static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2356                                 bool is_sync, bool is_migrate, bool is_local,
2357                                 unsigned long en_flags)
2358{
2359        schedstat_inc(p, se.statistics.nr_wakeups);
2360        if (is_sync)
2361                schedstat_inc(p, se.statistics.nr_wakeups_sync);
2362        if (is_migrate)
2363                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2364        if (is_local)
2365                schedstat_inc(p, se.statistics.nr_wakeups_local);
2366        else
2367                schedstat_inc(p, se.statistics.nr_wakeups_remote);
2368
2369        activate_task(rq, p, en_flags);
2370}
2371
2372static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2373                                        int wake_flags, bool success)
2374{
2375        trace_sched_wakeup(p, success);
2376        check_preempt_curr(rq, p, wake_flags);
2377
2378        p->state = TASK_RUNNING;
2379#ifdef CONFIG_SMP
2380        if (p->sched_class->task_woken)
2381                p->sched_class->task_woken(rq, p);
2382
2383        if (unlikely(rq->idle_stamp)) {
2384                u64 delta = rq->clock - rq->idle_stamp;
2385                u64 max = 2*sysctl_sched_migration_cost;
2386
2387                if (delta > max)
2388                        rq->avg_idle = max;
2389                else
2390                        update_avg(&rq->avg_idle, delta);
2391                rq->idle_stamp = 0;
2392        }
2393#endif
2394        /* if a worker is waking up, notify workqueue */
2395        if ((p->flags & PF_WQ_WORKER) && success)
2396                wq_worker_waking_up(p, cpu_of(rq));
2397}
2398
2399/**
2400 * try_to_wake_up - wake up a thread
2401 * @p: the thread to be awakened
2402 * @state: the mask of task states that can be woken
2403 * @wake_flags: wake modifier flags (WF_*)
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
2411 * Returns %true if @p was woken up, %false if it was already running
2412 * or @state didn't match @p's state.
2413 */
2414static int try_to_wake_up(struct task_struct *p, unsigned int state,
2415                          int wake_flags)
2416{
2417        int cpu, orig_cpu, this_cpu, success = 0;
2418        unsigned long flags;
2419        unsigned long en_flags = ENQUEUE_WAKEUP;
2420        struct rq *rq;
2421
2422        this_cpu = get_cpu();
2423
2424        smp_wmb();
2425        rq = task_rq_lock(p, &flags);
2426        if (!(p->state & state))
2427                goto out;
2428
2429        if (p->se.on_rq)
2430                goto out_running;
2431
2432        cpu = task_cpu(p);
2433        orig_cpu = cpu;
2434
2435#ifdef CONFIG_SMP
2436        if (unlikely(task_running(rq, p)))
2437                goto out_activate;
2438
2439        /*
2440         * In order to handle concurrent wakeups and release the rq->lock
2441         * we put the task in TASK_WAKING state.
2442         *
2443         * First fix up the nr_uninterruptible count:
2444         */
2445        if (task_contributes_to_load(p)) {
2446                if (likely(cpu_online(orig_cpu)))
2447                        rq->nr_uninterruptible--;
2448                else
2449                        this_rq()->nr_uninterruptible--;
2450        }
2451        p->state = TASK_WAKING;
2452
2453        if (p->sched_class->task_waking) {
2454                p->sched_class->task_waking(rq, p);
2455                en_flags |= ENQUEUE_WAKING;
2456        }
2457
2458        cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2459        if (cpu != orig_cpu)
2460                set_task_cpu(p, cpu);
2461        __task_rq_unlock(rq);
2462
2463        rq = cpu_rq(cpu);
2464        raw_spin_lock(&rq->lock);
2465
2466        /*
2467         * We migrated the task without holding either rq->lock, however
2468         * since the task is not on the task list itself, nobody else
2469         * will try and migrate the task, hence the rq should match the
2470         * cpu we just moved it to.
2471         */
2472        WARN_ON(task_cpu(p) != cpu);
2473        WARN_ON(p->state != TASK_WAKING);
2474
2475#ifdef CONFIG_SCHEDSTATS
2476        schedstat_inc(rq, ttwu_count);
2477        if (cpu == this_cpu)
2478                schedstat_inc(rq, ttwu_local);
2479        else {
2480                struct sched_domain *sd;
2481                for_each_domain(this_cpu, sd) {
2482                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2483                                schedstat_inc(sd, ttwu_wake_remote);
2484                                break;
2485                        }
2486                }
2487        }
2488#endif /* CONFIG_SCHEDSTATS */
2489
2490out_activate:
2491#endif /* CONFIG_SMP */
2492        ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2493                      cpu == this_cpu, en_flags);
2494        success = 1;
2495out_running:
2496        ttwu_post_activation(p, rq, wake_flags, success);
2497out:
2498        task_rq_unlock(rq, &flags);
2499        put_cpu();
2500
2501        return success;
2502}
2503
2504/**
2505 * try_to_wake_up_local - try to wake up a local task with rq lock held
2506 * @p: the thread to be awakened
2507 *
2508 * Put @p on the run-queue if it's not already there.  The caller must
2509 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2510 * the current task.  this_rq() stays locked over invocation.
2511 */
2512static void try_to_wake_up_local(struct task_struct *p)
2513{
2514        struct rq *rq = task_rq(p);
2515        bool success = false;
2516
2517        BUG_ON(rq != this_rq());
2518        BUG_ON(p == current);
2519        lockdep_assert_held(&rq->lock);
2520
2521        if (!(p->state & TASK_NORMAL))
2522                return;
2523
2524        if (!p->se.on_rq) {
2525                if (likely(!task_running(rq, p))) {
2526                        schedstat_inc(rq, ttwu_count);
2527                        schedstat_inc(rq, ttwu_local);
2528                }
2529                ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2530                success = true;
2531        }
2532        ttwu_post_activation(p, rq, 0, success);
2533}
2534
2535/**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2540 * processes.  Returns 1 if the process was woken up, 0 if it was already
2541 * running.
2542 *
2543 * It may be assumed that this function implies a write memory barrier before
2544 * changing the task state if and only if any tasks are woken up.
2545 */
2546int wake_up_process(struct task_struct *p)
2547{
2548        return try_to_wake_up(p, TASK_ALL, 0);
2549}
2550EXPORT_SYMBOL(wake_up_process);
2551
2552int wake_up_state(struct task_struct *p, unsigned int state)
2553{
2554        return try_to_wake_up(p, state, 0);
2555}
2556
2557/*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
2563static void __sched_fork(struct task_struct *p)
2564{
2565        p->se.exec_start                = 0;
2566        p->se.sum_exec_runtime          = 0;
2567        p->se.prev_sum_exec_runtime     = 0;
2568        p->se.nr_migrations             = 0;
2569
2570#ifdef CONFIG_SCHEDSTATS
2571        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2572#endif
2573
2574        INIT_LIST_HEAD(&p->rt.run_list);
2575        p->se.on_rq = 0;
2576        INIT_LIST_HEAD(&p->se.group_node);
2577
2578#ifdef CONFIG_PREEMPT_NOTIFIERS
2579        INIT_HLIST_HEAD(&p->preempt_notifiers);
2580#endif
2581}
2582
2583/*
2584 * fork()/clone()-time setup:
2585 */
2586void sched_fork(struct task_struct *p, int clone_flags)
2587{
2588        int cpu = get_cpu();
2589
2590        __sched_fork(p);
2591        /*
2592         * We mark the process as running here. This guarantees that
2593         * nobody will actually run it, and a signal or other external
2594         * event cannot wake it up and insert it on the runqueue either.
2595         */
2596        p->state = TASK_RUNNING;
2597
2598        /*
2599         * Revert to default priority/policy on fork if requested.
2600         */
2601        if (unlikely(p->sched_reset_on_fork)) {
2602                if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2603                        p->policy = SCHED_NORMAL;
2604                        p->normal_prio = p->static_prio;
2605                }
2606
2607                if (PRIO_TO_NICE(p->static_prio) < 0) {
2608                        p->static_prio = NICE_TO_PRIO(0);
2609                        p->normal_prio = p->static_prio;
2610                        set_load_weight(p);
2611                }
2612
2613                /*
2614                 * We don't need the reset flag anymore after the fork. It has
2615                 * fulfilled its duty:
2616                 */
2617                p->sched_reset_on_fork = 0;
2618        }
2619
2620        /*
2621         * Make sure we do not leak PI boosting priority to the child.
2622         */
2623        p->prio = current->normal_prio;
2624
2625        if (!rt_prio(p->prio))
2626                p->sched_class = &fair_sched_class;
2627
2628        if (p->sched_class->task_fork)
2629                p->sched_class->task_fork(p);
2630
2631        /*
2632         * The child is not yet in the pid-hash so no cgroup attach races,
2633         * and the cgroup is pinned to this child due to cgroup_fork()
2634         * is ran before sched_fork().
2635         *
2636         * Silence PROVE_RCU.
2637         */
2638        rcu_read_lock();
2639        set_task_cpu(p, cpu);
2640        rcu_read_unlock();
2641
2642#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2643        if (likely(sched_info_on()))
2644                memset(&p->sched_info, 0, sizeof(p->sched_info));
2645#endif
2646#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2647        p->oncpu = 0;
2648#endif
2649#ifdef CONFIG_PREEMPT
2650        /* Want to start with kernel preemption disabled. */
2651        task_thread_info(p)->preempt_count = 1;
2652#endif
2653#ifdef CONFIG_SMP
2654        plist_node_init(&p->pushable_tasks, MAX_PRIO);
2655#endif
2656
2657        put_cpu();
2658}
2659
2660/*
2661 * wake_up_new_task - wake up a newly created task for the first time.
2662 *
2663 * This function will do some initial scheduler statistics housekeeping
2664 * that must be done for every newly created context, then puts the task
2665 * on the runqueue and wakes it.
2666 */
2667void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2668{
2669        unsigned long flags;
2670        struct rq *rq;
2671        int cpu __maybe_unused = get_cpu();
2672
2673#ifdef CONFIG_SMP
2674        rq = task_rq_lock(p, &flags);
2675        p->state = TASK_WAKING;
2676
2677        /*
2678         * Fork balancing, do it here and not earlier because:
2679         *  - cpus_allowed can change in the fork path
2680         *  - any previously selected cpu might disappear through hotplug
2681         *
2682         * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2683         * without people poking at ->cpus_allowed.
2684         */
2685        cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2686        set_task_cpu(p, cpu);
2687
2688        p->state = TASK_RUNNING;
2689        task_rq_unlock(rq, &flags);
2690#endif
2691
2692        rq = task_rq_lock(p, &flags);
2693        activate_task(rq, p, 0);
2694        trace_sched_wakeup_new(p, 1);
2695        check_preempt_curr(rq, p, WF_FORK);
2696#ifdef CONFIG_SMP
2697        if (p->sched_class->task_woken)
2698                p->sched_class->task_woken(rq, p);
2699#endif
2700        task_rq_unlock(rq, &flags);
2701        put_cpu();
2702}
2703
2704#ifdef CONFIG_PREEMPT_NOTIFIERS
2705
2706/**
2707 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2708 * @notifier: notifier struct to register
2709 */
2710void preempt_notifier_register(struct preempt_notifier *notifier)
2711{
2712        hlist_add_head(&notifier->link, &current->preempt_notifiers);
2713}
2714EXPORT_SYMBOL_GPL(preempt_notifier_register);
2715
2716/**
2717 * preempt_notifier_unregister - no longer interested in preemption notifications
2718 * @notifier: notifier struct to unregister
2719 *
2720 * This is safe to call from within a preemption notifier.
2721 */
2722void preempt_notifier_unregister(struct preempt_notifier *notifier)
2723{
2724        hlist_del(&notifier->link);
2725}
2726EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2727
2728static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2729{
2730        struct preempt_notifier *notifier;
2731        struct hlist_node *node;
2732
2733        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2734                notifier->ops->sched_in(notifier, raw_smp_processor_id());
2735}
2736
2737static void
2738fire_sched_out_preempt_notifiers(struct task_struct *curr,
2739                                 struct task_struct *next)
2740{
2741        struct preempt_notifier *notifier;
2742        struct hlist_node *node;
2743
2744        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2745                notifier->ops->sched_out(notifier, next);
2746}
2747
2748#else /* !CONFIG_PREEMPT_NOTIFIERS */
2749
2750static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2751{
2752}
2753
2754static void
2755fire_sched_out_preempt_notifiers(struct task_struct *curr,
2756                                 struct task_struct *next)
2757{
2758}
2759
2760#endif /* CONFIG_PREEMPT_NOTIFIERS */
2761
2762/**
2763 * prepare_task_switch - prepare to switch tasks
2764 * @rq: the runqueue preparing to switch
2765 * @prev: the current task that is being switched out
2766 * @next: the task we are going to switch to.
2767 *
2768 * This is called with the rq lock held and interrupts off. It must
2769 * be paired with a subsequent finish_task_switch after the context
2770 * switch.
2771 *
2772 * prepare_task_switch sets up locking and calls architecture specific
2773 * hooks.
2774 */
2775static inline void
2776prepare_task_switch(struct rq *rq, struct task_struct *prev,
2777                    struct task_struct *next)
2778{
2779        fire_sched_out_preempt_notifiers(prev, next);
2780        prepare_lock_switch(rq, next);
2781        prepare_arch_switch(next);
2782}
2783
2784/**
2785 * finish_task_switch - clean up after a task-switch
2786 * @rq: runqueue associated with task-switch
2787 * @prev: the thread we just switched away from.
2788 *
2789 * finish_task_switch must be called after the context switch, paired
2790 * with a prepare_task_switch call before the context switch.
2791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2792 * and do any other architecture-specific cleanup actions.
2793 *
2794 * Note that we may have delayed dropping an mm in context_switch(). If
2795 * so, we finish that here outside of the runqueue lock. (Doing it
2796 * with the lock held can cause deadlocks; see schedule() for
2797 * details.)
2798 */
2799static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2800        __releases(rq->lock)
2801{
2802        struct mm_struct *mm = rq->prev_mm;
2803        long prev_state;
2804
2805        rq->prev_mm = NULL;
2806
2807        /*
2808         * A task struct has one reference for the use as "current".
2809         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2810         * schedule one last time. The schedule call will never return, and
2811         * the scheduled task must drop that reference.
2812         * The test for TASK_DEAD must occur while the runqueue locks are
2813         * still held, otherwise prev could be scheduled on another cpu, die
2814         * there before we look at prev->state, and then the reference would
2815         * be dropped twice.
2816         *              Manfred Spraul <manfred@colorfullife.com>
2817         */
2818        prev_state = prev->state;
2819        finish_arch_switch(prev);
2820#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821        local_irq_disable();
2822#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2823        perf_event_task_sched_in(current);
2824#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2825        local_irq_enable();
2826#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2827        finish_lock_switch(rq, prev);
2828
2829        fire_sched_in_preempt_notifiers(current);
2830        if (mm)
2831                mmdrop(mm);
2832        if (unlikely(prev_state == TASK_DEAD)) {
2833                /*
2834                 * Remove function-return probe instances associated with this
2835                 * task and put them back on the free list.
2836                 */
2837                kprobe_flush_task(prev);
2838                put_task_struct(prev);
2839        }
2840}
2841
2842#ifdef CONFIG_SMP
2843
2844/* assumes rq->lock is held */
2845static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2846{
2847        if (prev->sched_class->pre_schedule)
2848                prev->sched_class->pre_schedule(rq, prev);
2849}
2850
2851/* rq->lock is NOT held, but preemption is disabled */
2852static inline void post_schedule(struct rq *rq)
2853{
2854        if (rq->post_schedule) {
2855                unsigned long flags;
2856
2857                raw_spin_lock_irqsave(&rq->lock, flags);
2858                if (rq->curr->sched_class->post_schedule)
2859                        rq->curr->sched_class->post_schedule(rq);
2860                raw_spin_unlock_irqrestore(&rq->lock, flags);
2861
2862                rq->post_schedule = 0;
2863        }
2864}
2865
2866#else
2867
2868static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2869{
2870}
2871
2872static inline void post_schedule(struct rq *rq)
2873{
2874}
2875
2876#endif
2877
2878/**
2879 * schedule_tail - first thing a freshly forked thread must call.
2880 * @prev: the thread we just switched away from.
2881 */
2882asmlinkage void schedule_tail(struct task_struct *prev)
2883        __releases(rq->lock)
2884{
2885        struct rq *rq = this_rq();
2886
2887        finish_task_switch(rq, prev);
2888
2889        /*
2890         * FIXME: do we need to worry about rq being invalidated by the
2891         * task_switch?
2892         */
2893        post_schedule(rq);
2894
2895#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2896        /* In this case, finish_task_switch does not reenable preemption */
2897        preempt_enable();
2898#endif
2899        if (current->set_child_tid)
2900                put_user(task_pid_vnr(current), current->set_child_tid);
2901}
2902
2903/*
2904 * context_switch - switch to the new MM and the new
2905 * thread's register state.
2906 */
2907static inline void
2908context_switch(struct rq *rq, struct task_struct *prev,
2909               struct task_struct *next)
2910{
2911        struct mm_struct *mm, *oldmm;
2912
2913        prepare_task_switch(rq, prev, next);
2914        trace_sched_switch(prev, next);
2915        mm = next->mm;
2916        oldmm = prev->active_mm;
2917        /*
2918         * For paravirt, this is coupled with an exit in switch_to to
2919         * combine the page table reload and the switch backend into
2920         * one hypercall.
2921         */
2922        arch_start_context_switch(prev);
2923
2924        if (!mm) {
2925                next->active_mm = oldmm;
2926                atomic_inc(&oldmm->mm_count);
2927                enter_lazy_tlb(oldmm, next);
2928        } else
2929                switch_mm(oldmm, mm, next);
2930
2931        if (!prev->mm) {
2932                prev->active_mm = NULL;
2933                rq->prev_mm = oldmm;
2934        }
2935        /*
2936         * Since the runqueue lock will be released by the next
2937         * task (which is an invalid locking op but in the case
2938         * of the scheduler it's an obvious special-case), so we
2939         * do an early lockdep release here:
2940         */
2941#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2942        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2943#endif
2944
2945        /* Here we just switch the register state and the stack. */
2946        switch_to(prev, next, prev);
2947
2948        barrier();
2949        /*
2950         * this_rq must be evaluated again because prev may have moved
2951         * CPUs since it called schedule(), thus the 'rq' on its stack
2952         * frame will be invalid.
2953         */
2954        finish_task_switch(this_rq(), prev);
2955}
2956
2957/*
2958 * nr_running, nr_uninterruptible and nr_context_switches:
2959 *
2960 * externally visible scheduler statistics: current number of runnable
2961 * threads, current number of uninterruptible-sleeping threads, total
2962 * number of context switches performed since bootup.
2963 */
2964unsigned long nr_running(void)
2965{
2966        unsigned long i, sum = 0;
2967
2968        for_each_online_cpu(i)
2969                sum += cpu_rq(i)->nr_running;
2970
2971        return sum;
2972}
2973
2974unsigned long nr_uninterruptible(void)
2975{
2976        unsigned long i, sum = 0;
2977
2978        for_each_possible_cpu(i)
2979                sum += cpu_rq(i)->nr_uninterruptible;
2980
2981        /*
2982         * Since we read the counters lockless, it might be slightly
2983         * inaccurate. Do not allow it to go below zero though:
2984         */
2985        if (unlikely((long)sum < 0))
2986                sum = 0;
2987
2988        return sum;
2989}
2990
2991unsigned long long nr_context_switches(void)
2992{
2993        int i;
2994        unsigned long long sum = 0;
2995
2996        for_each_possible_cpu(i)
2997                sum += cpu_rq(i)->nr_switches;
2998
2999        return sum;
3000}
3001
3002unsigned long nr_iowait(void)
3003{
3004        unsigned long i, sum = 0;
3005
3006        for_each_possible_cpu(i)
3007                sum += atomic_read(&cpu_rq(i)->nr_iowait);
3008
3009        return sum;
3010}
3011
3012unsigned long nr_iowait_cpu(int cpu)
3013{
3014        struct rq *this = cpu_rq(cpu);
3015        return atomic_read(&this->nr_iowait);
3016}
3017
3018unsigned long this_cpu_load(void)
3019{
3020        struct rq *this = this_rq();
3021        return this->cpu_load[0];
3022}
3023
3024
3025/* Variables and functions for calc_load */
3026static atomic_long_t calc_load_tasks;
3027static unsigned long calc_load_update;
3028unsigned long avenrun[3];
3029EXPORT_SYMBOL(avenrun);
3030
3031static long calc_load_fold_active(struct rq *this_rq)
3032{
3033        long nr_active, delta = 0;
3034
3035        nr_active = this_rq->nr_running;
3036        nr_active += (long) this_rq->nr_uninterruptible;
3037
3038        if (nr_active != this_rq->calc_load_active) {
3039                delta = nr_active - this_rq->calc_load_active;
3040                this_rq->calc_load_active = nr_active;
3041        }
3042
3043        return delta;
3044}
3045
3046static unsigned long
3047calc_load(unsigned long load, unsigned long exp, unsigned long active)
3048{
3049        load *= exp;
3050        load += active * (FIXED_1 - exp);
3051        load += 1UL << (FSHIFT - 1);
3052        return load >> FSHIFT;
3053}
3054
3055#ifdef CONFIG_NO_HZ
3056/*
3057 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3058 *
3059 * When making the ILB scale, we should try to pull this in as well.
3060 */
3061static atomic_long_t calc_load_tasks_idle;
3062
3063static void calc_load_account_idle(struct rq *this_rq)
3064{
3065        long delta;
3066
3067        delta = calc_load_fold_active(this_rq);
3068        if (delta)
3069                atomic_long_add(delta, &calc_load_tasks_idle);
3070}
3071
3072static long calc_load_fold_idle(void)
3073{
3074        long delta = 0;
3075
3076        /*
3077         * Its got a race, we don't care...
3078         */
3079        if (atomic_long_read(&calc_load_tasks_idle))
3080                delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3081
3082        return delta;
3083}
3084
3085/**
3086 * fixed_power_int - compute: x^n, in O(log n) time
3087 *
3088 * @x:         base of the power
3089 * @frac_bits: fractional bits of @x
3090 * @n:         power to raise @x to.
3091 *
3092 * By exploiting the relation between the definition of the natural power
3093 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3094 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3095 * (where: n_i \elem {0, 1}, the binary vector representing n),
3096 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3097 * of course trivially computable in O(log_2 n), the length of our binary
3098 * vector.
3099 */
3100static unsigned long
3101fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3102{
3103        unsigned long result = 1UL << frac_bits;
3104
3105        if (n) for (;;) {
3106                if (n & 1) {
3107                        result *= x;
3108                        result += 1UL << (frac_bits - 1);
3109                        result >>= frac_bits;
3110                }
3111                n >>= 1;
3112                if (!n)
3113                        break;
3114                x *= x;
3115                x += 1UL << (frac_bits - 1);
3116                x >>= frac_bits;
3117        }
3118
3119        return result;
3120}
3121
3122/*
3123 * a1 = a0 * e + a * (1 - e)
3124 *
3125 * a2 = a1 * e + a * (1 - e)
3126 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3127 *    = a0 * e^2 + a * (1 - e) * (1 + e)
3128 *
3129 * a3 = a2 * e + a * (1 - e)
3130 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3131 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3132 *
3133 *  ...
3134 *
3135 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3136 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3137 *    = a0 * e^n + a * (1 - e^n)
3138 *
3139 * [1] application of the geometric series:
3140 *
3141 *              n         1 - x^(n+1)
3142 *     S_n := \Sum x^i = -------------
3143 *             i=0          1 - x
3144 */
3145static unsigned long
3146calc_load_n(unsigned long load, unsigned long exp,
3147            unsigned long active, unsigned int n)
3148{
3149
3150        return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3151}
3152
3153/*
3154 * NO_HZ can leave us missing all per-cpu ticks calling
3155 * calc_load_account_active(), but since an idle CPU folds its delta into
3156 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3157 * in the pending idle delta if our idle period crossed a load cycle boundary.
3158 *
3159 * Once we've updated the global active value, we need to apply the exponential
3160 * weights adjusted to the number of cycles missed.
3161 */
3162static void calc_global_nohz(unsigned long ticks)
3163{
3164        long delta, active, n;
3165
3166        if (time_before(jiffies, calc_load_update))
3167                return;
3168
3169        /*
3170         * If we crossed a calc_load_update boundary, make sure to fold
3171         * any pending idle changes, the respective CPUs might have
3172         * missed the tick driven calc_load_account_active() update
3173         * due to NO_HZ.
3174         */
3175        delta = calc_load_fold_idle();
3176        if (delta)
3177                atomic_long_add(delta, &calc_load_tasks);
3178
3179        /*
3180         * If we were idle for multiple load cycles, apply them.
3181         */
3182        if (ticks >= LOAD_FREQ) {
3183                n = ticks / LOAD_FREQ;
3184
3185                active = atomic_long_read(&calc_load_tasks);
3186                active = active > 0 ? active * FIXED_1 : 0;
3187
3188                avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3189                avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3190                avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3191
3192                calc_load_update += n * LOAD_FREQ;
3193        }
3194
3195        /*
3196         * Its possible the remainder of the above division also crosses
3197         * a LOAD_FREQ period, the regular check in calc_global_load()
3198         * which comes after this will take care of that.
3199         *
3200         * Consider us being 11 ticks before a cycle completion, and us
3201         * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3202         * age us 4 cycles, and the test in calc_global_load() will
3203         * pick up the final one.
3204         */
3205}
3206#else
3207static void calc_load_account_idle(struct rq *this_rq)
3208{
3209}
3210
3211static inline long calc_load_fold_idle(void)
3212{
3213        return 0;
3214}
3215
3216static void calc_global_nohz(unsigned long ticks)
3217{
3218}
3219#endif
3220
3221/**
3222 * get_avenrun - get the load average array
3223 * @loads:      pointer to dest load array
3224 * @offset:     offset to add
3225 * @shift:      shift count to shift the result left
3226 *
3227 * These values are estimates at best, so no need for locking.
3228 */
3229void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3230{
3231        loads[0] = (avenrun[0] + offset) << shift;
3232        loads[1] = (avenrun[1] + offset) << shift;
3233        loads[2] = (avenrun[2] + offset) << shift;
3234}
3235
3236/*
3237 * calc_load - update the avenrun load estimates 10 ticks after the
3238 * CPUs have updated calc_load_tasks.
3239 */
3240void calc_global_load(unsigned long ticks)
3241{
3242        long active;
3243
3244        calc_global_nohz(ticks);
3245
3246        if (time_before(jiffies, calc_load_update + 10))
3247                return;
3248
3249        active = atomic_long_read(&calc_load_tasks);
3250        active = active > 0 ? active * FIXED_1 : 0;
3251
3252        avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3253        avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3254        avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3255
3256        calc_load_update += LOAD_FREQ;
3257}
3258
3259/*
3260 * Called from update_cpu_load() to periodically update this CPU's
3261 * active count.
3262 */
3263static void calc_load_account_active(struct rq *this_rq)
3264{
3265        long delta;
3266
3267        if (time_before(jiffies, this_rq->calc_load_update))
3268                return;
3269
3270        delta  = calc_load_fold_active(this_rq);
3271        delta += calc_load_fold_idle();
3272        if (delta)
3273                atomic_long_add(delta, &calc_load_tasks);
3274
3275        this_rq->calc_load_update += LOAD_FREQ;
3276}
3277
3278/*
3279 * The exact cpuload at various idx values, calculated at every tick would be
3280 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3281 *
3282 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3283 * on nth tick when cpu may be busy, then we have:
3284 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3285 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3286 *
3287 * decay_load_missed() below does efficient calculation of
3288 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3289 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3290 *
3291 * The calculation is approximated on a 128 point scale.
3292 * degrade_zero_ticks is the number of ticks after which load at any
3293 * particular idx is approximated to be zero.
3294 * degrade_factor is a precomputed table, a row for each load idx.
3295 * Each column corresponds to degradation factor for a power of two ticks,
3296 * based on 128 point scale.
3297 * Example:
3298 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3299 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3300 *
3301 * With this power of 2 load factors, we can degrade the load n times
3302 * by looking at 1 bits in n and doing as many mult/shift instead of
3303 * n mult/shifts needed by the exact degradation.
3304 */
3305#define DEGRADE_SHIFT           7
3306static const unsigned char
3307                degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3308static const unsigned char
3309                degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3310                                        {0, 0, 0, 0, 0, 0, 0, 0},
3311                                        {64, 32, 8, 0, 0, 0, 0, 0},
3312                                        {96, 72, 40, 12, 1, 0, 0},
3313                                        {112, 98, 75, 43, 15, 1, 0},
3314                                        {120, 112, 98, 76, 45, 16, 2} };
3315
3316/*
3317 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3318 * would be when CPU is idle and so we just decay the old load without
3319 * adding any new load.
3320 */
3321static unsigned long
3322decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3323{
3324        int j = 0;
3325
3326        if (!missed_updates)
3327                return load;
3328
3329        if (missed_updates >= degrade_zero_ticks[idx])
3330                return 0;
3331
3332        if (idx == 1)
3333                return load >> missed_updates;
3334
3335        while (missed_updates) {
3336                if (missed_updates % 2)
3337                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3338
3339                missed_updates >>= 1;
3340                j++;
3341        }
3342        return load;
3343}
3344
3345/*
3346 * Update rq->cpu_load[] statistics. This function is usually called every
3347 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3348 * every tick. We fix it up based on jiffies.
3349 */
3350static void update_cpu_load(struct rq *this_rq)
3351{
3352        unsigned long this_load = this_rq->load.weight;
3353        unsigned long curr_jiffies = jiffies;
3354        unsigned long pending_updates;
3355        int i, scale;
3356
3357        this_rq->nr_load_updates++;
3358
3359        /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3360        if (curr_jiffies == this_rq->last_load_update_tick)
3361                return;
3362
3363        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3364        this_rq->last_load_update_tick = curr_jiffies;
3365
3366        /* Update our load: */
3367        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3368        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3369                unsigned long old_load, new_load;
3370
3371                /* scale is effectively 1 << i now, and >> i divides by scale */
3372
3373                old_load = this_rq->cpu_load[i];
3374                old_load = decay_load_missed(old_load, pending_updates - 1, i);
3375                new_load = this_load;
3376                /*
3377                 * Round up the averaging division if load is increasing. This
3378                 * prevents us from getting stuck on 9 if the load is 10, for
3379                 * example.
3380                 */
3381                if (new_load > old_load)
3382                        new_load += scale - 1;
3383
3384                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3385        }
3386
3387        sched_avg_update(this_rq);
3388}
3389
3390static void update_cpu_load_active(struct rq *this_rq)
3391{
3392        update_cpu_load(this_rq);
3393
3394        calc_load_account_active(this_rq);
3395}
3396
3397#ifdef CONFIG_SMP
3398
3399/*
3400 * sched_exec - execve() is a valuable balancing opportunity, because at
3401 * this point the task has the smallest effective memory and cache footprint.
3402 */
3403void sched_exec(void)
3404{
3405        struct task_struct *p = current;
3406        unsigned long flags;
3407        struct rq *rq;
3408        int dest_cpu;
3409
3410        rq = task_rq_lock(p, &flags);
3411        dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3412        if (dest_cpu == smp_processor_id())
3413                goto unlock;
3414
3415        /*
3416         * select_task_rq() can race against ->cpus_allowed
3417         */
3418        if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3419            likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3420                struct migration_arg arg = { p, dest_cpu };
3421
3422                task_rq_unlock(rq, &flags);
3423                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3424                return;
3425        }
3426unlock:
3427        task_rq_unlock(rq, &flags);
3428}
3429
3430#endif
3431
3432DEFINE_PER_CPU(struct kernel_stat, kstat);
3433
3434EXPORT_PER_CPU_SYMBOL(kstat);
3435
3436/*
3437 * Return any ns on the sched_clock that have not yet been accounted in
3438 * @p in case that task is currently running.
3439 *
3440 * Called with task_rq_lock() held on @rq.
3441 */
3442static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3443{
3444        u64 ns = 0;
3445
3446        if (task_current(rq, p)) {
3447                update_rq_clock(rq);
3448                ns = rq->clock_task - p->se.exec_start;
3449                if ((s64)ns < 0)
3450                        ns = 0;
3451        }
3452
3453        return ns;
3454}
3455
3456unsigned long long task_delta_exec(struct task_struct *p)
3457{
3458        unsigned long flags;
3459        struct rq *rq;
3460        u64 ns = 0;
3461
3462        rq = task_rq_lock(p, &flags);
3463        ns = do_task_delta_exec(p, rq);
3464        task_rq_unlock(rq, &flags);
3465
3466        return ns;
3467}
3468
3469/*
3470 * Return accounted runtime for the task.
3471 * In case the task is currently running, return the runtime plus current's
3472 * pending runtime that have not been accounted yet.
3473 */
3474unsigned long long task_sched_runtime(struct task_struct *p)
3475{
3476        unsigned long flags;
3477        struct rq *rq;
3478        u64 ns = 0;
3479
3480        rq = task_rq_lock(p, &flags);
3481        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3482        task_rq_unlock(rq, &flags);
3483
3484        return ns;
3485}
3486
3487/*
3488 * Return sum_exec_runtime for the thread group.
3489 * In case the task is currently running, return the sum plus current's
3490 * pending runtime that have not been accounted yet.
3491 *
3492 * Note that the thread group might have other running tasks as well,
3493 * so the return value not includes other pending runtime that other
3494 * running tasks might have.
3495 */
3496unsigned long long thread_group_sched_runtime(struct task_struct *p)
3497{
3498        struct task_cputime totals;
3499        unsigned long flags;
3500        struct rq *rq;
3501        u64 ns;
3502
3503        rq = task_rq_lock(p, &flags);
3504        thread_group_cputime(p, &totals);
3505        ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3506        task_rq_unlock(rq, &flags);
3507
3508        return ns;
3509}
3510
3511/*
3512 * Account user cpu time to a process.
3513 * @p: the process that the cpu time gets accounted to
3514 * @cputime: the cpu time spent in user space since the last update
3515 * @cputime_scaled: cputime scaled by cpu frequency
3516 */
3517void account_user_time(struct task_struct *p, cputime_t cputime,
3518                       cputime_t cputime_scaled)
3519{
3520        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3521        cputime64_t tmp;
3522
3523        /* Add user time to process. */
3524        p->utime = cputime_add(p->utime, cputime);
3525        p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3526        account_group_user_time(p, cputime);
3527
3528        /* Add user time to cpustat. */
3529        tmp = cputime_to_cputime64(cputime);
3530        if (TASK_NICE(p) > 0)
3531                cpustat->nice = cputime64_add(cpustat->nice, tmp);
3532        else
3533                cpustat->user = cputime64_add(cpustat->user, tmp);
3534
3535        cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3536        /* Account for user time used */
3537        acct_update_integrals(p);
3538}
3539
3540/*
3541 * Account guest cpu time to a process.
3542 * @p: the process that the cpu time gets accounted to
3543 * @cputime: the cpu time spent in virtual machine since the last update
3544 * @cputime_scaled: cputime scaled by cpu frequency
3545 */
3546static void account_guest_time(struct task_struct *p, cputime_t cputime,
3547                               cputime_t cputime_scaled)
3548{
3549        cputime64_t tmp;
3550        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3551
3552        tmp = cputime_to_cputime64(cputime);
3553
3554        /* Add guest time to process. */
3555        p->utime = cputime_add(p->utime, cputime);
3556        p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3557        account_group_user_time(p, cputime);
3558        p->gtime = cputime_add(p->gtime, cputime);
3559
3560        /* Add guest time to cpustat. */
3561        if (TASK_NICE(p) > 0) {
3562                cpustat->nice = cputime64_add(cpustat->nice, tmp);
3563                cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3564        } else {
3565                cpustat->user = cputime64_add(cpustat->user, tmp);
3566                cpustat->guest = cputime64_add(cpustat->guest, tmp);
3567        }
3568}
3569
3570/*
3571 * Account system cpu time to a process.
3572 * @p: the process that the cpu time gets accounted to
3573 * @hardirq_offset: the offset to subtract from hardirq_count()
3574 * @cputime: the cpu time spent in kernel space since the last update
3575 * @cputime_scaled: cputime scaled by cpu frequency
3576 */
3577void account_system_time(struct task_struct *p, int hardirq_offset,
3578                         cputime_t cputime, cputime_t cputime_scaled)
3579{
3580        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3581        cputime64_t tmp;
3582
3583        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3584                account_guest_time(p, cputime, cputime_scaled);
3585                return;
3586        }
3587
3588        /* Add system time to process. */
3589        p->stime = cputime_add(p->stime, cputime);
3590        p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3591        account_group_system_time(p, cputime);
3592
3593        /* Add system time to cpustat. */
3594        tmp = cputime_to_cputime64(cputime);
3595        if (hardirq_count() - hardirq_offset)
3596                cpustat->irq = cputime64_add(cpustat->irq, tmp);
3597        else if (in_serving_softirq())
3598                cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3599        else
3600                cpustat->system = cputime64_add(cpustat->system, tmp);
3601
3602        cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3603
3604        /* Account for system time used */
3605        acct_update_integrals(p);
3606}
3607
3608/*
3609 * Account for involuntary wait time.
3610 * @steal: the cpu time spent in involuntary wait
3611 */
3612void account_steal_time(cputime_t cputime)
3613{
3614        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3615        cputime64_t cputime64 = cputime_to_cputime64(cputime);
3616
3617        cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3618}
3619
3620/*
3621 * Account for idle time.
3622 * @cputime: the cpu time spent in idle wait
3623 */
3624void account_idle_time(cputime_t cputime)
3625{
3626        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3627        cputime64_t cputime64 = cputime_to_cputime64(cputime);
3628        struct rq *rq = this_rq();
3629
3630        if (atomic_read(&rq->nr_iowait) > 0)
3631                cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3632        else
3633                cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3634}
3635
3636#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3637
3638/*
3639 * Account a single tick of cpu time.
3640 * @p: the process that the cpu time gets accounted to
3641 * @user_tick: indicates if the tick is a user or a system tick
3642 */
3643void account_process_tick(struct task_struct *p, int user_tick)
3644{
3645        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3646        struct rq *rq = this_rq();
3647
3648        if (user_tick)
3649                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3650        else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3651                account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3652                                    one_jiffy_scaled);
3653        else
3654                account_idle_time(cputime_one_jiffy);
3655}
3656
3657/*
3658 * Account multiple ticks of steal time.
3659 * @p: the process from which the cpu time has been stolen
3660 * @ticks: number of stolen ticks
3661 */
3662void account_steal_ticks(unsigned long ticks)
3663{
3664        account_steal_time(jiffies_to_cputime(ticks));
3665}
3666
3667/*
3668 * Account multiple ticks of idle time.
3669 * @ticks: number of stolen ticks
3670 */
3671void account_idle_ticks(unsigned long ticks)
3672{
3673        account_idle_time(jiffies_to_cputime(ticks));
3674}
3675
3676#endif
3677
3678/*
3679 * Use precise platform statistics if available:
3680 */
3681#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3682void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3683{
3684        *ut = p->utime;
3685        *st = p->stime;
3686}
3687
3688void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3689{
3690        struct task_cputime cputime;
3691
3692        thread_group_cputime(p, &cputime);
3693
3694        *ut = cputime.utime;
3695        *st = cputime.stime;
3696}
3697#else
3698
3699#ifndef nsecs_to_cputime
3700# define nsecs_to_cputime(__nsecs)      nsecs_to_jiffies(__nsecs)
3701#endif
3702
3703void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3704{
3705        cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3706
3707        /*
3708         * Use CFS's precise accounting:
3709         */
3710        rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3711
3712        if (total) {
3713                u64 temp = rtime;
3714
3715                temp *= utime;
3716                do_div(temp, total);
3717                utime = (cputime_t)temp;
3718        } else
3719                utime = rtime;
3720
3721        /*
3722         * Compare with previous values, to keep monotonicity:
3723         */
3724        p->prev_utime = max(p->prev_utime, utime);
3725        p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3726
3727        *ut = p->prev_utime;
3728        *st = p->prev_stime;
3729}
3730
3731/*
3732 * Must be called with siglock held.
3733 */
3734void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3735{
3736        struct signal_struct *sig = p->signal;
3737        struct task_cputime cputime;
3738        cputime_t rtime, utime, total;
3739
3740        thread_group_cputime(p, &cputime);
3741
3742        total = cputime_add(cputime.utime, cputime.stime);
3743        rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3744
3745        if (total) {
3746                u64 temp = rtime;
3747
3748                temp *= cputime.utime;
3749                do_div(temp, total);
3750                utime = (cputime_t)temp;
3751        } else
3752                utime = rtime;
3753
3754        sig->prev_utime = max(sig->prev_utime, utime);
3755        sig->prev_stime = max(sig->prev_stime,
3756                              cputime_sub(rtime, sig->prev_utime));
3757
3758        *ut = sig->prev_utime;
3759        *st = sig->prev_stime;
3760}
3761#endif
3762
3763/*
3764 * This function gets called by the timer code, with HZ frequency.
3765 * We call it with interrupts disabled.
3766 *
3767 * It also gets called by the fork code, when changing the parent's
3768 * timeslices.
3769 */
3770void scheduler_tick(void)
3771{
3772        int cpu = smp_processor_id();
3773        struct rq *rq = cpu_rq(cpu);
3774        struct task_struct *curr = rq->curr;
3775
3776        sched_clock_tick();
3777
3778        raw_spin_lock(&rq->lock);
3779        update_rq_clock(rq);
3780        update_cpu_load_active(rq);
3781        curr->sched_class->task_tick(rq, curr, 0);
3782        raw_spin_unlock(&rq->lock);
3783
3784        perf_event_task_tick();
3785
3786#ifdef CONFIG_SMP
3787        rq->idle_at_tick = idle_cpu(cpu);
3788        trigger_load_balance(rq, cpu);
3789#endif
3790}
3791
3792notrace unsigned long get_parent_ip(unsigned long addr)
3793{
3794        if (in_lock_functions(addr)) {
3795                addr = CALLER_ADDR2;
3796                if (in_lock_functions(addr))
3797                        addr = CALLER_ADDR3;
3798        }
3799        return addr;
3800}
3801
3802#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3803                                defined(CONFIG_PREEMPT_TRACER))
3804
3805void __kprobes add_preempt_count(int val)
3806{
3807#ifdef CONFIG_DEBUG_PREEMPT
3808        /*
3809         * Underflow?
3810         */
3811        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3812                return;
3813#endif
3814        preempt_count() += val;
3815#ifdef CONFIG_DEBUG_PREEMPT
3816        /*
3817         * Spinlock count overflowing soon?
3818         */
3819        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3820                                PREEMPT_MASK - 10);
3821#endif
3822        if (preempt_count() == val)
3823                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3824}
3825EXPORT_SYMBOL(add_preempt_count);
3826
3827void __kprobes sub_preempt_count(int val)
3828{
3829#ifdef CONFIG_DEBUG_PREEMPT
3830        /*
3831         * Underflow?
3832         */
3833        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3834                return;
3835        /*
3836         * Is the spinlock portion underflowing?
3837         */
3838        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3839                        !(preempt_count() & PREEMPT_MASK)))
3840                return;
3841#endif
3842
3843        if (preempt_count() == val)
3844                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3845        preempt_count() -= val;
3846}
3847EXPORT_SYMBOL(sub_preempt_count);
3848
3849#endif
3850
3851/*
3852 * Print scheduling while atomic bug:
3853 */
3854static noinline void __schedule_bug(struct task_struct *prev)
3855{
3856        struct pt_regs *regs = get_irq_regs();
3857
3858        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3859                prev->comm, prev->pid, preempt_count());
3860
3861        debug_show_held_locks(prev);
3862        print_modules();
3863        if (irqs_disabled())
3864                print_irqtrace_events(prev);
3865
3866        if (regs)
3867                show_regs(regs);
3868        else
3869                dump_stack();
3870}
3871
3872/*
3873 * Various schedule()-time debugging checks and statistics:
3874 */
3875static inline void schedule_debug(struct task_struct *prev)
3876{
3877        /*
3878         * Test if we are atomic. Since do_exit() needs to call into
3879         * schedule() atomically, we ignore that path for now.
3880         * Otherwise, whine if we are scheduling when we should not be.
3881         */
3882        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3883                __schedule_bug(prev);
3884
3885        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3886
3887        schedstat_inc(this_rq(), sched_count);
3888#ifdef CONFIG_SCHEDSTATS
3889        if (unlikely(prev->lock_depth >= 0)) {
3890                schedstat_inc(this_rq(), rq_sched_info.bkl_count);
3891                schedstat_inc(prev, sched_info.bkl_count);
3892        }
3893#endif
3894}
3895
3896static void put_prev_task(struct rq *rq, struct task_struct *prev)
3897{
3898        if (prev->se.on_rq)
3899                update_rq_clock(rq);
3900        prev->sched_class->put_prev_task(rq, prev);
3901}
3902
3903/*
3904 * Pick up the highest-prio task:
3905 */
3906static inline struct task_struct *
3907pick_next_task(struct rq *rq)
3908{
3909        const struct sched_class *class;
3910        struct task_struct *p;
3911
3912        /*
3913         * Optimization: we know that if all tasks are in
3914         * the fair class we can call that function directly:
3915         */
3916        if (likely(rq->nr_running == rq->cfs.nr_running)) {
3917                p = fair_sched_class.pick_next_task(rq);
3918                if (likely(p))
3919                        return p;
3920        }
3921
3922        for_each_class(class) {
3923                p = class->pick_next_task(rq);
3924                if (p)
3925                        return p;
3926        }
3927
3928        BUG(); /* the idle class will always have a runnable task */
3929}
3930
3931/*
3932 * schedule() is the main scheduler function.
3933 */
3934asmlinkage void __sched schedule(void)
3935{
3936        struct task_struct *prev, *next;
3937        unsigned long *switch_count;
3938        struct rq *rq;
3939        int cpu;
3940
3941need_resched:
3942        preempt_disable();
3943        cpu = smp_processor_id();
3944        rq = cpu_rq(cpu);
3945        rcu_note_context_switch(cpu);
3946        prev = rq->curr;
3947
3948        release_kernel_lock(prev);
3949need_resched_nonpreemptible:
3950
3951        schedule_debug(prev);
3952
3953        if (sched_feat(HRTICK))
3954                hrtick_clear(rq);
3955
3956        raw_spin_lock_irq(&rq->lock);
3957
3958        switch_count = &prev->nivcsw;
3959        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3960                if (unlikely(signal_pending_state(prev->state, prev))) {
3961                        prev->state = TASK_RUNNING;
3962                } else {
3963                        /*
3964                         * If a worker is going to sleep, notify and
3965                         * ask workqueue whether it wants to wake up a
3966                         * task to maintain concurrency.  If so, wake
3967                         * up the task.
3968                         */
3969                        if (prev->flags & PF_WQ_WORKER) {
3970                                struct task_struct *to_wakeup;
3971
3972                                to_wakeup = wq_worker_sleeping(prev, cpu);
3973                                if (to_wakeup)
3974                                        try_to_wake_up_local(to_wakeup);
3975                        }
3976                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
3977                }
3978                switch_count = &prev->nvcsw;
3979        }
3980
3981        pre_schedule(rq, prev);
3982
3983        if (unlikely(!rq->nr_running))
3984                idle_balance(cpu, rq);
3985
3986        put_prev_task(rq, prev);
3987        next = pick_next_task(rq);
3988        clear_tsk_need_resched(prev);
3989        rq->skip_clock_update = 0;
3990
3991        if (likely(prev != next)) {
3992                sched_info_switch(prev, next);
3993                perf_event_task_sched_out(prev, next);
3994
3995                rq->nr_switches++;
3996                rq->curr = next;
3997                ++*switch_count;
3998
3999                context_switch(rq, prev, next); /* unlocks the rq */
4000                /*
4001                 * The context switch have flipped the stack from under us
4002                 * and restored the local variables which were saved when
4003                 * this task called schedule() in the past. prev == current
4004                 * is still correct, but it can be moved to another cpu/rq.
4005                 */
4006                cpu = smp_processor_id();
4007                rq = cpu_rq(cpu);
4008        } else
4009                raw_spin_unlock_irq(&rq->lock);
4010
4011        post_schedule(rq);
4012
4013        if (unlikely(reacquire_kernel_lock(prev)))
4014                goto need_resched_nonpreemptible;
4015
4016        preempt_enable_no_resched();
4017        if (need_resched())
4018                goto need_resched;
4019}
4020EXPORT_SYMBOL(schedule);
4021
4022#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4023/*
4024 * Look out! "owner" is an entirely speculative pointer
4025 * access and not reliable.
4026 */
4027int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4028{
4029        unsigned int cpu;
4030        struct rq *rq;
4031
4032        if (!sched_feat(OWNER_SPIN))
4033                return 0;
4034
4035#ifdef CONFIG_DEBUG_PAGEALLOC
4036        /*
4037         * Need to access the cpu field knowing that
4038         * DEBUG_PAGEALLOC could have unmapped it if
4039         * the mutex owner just released it and exited.
4040         */
4041        if (probe_kernel_address(&owner->cpu, cpu))
4042                return 0;
4043#else
4044        cpu = owner->cpu;
4045#endif
4046
4047        /*
4048         * Even if the access succeeded (likely case),
4049         * the cpu field may no longer be valid.
4050         */
4051        if (cpu >= nr_cpumask_bits)
4052                return 0;
4053
4054        /*
4055         * We need to validate that we can do a
4056         * get_cpu() and that we have the percpu area.
4057         */
4058        if (!cpu_online(cpu))
4059                return 0;
4060
4061        rq = cpu_rq(cpu);
4062
4063        for (;;) {
4064                /*
4065                 * Owner changed, break to re-assess state.
4066                 */
4067                if (lock->owner != owner) {
4068                        /*
4069                         * If the lock has switched to a different owner,
4070                         * we likely have heavy contention. Return 0 to quit
4071                         * optimistic spinning and not contend further:
4072                         */
4073                        if (lock->owner)
4074                                return 0;
4075                        break;
4076                }
4077
4078                /*
4079                 * Is that owner really running on that cpu?
4080                 */
4081                if (task_thread_info(rq->curr) != owner || need_resched())
4082                        return 0;
4083
4084                arch_mutex_cpu_relax();
4085        }
4086
4087        return 1;
4088}
4089#endif
4090
4091#ifdef CONFIG_PREEMPT
4092/*
4093 * this is the entry point to schedule() from in-kernel preemption
4094 * off of preempt_enable. Kernel preemptions off return from interrupt
4095 * occur there and call schedule directly.
4096 */
4097asmlinkage void __sched notrace preempt_schedule(void)
4098{
4099        struct thread_info *ti = current_thread_info();
4100
4101        /*
4102         * If there is a non-zero preempt_count or interrupts are disabled,
4103         * we do not want to preempt the current task. Just return..
4104         */
4105        if (likely(ti->preempt_count || irqs_disabled()))
4106                return;
4107
4108        do {
4109                add_preempt_count_notrace(PREEMPT_ACTIVE);
4110                schedule();
4111                sub_preempt_count_notrace(PREEMPT_ACTIVE);
4112
4113                /*
4114                 * Check again in case we missed a preemption opportunity
4115                 * between schedule and now.
4116                 */
4117                barrier();
4118        } while (need_resched());
4119}
4120EXPORT_SYMBOL(preempt_schedule);
4121
4122/*
4123 * this is the entry point to schedule() from kernel preemption
4124 * off of irq context.
4125 * Note, that this is called and return with irqs disabled. This will
4126 * protect us against recursive calling from irq.
4127 */
4128asmlinkage void __sched preempt_schedule_irq(void)
4129{
4130        struct thread_info *ti = current_thread_info();
4131
4132        /* Catch callers which need to be fixed */
4133        BUG_ON(ti->preempt_count || !irqs_disabled());
4134
4135        do {
4136                add_preempt_count(PREEMPT_ACTIVE);
4137                local_irq_enable();
4138                schedule();
4139                local_irq_disable();
4140                sub_preempt_count(PREEMPT_ACTIVE);
4141
4142                /*
4143                 * Check again in case we missed a preemption opportunity
4144                 * between schedule and now.
4145                 */
4146                barrier();
4147        } while (need_resched());
4148}
4149
4150#endif /* CONFIG_PREEMPT */
4151
4152int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4153                          void *key)
4154{
4155        return try_to_wake_up(curr->private, mode, wake_flags);
4156}
4157EXPORT_SYMBOL(default_wake_function);
4158
4159/*
4160 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4161 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4162 * number) then we wake all the non-exclusive tasks and one exclusive task.
4163 *
4164 * There are circumstances in which we can try to wake a task which has already
4165 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4166 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4167 */
4168static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4169                        int nr_exclusive, int wake_flags, void *key)
4170{
4171        wait_queue_t *curr, *next;
4172
4173        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4174                unsigned flags = curr->flags;
4175
4176                if (curr->func(curr, mode, wake_flags, key) &&
4177                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4178                        break;
4179        }
4180}
4181
4182/**
4183 * __wake_up - wake up threads blocked on a waitqueue.
4184 * @q: the waitqueue
4185 * @mode: which threads
4186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4187 * @key: is directly passed to the wakeup function
4188 *
4189 * It may be assumed that this function implies a write memory barrier before
4190 * changing the task state if and only if any tasks are woken up.
4191 */
4192void __wake_up(wait_queue_head_t *q, unsigned int mode,
4193                        int nr_exclusive, void *key)
4194{
4195        unsigned long flags;
4196
4197        spin_lock_irqsave(&q->lock, flags);
4198        __wake_up_common(q, mode, nr_exclusive, 0, key);
4199        spin_unlock_irqrestore(&q->lock, flags);
4200}
4201EXPORT_SYMBOL(__wake_up);
4202
4203/*
4204 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4205 */
4206void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4207{
4208        __wake_up_common(q, mode, 1, 0, NULL);
4209}
4210EXPORT_SYMBOL_GPL(__wake_up_locked);
4211
4212void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4213{
4214        __wake_up_common(q, mode, 1, 0, key);
4215}
4216EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4217
4218/**
4219 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4220 * @q: the waitqueue
4221 * @mode: which threads
4222 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4223 * @key: opaque value to be passed to wakeup targets
4224 *
4225 * The sync wakeup differs that the waker knows that it will schedule
4226 * away soon, so while the target thread will be woken up, it will not
4227 * be migrated to another CPU - ie. the two threads are 'synchronized'
4228 * with each other. This can prevent needless bouncing between CPUs.
4229 *
4230 * On UP it can prevent extra preemption.
4231 *
4232 * It may be assumed that this function implies a write memory barrier before
4233 * changing the task state if and only if any tasks are woken up.
4234 */
4235void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4236                        int nr_exclusive, void *key)
4237{
4238        unsigned long flags;
4239        int wake_flags = WF_SYNC;
4240
4241        if (unlikely(!q))
4242                return;
4243
4244        if (unlikely(!nr_exclusive))
4245                wake_flags = 0;
4246
4247        spin_lock_irqsave(&q->lock, flags);
4248        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4249        spin_unlock_irqrestore(&q->lock, flags);
4250}
4251EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4252
4253/*
4254 * __wake_up_sync - see __wake_up_sync_key()
4255 */
4256void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4257{
4258        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4259}
4260EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
4261
4262/**
4263 * complete: - signals a single thread waiting on this completion
4264 * @x:  holds the state of this particular completion
4265 *
4266 * This will wake up a single thread waiting on this completion. Threads will be
4267 * awakened in the same order in which they were queued.
4268 *
4269 * See also complete_all(), wait_for_completion() and related routines.
4270 *
4271 * It may be assumed that this function implies a write memory barrier before
4272 * changing the task state if and only if any tasks are woken up.
4273 */
4274void complete(struct completion *x)
4275{
4276        unsigned long flags;
4277
4278        spin_lock_irqsave(&x->wait.lock, flags);
4279        x->done++;
4280        __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4281        spin_unlock_irqrestore(&x->wait.lock, flags);
4282}
4283EXPORT_SYMBOL(complete);
4284
4285/**
4286 * complete_all: - signals all threads waiting on this completion
4287 * @x:  holds the state of this particular completion
4288 *
4289 * This will wake up all threads waiting on this particular completion event.
4290 *
4291 * It may be assumed that this function implies a write memory barrier before
4292 * changing the task state if and only if any tasks are woken up.
4293 */
4294void complete_all(struct completion *x)
4295{
4296        unsigned long flags;
4297
4298        spin_lock_irqsave(&x->wait.lock, flags);
4299        x->done += UINT_MAX/2;
4300        __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4301        spin_unlock_irqrestore(&x->wait.lock, flags);
4302}
4303EXPORT_SYMBOL(complete_all);
4304
4305static inline long __sched
4306do_wait_for_common(struct completion *x, long timeout, int state)
4307{
4308        if (!x->done) {
4309                DECLARE_WAITQUEUE(wait, current);
4310
4311                __add_wait_queue_tail_exclusive(&x->wait, &wait);
4312                do {
4313                        if (signal_pending_state(state, current)) {
4314                                timeout = -ERESTARTSYS;
4315                                break;
4316                        }
4317                        __set_current_state(state);
4318                        spin_unlock_irq(&x->wait.lock);
4319                        timeout = schedule_timeout(timeout);
4320                        spin_lock_irq(&x->wait.lock);
4321                } while (!x->done && timeout);
4322                __remove_wait_queue(&x->wait, &wait);
4323                if (!x->done)
4324                        return timeout;
4325        }
4326        x->done--;
4327        return timeout ?: 1;
4328}
4329
4330static long __sched
4331wait_for_common(struct completion *x, long timeout, int state)
4332{
4333        might_sleep();
4334
4335        spin_lock_irq(&x->wait.lock);
4336        timeout = do_wait_for_common(x, timeout, state);
4337        spin_unlock_irq(&x->wait.lock);
4338        return timeout;
4339}
4340
4341/**
4342 * wait_for_completion: - waits for completion of a task
4343 * @x:  holds the state of this particular completion
4344 *
4345 * This waits to be signaled for completion of a specific task. It is NOT
4346 * interruptible and there is no timeout.
4347 *
4348 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4349 * and interrupt capability. Also see complete().
4350 */
4351void __sched wait_for_completion(struct completion *x)
4352{
4353        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4354}
4355EXPORT_SYMBOL(wait_for_completion);
4356
4357/**
4358 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4359 * @x:  holds the state of this particular completion
4360 * @timeout:  timeout value in jiffies
4361 *
4362 * This waits for either a completion of a specific task to be signaled or for a
4363 * specified timeout to expire. The timeout is in jiffies. It is not
4364 * interruptible.
4365 */
4366unsigned long __sched
4367wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4368{
4369        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4370}
4371EXPORT_SYMBOL(wait_for_completion_timeout);
4372
4373/**
4374 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4375 * @x:  holds the state of this particular completion
4376 *
4377 * This waits for completion of a specific task to be signaled. It is
4378 * interruptible.
4379 */
4380int __sched wait_for_completion_interruptible(struct completion *x)
4381{
4382        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4383        if (t == -ERESTARTSYS)
4384                return t;
4385        return 0;
4386}
4387EXPORT_SYMBOL(wait_for_completion_interruptible);
4388
4389/**
4390 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4391 * @x:  holds the state of this particular completion
4392 * @timeout:  timeout value in jiffies
4393 *
4394 * This waits for either a completion of a specific task to be signaled or for a
4395 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4396 */
4397long __sched
4398wait_for_completion_interruptible_timeout(struct completion *x,
4399                                          unsigned long timeout)
4400{
4401        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4402}
4403EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4404
4405/**
4406 * wait_for_completion_killable: - waits for completion of a task (killable)
4407 * @x:  holds the state of this particular completion
4408 *
4409 * This waits to be signaled for completion of a specific task. It can be
4410 * interrupted by a kill signal.
4411 */
4412int __sched wait_for_completion_killable(struct completion *x)
4413{
4414        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4415        if (t == -ERESTARTSYS)
4416                return t;
4417        return 0;
4418}
4419EXPORT_SYMBOL(wait_for_completion_killable);
4420
4421/**
4422 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4423 * @x:  holds the state of this particular completion
4424 * @timeout:  timeout value in jiffies
4425 *
4426 * This waits for either a completion of a specific task to be
4427 * signaled or for a specified timeout to expire. It can be
4428 * interrupted by a kill signal. The timeout is in jiffies.
4429 */
4430long __sched
4431wait_for_completion_killable_timeout(struct completion *x,
4432                                     unsigned long timeout)
4433{
4434        return wait_for_common(x, timeout, TASK_KILLABLE);
4435}
4436EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4437
4438/**
4439 *      try_wait_for_completion - try to decrement a completion without blocking
4440 *      @x:     completion structure
4441 *
4442 *      Returns: 0 if a decrement cannot be done without blocking
4443 *               1 if a decrement succeeded.
4444 *
4445 *      If a completion is being used as a counting completion,
4446 *      attempt to decrement the counter without blocking. This
4447 *      enables us to avoid waiting if the resource the completion
4448 *      is protecting is not available.
4449 */
4450bool try_wait_for_completion(struct completion *x)
4451{
4452        unsigned long flags;
4453        int ret = 1;
4454
4455        spin_lock_irqsave(&x->wait.lock, flags);
4456        if (!x->done)
4457                ret = 0;
4458        else
4459                x->done--;
4460        spin_unlock_irqrestore(&x->wait.lock, flags);
4461        return ret;
4462}
4463EXPORT_SYMBOL(try_wait_for_completion);
4464
4465/**
4466 *      completion_done - Test to see if a completion has any waiters
4467 *      @x:     completion structure
4468 *
4469 *      Returns: 0 if there are waiters (wait_for_completion() in progress)
4470 *               1 if there are no waiters.
4471 *
4472 */
4473bool completion_done(struct completion *x)
4474{
4475        unsigned long flags;
4476        int ret = 1;
4477
4478        spin_lock_irqsave(&x->wait.lock, flags);
4479        if (!x->done)
4480                ret = 0;
4481        spin_unlock_irqrestore(&x->wait.lock, flags);
4482        return ret;
4483}
4484EXPORT_SYMBOL(completion_done);
4485
4486static long __sched
4487sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4488{
4489        unsigned long flags;
4490        wait_queue_t wait;
4491
4492        init_waitqueue_entry(&wait, current);
4493
4494        __set_current_state(state);
4495
4496        spin_lock_irqsave(&q->lock, flags);
4497        __add_wait_queue(q, &wait);
4498        spin_unlock(&q->lock);
4499        timeout = schedule_timeout(timeout);
4500        spin_lock_irq(&q->lock);
4501        __remove_wait_queue(q, &wait);
4502        spin_unlock_irqrestore(&q->lock, flags);
4503
4504        return timeout;
4505}
4506
4507void __sched interruptible_sleep_on(wait_queue_head_t *q)
4508{
4509        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4510}
4511EXPORT_SYMBOL(interruptible_sleep_on);
4512
4513long __sched
4514interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4515{
4516        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4517}
4518EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4519
4520void __sched sleep_on(wait_queue_head_t *q)
4521{
4522        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4523}
4524EXPORT_SYMBOL(sleep_on);
4525
4526long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4527{
4528        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4529}
4530EXPORT_SYMBOL(sleep_on_timeout);
4531
4532#ifdef CONFIG_RT_MUTEXES
4533
4534/*
4535 * rt_mutex_setprio - set the current priority of a task
4536 * @p: task
4537 * @prio: prio value (kernel-internal form)
4538 *
4539 * This function changes the 'effective' priority of a task. It does
4540 * not touch ->normal_prio like __setscheduler().
4541 *
4542 * Used by the rt_mutex code to implement priority inheritance logic.
4543 */
4544void rt_mutex_setprio(struct task_struct *p, int prio)
4545{
4546        unsigned long flags;
4547        int oldprio, on_rq, running;
4548        struct rq *rq;
4549        const struct sched_class *prev_class;
4550
4551        BUG_ON(prio < 0 || prio > MAX_PRIO);
4552
4553        rq = task_rq_lock(p, &flags);
4554
4555        trace_sched_pi_setprio(p, prio);
4556        oldprio = p->prio;
4557        prev_class = p->sched_class;
4558        on_rq = p->se.on_rq;
4559        running = task_current(rq, p);
4560        if (on_rq)
4561                dequeue_task(rq, p, 0);
4562        if (running)
4563                p->sched_class->put_prev_task(rq, p);
4564
4565        if (rt_prio(prio))
4566                p->sched_class = &rt_sched_class;
4567        else
4568                p->sched_class = &fair_sched_class;
4569
4570        p->prio = prio;
4571
4572        if (running)
4573                p->sched_class->set_curr_task(rq);
4574        if (on_rq) {
4575                enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4576
4577                check_class_changed(rq, p, prev_class, oldprio, running);
4578        }
4579        task_rq_unlock(rq, &flags);
4580}
4581
4582#endif
4583
4584void set_user_nice(struct task_struct *p, long nice)
4585{
4586        int old_prio, delta, on_rq;
4587        unsigned long flags;
4588        struct rq *rq;
4589
4590        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4591                return;
4592        /*
4593         * We have to be careful, if called from sys_setpriority(),
4594         * the task might be in the middle of scheduling on another CPU.
4595         */
4596        rq = task_rq_lock(p, &flags);
4597        /*
4598         * The RT priorities are set via sched_setscheduler(), but we still
4599         * allow the 'normal' nice value to be set - but as expected
4600         * it wont have any effect on scheduling until the task is
4601         * SCHED_FIFO/SCHED_RR:
4602         */
4603        if (task_has_rt_policy(p)) {
4604                p->static_prio = NICE_TO_PRIO(nice);
4605                goto out_unlock;
4606        }
4607        on_rq = p->se.on_rq;
4608        if (on_rq)
4609                dequeue_task(rq, p, 0);
4610
4611        p->static_prio = NICE_TO_PRIO(nice);
4612        set_load_weight(p);
4613        old_prio = p->prio;
4614        p->prio = effective_prio(p);
4615        delta = p->prio - old_prio;
4616
4617        if (on_rq) {
4618                enqueue_task(rq, p, 0);
4619                /*
4620                 * If the task increased its priority or is running and
4621                 * lowered its priority, then reschedule its CPU:
4622                 */
4623                if (delta < 0 || (delta > 0 && task_running(rq, p)))
4624                        resched_task(rq->curr);
4625        }
4626out_unlock:
4627        task_rq_unlock(rq, &flags);
4628}
4629EXPORT_SYMBOL(set_user_nice);
4630
4631/*
4632 * can_nice - check if a task can reduce its nice value
4633 * @p: task
4634 * @nice: nice value
4635 */
4636int can_nice(const struct task_struct *p, const int nice)
4637{
4638        /* convert nice value [19,-20] to rlimit style value [1,40] */
4639        int nice_rlim = 20 - nice;
4640
4641        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4642                capable(CAP_SYS_NICE));
4643}
4644
4645#ifdef __ARCH_WANT_SYS_NICE
4646
4647/*
4648 * sys_nice - change the priority of the current process.
4649 * @increment: priority increment
4650 *
4651 * sys_setpriority is a more generic, but much slower function that
4652 * does similar things.
4653 */
4654SYSCALL_DEFINE1(nice, int, increment)
4655{
4656        long nice, retval;
4657
4658        /*
4659         * Setpriority might change our priority at the same moment.
4660         * We don't have to worry. Conceptually one call occurs first
4661         * and we have a single winner.
4662         */
4663        if (increment < -40)
4664                increment = -40;
4665        if (increment > 40)
4666                increment = 40;
4667
4668        nice = TASK_NICE(current) + increment;
4669        if (nice < -20)
4670                nice = -20;
4671        if (nice > 19)
4672                nice = 19;
4673
4674        if (increment < 0 && !can_nice(current, nice))
4675                return -EPERM;
4676
4677        retval = security_task_setnice(current, nice);
4678        if (retval)
4679                return retval;
4680
4681        set_user_nice(current, nice);
4682        return 0;
4683}
4684
4685#endif
4686
4687/**
4688 * task_prio - return the priority value of a given task.
4689 * @p: the task in question.
4690 *
4691 * This is the priority value as seen by users in /proc.
4692 * RT tasks are offset by -200. Normal tasks are centered
4693 * around 0, value goes from -16 to +15.
4694 */
4695int task_prio(const struct task_struct *p)
4696{
4697        return p->prio - MAX_RT_PRIO;
4698}
4699
4700/**
4701 * task_nice - return the nice value of a given task.
4702 * @p: the task in question.
4703 */
4704int task_nice(const struct task_struct *p)
4705{
4706        return TASK_NICE(p);
4707}
4708EXPORT_SYMBOL(task_nice);
4709
4710/**
4711 * idle_cpu - is a given cpu idle currently?
4712 * @cpu: the processor in question.
4713 */
4714int idle_cpu(int cpu)
4715{
4716        return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4717}
4718
4719/**
4720 * idle_task - return the idle task for a given cpu.
4721 * @cpu: the processor in question.
4722 */
4723struct task_struct *idle_task(int cpu)
4724{
4725        return cpu_rq(cpu)->idle;
4726}
4727
4728/**
4729 * find_process_by_pid - find a process with a matching PID value.
4730 * @pid: the pid in question.
4731 */
4732static struct task_struct *find_process_by_pid(pid_t pid)
4733{
4734        return pid ? find_task_by_vpid(pid) : current;
4735}
4736
4737/* Actually do priority change: must hold rq lock. */
4738static void
4739__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4740{
4741        BUG_ON(p->se.on_rq);
4742
4743        p->policy = policy;
4744        p->rt_priority = prio;
4745        p->normal_prio = normal_prio(p);
4746        /* we are holding p->pi_lock already */
4747        p->prio = rt_mutex_getprio(p);
4748        if (rt_prio(p->prio))
4749                p->sched_class = &rt_sched_class;
4750        else
4751                p->sched_class = &fair_sched_class;
4752        set_load_weight(p);
4753}
4754
4755/*
4756 * check the target process has a UID that matches the current process's
4757 */
4758static bool check_same_owner(struct task_struct *p)
4759{
4760        const struct cred *cred = current_cred(), *pcred;
4761        bool match;
4762
4763        rcu_read_lock();
4764        pcred = __task_cred(p);
4765        match = (cred->euid == pcred->euid ||
4766                 cred->euid == pcred->uid);
4767        rcu_read_unlock();
4768        return match;
4769}
4770
4771static int __sched_setscheduler(struct task_struct *p, int policy,
4772                                const struct sched_param *param, bool user)
4773{
4774        int retval, oldprio, oldpolicy = -1, on_rq, running;
4775        unsigned long flags;
4776        const struct sched_class *prev_class;
4777        struct rq *rq;
4778        int reset_on_fork;
4779
4780        /* may grab non-irq protected spin_locks */
4781        BUG_ON(in_interrupt());
4782recheck:
4783        /* double check policy once rq lock held */
4784        if (policy < 0) {
4785                reset_on_fork = p->sched_reset_on_fork;
4786                policy = oldpolicy = p->policy;
4787        } else {
4788                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4789                policy &= ~SCHED_RESET_ON_FORK;
4790
4791                if (policy != SCHED_FIFO && policy != SCHED_RR &&
4792                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4793                                policy != SCHED_IDLE)
4794                        return -EINVAL;
4795        }
4796
4797        /*
4798         * Valid priorities for SCHED_FIFO and SCHED_RR are
4799         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4800         * SCHED_BATCH and SCHED_IDLE is 0.
4801         */
4802        if (param->sched_priority < 0 ||
4803            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4804            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4805                return -EINVAL;
4806        if (rt_policy(policy) != (param->sched_priority != 0))
4807                return -EINVAL;
4808
4809        /*
4810         * Allow unprivileged RT tasks to decrease priority:
4811         */
4812        if (user && !capable(CAP_SYS_NICE)) {
4813                if (rt_policy(policy)) {
4814                        unsigned long rlim_rtprio =
4815                                        task_rlimit(p, RLIMIT_RTPRIO);
4816
4817                        /* can't set/change the rt policy */
4818                        if (policy != p->policy && !rlim_rtprio)
4819                                return -EPERM;
4820
4821                        /* can't increase priority */
4822                        if (param->sched_priority > p->rt_priority &&
4823                            param->sched_priority > rlim_rtprio)
4824                                return -EPERM;
4825                }
4826                /*
4827                 * Like positive nice levels, dont allow tasks to
4828                 * move out of SCHED_IDLE either:
4829                 */
4830                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4831                        return -EPERM;
4832
4833                /* can't change other user's priorities */
4834                if (!check_same_owner(p))
4835                        return -EPERM;
4836
4837                /* Normal users shall not reset the sched_reset_on_fork flag */
4838                if (p->sched_reset_on_fork && !reset_on_fork)
4839                        return -EPERM;
4840        }
4841
4842        if (user) {
4843                retval = security_task_setscheduler(p);
4844                if (retval)
4845                        return retval;
4846        }
4847
4848        /*
4849         * make sure no PI-waiters arrive (or leave) while we are
4850         * changing the priority of the task:
4851         */
4852        raw_spin_lock_irqsave(&p->pi_lock, flags);
4853        /*
4854         * To be able to change p->policy safely, the apropriate
4855         * runqueue lock must be held.
4856         */
4857        rq = __task_rq_lock(p);
4858
4859        /*
4860         * Changing the policy of the stop threads its a very bad idea
4861         */
4862        if (p == rq->stop) {
4863                __task_rq_unlock(rq);
4864                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4865                return -EINVAL;
4866        }
4867
4868#ifdef CONFIG_RT_GROUP_SCHED
4869        if (user) {
4870                /*
4871                 * Do not allow realtime tasks into groups that have no runtime
4872                 * assigned.
4873                 */
4874                if (rt_bandwidth_enabled() && rt_policy(policy) &&
4875                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4876                                !task_group_is_autogroup(task_group(p))) {
4877                        __task_rq_unlock(rq);
4878                        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4879                        return -EPERM;
4880                }
4881        }
4882#endif
4883
4884        /* recheck policy now with rq lock held */
4885        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4886                policy = oldpolicy = -1;
4887                __task_rq_unlock(rq);
4888                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4889                goto recheck;
4890        }
4891        on_rq = p->se.on_rq;
4892        running = task_current(rq, p);
4893        if (on_rq)
4894                deactivate_task(rq, p, 0);
4895        if (running)
4896                p->sched_class->put_prev_task(rq, p);
4897
4898        p->sched_reset_on_fork = reset_on_fork;
4899
4900        oldprio = p->prio;
4901        prev_class = p->sched_class;
4902        __setscheduler(rq, p, policy, param->sched_priority);
4903
4904        if (running)
4905                p->sched_class->set_curr_task(rq);
4906        if (on_rq) {
4907                activate_task(rq, p, 0);
4908
4909                check_class_changed(rq, p, prev_class, oldprio, running);
4910        }
4911        __task_rq_unlock(rq);
4912        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4913
4914        rt_mutex_adjust_pi(p);
4915
4916        return 0;
4917}
4918
4919/**
4920 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4921 * @p: the task in question.
4922 * @policy: new policy.
4923 * @param: structure containing the new RT priority.
4924 *
4925 * NOTE that the task may be already dead.
4926 */
4927int sched_setscheduler(struct task_struct *p, int policy,
4928                       const struct sched_param *param)
4929{
4930        return __sched_setscheduler(p, policy, param, true);
4931}
4932EXPORT_SYMBOL_GPL(sched_setscheduler);
4933
4934/**
4935 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4936 * @p: the task in question.
4937 * @policy: new policy.
4938 * @param: structure containing the new RT priority.
4939 *
4940 * Just like sched_setscheduler, only don't bother checking if the
4941 * current context has permission.  For example, this is needed in
4942 * stop_machine(): we create temporary high priority worker threads,
4943 * but our caller might not have that capability.
4944 */
4945int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4946                               const struct sched_param *param)
4947{
4948        return __sched_setscheduler(p, policy, param, false);
4949}
4950
4951static int
4952do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4953{
4954        struct sched_param lparam;
4955        struct task_struct *p;
4956        int retval;
4957
4958        if (!param || pid < 0)
4959                return -EINVAL;
4960        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4961                return -EFAULT;
4962
4963        rcu_read_lock();
4964        retval = -ESRCH;
4965        p = find_process_by_pid(pid);
4966        if (p != NULL)
4967                retval = sched_setscheduler(p, policy, &lparam);
4968        rcu_read_unlock();
4969
4970        return retval;
4971}
4972
4973/**
4974 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4975 * @pid: the pid in question.
4976 * @policy: new policy.
4977 * @param: structure containing the new RT priority.
4978 */
4979SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4980                struct sched_param __user *, param)
4981{
4982        /* negative values for policy are not valid */
4983        if (policy < 0)
4984                return -EINVAL;
4985
4986        return do_sched_setscheduler(pid, policy, param);
4987}
4988
4989/**
4990 * sys_sched_setparam - set/change the RT priority of a thread
4991 * @pid: the pid in question.
4992 * @param: structure containing the new RT priority.
4993 */
4994SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4995{
4996        return do_sched_setscheduler(pid, -1, param);
4997}
4998
4999/**
5000 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5001 * @pid: the pid in question.
5002 */
5003SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5004{
5005        struct task_struct *p;
5006        int retval;
5007
5008        if (pid < 0)
5009                return -EINVAL;
5010
5011        retval = -ESRCH;
5012        rcu_read_lock();
5013        p = find_process_by_pid(pid);
5014        if (p) {
5015                retval = security_task_getscheduler(p);
5016                if (!retval)
5017                        retval = p->policy
5018                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5019        }
5020        rcu_read_unlock();
5021        return retval;
5022}
5023
5024/**
5025 * sys_sched_getparam - get the RT priority of a thread
5026 * @pid: the pid in question.
5027 * @param: structure containing the RT priority.
5028 */
5029SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5030{
5031        struct sched_param lp;
5032        struct task_struct *p;
5033        int retval;
5034
5035        if (!param || pid < 0)
5036                return -EINVAL;
5037
5038        rcu_read_lock();
5039        p = find_process_by_pid(pid);
5040        retval = -ESRCH;
5041        if (!p)
5042                goto out_unlock;
5043
5044        retval = security_task_getscheduler(p);
5045        if (retval)
5046                goto out_unlock;
5047
5048        lp.sched_priority = p->rt_priority;
5049        rcu_read_unlock();
5050
5051        /*
5052         * This one might sleep, we cannot do it with a spinlock held ...
5053         */
5054        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5055
5056        return retval;
5057
5058out_unlock:
5059        rcu_read_unlock();
5060        return retval;
5061}
5062
5063long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5064{
5065        cpumask_var_t cpus_allowed, new_mask;
5066        struct task_struct *p;
5067        int retval;
5068
5069        get_online_cpus();
5070        rcu_read_lock();
5071
5072        p = find_process_by_pid(pid);
5073        if (!p) {
5074                rcu_read_unlock();
5075                put_online_cpus();
5076                return -ESRCH;
5077        }
5078
5079        /* Prevent p going away */
5080        get_task_struct(p);
5081        rcu_read_unlock();
5082
5083        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5084                retval = -ENOMEM;
5085                goto out_put_task;
5086        }
5087        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5088                retval = -ENOMEM;
5089                goto out_free_cpus_allowed;
5090        }
5091        retval = -EPERM;
5092        if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5093                goto out_unlock;
5094
5095        retval = security_task_setscheduler(p);
5096        if (retval)
5097                goto out_unlock;
5098
5099        cpuset_cpus_allowed(p, cpus_allowed);
5100        cpumask_and(new_mask, in_mask, cpus_allowed);
5101again:
5102        retval = set_cpus_allowed_ptr(p, new_mask);
5103
5104        if (!retval) {
5105                cpuset_cpus_allowed(p, cpus_allowed);
5106                if (!cpumask_subset(new_mask, cpus_allowed)) {
5107                        /*
5108                         * We must have raced with a concurrent cpuset
5109                         * update. Just reset the cpus_allowed to the
5110                         * cpuset's cpus_allowed
5111                         */
5112                        cpumask_copy(new_mask, cpus_allowed);
5113                        goto again;
5114                }
5115        }
5116out_unlock:
5117        free_cpumask_var(new_mask);
5118out_free_cpus_allowed:
5119        free_cpumask_var(cpus_allowed);
5120out_put_task:
5121        put_task_struct(p);
5122        put_online_cpus();
5123        return retval;
5124}
5125
5126static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5127                             struct cpumask *new_mask)
5128{
5129        if (len < cpumask_size())
5130                cpumask_clear(new_mask);
5131        else if (len > cpumask_size())
5132                len = cpumask_size();
5133
5134        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5135}
5136
5137/**
5138 * sys_sched_setaffinity - set the cpu affinity of a process
5139 * @pid: pid of the process
5140 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5141 * @user_mask_ptr: user-space pointer to the new cpu mask
5142 */
5143SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5144                unsigned long __user *, user_mask_ptr)
5145{
5146        cpumask_var_t new_mask;
5147        int retval;
5148
5149        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5150                return -ENOMEM;
5151
5152        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5153        if (retval == 0)
5154                retval = sched_setaffinity(pid, new_mask);
5155        free_cpumask_var(new_mask);
5156        return retval;
5157}
5158
5159long sched_getaffinity(pid_t pid, struct cpumask *mask)
5160{
5161        struct task_struct *p;
5162        unsigned long flags;
5163        struct rq *rq;
5164        int retval;
5165
5166        get_online_cpus();
5167        rcu_read_lock();
5168
5169        retval = -ESRCH;
5170        p = find_process_by_pid(pid);
5171        if (!p)
5172                goto out_unlock;
5173
5174        retval = security_task_getscheduler(p);
5175        if (retval)
5176                goto out_unlock;
5177
5178        rq = task_rq_lock(p, &flags);
5179        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5180        task_rq_unlock(rq, &flags);
5181
5182out_unlock:
5183        rcu_read_unlock();
5184        put_online_cpus();
5185
5186        return retval;
5187}
5188
5189/**
5190 * sys_sched_getaffinity - get the cpu affinity of a process
5191 * @pid: pid of the process
5192 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5193 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5194 */
5195SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5196                unsigned long __user *, user_mask_ptr)
5197{
5198        int ret;
5199        cpumask_var_t mask;
5200
5201        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5202                return -EINVAL;
5203        if (len & (sizeof(unsigned long)-1))
5204                return -EINVAL;
5205
5206        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5207                return -ENOMEM;
5208
5209        ret = sched_getaffinity(pid, mask);
5210        if (ret == 0) {
5211                size_t retlen = min_t(size_t, len, cpumask_size());
5212
5213                if (copy_to_user(user_mask_ptr, mask, retlen))
5214                        ret = -EFAULT;
5215                else
5216                        ret = retlen;
5217        }
5218        free_cpumask_var(mask);
5219
5220        return ret;
5221}
5222
5223/**
5224 * sys_sched_yield - yield the current processor to other threads.
5225 *
5226 * This function yields the current CPU to other tasks. If there are no
5227 * other threads running on this CPU then this function will return.
5228 */
5229SYSCALL_DEFINE0(sched_yield)
5230{
5231        struct rq *rq = this_rq_lock();
5232
5233        schedstat_inc(rq, yld_count);
5234        current->sched_class->yield_task(rq);
5235
5236        /*
5237         * Since we are going to call schedule() anyway, there's
5238         * no need to preempt or enable interrupts:
5239         */
5240        __release(rq->lock);
5241        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5242        do_raw_spin_unlock(&rq->lock);
5243        preempt_enable_no_resched();
5244
5245        schedule();
5246
5247        return 0;
5248}
5249
5250static inline int should_resched(void)
5251{
5252        return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5253}
5254
5255static void __cond_resched(void)
5256{
5257        add_preempt_count(PREEMPT_ACTIVE);
5258        schedule();
5259        sub_preempt_count(PREEMPT_ACTIVE);
5260}
5261
5262int __sched _cond_resched(void)
5263{
5264        if (should_resched()) {
5265                __cond_resched();
5266                return 1;
5267        }
5268        return 0;
5269}
5270EXPORT_SYMBOL(_cond_resched);
5271
5272/*
5273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5274 * call schedule, and on return reacquire the lock.
5275 *
5276 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5277 * operations here to prevent schedule() from being called twice (once via
5278 * spin_unlock(), once by hand).
5279 */
5280int __cond_resched_lock(spinlock_t *lock)
5281{
5282        int resched = should_resched();
5283        int ret = 0;
5284
5285        lockdep_assert_held(lock);
5286
5287        if (spin_needbreak(lock) || resched) {
5288                spin_unlock(lock);
5289                if (resched)
5290                        __cond_resched();
5291                else
5292                        cpu_relax();
5293                ret = 1;
5294                spin_lock(lock);
5295        }
5296        return ret;
5297}
5298EXPORT_SYMBOL(__cond_resched_lock);
5299
5300int __sched __cond_resched_softirq(void)
5301{
5302        BUG_ON(!in_softirq());
5303
5304        if (should_resched()) {
5305                local_bh_enable();
5306                __cond_resched();
5307                local_bh_disable();
5308                return 1;
5309        }
5310        return 0;
5311}
5312EXPORT_SYMBOL(__cond_resched_softirq);
5313
5314/**
5315 * yield - yield the current processor to other threads.
5316 *
5317 * This is a shortcut for kernel-space yielding - it marks the
5318 * thread runnable and calls sys_sched_yield().
5319 */
5320void __sched yield(void)
5321{
5322        set_current_state(TASK_RUNNING);
5323        sys_sched_yield();
5324}
5325EXPORT_SYMBOL(yield);
5326
5327/*
5328 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5329 * that process accounting knows that this is a task in IO wait state.
5330 */
5331void __sched io_schedule(void)
5332{
5333        struct rq *rq = raw_rq();
5334
5335        delayacct_blkio_start();
5336        atomic_inc(&rq->nr_iowait);
5337        current->in_iowait = 1;
5338        schedule();
5339        current->in_iowait = 0;
5340        atomic_dec(&rq->nr_iowait);
5341        delayacct_blkio_end();
5342}
5343EXPORT_SYMBOL(io_schedule);
5344
5345long __sched io_schedule_timeout(long timeout)
5346{
5347        struct rq *rq = raw_rq();
5348        long ret;
5349
5350        delayacct_blkio_start();
5351        atomic_inc(&rq->nr_iowait);
5352        current->in_iowait = 1;
5353        ret = schedule_timeout(timeout);
5354        current->in_iowait = 0;
5355        atomic_dec(&rq->nr_iowait);
5356        delayacct_blkio_end();
5357        return ret;
5358}
5359
5360/**
5361 * sys_sched_get_priority_max - return maximum RT priority.
5362 * @policy: scheduling class.
5363 *
5364 * this syscall returns the maximum rt_priority that can be used
5365 * by a given scheduling class.
5366 */
5367SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5368{
5369        int ret = -EINVAL;
5370
5371        switch (policy) {
5372        case SCHED_FIFO:
5373        case SCHED_RR:
5374                ret = MAX_USER_RT_PRIO-1;
5375                break;
5376        case SCHED_NORMAL:
5377        case SCHED_BATCH:
5378        case SCHED_IDLE:
5379                ret = 0;
5380                break;
5381        }
5382        return ret;
5383}
5384
5385/**
5386 * sys_sched_get_priority_min - return minimum RT priority.
5387 * @policy: scheduling class.
5388 *
5389 * this syscall returns the minimum rt_priority that can be used
5390 * by a given scheduling class.
5391 */
5392SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5393{
5394        int ret = -EINVAL;
5395
5396        switch (policy) {
5397        case SCHED_FIFO:
5398        case SCHED_RR:
5399                ret = 1;
5400                break;
5401        case SCHED_NORMAL:
5402        case SCHED_BATCH:
5403        case SCHED_IDLE:
5404                ret = 0;
5405        }
5406        return ret;
5407}
5408
5409/**
5410 * sys_sched_rr_get_interval - return the default timeslice of a process.
5411 * @pid: pid of the process.
5412 * @interval: userspace pointer to the timeslice value.
5413 *
5414 * this syscall writes the default timeslice value of a given process
5415 * into the user-space timespec buffer. A value of '0' means infinity.
5416 */
5417SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5418                struct timespec __user *, interval)
5419{
5420        struct task_struct *p;
5421        unsigned int time_slice;
5422        unsigned long flags;
5423        struct rq *rq;
5424        int retval;
5425        struct timespec t;
5426
5427        if (pid < 0)
5428                return -EINVAL;
5429
5430        retval = -ESRCH;
5431        rcu_read_lock();
5432        p = find_process_by_pid(pid);
5433        if (!p)
5434                goto out_unlock;
5435
5436        retval = security_task_getscheduler(p);
5437        if (retval)
5438                goto out_unlock;
5439
5440        rq = task_rq_lock(p, &flags);
5441        time_slice = p->sched_class->get_rr_interval(rq, p);
5442        task_rq_unlock(rq, &flags);
5443
5444        rcu_read_unlock();
5445        jiffies_to_timespec(time_slice, &t);
5446        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5447        return retval;
5448
5449out_unlock:
5450        rcu_read_unlock();
5451        return retval;
5452}
5453
5454static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5455
5456void sched_show_task(struct task_struct *p)
5457{
5458        unsigned long free = 0;
5459        unsigned state;
5460
5461        state = p->state ? __ffs(p->state) + 1 : 0;
5462        printk(KERN_INFO "%-15.15s %c", p->comm,
5463                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5464#if BITS_PER_LONG == 32
5465        if (state == TASK_RUNNING)
5466                printk(KERN_CONT " running  ");
5467        else
5468                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5469#else
5470        if (state == TASK_RUNNING)
5471                printk(KERN_CONT "  running task    ");
5472        else
5473                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5474#endif
5475#ifdef CONFIG_DEBUG_STACK_USAGE
5476        free = stack_not_used(p);
5477#endif
5478        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5479                task_pid_nr(p), task_pid_nr(p->real_parent),
5480                (unsigned long)task_thread_info(p)->flags);
5481
5482        show_stack(p, NULL);
5483}
5484
5485void show_state_filter(unsigned long state_filter)
5486{
5487        struct task_struct *g, *p;
5488
5489#if BITS_PER_LONG == 32
5490        printk(KERN_INFO
5491                "  task                PC stack   pid father\n");
5492#else
5493        printk(KERN_INFO
5494                "  task                        PC stack   pid father\n");
5495#endif
5496        read_lock(&tasklist_lock);
5497        do_each_thread(g, p) {
5498                /*
5499                 * reset the NMI-timeout, listing all files on a slow
5500                 * console might take alot of time:
5501                 */
5502                touch_nmi_watchdog();
5503                if (!state_filter || (p->state & state_filter))
5504                        sched_show_task(p);
5505        } while_each_thread(g, p);
5506
5507        touch_all_softlockup_watchdogs();
5508
5509#ifdef CONFIG_SCHED_DEBUG
5510        sysrq_sched_debug_show();
5511#endif
5512        read_unlock(&tasklist_lock);
5513        /*
5514         * Only show locks if all tasks are dumped:
5515         */
5516        if (!state_filter)
5517                debug_show_all_locks();
5518}
5519
5520void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5521{
5522        idle->sched_class = &idle_sched_class;
5523}
5524
5525/**
5526 * init_idle - set up an idle thread for a given CPU
5527 * @idle: task in question
5528 * @cpu: cpu the idle task belongs to
5529 *
5530 * NOTE: this function does not set the idle thread's NEED_RESCHED
5531 * flag, to make booting more robust.
5532 */
5533void __cpuinit init_idle(struct task_struct *idle, int cpu)
5534{
5535        struct rq *rq = cpu_rq(cpu);
5536        unsigned long flags;
5537
5538        raw_spin_lock_irqsave(&rq->lock, flags);
5539
5540        __sched_fork(idle);
5541        idle->state = TASK_RUNNING;
5542        idle->se.exec_start = sched_clock();
5543
5544        cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5545        /*
5546         * We're having a chicken and egg problem, even though we are
5547         * holding rq->lock, the cpu isn't yet set to this cpu so the
5548         * lockdep check in task_group() will fail.
5549         *
5550         * Similar case to sched_fork(). / Alternatively we could
5551         * use task_rq_lock() here and obtain the other rq->lock.
5552         *
5553         * Silence PROVE_RCU
5554         */
5555        rcu_read_lock();
5556        __set_task_cpu(idle, cpu);
5557        rcu_read_unlock();
5558
5559        rq->curr = rq->idle = idle;
5560#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5561        idle->oncpu = 1;
5562#endif
5563        raw_spin_unlock_irqrestore(&rq->lock, flags);
5564
5565        /* Set the preempt count _outside_ the spinlocks! */
5566#if defined(CONFIG_PREEMPT)
5567        task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5568#else
5569        task_thread_info(idle)->preempt_count = 0;
5570#endif
5571        /*
5572         * The idle tasks have their own, simple scheduling class:
5573         */
5574        idle->sched_class = &idle_sched_class;
5575        ftrace_graph_init_task(idle);
5576}
5577
5578/*
5579 * In a system that switches off the HZ timer nohz_cpu_mask
5580 * indicates which cpus entered this state. This is used
5581 * in the rcu update to wait only for active cpus. For system
5582 * which do not switch off the HZ timer nohz_cpu_mask should
5583 * always be CPU_BITS_NONE.
5584 */
5585cpumask_var_t nohz_cpu_mask;
5586
5587/*
5588 * Increase the granularity value when there are more CPUs,
5589 * because with more CPUs the 'effective latency' as visible
5590 * to users decreases. But the relationship is not linear,
5591 * so pick a second-best guess by going with the log2 of the
5592 * number of CPUs.
5593 *
5594 * This idea comes from the SD scheduler of Con Kolivas:
5595 */
5596static int get_update_sysctl_factor(void)
5597{
5598        unsigned int cpus = min_t(int, num_online_cpus(), 8);
5599        unsigned int factor;
5600
5601        switch (sysctl_sched_tunable_scaling) {
5602        case SCHED_TUNABLESCALING_NONE:
5603                factor = 1;
5604                break;
5605        case SCHED_TUNABLESCALING_LINEAR:
5606                factor = cpus;
5607                break;
5608        case SCHED_TUNABLESCALING_LOG:
5609        default:
5610                factor = 1 + ilog2(cpus);
5611                break;
5612        }
5613
5614        return factor;
5615}
5616
5617static void update_sysctl(void)
5618{
5619        unsigned int factor = get_update_sysctl_factor();
5620
5621#define SET_SYSCTL(name) \
5622        (sysctl_##name = (factor) * normalized_sysctl_##name)
5623        SET_SYSCTL(sched_min_granularity);
5624        SET_SYSCTL(sched_latency);
5625        SET_SYSCTL(sched_wakeup_granularity);
5626#undef SET_SYSCTL
5627}
5628
5629static inline void sched_init_granularity(void)
5630{
5631        update_sysctl();
5632}
5633
5634#ifdef CONFIG_SMP
5635/*
5636 * This is how migration works:
5637 *
5638 * 1) we invoke migration_cpu_stop() on the target CPU using
5639 *    stop_one_cpu().
5640 * 2) stopper starts to run (implicitly forcing the migrated thread
5641 *    off the CPU)
5642 * 3) it checks whether the migrated task is still in the wrong runqueue.
5643 * 4) if it's in the wrong runqueue then the migration thread removes
5644 *    it and puts it into the right queue.
5645 * 5) stopper completes and stop_one_cpu() returns and the migration
5646 *    is done.
5647 */
5648
5649/*
5650 * Change a given task's CPU affinity. Migrate the thread to a
5651 * proper CPU and schedule it away if the CPU it's executing on
5652 * is removed from the allowed bitmask.
5653 *
5654 * NOTE: the caller must have a valid reference to the task, the
5655 * task must not exit() & deallocate itself prematurely. The
5656 * call is not atomic; no spinlocks may be held.
5657 */
5658int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5659{
5660        unsigned long flags;
5661        struct rq *rq;
5662        unsigned int dest_cpu;
5663        int ret = 0;
5664
5665        /*
5666         * Serialize against TASK_WAKING so that ttwu() and wunt() can
5667         * drop the rq->lock and still rely on ->cpus_allowed.
5668         */
5669again:
5670        while (task_is_waking(p))
5671                cpu_relax();
5672        rq = task_rq_lock(p, &flags);
5673        if (task_is_waking(p)) {
5674                task_rq_unlock(rq, &flags);
5675                goto again;
5676        }
5677
5678        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5679                ret = -EINVAL;
5680                goto out;
5681        }
5682
5683        if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5684                     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5685                ret = -EINVAL;
5686                goto out;
5687        }
5688
5689        if (p->sched_class->set_cpus_allowed)
5690                p->sched_class->set_cpus_allowed(p, new_mask);
5691        else {
5692                cpumask_copy(&p->cpus_allowed, new_mask);
5693                p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5694        }
5695
5696        /* Can the task run on the task's current CPU? If so, we're done */
5697        if (cpumask_test_cpu(task_cpu(p), new_mask))
5698                goto out;
5699
5700        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5701        if (migrate_task(p, rq)) {
5702                struct migration_arg arg = { p, dest_cpu };
5703                /* Need help from migration thread: drop lock and wait. */
5704                task_rq_unlock(rq, &flags);
5705                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5706                tlb_migrate_finish(p->mm);
5707                return 0;
5708        }
5709out:
5710        task_rq_unlock(rq, &flags);
5711
5712        return ret;
5713}
5714EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5715
5716/*
5717 * Move (not current) task off this cpu, onto dest cpu. We're doing
5718 * this because either it can't run here any more (set_cpus_allowed()
5719 * away from this CPU, or CPU going down), or because we're
5720 * attempting to rebalance this task on exec (sched_exec).
5721 *
5722 * So we race with normal scheduler movements, but that's OK, as long
5723 * as the task is no longer on this CPU.
5724 *
5725 * Returns non-zero if task was successfully migrated.
5726 */
5727static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5728{
5729        struct rq *rq_dest, *rq_src;
5730        int ret = 0;
5731
5732        if (unlikely(!cpu_active(dest_cpu)))
5733                return ret;
5734
5735        rq_src = cpu_rq(src_cpu);
5736        rq_dest = cpu_rq(dest_cpu);
5737
5738        double_rq_lock(rq_src, rq_dest);
5739        /* Already moved. */
5740        if (task_cpu(p) != src_cpu)
5741                goto done;
5742        /* Affinity changed (again). */
5743        if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5744                goto fail;
5745
5746        /*
5747         * If we're not on a rq, the next wake-up will ensure we're
5748         * placed properly.
5749         */
5750        if (p->se.on_rq) {
5751                deactivate_task(rq_src, p, 0);
5752                set_task_cpu(p, dest_cpu);
5753                activate_task(rq_dest, p, 0);
5754                check_preempt_curr(rq_dest, p, 0);
5755        }
5756done:
5757        ret = 1;
5758fail:
5759        double_rq_unlock(rq_src, rq_dest);
5760        return ret;
5761}
5762
5763/*
5764 * migration_cpu_stop - this will be executed by a highprio stopper thread
5765 * and performs thread migration by bumping thread off CPU then
5766 * 'pushing' onto another runqueue.
5767 */
5768static int migration_cpu_stop(void *data)
5769{
5770        struct migration_arg *arg = data;
5771
5772        /*
5773         * The original target cpu might have gone down and we might
5774         * be on another cpu but it doesn't matter.
5775         */
5776        local_irq_disable();
5777        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5778        local_irq_enable();
5779        return 0;
5780}
5781
5782#ifdef CONFIG_HOTPLUG_CPU
5783
5784/*
5785 * Ensures that the idle task is using init_mm right before its cpu goes
5786 * offline.
5787 */
5788void idle_task_exit(void)
5789{
5790        struct mm_struct *mm = current->active_mm;
5791
5792        BUG_ON(cpu_online(smp_processor_id()));
5793
5794        if (mm != &init_mm)
5795                switch_mm(mm, &init_mm, current);
5796        mmdrop(mm);
5797}
5798
5799/*
5800 * While a dead CPU has no uninterruptible tasks queued at this point,
5801 * it might still have a nonzero ->nr_uninterruptible counter, because
5802 * for performance reasons the counter is not stricly tracking tasks to
5803 * their home CPUs. So we just add the counter to another CPU's counter,
5804 * to keep the global sum constant after CPU-down:
5805 */
5806static void migrate_nr_uninterruptible(struct rq *rq_src)
5807{
5808        struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5809
5810        rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5811        rq_src->nr_uninterruptible = 0;
5812}
5813
5814/*
5815 * remove the tasks which were accounted by rq from calc_load_tasks.
5816 */
5817static void calc_global_load_remove(struct rq *rq)
5818{
5819        atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5820        rq->calc_load_active = 0;
5821}
5822
5823/*
5824 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5825 * try_to_wake_up()->select_task_rq().
5826 *
5827 * Called with rq->lock held even though we'er in stop_machine() and
5828 * there's no concurrency possible, we hold the required locks anyway
5829 * because of lock validation efforts.
5830 */
5831static void migrate_tasks(unsigned int dead_cpu)
5832{
5833        struct rq *rq = cpu_rq(dead_cpu);
5834        struct task_struct *next, *stop = rq->stop;
5835        int dest_cpu;
5836
5837        /*
5838         * Fudge the rq selection such that the below task selection loop
5839         * doesn't get stuck on the currently eligible stop task.
5840         *
5841         * We're currently inside stop_machine() and the rq is either stuck
5842         * in the stop_machine_cpu_stop() loop, or we're executing this code,
5843         * either way we should never end up calling schedule() until we're
5844         * done here.
5845         */
5846        rq->stop = NULL;
5847
5848        for ( ; ; ) {
5849                /*
5850                 * There's this thread running, bail when that's the only
5851                 * remaining thread.
5852                 */
5853                if (rq->nr_running == 1)
5854                        break;
5855
5856                next = pick_next_task(rq);
5857                BUG_ON(!next);
5858                next->sched_class->put_prev_task(rq, next);
5859
5860                /* Find suitable destination for @next, with force if needed. */
5861                dest_cpu = select_fallback_rq(dead_cpu, next);
5862                raw_spin_unlock(&rq->lock);
5863
5864                __migrate_task(next, dead_cpu, dest_cpu);
5865
5866                raw_spin_lock(&rq->lock);
5867        }
5868
5869        rq->stop = stop;
5870}
5871
5872#endif /* CONFIG_HOTPLUG_CPU */
5873
5874#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5875
5876static struct ctl_table sd_ctl_dir[] = {
5877        {
5878                .procname       = "sched_domain",
5879                .mode           = 0555,
5880        },
5881        {}
5882};
5883
5884static struct ctl_table sd_ctl_root[] = {
5885        {
5886                .procname       = "kernel",
5887                .mode           = 0555,
5888                .child          = sd_ctl_dir,
5889        },
5890        {}
5891};
5892
5893static struct ctl_table *sd_alloc_ctl_entry(int n)
5894{
5895        struct ctl_table *entry =
5896                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5897
5898        return entry;
5899}
5900
5901static void sd_free_ctl_entry(struct ctl_table **tablep)
5902{
5903        struct ctl_table *entry;
5904
5905        /*
5906         * In the intermediate directories, both the child directory and
5907         * procname are dynamically allocated and could fail but the mode
5908         * will always be set. In the lowest directory the names are
5909         * static strings and all have proc handlers.
5910         */
5911        for (entry = *tablep; entry->mode; entry++) {
5912                if (entry->child)
5913                        sd_free_ctl_entry(&entry->child);
5914                if (entry->proc_handler == NULL)
5915                        kfree(entry->procname);
5916        }
5917
5918        kfree(*tablep);
5919        *tablep = NULL;
5920}
5921
5922static void
5923set_table_entry(struct ctl_table *entry,
5924                const char *procname, void *data, int maxlen,
5925                mode_t mode, proc_handler *proc_handler)
5926{
5927        entry->procname = procname;
5928        entry->data = data;
5929        entry->maxlen = maxlen;
5930        entry->mode = mode;
5931        entry->proc_handler = proc_handler;
5932}
5933
5934static struct ctl_table *
5935sd_alloc_ctl_domain_table(struct sched_domain *sd)
5936{
5937        struct ctl_table *table = sd_alloc_ctl_entry(13);
5938
5939        if (table == NULL)
5940                return NULL;
5941
5942        set_table_entry(&table[0], "min_interval", &sd->min_interval,
5943                sizeof(long), 0644, proc_doulongvec_minmax);
5944        set_table_entry(&table[1], "max_interval", &sd->max_interval,
5945                sizeof(long), 0644, proc_doulongvec_minmax);
5946        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5947                sizeof(int), 0644, proc_dointvec_minmax);
5948        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5949                sizeof(int), 0644, proc_dointvec_minmax);
5950        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5951                sizeof(int), 0644, proc_dointvec_minmax);
5952        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5953                sizeof(int), 0644, proc_dointvec_minmax);
5954        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5955                sizeof(int), 0644, proc_dointvec_minmax);
5956        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5957                sizeof(int), 0644, proc_dointvec_minmax);
5958        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5959                sizeof(int), 0644, proc_dointvec_minmax);
5960        set_table_entry(&table[9], "cache_nice_tries",
5961                &sd->cache_nice_tries,
5962                sizeof(int), 0644, proc_dointvec_minmax);
5963        set_table_entry(&table[10], "flags", &sd->flags,
5964                sizeof(int), 0644, proc_dointvec_minmax);
5965        set_table_entry(&table[11], "name", sd->name,
5966                CORENAME_MAX_SIZE, 0444, proc_dostring);
5967        /* &table[12] is terminator */
5968
5969        return table;
5970}
5971
5972static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5973{
5974        struct ctl_table *entry, *table;
5975        struct sched_domain *sd;
5976        int domain_num = 0, i;
5977        char buf[32];
5978
5979        for_each_domain(cpu, sd)
5980                domain_num++;
5981        entry = table = sd_alloc_ctl_entry(domain_num + 1);
5982        if (table == NULL)
5983                return NULL;
5984
5985        i = 0;
5986        for_each_domain(cpu, sd) {
5987                snprintf(buf, 32, "domain%d", i);
5988                entry->procname = kstrdup(buf, GFP_KERNEL);
5989                entry->mode = 0555;
5990                entry->child = sd_alloc_ctl_domain_table(sd);
5991                entry++;
5992                i++;
5993        }
5994        return table;
5995}
5996
5997static struct ctl_table_header *sd_sysctl_header;
5998static void register_sched_domain_sysctl(void)
5999{
6000        int i, cpu_num = num_possible_cpus();
6001        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6002        char buf[32];
6003
6004        WARN_ON(sd_ctl_dir[0].child);
6005        sd_ctl_dir[0].child = entry;
6006
6007        if (entry == NULL)
6008                return;
6009
6010        for_each_possible_cpu(i) {
6011                snprintf(buf, 32, "cpu%d", i);
6012                entry->procname = kstrdup(buf, GFP_KERNEL);
6013                entry->mode = 0555;
6014                entry->child = sd_alloc_ctl_cpu_table(i);
6015                entry++;
6016        }
6017
6018        WARN_ON(sd_sysctl_header);
6019        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6020}
6021
6022/* may be called multiple times per register */
6023static void unregister_sched_domain_sysctl(void)
6024{
6025        if (sd_sysctl_header)
6026                unregister_sysctl_table(sd_sysctl_header);
6027        sd_sysctl_header = NULL;
6028        if (sd_ctl_dir[0].child)
6029                sd_free_ctl_entry(&sd_ctl_dir[0].child);
6030}
6031#else
6032static void register_sched_domain_sysctl(void)
6033{
6034}
6035static void unregister_sched_domain_sysctl(void)
6036{
6037}
6038#endif
6039
6040static void set_rq_online(struct rq *rq)
6041{
6042        if (!rq->online) {
6043                const struct sched_class *class;
6044
6045                cpumask_set_cpu(rq->cpu, rq->rd->online);
6046                rq->online = 1;
6047
6048                for_each_class(class) {
6049                        if (class->rq_online)
6050                                class->rq_online(rq);
6051                }
6052        }
6053}
6054
6055static void set_rq_offline(struct rq *rq)
6056{
6057        if (rq->online) {
6058                const struct sched_class *class;
6059
6060                for_each_class(class) {
6061                        if (class->rq_offline)
6062                                class->rq_offline(rq);
6063                }
6064
6065                cpumask_clear_cpu(rq->cpu, rq->rd->online);
6066                rq->online = 0;
6067        }
6068}
6069
6070/*
6071 * migration_call - callback that gets triggered when a CPU is added.
6072 * Here we can start up the necessary migration thread for the new CPU.
6073 */
6074static int __cpuinit
6075migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6076{
6077        int cpu = (long)hcpu;
6078        unsigned long flags;
6079        struct rq *rq = cpu_rq(cpu);
6080
6081        switch (action & ~CPU_TASKS_FROZEN) {
6082
6083        case CPU_UP_PREPARE:
6084                rq->calc_load_update = calc_load_update;
6085                break;
6086
6087        case CPU_ONLINE:
6088                /* Update our root-domain */
6089                raw_spin_lock_irqsave(&rq->lock, flags);
6090                if (rq->rd) {
6091                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6092
6093                        set_rq_online(rq);
6094                }
6095                raw_spin_unlock_irqrestore(&rq->lock, flags);
6096                break;
6097
6098#ifdef CONFIG_HOTPLUG_CPU
6099        case CPU_DYING:
6100                /* Update our root-domain */
6101                raw_spin_lock_irqsave(&rq->lock, flags);
6102                if (rq->rd) {
6103                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6104                        set_rq_offline(rq);
6105                }
6106                migrate_tasks(cpu);
6107                BUG_ON(rq->nr_running != 1); /* the migration thread */
6108                raw_spin_unlock_irqrestore(&rq->lock, flags);
6109
6110                migrate_nr_uninterruptible(rq);
6111                calc_global_load_remove(rq);
6112                break;
6113#endif
6114        }
6115        return NOTIFY_OK;
6116}
6117
6118/*
6119 * Register at high priority so that task migration (migrate_all_tasks)
6120 * happens before everything else.  This has to be lower priority than
6121 * the notifier in the perf_event subsystem, though.
6122 */
6123static struct notifier_block __cpuinitdata migration_notifier = {
6124        .notifier_call = migration_call,
6125        .priority = CPU_PRI_MIGRATION,
6126};
6127
6128static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6129                                      unsigned long action, void *hcpu)
6130{
6131        switch (action & ~CPU_TASKS_FROZEN) {
6132        case CPU_ONLINE:
6133        case CPU_DOWN_FAILED:
6134                set_cpu_active((long)hcpu, true);
6135                return NOTIFY_OK;
6136        default:
6137                return NOTIFY_DONE;
6138        }
6139}
6140
6141static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6142                                        unsigned long action, void *hcpu)
6143{
6144        switch (action & ~CPU_TASKS_FROZEN) {
6145        case CPU_DOWN_PREPARE:
6146                set_cpu_active((long)hcpu, false);
6147                return NOTIFY_OK;
6148        default:
6149                return NOTIFY_DONE;
6150        }
6151}
6152
6153static int __init migration_init(void)
6154{
6155        void *cpu = (void *)(long)smp_processor_id();
6156        int err;
6157
6158        /* Initialize migration for the boot CPU */
6159        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6160        BUG_ON(err == NOTIFY_BAD);
6161        migration_call(&migration_notifier, CPU_ONLINE, cpu);
6162        register_cpu_notifier(&migration_notifier);
6163
6164        /* Register cpu active notifiers */
6165        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6166        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6167
6168        return 0;
6169}
6170early_initcall(migration_init);
6171#endif
6172
6173#ifdef CONFIG_SMP
6174
6175#ifdef CONFIG_SCHED_DEBUG
6176
6177static __read_mostly int sched_domain_debug_enabled;
6178
6179static int __init sched_domain_debug_setup(char *str)
6180{
6181        sched_domain_debug_enabled = 1;
6182
6183        return 0;
6184}
6185early_param("sched_debug", sched_domain_debug_setup);
6186
6187static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6188                                  struct cpumask *groupmask)
6189{
6190        struct sched_group *group = sd->groups;
6191        char str[256];
6192
6193        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6194        cpumask_clear(groupmask);
6195
6196        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6197
6198        if (!(sd->flags & SD_LOAD_BALANCE)) {
6199                printk("does not load-balance\n");
6200                if (sd->parent)
6201                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6202                                        " has parent");
6203                return -1;
6204        }
6205
6206        printk(KERN_CONT "span %s level %s\n", str, sd->name);
6207
6208        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6209                printk(KERN_ERR "ERROR: domain->span does not contain "
6210                                "CPU%d\n", cpu);
6211        }
6212        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6213                printk(KERN_ERR "ERROR: domain->groups does not contain"
6214                                " CPU%d\n", cpu);
6215        }
6216
6217        printk(KERN_DEBUG "%*s groups:", level + 1, "");
6218        do {
6219                if (!group) {
6220                        printk("\n");
6221                        printk(KERN_ERR "ERROR: group is NULL\n");
6222                        break;
6223                }
6224
6225                if (!group->cpu_power) {
6226                        printk(KERN_CONT "\n");
6227                        printk(KERN_ERR "ERROR: domain->cpu_power not "
6228                                        "set\n");
6229                        break;
6230                }
6231
6232                if (!cpumask_weight(sched_group_cpus(group))) {
6233                        printk(KERN_CONT "\n");
6234                        printk(KERN_ERR "ERROR: empty group\n");
6235                        break;
6236                }
6237
6238                if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6239                        printk(KERN_CONT "\n");
6240                        printk(KERN_ERR "ERROR: repeated CPUs\n");
6241                        break;
6242                }
6243
6244                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6245
6246                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6247
6248                printk(KERN_CONT " %s", str);
6249                if (group->cpu_power != SCHED_LOAD_SCALE) {
6250                        printk(KERN_CONT " (cpu_power = %d)",
6251                                group->cpu_power);
6252                }
6253
6254                group = group->next;
6255        } while (group != sd->groups);
6256        printk(KERN_CONT "\n");
6257
6258        if (!cpumask_equal(sched_domain_span(sd), groupmask))
6259                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6260
6261        if (sd->parent &&
6262            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6263                printk(KERN_ERR "ERROR: parent span is not a superset "
6264                        "of domain->span\n");
6265        return 0;
6266}
6267
6268static void sched_domain_debug(struct sched_domain *sd, int cpu)
6269{
6270        cpumask_var_t groupmask;
6271        int level = 0;
6272
6273        if (!sched_domain_debug_enabled)
6274                return;
6275
6276        if (!sd) {
6277                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6278                return;
6279        }
6280
6281        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6282
6283        if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6284                printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6285                return;
6286        }
6287
6288        for (;;) {
6289                if (sched_domain_debug_one(sd, cpu, level, groupmask))
6290                        break;
6291                level++;
6292                sd = sd->parent;
6293                if (!sd)
6294                        break;
6295        }
6296        free_cpumask_var(groupmask);
6297}
6298#else /* !CONFIG_SCHED_DEBUG */
6299# define sched_domain_debug(sd, cpu) do { } while (0)
6300#endif /* CONFIG_SCHED_DEBUG */
6301
6302static int sd_degenerate(struct sched_domain *sd)
6303{
6304        if (cpumask_weight(sched_domain_span(sd)) == 1)
6305                return 1;
6306
6307        /* Following flags need at least 2 groups */
6308        if (sd->flags & (SD_LOAD_BALANCE |
6309                         SD_BALANCE_NEWIDLE |
6310                         SD_BALANCE_FORK |
6311                         SD_BALANCE_EXEC |
6312                         SD_SHARE_CPUPOWER |
6313                         SD_SHARE_PKG_RESOURCES)) {
6314                if (sd->groups != sd->groups->next)
6315                        return 0;
6316        }
6317
6318        /* Following flags don't use groups */
6319        if (sd->flags & (SD_WAKE_AFFINE))
6320                return 0;
6321
6322        return 1;
6323}
6324
6325static int
6326sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6327{
6328        unsigned long cflags = sd->flags, pflags = parent->flags;
6329
6330        if (sd_degenerate(parent))
6331                return 1;
6332
6333        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6334                return 0;
6335
6336        /* Flags needing groups don't count if only 1 group in parent */
6337        if (parent->groups == parent->groups->next) {
6338                pflags &= ~(SD_LOAD_BALANCE |
6339                                SD_BALANCE_NEWIDLE |
6340                                SD_BALANCE_FORK |
6341                                SD_BALANCE_EXEC |
6342                                SD_SHARE_CPUPOWER |
6343                                SD_SHARE_PKG_RESOURCES);
6344                if (nr_node_ids == 1)
6345                        pflags &= ~SD_SERIALIZE;
6346        }
6347        if (~cflags & pflags)
6348                return 0;
6349
6350        return 1;
6351}
6352
6353static void free_rootdomain(struct root_domain *rd)
6354{
6355        synchronize_sched();
6356
6357        cpupri_cleanup(&rd->cpupri);
6358
6359        free_cpumask_var(rd->rto_mask);
6360        free_cpumask_var(rd->online);
6361        free_cpumask_var(rd->span);
6362        kfree(rd);
6363}
6364
6365static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6366{
6367        struct root_domain *old_rd = NULL;
6368        unsigned long flags;
6369
6370        raw_spin_lock_irqsave(&rq->lock, flags);
6371
6372        if (rq->rd) {
6373                old_rd = rq->rd;
6374
6375                if (cpumask_test_cpu(rq->cpu, old_rd->online))
6376                        set_rq_offline(rq);
6377
6378                cpumask_clear_cpu(rq->cpu, old_rd->span);
6379
6380                /*
6381                 * If we dont want to free the old_rt yet then
6382                 * set old_rd to NULL to skip the freeing later
6383                 * in this function:
6384                 */
6385                if (!atomic_dec_and_test(&old_rd->refcount))
6386                        old_rd = NULL;
6387        }
6388
6389        atomic_inc(&rd->refcount);
6390        rq->rd = rd;
6391
6392        cpumask_set_cpu(rq->cpu, rd->span);
6393        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6394                set_rq_online(rq);
6395
6396        raw_spin_unlock_irqrestore(&rq->lock, flags);
6397
6398        if (old_rd)
6399                free_rootdomain(old_rd);
6400}
6401
6402static int init_rootdomain(struct root_domain *rd)
6403{
6404        memset(rd, 0, sizeof(*rd));
6405
6406        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6407                goto out;
6408        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6409                goto free_span;
6410        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6411                goto free_online;
6412
6413        if (cpupri_init(&rd->cpupri) != 0)
6414                goto free_rto_mask;
6415        return 0;
6416
6417free_rto_mask:
6418        free_cpumask_var(rd->rto_mask);
6419free_online:
6420        free_cpumask_var(rd->online);
6421free_span:
6422        free_cpumask_var(rd->span);
6423out:
6424        return -ENOMEM;
6425}
6426
6427static void init_defrootdomain(void)
6428{
6429        init_rootdomain(&def_root_domain);
6430
6431        atomic_set(&def_root_domain.refcount, 1);
6432}
6433
6434static struct root_domain *alloc_rootdomain(void)
6435{
6436        struct root_domain *rd;
6437
6438        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6439        if (!rd)
6440                return NULL;
6441
6442        if (init_rootdomain(rd) != 0) {
6443                kfree(rd);
6444                return NULL;
6445        }
6446
6447        return rd;
6448}
6449
6450/*
6451 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6452 * hold the hotplug lock.
6453 */
6454static void
6455cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6456{
6457        struct rq *rq = cpu_rq(cpu);
6458        struct sched_domain *tmp;
6459
6460        for (tmp = sd; tmp; tmp = tmp->parent)
6461                tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6462
6463        /* Remove the sched domains which do not contribute to scheduling. */
6464        for (tmp = sd; tmp; ) {
6465                struct sched_domain *parent = tmp->parent;
6466                if (!parent)
6467                        break;
6468
6469                if (sd_parent_degenerate(tmp, parent)) {
6470                        tmp->parent = parent->parent;
6471                        if (parent->parent)
6472                                parent->parent->child = tmp;
6473                } else
6474                        tmp = tmp->parent;
6475        }
6476
6477        if (sd && sd_degenerate(sd)) {
6478                sd = sd->parent;
6479                if (sd)
6480                        sd->child = NULL;
6481        }
6482
6483        sched_domain_debug(sd, cpu);
6484
6485        rq_attach_root(rq, rd);
6486        rcu_assign_pointer(rq->sd, sd);
6487}
6488
6489/* cpus with isolated domains */
6490static cpumask_var_t cpu_isolated_map;
6491
6492/* Setup the mask of cpus configured for isolated domains */
6493static int __init isolated_cpu_setup(char *str)
6494{
6495        alloc_bootmem_cpumask_var(&cpu_isolated_map);
6496        cpulist_parse(str, cpu_isolated_map);
6497        return 1;
6498}
6499
6500__setup("isolcpus=", isolated_cpu_setup);
6501
6502/*
6503 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6504 * to a function which identifies what group(along with sched group) a CPU
6505 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6506 * (due to the fact that we keep track of groups covered with a struct cpumask).
6507 *
6508 * init_sched_build_groups will build a circular linked list of the groups
6509 * covered by the given span, and will set each group's ->cpumask correctly,
6510 * and ->cpu_power to 0.
6511 */
6512static void
6513init_sched_build_groups(const struct cpumask *span,
6514                        const struct cpumask *cpu_map,
6515                        int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6516                                        struct sched_group **sg,
6517                                        struct cpumask *tmpmask),
6518                        struct cpumask *covered, struct cpumask *tmpmask)
6519{
6520        struct sched_group *first = NULL, *last = NULL;
6521        int i;
6522
6523        cpumask_clear(covered);
6524
6525        for_each_cpu(i, span) {
6526                struct sched_group *sg;
6527                int group = group_fn(i, cpu_map, &sg, tmpmask);
6528                int j;
6529
6530                if (cpumask_test_cpu(i, covered))
6531                        continue;
6532
6533                cpumask_clear(sched_group_cpus(sg));
6534                sg->cpu_power = 0;
6535
6536                for_each_cpu(j, span) {
6537                        if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6538                                continue;
6539
6540                        cpumask_set_cpu(j, covered);
6541                        cpumask_set_cpu(j, sched_group_cpus(sg));
6542                }
6543                if (!first)
6544                        first = sg;
6545                if (last)
6546                        last->next = sg;
6547                last = sg;
6548        }
6549        last->next = first;
6550}
6551
6552#define SD_NODES_PER_DOMAIN 16
6553
6554#ifdef CONFIG_NUMA
6555
6556/**
6557 * find_next_best_node - find the next node to include in a sched_domain
6558 * @node: node whose sched_domain we're building
6559 * @used_nodes: nodes already in the sched_domain
6560 *
6561 * Find the next node to include in a given scheduling domain. Simply
6562 * finds the closest node not already in the @used_nodes map.
6563 *
6564 * Should use nodemask_t.
6565 */
6566static int find_next_best_node(int node, nodemask_t *used_nodes)
6567{
6568        int i, n, val, min_val, best_node = 0;
6569
6570        min_val = INT_MAX;
6571
6572        for (i = 0; i < nr_node_ids; i++) {
6573                /* Start at @node */
6574                n = (node + i) % nr_node_ids;
6575
6576                if (!nr_cpus_node(n))
6577                        continue;
6578
6579                /* Skip already used nodes */
6580                if (node_isset(n, *used_nodes))
6581                        continue;
6582
6583                /* Simple min distance search */
6584                val = node_distance(node, n);
6585
6586                if (val < min_val) {
6587                        min_val = val;
6588                        best_node = n;
6589                }
6590        }
6591
6592        node_set(best_node, *used_nodes);
6593        return best_node;
6594}
6595
6596/**
6597 * sched_domain_node_span - get a cpumask for a node's sched_domain
6598 * @node: node whose cpumask we're constructing
6599 * @span: resulting cpumask
6600 *
6601 * Given a node, construct a good cpumask for its sched_domain to span. It
6602 * should be one that prevents unnecessary balancing, but also spreads tasks
6603 * out optimally.
6604 */
6605static void sched_domain_node_span(int node, struct cpumask *span)
6606{
6607        nodemask_t used_nodes;
6608        int i;
6609
6610        cpumask_clear(span);
6611        nodes_clear(used_nodes);
6612
6613        cpumask_or(span, span, cpumask_of_node(node));
6614        node_set(node, used_nodes);
6615
6616        for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6617                int next_node = find_next_best_node(node, &used_nodes);
6618
6619                cpumask_or(span, span, cpumask_of_node(next_node));
6620        }
6621}
6622#endif /* CONFIG_NUMA */
6623
6624int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6625
6626/*
6627 * The cpus mask in sched_group and sched_domain hangs off the end.
6628 *
6629 * ( See the the comments in include/linux/sched.h:struct sched_group
6630 *   and struct sched_domain. )
6631 */
6632struct static_sched_group {
6633        struct sched_group sg;
6634        DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6635};
6636
6637struct static_sched_domain {
6638        struct sched_domain sd;
6639        DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6640};
6641
6642struct s_data {
6643#ifdef CONFIG_NUMA
6644        int                     sd_allnodes;
6645        cpumask_var_t           domainspan;
6646        cpumask_var_t           covered;
6647        cpumask_var_t           notcovered;
6648#endif
6649        cpumask_var_t           nodemask;
6650        cpumask_var_t           this_sibling_map;
6651        cpumask_var_t           this_core_map;
6652        cpumask_var_t           this_book_map;
6653        cpumask_var_t           send_covered;
6654        cpumask_var_t           tmpmask;
6655        struct sched_group      **sched_group_nodes;
6656        struct root_domain      *rd;
6657};
6658
6659enum s_alloc {
6660        sa_sched_groups = 0,
6661        sa_rootdomain,
6662        sa_tmpmask,
6663        sa_send_covered,
6664        sa_this_book_map,
6665        sa_this_core_map,
6666        sa_this_sibling_map,
6667        sa_nodemask,
6668        sa_sched_group_nodes,
6669#ifdef CONFIG_NUMA
6670        sa_notcovered,
6671        sa_covered,
6672        sa_domainspan,
6673#endif
6674        sa_none,
6675};
6676
6677/*
6678 * SMT sched-domains:
6679 */
6680#ifdef CONFIG_SCHED_SMT
6681static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6682static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6683
6684static int
6685cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6686                 struct sched_group **sg, struct cpumask *unused)
6687{
6688        if (sg)
6689                *sg = &per_cpu(sched_groups, cpu).sg;
6690        return cpu;
6691}
6692#endif /* CONFIG_SCHED_SMT */
6693
6694/*
6695 * multi-core sched-domains:
6696 */
6697#ifdef CONFIG_SCHED_MC
6698static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6699static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6700
6701static int
6702cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6703                  struct sched_group **sg, struct cpumask *mask)
6704{
6705        int group;
6706#ifdef CONFIG_SCHED_SMT
6707        cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6708        group = cpumask_first(mask);
6709#else
6710        group = cpu;
6711#endif
6712        if (sg)
6713                *sg = &per_cpu(sched_group_core, group).sg;
6714        return group;
6715}
6716#endif /* CONFIG_SCHED_MC */
6717
6718/*
6719 * book sched-domains:
6720 */
6721#ifdef CONFIG_SCHED_BOOK
6722static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6723static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6724
6725static int
6726cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6727                  struct sched_group **sg, struct cpumask *mask)
6728{
6729        int group = cpu;
6730#ifdef CONFIG_SCHED_MC
6731        cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6732        group = cpumask_first(mask);
6733#elif defined(CONFIG_SCHED_SMT)
6734        cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6735        group = cpumask_first(mask);
6736#endif
6737        if (sg)
6738                *sg = &per_cpu(sched_group_book, group).sg;
6739        return group;
6740}
6741#endif /* CONFIG_SCHED_BOOK */
6742
6743static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6744static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6745
6746static int
6747cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6748                  struct sched_group **sg, struct cpumask *mask)
6749{
6750        int group;
6751#ifdef CONFIG_SCHED_BOOK
6752        cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6753        group = cpumask_first(mask);
6754#elif defined(CONFIG_SCHED_MC)
6755        cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6756        group = cpumask_first(mask);
6757#elif defined(CONFIG_SCHED_SMT)
6758        cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6759        group = cpumask_first(mask);
6760#else
6761        group = cpu;
6762#endif
6763        if (sg)
6764                *sg = &per_cpu(sched_group_phys, group).sg;
6765        return group;
6766}
6767
6768#ifdef CONFIG_NUMA
6769/*
6770 * The init_sched_build_groups can't handle what we want to do with node
6771 * groups, so roll our own. Now each node has its own list of groups which
6772 * gets dynamically allocated.
6773 */
6774static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6775static struct sched_group ***sched_group_nodes_bycpu;
6776
6777static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6778static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6779
6780static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6781                                 struct sched_group **sg,
6782                                 struct cpumask *nodemask)
6783{
6784        int group;
6785
6786        cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6787        group = cpumask_first(nodemask);
6788
6789        if (sg)
6790                *sg = &per_cpu(sched_group_allnodes, group).sg;
6791        return group;
6792}
6793
6794static void init_numa_sched_groups_power(struct sched_group *group_head)
6795{
6796        struct sched_group *sg = group_head;
6797        int j;
6798
6799        if (!sg)
6800                return;
6801        do {
6802                for_each_cpu(j, sched_group_cpus(sg)) {
6803                        struct sched_domain *sd;
6804
6805                        sd = &per_cpu(phys_domains, j).sd;
6806                        if (j != group_first_cpu(sd->groups)) {
6807                                /*
6808                                 * Only add "power" once for each
6809                                 * physical package.
6810                                 */
6811                                continue;
6812                        }
6813
6814                        sg->cpu_power += sd->groups->cpu_power;
6815                }
6816                sg = sg->next;
6817        } while (sg != group_head);
6818}
6819
6820static int build_numa_sched_groups(struct s_data *d,
6821                                   const struct cpumask *cpu_map, int num)
6822{
6823        struct sched_domain *sd;
6824        struct sched_group *sg, *prev;
6825        int n, j;
6826
6827        cpumask_clear(d->covered);
6828        cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6829        if (cpumask_empty(d->nodemask)) {
6830                d->sched_group_nodes[num] = NULL;
6831                goto out;
6832        }
6833
6834        sched_domain_node_span(num, d->domainspan);
6835        cpumask_and(d->domainspan, d->domainspan, cpu_map);
6836
6837        sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6838                          GFP_KERNEL, num);
6839        if (!sg) {
6840                printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6841                       num);
6842                return -ENOMEM;
6843        }
6844        d->sched_group_nodes[num] = sg;
6845
6846        for_each_cpu(j, d->nodemask) {
6847                sd = &per_cpu(node_domains, j).sd;
6848                sd->groups = sg;
6849        }
6850
6851        sg->cpu_power = 0;
6852        cpumask_copy(sched_group_cpus(sg), d->nodemask);
6853        sg->next = sg;
6854        cpumask_or(d->covered, d->covered, d->nodemask);
6855
6856        prev = sg;
6857        for (j = 0; j < nr_node_ids; j++) {
6858                n = (num + j) % nr_node_ids;
6859                cpumask_complement(d->notcovered, d->covered);
6860                cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6861                cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6862                if (cpumask_empty(d->tmpmask))
6863                        break;
6864                cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6865                if (cpumask_empty(d->tmpmask))
6866                        continue;
6867                sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6868                                  GFP_KERNEL, num);
6869                if (!sg) {
6870                        printk(KERN_WARNING
6871                               "Can not alloc domain group for node %d\n", j);
6872                        return -ENOMEM;
6873                }
6874                sg->cpu_power = 0;
6875                cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6876                sg->next = prev->next;
6877                cpumask_or(d->covered, d->covered, d->tmpmask);
6878                prev->next = sg;
6879                prev = sg;
6880        }
6881out:
6882        return 0;
6883}
6884#endif /* CONFIG_NUMA */
6885
6886#ifdef CONFIG_NUMA
6887/* Free memory allocated for various sched_group structures */
6888static void free_sched_groups(const struct cpumask *cpu_map,
6889                              struct cpumask *nodemask)
6890{
6891        int cpu, i;
6892
6893        for_each_cpu(cpu, cpu_map) {
6894                struct sched_group **sched_group_nodes
6895                        = sched_group_nodes_bycpu[cpu];
6896
6897                if (!sched_group_nodes)
6898                        continue;
6899
6900                for (i = 0; i < nr_node_ids; i++) {
6901                        struct sched_group *oldsg, *sg = sched_group_nodes[i];
6902
6903                        cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6904                        if (cpumask_empty(nodemask))
6905                                continue;
6906
6907                        if (sg == NULL)
6908                                continue;
6909                        sg = sg->next;
6910next_sg:
6911                        oldsg = sg;
6912                        sg = sg->next;
6913                        kfree(oldsg);
6914                        if (oldsg != sched_group_nodes[i])
6915                                goto next_sg;
6916                }
6917                kfree(sched_group_nodes);
6918                sched_group_nodes_bycpu[cpu] = NULL;
6919        }
6920}
6921#else /* !CONFIG_NUMA */
6922static void free_sched_groups(const struct cpumask *cpu_map,
6923                              struct cpumask *nodemask)
6924{
6925}
6926#endif /* CONFIG_NUMA */
6927
6928/*
6929 * Initialize sched groups cpu_power.
6930 *
6931 * cpu_power indicates the capacity of sched group, which is used while
6932 * distributing the load between different sched groups in a sched domain.
6933 * Typically cpu_power for all the groups in a sched domain will be same unless
6934 * there are asymmetries in the topology. If there are asymmetries, group
6935 * having more cpu_power will pickup more load compared to the group having
6936 * less cpu_power.
6937 */
6938static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6939{
6940        struct sched_domain *child;
6941        struct sched_group *group;
6942        long power;
6943        int weight;
6944
6945        WARN_ON(!sd || !sd->groups);
6946
6947        if (cpu != group_first_cpu(sd->groups))
6948                return;
6949
6950        sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6951
6952        child = sd->child;
6953
6954        sd->groups->cpu_power = 0;
6955
6956        if (!child) {
6957                power = SCHED_LOAD_SCALE;
6958                weight = cpumask_weight(sched_domain_span(sd));
6959                /*
6960                 * SMT siblings share the power of a single core.
6961                 * Usually multiple threads get a better yield out of
6962                 * that one core than a single thread would have,
6963                 * reflect that in sd->smt_gain.
6964                 */
6965                if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6966                        power *= sd->smt_gain;
6967                        power /= weight;
6968                        power >>= SCHED_LOAD_SHIFT;
6969                }
6970                sd->groups->cpu_power += power;
6971                return;
6972        }
6973
6974        /*
6975         * Add cpu_power of each child group to this groups cpu_power.
6976         */
6977        group = child->groups;
6978        do {
6979                sd->groups->cpu_power += group->cpu_power;
6980                group = group->next;
6981        } while (group != child->groups);
6982}
6983
6984/*
6985 * Initializers for schedule domains
6986 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6987 */
6988
6989#ifdef CONFIG_SCHED_DEBUG
6990# define SD_INIT_NAME(sd, type)         sd->name = #type
6991#else
6992# define SD_INIT_NAME(sd, type)         do { } while (0)
6993#endif
6994
6995#define SD_INIT(sd, type)       sd_init_##type(sd)
6996
6997#define SD_INIT_FUNC(type)      \
6998static noinline void sd_init_##type(struct sched_domain *sd)    \
6999{                                                               \
7000        memset(sd, 0, sizeof(*sd));                             \
7001        *sd = SD_##type##_INIT;                                 \
7002        sd->level = SD_LV_##type;                               \
7003        SD_INIT_NAME(sd, type);                                 \
7004}
7005
7006SD_INIT_FUNC(CPU)
7007#ifdef CONFIG_NUMA
7008 SD_INIT_FUNC(ALLNODES)
7009 SD_INIT_FUNC(NODE)
7010#endif
7011#ifdef CONFIG_SCHED_SMT
7012 SD_INIT_FUNC(SIBLING)
7013#endif
7014#ifdef CONFIG_SCHED_MC
7015 SD_INIT_FUNC(MC)
7016#endif
7017#ifdef CONFIG_SCHED_BOOK
7018 SD_INIT_FUNC(BOOK)
7019#endif
7020
7021static int default_relax_domain_level = -1;
7022
7023static int __init setup_relax_domain_level(char *str)
7024{
7025        unsigned long val;
7026
7027        val = simple_strtoul(str, NULL, 0);
7028        if (val < SD_LV_MAX)
7029                default_relax_domain_level = val;
7030
7031        return 1;
7032}
7033__setup("relax_domain_level=", setup_relax_domain_level);
7034
7035static void set_domain_attribute(struct sched_domain *sd,
7036                                 struct sched_domain_attr *attr)
7037{
7038        int request;
7039
7040        if (!attr || attr->relax_domain_level < 0) {
7041                if (default_relax_domain_level < 0)
7042                        return;
7043                else
7044                        request = default_relax_domain_level;
7045        } else
7046                request = attr->relax_domain_level;
7047        if (request < sd->level) {
7048                /* turn off idle balance on this domain */
7049                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7050        } else {
7051                /* turn on idle balance on this domain */
7052                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7053        }
7054}
7055
7056static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7057                                 const struct cpumask *cpu_map)
7058{
7059        switch (what) {
7060        case sa_sched_groups:
7061                free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7062                d->sched_group_nodes = NULL;
7063        case sa_rootdomain:
7064                free_rootdomain(d->rd); /* fall through */
7065        case sa_tmpmask:
7066                free_cpumask_var(d->tmpmask); /* fall through */
7067        case sa_send_covered:
7068                free_cpumask_var(d->send_covered); /* fall through */
7069        case sa_this_book_map:
7070                free_cpumask_var(d->this_book_map); /* fall through */
7071        case sa_this_core_map:
7072                free_cpumask_var(d->this_core_map); /* fall through */
7073        case sa_this_sibling_map:
7074                free_cpumask_var(d->this_sibling_map); /* fall through */
7075        case sa_nodemask:
7076                free_cpumask_var(d->nodemask); /* fall through */
7077        case sa_sched_group_nodes:
7078#ifdef CONFIG_NUMA
7079                kfree(d->sched_group_nodes); /* fall through */
7080        case sa_notcovered:
7081                free_cpumask_var(d->notcovered); /* fall through */
7082        case sa_covered:
7083                free_cpumask_var(d->covered); /* fall through */
7084        case sa_domainspan:
7085                free_cpumask_var(d->domainspan); /* fall through */
7086#endif
7087        case sa_none:
7088                break;
7089        }
7090}
7091
7092static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7093                                                   const struct cpumask *cpu_map)
7094{
7095#ifdef CONFIG_NUMA
7096        if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7097                return sa_none;
7098        if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7099                return sa_domainspan;
7100        if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7101                return sa_covered;
7102        /* Allocate the per-node list of sched groups */
7103        d->sched_group_nodes = kcalloc(nr_node_ids,
7104                                      sizeof(struct sched_group *), GFP_KERNEL);
7105        if (!d->sched_group_nodes) {
7106                printk(KERN_WARNING "Can not alloc sched group node list\n");
7107                return sa_notcovered;
7108        }
7109        sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7110#endif
7111        if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7112                return sa_sched_group_nodes;
7113        if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7114                return sa_nodemask;
7115        if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7116                return sa_this_sibling_map;
7117        if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7118                return sa_this_core_map;
7119        if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7120                return sa_this_book_map;
7121        if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7122                return sa_send_covered;
7123        d->rd = alloc_rootdomain();
7124        if (!d->rd) {
7125                printk(KERN_WARNING "Cannot alloc root domain\n");
7126                return sa_tmpmask;
7127        }
7128        return sa_rootdomain;
7129}
7130
7131static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7132        const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7133{
7134        struct sched_domain *sd = NULL;
7135#ifdef CONFIG_NUMA
7136        struct sched_domain *parent;
7137
7138        d->sd_allnodes = 0;
7139        if (cpumask_weight(cpu_map) >
7140            SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7141                sd = &per_cpu(allnodes_domains, i).sd;
7142                SD_INIT(sd, ALLNODES);
7143                set_domain_attribute(sd, attr);
7144                cpumask_copy(sched_domain_span(sd), cpu_map);
7145                cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7146                d->sd_allnodes = 1;
7147        }
7148        parent = sd;
7149
7150        sd = &per_cpu(node_domains, i).sd;
7151        SD_INIT(sd, NODE);
7152        set_domain_attribute(sd, attr);
7153        sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7154        sd->parent = parent;
7155        if (parent)
7156                parent->child = sd;
7157        cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7158#endif
7159        return sd;
7160}
7161
7162static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7163        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7164        struct sched_domain *parent, int i)
7165{
7166        struct sched_domain *sd;
7167        sd = &per_cpu(phys_domains, i).sd;
7168        SD_INIT(sd, CPU);
7169        set_domain_attribute(sd, attr);
7170        cpumask_copy(sched_domain_span(sd), d->nodemask);
7171        sd->parent = parent;
7172        if (parent)
7173                parent->child = sd;
7174        cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7175        return sd;
7176}
7177
7178static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7179        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7180        struct sched_domain *parent, int i)
7181{
7182        struct sched_domain *sd = parent;
7183#ifdef CONFIG_SCHED_BOOK
7184        sd = &per_cpu(book_domains, i).sd;
7185        SD_INIT(sd, BOOK);
7186        set_domain_attribute(sd, attr);
7187        cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7188        sd->parent = parent;
7189        parent->child = sd;
7190        cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7191#endif
7192        return sd;
7193}
7194
7195static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7196        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7197        struct sched_domain *parent, int i)
7198{
7199        struct sched_domain *sd = parent;
7200#ifdef CONFIG_SCHED_MC
7201        sd = &per_cpu(core_domains, i).sd;
7202        SD_INIT(sd, MC);
7203        set_domain_attribute(sd, attr);
7204        cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7205        sd->parent = parent;
7206        parent->child = sd;
7207        cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7208#endif
7209        return sd;
7210}
7211
7212static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7213        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7214        struct sched_domain *parent, int i)
7215{
7216        struct sched_domain *sd = parent;
7217#ifdef CONFIG_SCHED_SMT
7218        sd = &per_cpu(cpu_domains, i).sd;
7219        SD_INIT(sd, SIBLING);
7220        set_domain_attribute(sd, attr);
7221        cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7222        sd->parent = parent;
7223        parent->child = sd;
7224        cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7225#endif
7226        return sd;
7227}
7228
7229static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7230                               const struct cpumask *cpu_map, int cpu)
7231{
7232        switch (l) {
7233#ifdef CONFIG_SCHED_SMT
7234        case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7235                cpumask_and(d->this_sibling_map, cpu_map,
7236                            topology_thread_cpumask(cpu));
7237                if (cpu == cpumask_first(d->this_sibling_map))
7238                        init_sched_build_groups(d->this_sibling_map, cpu_map,
7239                                                &cpu_to_cpu_group,
7240                                                d->send_covered, d->tmpmask);
7241                break;
7242#endif
7243#ifdef CONFIG_SCHED_MC
7244        case SD_LV_MC: /* set up multi-core groups */
7245                cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7246                if (cpu == cpumask_first(d->this_core_map))
7247                        init_sched_build_groups(d->this_core_map, cpu_map,
7248                                                &cpu_to_core_group,
7249                                                d->send_covered, d->tmpmask);
7250                break;
7251#endif
7252#ifdef CONFIG_SCHED_BOOK
7253        case SD_LV_BOOK: /* set up book groups */
7254                cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7255                if (cpu == cpumask_first(d->this_book_map))
7256                        init_sched_build_groups(d->this_book_map, cpu_map,
7257                                                &cpu_to_book_group,
7258                                                d->send_covered, d->tmpmask);
7259                break;
7260#endif
7261        case SD_LV_CPU: /* set up physical groups */
7262                cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7263                if (!cpumask_empty(d->nodemask))
7264                        init_sched_build_groups(d->nodemask, cpu_map,
7265                                                &cpu_to_phys_group,
7266                                                d->send_covered, d->tmpmask);
7267                break;
7268#ifdef CONFIG_NUMA
7269        case SD_LV_ALLNODES:
7270                init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7271                                        d->send_covered, d->tmpmask);
7272                break;
7273#endif
7274        default:
7275                break;
7276        }
7277}
7278
7279/*
7280 * Build sched domains for a given set of cpus and attach the sched domains
7281 * to the individual cpus
7282 */
7283static int __build_sched_domains(const struct cpumask *cpu_map,
7284                                 struct sched_domain_attr *attr)
7285{
7286        enum s_alloc alloc_state = sa_none;
7287        struct s_data d;
7288        struct sched_domain *sd;
7289        int i;
7290#ifdef CONFIG_NUMA
7291        d.sd_allnodes = 0;
7292#endif
7293
7294        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7295        if (alloc_state != sa_rootdomain)
7296                goto error;
7297        alloc_state = sa_sched_groups;
7298
7299        /*
7300         * Set up domains for cpus specified by the cpu_map.
7301         */
7302        for_each_cpu(i, cpu_map) {
7303                cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7304                            cpu_map);
7305
7306                sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7307                sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7308                sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7309                sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7310                sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7311        }
7312
7313        for_each_cpu(i, cpu_map) {
7314                build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7315                build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7316                build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7317        }
7318
7319        /* Set up physical groups */
7320        for (i = 0; i < nr_node_ids; i++)
7321                build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7322
7323#ifdef CONFIG_NUMA
7324        /* Set up node groups */
7325        if (d.sd_allnodes)
7326                build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7327
7328        for (i = 0; i < nr_node_ids; i++)
7329                if (build_numa_sched_groups(&d, cpu_map, i))
7330                        goto error;
7331#endif
7332
7333        /* Calculate CPU power for physical packages and nodes */
7334#ifdef CONFIG_SCHED_SMT
7335        for_each_cpu(i, cpu_map) {
7336                sd = &per_cpu(cpu_domains, i).sd;
7337                init_sched_groups_power(i, sd);
7338        }
7339#endif
7340#ifdef CONFIG_SCHED_MC
7341        for_each_cpu(i, cpu_map) {
7342                sd = &per_cpu(core_domains, i).sd;
7343                init_sched_groups_power(i, sd);
7344        }
7345#endif
7346#ifdef CONFIG_SCHED_BOOK
7347        for_each_cpu(i, cpu_map) {
7348                sd = &per_cpu(book_domains, i).sd;
7349                init_sched_groups_power(i, sd);
7350        }
7351#endif
7352
7353        for_each_cpu(i, cpu_map) {
7354                sd = &per_cpu(phys_domains, i).sd;
7355                init_sched_groups_power(i, sd);
7356        }
7357
7358#ifdef CONFIG_NUMA
7359        for (i = 0; i < nr_node_ids; i++)
7360                init_numa_sched_groups_power(d.sched_group_nodes[i]);
7361
7362        if (d.sd_allnodes) {
7363                struct sched_group *sg;
7364
7365                cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7366                                                                d.tmpmask);
7367                init_numa_sched_groups_power(sg);
7368        }
7369#endif
7370
7371        /* Attach the domains */
7372        for_each_cpu(i, cpu_map) {
7373#ifdef CONFIG_SCHED_SMT
7374                sd = &per_cpu(cpu_domains, i).sd;
7375#elif defined(CONFIG_SCHED_MC)
7376                sd = &per_cpu(core_domains, i).sd;
7377#elif defined(CONFIG_SCHED_BOOK)
7378                sd = &per_cpu(book_domains, i).sd;
7379#else
7380                sd = &per_cpu(phys_domains, i).sd;
7381#endif
7382                cpu_attach_domain(sd, d.rd, i);
7383        }
7384
7385        d.sched_group_nodes = NULL; /* don't free this we still need it */
7386        __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7387        return 0;
7388
7389error:
7390        __free_domain_allocs(&d, alloc_state, cpu_map);
7391        return -ENOMEM;
7392}
7393
7394static int build_sched_domains(const struct cpumask *cpu_map)
7395{
7396        return __build_sched_domains(cpu_map, NULL);
7397}
7398
7399static cpumask_var_t *doms_cur; /* current sched domains */
7400static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
7401static struct sched_domain_attr *dattr_cur;
7402                                /* attribues of custom domains in 'doms_cur' */
7403
7404/*
7405 * Special case: If a kmalloc of a doms_cur partition (array of
7406 * cpumask) fails, then fallback to a single sched domain,
7407 * as determined by the single cpumask fallback_doms.
7408 */
7409static cpumask_var_t fallback_doms;
7410
7411/*
7412 * arch_update_cpu_topology lets virtualized architectures update the
7413 * cpu core maps. It is supposed to return 1 if the topology changed
7414 * or 0 if it stayed the same.
7415 */
7416int __attribute__((weak)) arch_update_cpu_topology(void)
7417{
7418        return 0;
7419}
7420
7421cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7422{
7423        int i;
7424        cpumask_var_t *doms;
7425
7426        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7427        if (!doms)
7428                return NULL;
7429        for (i = 0; i < ndoms; i++) {
7430                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7431                        free_sched_domains(doms, i);
7432                        return NULL;
7433                }
7434        }
7435        return doms;
7436}
7437
7438void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7439{
7440        unsigned int i;
7441        for (i = 0; i < ndoms; i++)
7442                free_cpumask_var(doms[i]);
7443        kfree(doms);
7444}
7445
7446/*
7447 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7448 * For now this just excludes isolated cpus, but could be used to
7449 * exclude other special cases in the future.
7450 */
7451static int arch_init_sched_domains(const struct cpumask *cpu_map)
7452{
7453        int err;
7454
7455        arch_update_cpu_topology();
7456        ndoms_cur = 1;
7457        doms_cur = alloc_sched_domains(ndoms_cur);
7458        if (!doms_cur)
7459                doms_cur = &fallback_doms;
7460        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7461        dattr_cur = NULL;
7462        err = build_sched_domains(doms_cur[0]);
7463        register_sched_domain_sysctl();
7464
7465        return err;
7466}
7467
7468static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7469                                       struct cpumask *tmpmask)
7470{
7471        free_sched_groups(cpu_map, tmpmask);
7472}
7473
7474/*
7475 * Detach sched domains from a group of cpus specified in cpu_map
7476 * These cpus will now be attached to the NULL domain
7477 */
7478static void detach_destroy_domains(const struct cpumask *cpu_map)
7479{
7480        /* Save because hotplug lock held. */
7481        static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7482        int i;
7483
7484        for_each_cpu(i, cpu_map)
7485                cpu_attach_domain(NULL, &def_root_domain, i);
7486        synchronize_sched();
7487        arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7488}
7489
7490/* handle null as "default" */
7491static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7492                        struct sched_domain_attr *new, int idx_new)
7493{
7494        struct sched_domain_attr tmp;
7495
7496        /* fast path */
7497        if (!new && !cur)
7498                return 1;
7499
7500        tmp = SD_ATTR_INIT;
7501        return !memcmp(cur ? (cur + idx_cur) : &tmp,
7502                        new ? (new + idx_new) : &tmp,
7503                        sizeof(struct sched_domain_attr));
7504}
7505
7506/*
7507 * Partition sched domains as specified by the 'ndoms_new'
7508 * cpumasks in the array doms_new[] of cpumasks. This compares
7509 * doms_new[] to the current sched domain partitioning, doms_cur[].
7510 * It destroys each deleted domain and builds each new domain.
7511 *
7512 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7513 * The masks don't intersect (don't overlap.) We should setup one
7514 * sched domain for each mask. CPUs not in any of the cpumasks will
7515 * not be load balanced. If the same cpumask appears both in the
7516 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7517 * it as it is.
7518 *
7519 * The passed in 'doms_new' should be allocated using
7520 * alloc_sched_domains.  This routine takes ownership of it and will
7521 * free_sched_domains it when done with it. If the caller failed the
7522 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7523 * and partition_sched_domains() will fallback to the single partition
7524 * 'fallback_doms', it also forces the domains to be rebuilt.
7525 *
7526 * If doms_new == NULL it will be replaced with cpu_online_mask.
7527 * ndoms_new == 0 is a special case for destroying existing domains,
7528 * and it will not create the default domain.
7529 *
7530 * Call with hotplug lock held
7531 */
7532void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7533                             struct sched_domain_attr *dattr_new)
7534{
7535        int i, j, n;
7536        int new_topology;
7537
7538        mutex_lock(&sched_domains_mutex);
7539
7540        /* always unregister in case we don't destroy any domains */
7541        unregister_sched_domain_sysctl();
7542
7543        /* Let architecture update cpu core mappings. */
7544        new_topology = arch_update_cpu_topology();
7545
7546        n = doms_new ? ndoms_new : 0;
7547
7548        /* Destroy deleted domains */
7549        for (i = 0; i < ndoms_cur; i++) {
7550                for (j = 0; j < n && !new_topology; j++) {
7551                        if (cpumask_equal(doms_cur[i], doms_new[j])
7552                            && dattrs_equal(dattr_cur, i, dattr_new, j))
7553                                goto match1;
7554                }
7555                /* no match - a current sched domain not in new doms_new[] */
7556                detach_destroy_domains(doms_cur[i]);
7557match1:
7558                ;
7559        }
7560
7561        if (doms_new == NULL) {
7562                ndoms_cur = 0;
7563                doms_new = &fallback_doms;
7564                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7565                WARN_ON_ONCE(dattr_new);
7566        }
7567
7568        /* Build new domains */
7569        for (i = 0; i < ndoms_new; i++) {
7570                for (j = 0; j < ndoms_cur && !new_topology; j++) {
7571                        if (cpumask_equal(doms_new[i], doms_cur[j])
7572                            && dattrs_equal(dattr_new, i, dattr_cur, j))
7573                                goto match2;
7574                }
7575                /* no match - add a new doms_new */
7576                __build_sched_domains(doms_new[i],
7577                                        dattr_new ? dattr_new + i : NULL);
7578match2:
7579                ;
7580        }
7581
7582        /* Remember the new sched domains */
7583        if (doms_cur != &fallback_doms)
7584                free_sched_domains(doms_cur, ndoms_cur);
7585        kfree(dattr_cur);       /* kfree(NULL) is safe */
7586        doms_cur = doms_new;
7587        dattr_cur = dattr_new;
7588        ndoms_cur = ndoms_new;
7589
7590        register_sched_domain_sysctl();
7591
7592        mutex_unlock(&sched_domains_mutex);
7593}
7594
7595#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7596static void arch_reinit_sched_domains(void)
7597{
7598        get_online_cpus();
7599
7600        /* Destroy domains first to force the rebuild */
7601        partition_sched_domains(0, NULL, NULL);
7602
7603        rebuild_sched_domains();
7604        put_online_cpus();
7605}
7606
7607static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7608{
7609        unsigned int level = 0;
7610
7611        if (sscanf(buf, "%u", &level) != 1)
7612                return -EINVAL;
7613
7614        /*
7615         * level is always be positive so don't check for
7616         * level < POWERSAVINGS_BALANCE_NONE which is 0
7617         * What happens on 0 or 1 byte write,
7618         * need to check for count as well?
7619         */
7620
7621        if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7622                return -EINVAL;
7623
7624        if (smt)
7625                sched_smt_power_savings = level;
7626        else
7627                sched_mc_power_savings = level;
7628
7629        arch_reinit_sched_domains();
7630
7631        return count;
7632}
7633
7634#ifdef CONFIG_SCHED_MC
7635static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7636                                           struct sysdev_class_attribute *attr,
7637                                           char *page)
7638{
7639        return sprintf(page, "%u\n", sched_mc_power_savings);
7640}
7641static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7642                                            struct sysdev_class_attribute *attr,
7643                                            const char *buf, size_t count)
7644{
7645        return sched_power_savings_store(buf, count, 0);
7646}
7647static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7648                         sched_mc_power_savings_show,
7649                         sched_mc_power_savings_store);
7650#endif
7651
7652#ifdef CONFIG_SCHED_SMT
7653static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7654                                            struct sysdev_class_attribute *attr,
7655                                            char *page)
7656{
7657        return sprintf(page, "%u\n", sched_smt_power_savings);
7658}
7659static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7660                                             struct sysdev_class_attribute *attr,
7661                                             const char *buf, size_t count)
7662{
7663        return sched_power_savings_store(buf, count, 1);
7664}
7665static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7666                   sched_smt_power_savings_show,
7667                   sched_smt_power_savings_store);
7668#endif
7669
7670int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7671{
7672        int err = 0;
7673
7674#ifdef CONFIG_SCHED_SMT
7675        if (smt_capable())
7676                err = sysfs_create_file(&cls->kset.kobj,
7677                                        &attr_sched_smt_power_savings.attr);
7678#endif
7679#ifdef CONFIG_SCHED_MC
7680        if (!err && mc_capable())
7681                err = sysfs_create_file(&cls->kset.kobj,
7682                                        &attr_sched_mc_power_savings.attr);
7683#endif
7684        return err;
7685}
7686#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7687
7688/*
7689 * Update cpusets according to cpu_active mask.  If cpusets are
7690 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7691 * around partition_sched_domains().
7692 */
7693static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7694                             void *hcpu)
7695{
7696        switch (action & ~CPU_TASKS_FROZEN) {
7697        case CPU_ONLINE:
7698        case CPU_DOWN_FAILED:
7699                cpuset_update_active_cpus();
7700                return NOTIFY_OK;
7701        default:
7702                return NOTIFY_DONE;
7703        }
7704}
7705
7706static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7707                               void *hcpu)
7708{
7709        switch (action & ~CPU_TASKS_FROZEN) {
7710        case CPU_DOWN_PREPARE:
7711                cpuset_update_active_cpus();
7712                return NOTIFY_OK;
7713        default:
7714                return NOTIFY_DONE;
7715        }
7716}
7717
7718static int update_runtime(struct notifier_block *nfb,
7719                                unsigned long action, void *hcpu)
7720{
7721        int cpu = (int)(long)hcpu;
7722
7723        switch (action) {
7724        case CPU_DOWN_PREPARE:
7725        case CPU_DOWN_PREPARE_FROZEN:
7726                disable_runtime(cpu_rq(cpu));
7727                return NOTIFY_OK;
7728
7729        case CPU_DOWN_FAILED:
7730        case CPU_DOWN_FAILED_FROZEN:
7731        case CPU_ONLINE:
7732        case CPU_ONLINE_FROZEN:
7733                enable_runtime(cpu_rq(cpu));
7734                return NOTIFY_OK;
7735
7736        default:
7737                return NOTIFY_DONE;
7738        }
7739}
7740
7741void __init sched_init_smp(void)
7742{
7743        cpumask_var_t non_isolated_cpus;
7744
7745        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7746        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7747
7748#if defined(CONFIG_NUMA)
7749        sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7750                                                                GFP_KERNEL);
7751        BUG_ON(sched_group_nodes_bycpu == NULL);
7752#endif
7753        get_online_cpus();
7754        mutex_lock(&sched_domains_mutex);
7755        arch_init_sched_domains(cpu_active_mask);
7756        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7757        if (cpumask_empty(non_isolated_cpus))
7758                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7759        mutex_unlock(&sched_domains_mutex);
7760        put_online_cpus();
7761
7762        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7763        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7764
7765        /* RT runtime code needs to handle some hotplug events */
7766        hotcpu_notifier(update_runtime, 0);
7767
7768        init_hrtick();
7769
7770        /* Move init over to a non-isolated CPU */
7771        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7772                BUG();
7773        sched_init_granularity();
7774        free_cpumask_var(non_isolated_cpus);
7775
7776        init_sched_rt_class();
7777}
7778#else
7779void __init sched_init_smp(void)
7780{
7781        sched_init_granularity();
7782}
7783#endif /* CONFIG_SMP */
7784
7785const_debug unsigned int sysctl_timer_migration = 1;
7786
7787int in_sched_functions(unsigned long addr)
7788{
7789        return in_lock_functions(addr) ||
7790                (addr >= (unsigned long)__sched_text_start
7791                && addr < (unsigned long)__sched_text_end);
7792}
7793
7794static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7795{
7796        cfs_rq->tasks_timeline = RB_ROOT;
7797        INIT_LIST_HEAD(&cfs_rq->tasks);
7798#ifdef CONFIG_FAIR_GROUP_SCHED
7799        cfs_rq->rq = rq;
7800#endif
7801        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7802}
7803
7804static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7805{
7806        struct rt_prio_array *array;
7807        int i;
7808
7809        array = &rt_rq->active;
7810        for (i = 0; i < MAX_RT_PRIO; i++) {
7811                INIT_LIST_HEAD(array->queue + i);
7812                __clear_bit(i, array->bitmap);
7813        }
7814        /* delimiter for bitsearch: */
7815        __set_bit(MAX_RT_PRIO, array->bitmap);
7816
7817#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7818        rt_rq->highest_prio.curr = MAX_RT_PRIO;
7819#ifdef CONFIG_SMP
7820        rt_rq->highest_prio.next = MAX_RT_PRIO;
7821#endif
7822#endif
7823#ifdef CONFIG_SMP
7824        rt_rq->rt_nr_migratory = 0;
7825        rt_rq->overloaded = 0;
7826        plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7827#endif
7828
7829        rt_rq->rt_time = 0;
7830        rt_rq->rt_throttled = 0;
7831        rt_rq->rt_runtime = 0;
7832        raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7833
7834#ifdef CONFIG_RT_GROUP_SCHED
7835        rt_rq->rt_nr_boosted = 0;
7836        rt_rq->rq = rq;
7837#endif
7838}
7839
7840#ifdef CONFIG_FAIR_GROUP_SCHED
7841static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7842                                struct sched_entity *se, int cpu,
7843                                struct sched_entity *parent)
7844{
7845        struct rq *rq = cpu_rq(cpu);
7846        tg->cfs_rq[cpu] = cfs_rq;
7847        init_cfs_rq(cfs_rq, rq);
7848        cfs_rq->tg = tg;
7849
7850        tg->se[cpu] = se;
7851        /* se could be NULL for root_task_group */
7852        if (!se)
7853                return;
7854
7855        if (!parent)
7856                se->cfs_rq = &rq->cfs;
7857        else
7858                se->cfs_rq = parent->my_q;
7859
7860        se->my_q = cfs_rq;
7861        update_load_set(&se->load, 0);
7862        se->parent = parent;
7863}
7864#endif
7865
7866#ifdef CONFIG_RT_GROUP_SCHED
7867static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7868                struct sched_rt_entity *rt_se, int cpu,
7869                struct sched_rt_entity *parent)
7870{
7871        struct rq *rq = cpu_rq(cpu);
7872
7873        tg->rt_rq[cpu] = rt_rq;
7874        init_rt_rq(rt_rq, rq);
7875        rt_rq->tg = tg;
7876        rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7877
7878        tg->rt_se[cpu] = rt_se;
7879        if (!rt_se)
7880                return;
7881
7882        if (!parent)
7883                rt_se->rt_rq = &rq->rt;
7884        else
7885                rt_se->rt_rq = parent->my_q;
7886
7887        rt_se->my_q = rt_rq;
7888        rt_se->parent = parent;
7889        INIT_LIST_HEAD(&rt_se->run_list);
7890}
7891#endif
7892
7893void __init sched_init(void)
7894{
7895        int i, j;
7896        unsigned long alloc_size = 0, ptr;
7897
7898#ifdef CONFIG_FAIR_GROUP_SCHED
7899        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7900#endif
7901#ifdef CONFIG_RT_GROUP_SCHED
7902        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7903#endif
7904#ifdef CONFIG_CPUMASK_OFFSTACK
7905        alloc_size += num_possible_cpus() * cpumask_size();
7906#endif
7907        if (alloc_size) {
7908                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7909
7910#ifdef CONFIG_FAIR_GROUP_SCHED
7911                root_task_group.se = (struct sched_entity **)ptr;
7912                ptr += nr_cpu_ids * sizeof(void **);
7913
7914                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7915                ptr += nr_cpu_ids * sizeof(void **);
7916
7917#endif /* CONFIG_FAIR_GROUP_SCHED */
7918#ifdef CONFIG_RT_GROUP_SCHED
7919                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7920                ptr += nr_cpu_ids * sizeof(void **);
7921
7922                root_task_group.rt_rq = (struct rt_rq **)ptr;
7923                ptr += nr_cpu_ids * sizeof(void **);
7924
7925#endif /* CONFIG_RT_GROUP_SCHED */
7926#ifdef CONFIG_CPUMASK_OFFSTACK
7927                for_each_possible_cpu(i) {
7928                        per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7929                        ptr += cpumask_size();
7930                }
7931#endif /* CONFIG_CPUMASK_OFFSTACK */
7932        }
7933
7934#ifdef CONFIG_SMP
7935        init_defrootdomain();
7936#endif
7937
7938        init_rt_bandwidth(&def_rt_bandwidth,
7939                        global_rt_period(), global_rt_runtime());
7940
7941#ifdef CONFIG_RT_GROUP_SCHED
7942        init_rt_bandwidth(&root_task_group.rt_bandwidth,
7943                        global_rt_period(), global_rt_runtime());
7944#endif /* CONFIG_RT_GROUP_SCHED */
7945
7946#ifdef CONFIG_CGROUP_SCHED
7947        list_add(&root_task_group.list, &task_groups);
7948        INIT_LIST_HEAD(&root_task_group.children);
7949        autogroup_init(&init_task);
7950#endif /* CONFIG_CGROUP_SCHED */
7951
7952        for_each_possible_cpu(i) {
7953                struct rq *rq;
7954
7955                rq = cpu_rq(i);
7956                raw_spin_lock_init(&rq->lock);
7957                rq->nr_running = 0;
7958                rq->calc_load_active = 0;
7959                rq->calc_load_update = jiffies + LOAD_FREQ;
7960                init_cfs_rq(&rq->cfs, rq);
7961                init_rt_rq(&rq->rt, rq);
7962#ifdef CONFIG_FAIR_GROUP_SCHED
7963                root_task_group.shares = root_task_group_load;
7964                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7965                /*
7966                 * How much cpu bandwidth does root_task_group get?
7967                 *
7968                 * In case of task-groups formed thr' the cgroup filesystem, it
7969                 * gets 100% of the cpu resources in the system. This overall
7970                 * system cpu resource is divided among the tasks of
7971                 * root_task_group and its child task-groups in a fair manner,
7972                 * based on each entity's (task or task-group's) weight
7973                 * (se->load.weight).
7974                 *
7975                 * In other words, if root_task_group has 10 tasks of weight
7976                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7977                 * then A0's share of the cpu resource is:
7978                 *
7979                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7980                 *
7981                 * We achieve this by letting root_task_group's tasks sit
7982                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7983                 */
7984                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7985#endif /* CONFIG_FAIR_GROUP_SCHED */
7986
7987                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7988#ifdef CONFIG_RT_GROUP_SCHED
7989                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7990                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7991#endif
7992
7993                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7994                        rq->cpu_load[j] = 0;
7995
7996                rq->last_load_update_tick = jiffies;
7997
7998#ifdef CONFIG_SMP
7999                rq->sd = NULL;
8000                rq->rd = NULL;
8001                rq->cpu_power = SCHED_LOAD_SCALE;
8002                rq->post_schedule = 0;
8003                rq->active_balance = 0;
8004                rq->next_balance = jiffies;
8005                rq->push_cpu = 0;
8006                rq->cpu = i;
8007                rq->online = 0;
8008                rq->idle_stamp = 0;
8009                rq->avg_idle = 2*sysctl_sched_migration_cost;
8010                rq_attach_root(rq, &def_root_domain);
8011#ifdef CONFIG_NO_HZ
8012                rq->nohz_balance_kick = 0;
8013                init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8014#endif
8015#endif
8016                init_rq_hrtick(rq);
8017                atomic_set(&rq->nr_iowait, 0);
8018        }
8019
8020        set_load_weight(&init_task);
8021
8022#ifdef CONFIG_PREEMPT_NOTIFIERS
8023        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8024#endif
8025
8026#ifdef CONFIG_SMP
8027        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8028#endif
8029
8030#ifdef CONFIG_RT_MUTEXES
8031        plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8032#endif
8033
8034        /*
8035         * The boot idle thread does lazy MMU switching as well:
8036         */
8037        atomic_inc(&init_mm.mm_count);
8038        enter_lazy_tlb(&init_mm, current);
8039
8040        /*
8041         * Make us the idle thread. Technically, schedule() should not be
8042         * called from this thread, however somewhere below it might be,
8043         * but because we are the idle thread, we just pick up running again
8044         * when this runqueue becomes "idle".
8045         */
8046        init_idle(current, smp_processor_id());
8047
8048        calc_load_update = jiffies + LOAD_FREQ;
8049
8050        /*
8051         * During early bootup we pretend to be a normal task:
8052         */
8053        current->sched_class = &fair_sched_class;
8054
8055        /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8056        zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8057#ifdef CONFIG_SMP
8058#ifdef CONFIG_NO_HZ
8059        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8060        alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8061        atomic_set(&nohz.load_balancer, nr_cpu_ids);
8062        atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8063        atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8064#endif
8065        /* May be allocated at isolcpus cmdline parse time */
8066        if (cpu_isolated_map == NULL)
8067                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8068#endif /* SMP */
8069
8070        scheduler_running = 1;
8071}
8072
8073#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8074static inline int preempt_count_equals(int preempt_offset)
8075{
8076        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8077
8078        return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8079}
8080
8081void __might_sleep(const char *file, int line, int preempt_offset)
8082{
8083#ifdef in_atomic
8084        static unsigned long prev_jiffy;        /* ratelimiting */
8085
8086        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8087            system_state != SYSTEM_RUNNING || oops_in_progress)
8088                return;
8089        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8090                return;
8091        prev_jiffy = jiffies;
8092
8093        printk(KERN_ERR
8094                "BUG: sleeping function called from invalid context at %s:%d\n",
8095                        file, line);
8096        printk(KERN_ERR
8097                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8098                        in_atomic(), irqs_disabled(),
8099                        current->pid, current->comm);
8100
8101        debug_show_held_locks(current);
8102        if (irqs_disabled())
8103                print_irqtrace_events(current);
8104        dump_stack();
8105#endif
8106}
8107EXPORT_SYMBOL(__might_sleep);
8108#endif
8109
8110#ifdef CONFIG_MAGIC_SYSRQ
8111static void normalize_task(struct rq *rq, struct task_struct *p)
8112{
8113        int on_rq;
8114
8115        on_rq = p->se.on_rq;
8116        if (on_rq)
8117                deactivate_task(rq, p, 0);
8118        __setscheduler(rq, p, SCHED_NORMAL, 0);
8119        if (on_rq) {
8120                activate_task(rq, p, 0);
8121                resched_task(rq->curr);
8122        }
8123}
8124
8125void normalize_rt_tasks(void)
8126{
8127        struct task_struct *g, *p;
8128        unsigned long flags;
8129        struct rq *rq;
8130
8131        read_lock_irqsave(&tasklist_lock, flags);
8132        do_each_thread(g, p) {
8133                /*
8134                 * Only normalize user tasks:
8135                 */
8136                if (!p->mm)
8137                        continue;
8138
8139                p->se.exec_start                = 0;
8140#ifdef CONFIG_SCHEDSTATS
8141                p->se.statistics.wait_start     = 0;
8142                p->se.statistics.sleep_start    = 0;
8143                p->se.statistics.block_start    = 0;
8144#endif
8145
8146                if (!rt_task(p)) {
8147                        /*
8148                         * Renice negative nice level userspace
8149                         * tasks back to 0:
8150                         */
8151                        if (TASK_NICE(p) < 0 && p->mm)
8152                                set_user_nice(p, 0);
8153                        continue;
8154                }
8155
8156                raw_spin_lock(&p->pi_lock);
8157                rq = __task_rq_lock(p);
8158
8159                normalize_task(rq, p);
8160
8161                __task_rq_unlock(rq);
8162                raw_spin_unlock(&p->pi_lock);
8163        } while_each_thread(g, p);
8164
8165        read_unlock_irqrestore(&tasklist_lock, flags);
8166}
8167
8168#endif /* CONFIG_MAGIC_SYSRQ */
8169
8170#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8171/*
8172 * These functions are only useful for the IA64 MCA handling, or kdb.
8173 *
8174 * They can only be called when the whole system has been
8175 * stopped - every CPU needs to be quiescent, and no scheduling
8176 * activity can take place. Using them for anything else would
8177 * be a serious bug, and as a result, they aren't even visible
8178 * under any other configuration.
8179 */
8180
8181/**
8182 * curr_task - return the current task for a given cpu.
8183 * @cpu: the processor in question.
8184 *
8185 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8186 */
8187struct task_struct *curr_task(int cpu)
8188{
8189        return cpu_curr(cpu);
8190}
8191
8192#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8193
8194#ifdef CONFIG_IA64
8195/**
8196 * set_curr_task - set the current task for a given cpu.
8197 * @cpu: the processor in question.
8198 * @p: the task pointer to set.
8199 *
8200 * Description: This function must only be used when non-maskable interrupts
8201 * are serviced on a separate stack. It allows the architecture to switch the
8202 * notion of the current task on a cpu in a non-blocking manner. This function
8203 * must be called with all CPU's synchronized, and interrupts disabled, the
8204 * and caller must save the original value of the current task (see
8205 * curr_task() above) and restore that value before reenabling interrupts and
8206 * re-starting the system.
8207 *
8208 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8209 */
8210void set_curr_task(int cpu, struct task_struct *p)
8211{
8212        cpu_curr(cpu) = p;
8213}
8214
8215#endif
8216
8217#ifdef CONFIG_FAIR_GROUP_SCHED
8218static void free_fair_sched_group(struct task_group *tg)
8219{
8220        int i;
8221
8222        for_each_possible_cpu(i) {
8223                if (tg->cfs_rq)
8224                        kfree(tg->cfs_rq[i]);
8225                if (tg->se)
8226                        kfree(tg->se[i]);
8227        }
8228
8229        kfree(tg->cfs_rq);
8230        kfree(tg->se);
8231}
8232
8233static
8234int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8235{
8236        struct cfs_rq *cfs_rq;
8237        struct sched_entity *se;
8238        struct rq *rq;
8239        int i;
8240
8241        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8242        if (!tg->cfs_rq)
8243                goto err;
8244        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8245        if (!tg->se)
8246                goto err;
8247
8248        tg->shares = NICE_0_LOAD;
8249
8250        for_each_possible_cpu(i) {
8251                rq = cpu_rq(i);
8252
8253                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8254                                      GFP_KERNEL, cpu_to_node(i));
8255                if (!cfs_rq)
8256                        goto err;
8257
8258                se = kzalloc_node(sizeof(struct sched_entity),
8259                                  GFP_KERNEL, cpu_to_node(i));
8260                if (!se)
8261                        goto err_free_rq;
8262
8263                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8264        }
8265
8266        return 1;
8267
8268err_free_rq:
8269        kfree(cfs_rq);
8270err:
8271        return 0;
8272}
8273
8274static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8275{
8276        struct rq *rq = cpu_rq(cpu);
8277        unsigned long flags;
8278
8279        /*
8280        * Only empty task groups can be destroyed; so we can speculatively
8281        * check on_list without danger of it being re-added.
8282        */
8283        if (!tg->cfs_rq[cpu]->on_list)
8284                return;
8285
8286        raw_spin_lock_irqsave(&rq->lock, flags);
8287        list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8288        raw_spin_unlock_irqrestore(&rq->lock, flags);
8289}
8290#else /* !CONFG_FAIR_GROUP_SCHED */
8291static inline void free_fair_sched_group(struct task_group *tg)
8292{
8293}
8294
8295static inline
8296int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8297{
8298        return 1;
8299}
8300
8301static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8302{
8303}
8304#endif /* CONFIG_FAIR_GROUP_SCHED */
8305
8306#ifdef CONFIG_RT_GROUP_SCHED
8307static void free_rt_sched_group(struct task_group *tg)
8308{
8309        int i;
8310
8311        destroy_rt_bandwidth(&tg->rt_bandwidth);
8312
8313        for_each_possible_cpu(i) {
8314                if (tg->rt_rq)
8315                        kfree(tg->rt_rq[i]);
8316                if (tg->rt_se)
8317                        kfree(tg->rt_se[i]);
8318        }
8319
8320        kfree(tg->rt_rq);
8321        kfree(tg->rt_se);
8322}
8323
8324static
8325int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8326{
8327        struct rt_rq *rt_rq;
8328        struct sched_rt_entity *rt_se;
8329        struct rq *rq;
8330        int i;
8331
8332        tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8333        if (!tg->rt_rq)
8334                goto err;
8335        tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8336        if (!tg->rt_se)
8337                goto err;
8338
8339        init_rt_bandwidth(&tg->rt_bandwidth,
8340                        ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8341
8342        for_each_possible_cpu(i) {
8343                rq = cpu_rq(i);
8344
8345                rt_rq = kzalloc_node(sizeof(struct rt_rq),
8346                                     GFP_KERNEL, cpu_to_node(i));
8347                if (!rt_rq)
8348                        goto err;
8349
8350                rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8351                                     GFP_KERNEL, cpu_to_node(i));
8352                if (!rt_se)
8353                        goto err_free_rq;
8354
8355                init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8356        }
8357
8358        return 1;
8359
8360err_free_rq:
8361        kfree(rt_rq);
8362err:
8363        return 0;
8364}
8365#else /* !CONFIG_RT_GROUP_SCHED */
8366static inline void free_rt_sched_group(struct task_group *tg)
8367{
8368}
8369
8370static inline
8371int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8372{
8373        return 1;
8374}
8375#endif /* CONFIG_RT_GROUP_SCHED */
8376
8377#ifdef CONFIG_CGROUP_SCHED
8378static void free_sched_group(struct task_group *tg)
8379{
8380        free_fair_sched_group(tg);
8381        free_rt_sched_group(tg);
8382        autogroup_free(tg);
8383        kfree(tg);
8384}
8385
8386/* allocate runqueue etc for a new task group */
8387struct task_group *sched_create_group(struct task_group *parent)
8388{
8389        struct task_group *tg;
8390        unsigned long flags;
8391
8392        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8393        if (!tg)
8394                return ERR_PTR(-ENOMEM);
8395
8396        if (!alloc_fair_sched_group(tg, parent))
8397                goto err;
8398
8399        if (!alloc_rt_sched_group(tg, parent))
8400                goto err;
8401
8402        spin_lock_irqsave(&task_group_lock, flags);
8403        list_add_rcu(&tg->list, &task_groups);
8404
8405        WARN_ON(!parent); /* root should already exist */
8406
8407        tg->parent = parent;
8408        INIT_LIST_HEAD(&tg->children);
8409        list_add_rcu(&tg->siblings, &parent->children);
8410        spin_unlock_irqrestore(&task_group_lock, flags);
8411
8412        return tg;
8413
8414err:
8415        free_sched_group(tg);
8416        return ERR_PTR(-ENOMEM);
8417}
8418
8419/* rcu callback to free various structures associated with a task group */
8420static void free_sched_group_rcu(struct rcu_head *rhp)
8421{
8422        /* now it should be safe to free those cfs_rqs */
8423        free_sched_group(container_of(rhp, struct task_group, rcu));
8424}
8425
8426/* Destroy runqueue etc associated with a task group */
8427void sched_destroy_group(struct task_group *tg)
8428{
8429        unsigned long flags;
8430        int i;
8431
8432        /* end participation in shares distribution */
8433        for_each_possible_cpu(i)
8434                unregister_fair_sched_group(tg, i);
8435
8436        spin_lock_irqsave(&task_group_lock, flags);
8437        list_del_rcu(&tg->list);
8438        list_del_rcu(&tg->siblings);
8439        spin_unlock_irqrestore(&task_group_lock, flags);
8440
8441        /* wait for possible concurrent references to cfs_rqs complete */
8442        call_rcu(&tg->rcu, free_sched_group_rcu);
8443}
8444
8445/* change task's runqueue when it moves between groups.
8446 *      The caller of this function should have put the task in its new group
8447 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8448 *      reflect its new group.
8449 */
8450void sched_move_task(struct task_struct *tsk)
8451{
8452        int on_rq, running;
8453        unsigned long flags;
8454        struct rq *rq;
8455
8456        rq = task_rq_lock(tsk, &flags);
8457
8458        running = task_current(rq, tsk);
8459        on_rq = tsk->se.on_rq;
8460
8461        if (on_rq)
8462                dequeue_task(rq, tsk, 0);
8463        if (unlikely(running))
8464                tsk->sched_class->put_prev_task(rq, tsk);
8465
8466#ifdef CONFIG_FAIR_GROUP_SCHED
8467        if (tsk->sched_class->task_move_group)
8468                tsk->sched_class->task_move_group(tsk, on_rq);
8469        else
8470#endif
8471                set_task_rq(tsk, task_cpu(tsk));
8472
8473        if (unlikely(running))
8474                tsk->sched_class->set_curr_task(rq);
8475        if (on_rq)
8476                enqueue_task(rq, tsk, 0);
8477
8478        task_rq_unlock(rq, &flags);
8479}
8480#endif /* CONFIG_CGROUP_SCHED */
8481
8482#ifdef CONFIG_FAIR_GROUP_SCHED
8483static DEFINE_MUTEX(shares_mutex);
8484
8485int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8486{
8487        int i;
8488        unsigned long flags;
8489
8490        /*
8491         * We can't change the weight of the root cgroup.
8492         */
8493        if (!tg->se[0])
8494                return -EINVAL;
8495
8496        if (shares < MIN_SHARES)
8497                shares = MIN_SHARES;
8498        else if (shares > MAX_SHARES)
8499                shares = MAX_SHARES;
8500
8501        mutex_lock(&shares_mutex);
8502        if (tg->shares == shares)
8503                goto done;
8504
8505        tg->shares = shares;
8506        for_each_possible_cpu(i) {
8507                struct rq *rq = cpu_rq(i);
8508                struct sched_entity *se;
8509
8510                se = tg->se[i];
8511                /* Propagate contribution to hierarchy */
8512                raw_spin_lock_irqsave(&rq->lock, flags);
8513                for_each_sched_entity(se)
8514                        update_cfs_shares(group_cfs_rq(se), 0);
8515                raw_spin_unlock_irqrestore(&rq->lock, flags);
8516        }
8517
8518done:
8519        mutex_unlock(&shares_mutex);
8520        return 0;
8521}
8522
8523unsigned long sched_group_shares(struct task_group *tg)
8524{
8525        return tg->shares;
8526}
8527#endif
8528
8529#ifdef CONFIG_RT_GROUP_SCHED
8530/*
8531 * Ensure that the real time constraints are schedulable.
8532 */
8533static DEFINE_MUTEX(rt_constraints_mutex);
8534
8535static unsigned long to_ratio(u64 period, u64 runtime)
8536{
8537        if (runtime == RUNTIME_INF)
8538                return 1ULL << 20;
8539
8540        return div64_u64(runtime << 20, period);
8541}
8542
8543/* Must be called with tasklist_lock held */
8544static inline int tg_has_rt_tasks(struct task_group *tg)
8545{
8546        struct task_struct *g, *p;
8547
8548        do_each_thread(g, p) {
8549                if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8550                        return 1;
8551        } while_each_thread(g, p);
8552
8553        return 0;
8554}
8555
8556struct rt_schedulable_data {
8557        struct task_group *tg;
8558        u64 rt_period;
8559        u64 rt_runtime;
8560};
8561
8562static int tg_schedulable(struct task_group *tg, void *data)
8563{
8564        struct rt_schedulable_data *d = data;
8565        struct task_group *child;
8566        unsigned long total, sum = 0;
8567        u64 period, runtime;
8568
8569        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8570        runtime = tg->rt_bandwidth.rt_runtime;
8571
8572        if (tg == d->tg) {
8573                period = d->rt_period;
8574                runtime = d->rt_runtime;
8575        }
8576
8577        /*
8578         * Cannot have more runtime than the period.
8579         */
8580        if (runtime > period && runtime != RUNTIME_INF)
8581                return -EINVAL;
8582
8583        /*
8584         * Ensure we don't starve existing RT tasks.
8585         */
8586        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8587                return -EBUSY;
8588
8589        total = to_ratio(period, runtime);
8590
8591        /*
8592         * Nobody can have more than the global setting allows.
8593         */
8594        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8595                return -EINVAL;
8596
8597        /*
8598         * The sum of our children's runtime should not exceed our own.
8599         */
8600        list_for_each_entry_rcu(child, &tg->children, siblings) {
8601                period = ktime_to_ns(child->rt_bandwidth.rt_period);
8602                runtime = child->rt_bandwidth.rt_runtime;
8603
8604                if (child == d->tg) {
8605                        period = d->rt_period;
8606                        runtime = d->rt_runtime;
8607                }
8608
8609                sum += to_ratio(period, runtime);
8610        }
8611
8612        if (sum > total)
8613                return -EINVAL;
8614
8615        return 0;
8616}
8617
8618static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8619{
8620        struct rt_schedulable_data data = {
8621                .tg = tg,
8622                .rt_period = period,
8623                .rt_runtime = runtime,
8624        };
8625
8626        return walk_tg_tree(tg_schedulable, tg_nop, &data);
8627}
8628
8629static int tg_set_bandwidth(struct task_group *tg,
8630                u64 rt_period, u64 rt_runtime)
8631{
8632        int i, err = 0;
8633
8634        mutex_lock(&rt_constraints_mutex);
8635        read_lock(&tasklist_lock);
8636        err = __rt_schedulable(tg, rt_period, rt_runtime);
8637        if (err)
8638                goto unlock;
8639
8640        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8641        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8642        tg->rt_bandwidth.rt_runtime = rt_runtime;
8643
8644        for_each_possible_cpu(i) {
8645                struct rt_rq *rt_rq = tg->rt_rq[i];
8646
8647                raw_spin_lock(&rt_rq->rt_runtime_lock);
8648                rt_rq->rt_runtime = rt_runtime;
8649                raw_spin_unlock(&rt_rq->rt_runtime_lock);
8650        }
8651        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8652unlock:
8653        read_unlock(&tasklist_lock);
8654        mutex_unlock(&rt_constraints_mutex);
8655
8656        return err;
8657}
8658
8659int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8660{
8661        u64 rt_runtime, rt_period;
8662
8663        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8664        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8665        if (rt_runtime_us < 0)
8666                rt_runtime = RUNTIME_INF;
8667
8668        return tg_set_bandwidth(tg, rt_period, rt_runtime);
8669}
8670
8671long sched_group_rt_runtime(struct task_group *tg)
8672{
8673        u64 rt_runtime_us;
8674
8675        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8676                return -1;
8677
8678        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8679        do_div(rt_runtime_us, NSEC_PER_USEC);
8680        return rt_runtime_us;
8681}
8682
8683int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8684{
8685        u64 rt_runtime, rt_period;
8686
8687        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8688        rt_runtime = tg->rt_bandwidth.rt_runtime;
8689
8690        if (rt_period == 0)
8691                return -EINVAL;
8692
8693        return tg_set_bandwidth(tg, rt_period, rt_runtime);
8694}
8695
8696long sched_group_rt_period(struct task_group *tg)
8697{
8698        u64 rt_period_us;
8699
8700        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8701        do_div(rt_period_us, NSEC_PER_USEC);
8702        return rt_period_us;
8703}
8704
8705static int sched_rt_global_constraints(void)
8706{
8707        u64 runtime, period;
8708        int ret = 0;
8709
8710        if (sysctl_sched_rt_period <= 0)
8711                return -EINVAL;
8712
8713        runtime = global_rt_runtime();
8714        period = global_rt_period();
8715
8716        /*
8717         * Sanity check on the sysctl variables.
8718         */
8719        if (runtime > period && runtime != RUNTIME_INF)
8720                return -EINVAL;
8721
8722        mutex_lock(&rt_constraints_mutex);
8723        read_lock(&tasklist_lock);
8724        ret = __rt_schedulable(NULL, 0, 0);
8725        read_unlock(&tasklist_lock);
8726        mutex_unlock(&rt_constraints_mutex);
8727
8728        return ret;
8729}
8730
8731int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8732{
8733        /* Don't accept realtime tasks when there is no way for them to run */
8734        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8735                return 0;
8736
8737        return 1;
8738}
8739
8740#else /* !CONFIG_RT_GROUP_SCHED */
8741static int sched_rt_global_constraints(void)
8742{
8743        unsigned long flags;
8744        int i;
8745
8746        if (sysctl_sched_rt_period <= 0)
8747                return -EINVAL;
8748
8749        /*
8750         * There's always some RT tasks in the root group
8751         * -- migration, kstopmachine etc..
8752         */
8753        if (sysctl_sched_rt_runtime == 0)
8754                return -EBUSY;
8755
8756        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8757        for_each_possible_cpu(i) {
8758                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8759
8760                raw_spin_lock(&rt_rq->rt_runtime_lock);
8761                rt_rq->rt_runtime = global_rt_runtime();
8762                raw_spin_unlock(&rt_rq->rt_runtime_lock);
8763        }
8764        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8765
8766        return 0;
8767}
8768#endif /* CONFIG_RT_GROUP_SCHED */
8769
8770int sched_rt_handler(struct ctl_table *table, int write,
8771                void __user *buffer, size_t *lenp,
8772                loff_t *ppos)
8773{
8774        int ret;
8775        int old_period, old_runtime;
8776        static DEFINE_MUTEX(mutex);
8777
8778        mutex_lock(&mutex);
8779        old_period = sysctl_sched_rt_period;
8780        old_runtime = sysctl_sched_rt_runtime;
8781
8782        ret = proc_dointvec(table, write, buffer, lenp, ppos);
8783
8784        if (!ret && write) {
8785                ret = sched_rt_global_constraints();
8786                if (ret) {
8787                        sysctl_sched_rt_period = old_period;
8788                        sysctl_sched_rt_runtime = old_runtime;
8789                } else {
8790                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
8791                        def_rt_bandwidth.rt_period =
8792                                ns_to_ktime(global_rt_period());
8793                }
8794        }
8795        mutex_unlock(&mutex);
8796
8797        return ret;
8798}
8799
8800#ifdef CONFIG_CGROUP_SCHED
8801
8802/* return corresponding task_group object of a cgroup */
8803static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8804{
8805        return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8806                            struct task_group, css);
8807}
8808
8809static struct cgroup_subsys_state *
8810cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8811{
8812        struct task_group *tg, *parent;
8813
8814        if (!cgrp->parent) {
8815                /* This is early initialization for the top cgroup */
8816                return &root_task_group.css;
8817        }
8818
8819        parent = cgroup_tg(cgrp->parent);
8820        tg = sched_create_group(parent);
8821        if (IS_ERR(tg))
8822                return ERR_PTR(-ENOMEM);
8823
8824        return &tg->css;
8825}
8826
8827static void
8828cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8829{
8830        struct task_group *tg = cgroup_tg(cgrp);
8831
8832        sched_destroy_group(tg);
8833}
8834
8835static int
8836cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8837{
8838#ifdef CONFIG_RT_GROUP_SCHED
8839        if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8840                return -EINVAL;
8841#else
8842        /* We don't support RT-tasks being in separate groups */
8843        if (tsk->sched_class != &fair_sched_class)
8844                return -EINVAL;
8845#endif
8846        return 0;
8847}
8848
8849static int
8850cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8851                      struct task_struct *tsk, bool threadgroup)
8852{
8853        int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8854        if (retval)
8855                return retval;
8856        if (threadgroup) {
8857                struct task_struct *c;
8858                rcu_read_lock();
8859                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8860                        retval = cpu_cgroup_can_attach_task(cgrp, c);
8861                        if (retval) {
8862                                rcu_read_unlock();
8863                                return retval;
8864                        }
8865                }
8866                rcu_read_unlock();
8867        }
8868        return 0;
8869}
8870
8871static void
8872cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8873                  struct cgroup *old_cont, struct task_struct *tsk,
8874                  bool threadgroup)
8875{
8876        sched_move_task(tsk);
8877        if (threadgroup) {
8878                struct task_struct *c;
8879                rcu_read_lock();
8880                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8881                        sched_move_task(c);
8882                }
8883                rcu_read_unlock();
8884        }
8885}
8886
8887static void
8888cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
8889{
8890        /*
8891         * cgroup_exit() is called in the copy_process() failure path.
8892         * Ignore this case since the task hasn't ran yet, this avoids
8893         * trying to poke a half freed task state from generic code.
8894         */
8895        if (!(task->flags & PF_EXITING))
8896                return;
8897
8898        sched_move_task(task);
8899}
8900
8901#ifdef CONFIG_FAIR_GROUP_SCHED
8902static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8903                                u64 shareval)
8904{
8905        return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8906}
8907
8908static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8909{
8910        struct task_group *tg = cgroup_tg(cgrp);
8911
8912        return (u64) tg->shares;
8913}
8914#endif /* CONFIG_FAIR_GROUP_SCHED */
8915
8916#ifdef CONFIG_RT_GROUP_SCHED
8917static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8918                                s64 val)
8919{
8920        return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8921}
8922
8923static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8924{
8925        return sched_group_rt_runtime(cgroup_tg(cgrp));
8926}
8927
8928static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8929                u64 rt_period_us)
8930{
8931        return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8932}
8933
8934static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8935{
8936        return sched_group_rt_period(cgroup_tg(cgrp));
8937}
8938#endif /* CONFIG_RT_GROUP_SCHED */
8939
8940static struct cftype cpu_files[] = {
8941#ifdef CONFIG_FAIR_GROUP_SCHED
8942        {
8943                .name = "shares",
8944                .read_u64 = cpu_shares_read_u64,
8945                .write_u64 = cpu_shares_write_u64,
8946        },
8947#endif
8948#ifdef CONFIG_RT_GROUP_SCHED
8949        {
8950                .name = "rt_runtime_us",
8951                .read_s64 = cpu_rt_runtime_read,
8952                .write_s64 = cpu_rt_runtime_write,
8953        },
8954        {
8955                .name = "rt_period_us",
8956                .read_u64 = cpu_rt_period_read_uint,
8957                .write_u64 = cpu_rt_period_write_uint,
8958        },
8959#endif
8960};
8961
8962static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8963{
8964        return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8965}
8966
8967struct cgroup_subsys cpu_cgroup_subsys = {
8968        .name           = "cpu",
8969        .create         = cpu_cgroup_create,
8970        .destroy        = cpu_cgroup_destroy,
8971        .can_attach     = cpu_cgroup_can_attach,
8972        .attach         = cpu_cgroup_attach,
8973        .exit           = cpu_cgroup_exit,
8974        .populate       = cpu_cgroup_populate,
8975        .subsys_id      = cpu_cgroup_subsys_id,
8976        .early_init     = 1,
8977};
8978
8979#endif  /* CONFIG_CGROUP_SCHED */
8980
8981#ifdef CONFIG_CGROUP_CPUACCT
8982
8983/*
8984 * CPU accounting code for task groups.
8985 *
8986 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8987 * (balbir@in.ibm.com).
8988 */
8989
8990/* track cpu usage of a group of tasks and its child groups */
8991struct cpuacct {
8992        struct cgroup_subsys_state css;
8993        /* cpuusage holds pointer to a u64-type object on every cpu */
8994        u64 __percpu *cpuusage;
8995        struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8996        struct cpuacct *parent;
8997};
8998
8999struct cgroup_subsys cpuacct_subsys;
9000
9001/* return cpu accounting group corresponding to this container */
9002static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9003{
9004        return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9005                            struct cpuacct, css);
9006}
9007
9008/* return cpu accounting group to which this task belongs */
9009static inline struct cpuacct *task_ca(struct task_struct *tsk)
9010{
9011        return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9012                            struct cpuacct, css);
9013}
9014
9015/* create a new cpu accounting group */
9016static struct cgroup_subsys_state *cpuacct_create(
9017        struct cgroup_subsys *ss, struct cgroup *cgrp)
9018{
9019        struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9020        int i;
9021
9022        if (!ca)
9023                goto out;
9024
9025        ca->cpuusage = alloc_percpu(u64);
9026        if (!ca->cpuusage)
9027                goto out_free_ca;
9028
9029        for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9030                if (percpu_counter_init(&ca->cpustat[i], 0))
9031                        goto out_free_counters;
9032
9033        if (cgrp->parent)
9034                ca->parent = cgroup_ca(cgrp->parent);
9035
9036        return &ca->css;
9037
9038out_free_counters:
9039        while (--i >= 0)
9040                percpu_counter_destroy(&ca->cpustat[i]);
9041        free_percpu(ca->cpuusage);
9042out_free_ca:
9043        kfree(ca);
9044out:
9045        return ERR_PTR(-ENOMEM);
9046}
9047
9048/* destroy an existing cpu accounting group */
9049static void
9050cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9051{
9052        struct cpuacct *ca = cgroup_ca(cgrp);
9053        int i;
9054
9055        for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9056                percpu_counter_destroy(&ca->cpustat[i]);
9057        free_percpu(ca->cpuusage);
9058        kfree(ca);
9059}
9060
9061static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9062{
9063        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9064        u64 data;
9065
9066#ifndef CONFIG_64BIT
9067        /*
9068         * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9069         */
9070        raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9071        data = *cpuusage;
9072        raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9073#else
9074        data = *cpuusage;
9075#endif
9076
9077        return data;
9078}
9079
9080static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9081{
9082        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9083
9084#ifndef CONFIG_64BIT
9085        /*
9086         * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9087         */
9088        raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9089        *cpuusage = val;
9090        raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9091#else
9092        *cpuusage = val;
9093#endif
9094}
9095
9096/* return total cpu usage (in nanoseconds) of a group */
9097static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9098{
9099        struct cpuacct *ca = cgroup_ca(cgrp);
9100        u64 totalcpuusage = 0;
9101        int i;
9102
9103        for_each_present_cpu(i)
9104                totalcpuusage += cpuacct_cpuusage_read(ca, i);
9105
9106        return totalcpuusage;
9107}
9108
9109static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9110                                                                u64 reset)
9111{
9112        struct cpuacct *ca = cgroup_ca(cgrp);
9113        int err = 0;
9114        int i;
9115
9116        if (reset) {
9117                err = -EINVAL;
9118                goto out;
9119        }
9120
9121        for_each_present_cpu(i)
9122                cpuacct_cpuusage_write(ca, i, 0);
9123
9124out:
9125        return err;
9126}
9127
9128static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9129                                   struct seq_file *m)
9130{
9131        struct cpuacct *ca = cgroup_ca(cgroup);
9132        u64 percpu;
9133        int i;
9134
9135        for_each_present_cpu(i) {
9136                percpu = cpuacct_cpuusage_read(ca, i);
9137                seq_printf(m, "%llu ", (unsigned long long) percpu);
9138        }
9139        seq_printf(m, "\n");
9140        return 0;
9141}
9142
9143static const char *cpuacct_stat_desc[] = {
9144        [CPUACCT_STAT_USER] = "user",
9145        [CPUACCT_STAT_SYSTEM] = "system",
9146};
9147
9148static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9149                struct cgroup_map_cb *cb)
9150{
9151        struct cpuacct *ca = cgroup_ca(cgrp);
9152        int i;
9153
9154        for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9155                s64 val = percpu_counter_read(&ca->cpustat[i]);
9156                val = cputime64_to_clock_t(val);
9157                cb->fill(cb, cpuacct_stat_desc[i], val);
9158        }
9159        return 0;
9160}
9161
9162static struct cftype files[] = {
9163        {
9164                .name = "usage",
9165                .read_u64 = cpuusage_read,
9166                .write_u64 = cpuusage_write,
9167        },
9168        {
9169                .name = "usage_percpu",
9170                .read_seq_string = cpuacct_percpu_seq_read,
9171        },
9172        {
9173                .name = "stat",
9174                .read_map = cpuacct_stats_show,
9175        },
9176};
9177
9178static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9179{
9180        return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9181}
9182
9183/*
9184 * charge this task's execution time to its accounting group.
9185 *
9186 * called with rq->lock held.
9187 */
9188static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9189{
9190        struct cpuacct *ca;
9191        int cpu;
9192
9193        if (unlikely(!cpuacct_subsys.active))
9194                return;
9195
9196        cpu = task_cpu(tsk);
9197
9198        rcu_read_lock();
9199
9200        ca = task_ca(tsk);
9201
9202        for (; ca; ca = ca->parent) {
9203                u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9204                *cpuusage += cputime;
9205        }
9206
9207        rcu_read_unlock();
9208}
9209
9210/*
9211 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9212 * in cputime_t units. As a result, cpuacct_update_stats calls
9213 * percpu_counter_add with values large enough to always overflow the
9214 * per cpu batch limit causing bad SMP scalability.
9215 *
9216 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9217 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9218 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9219 */
9220#ifdef CONFIG_SMP
9221#define CPUACCT_BATCH   \
9222        min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9223#else
9224#define CPUACCT_BATCH   0
9225#endif
9226
9227/*
9228 * Charge the system/user time to the task's accounting group.
9229 */
9230static void cpuacct_update_stats(struct task_struct *tsk,
9231                enum cpuacct_stat_index idx, cputime_t val)
9232{
9233        struct cpuacct *ca;
9234        int batch = CPUACCT_BATCH;
9235
9236        if (unlikely(!cpuacct_subsys.active))
9237                return;
9238
9239        rcu_read_lock();
9240        ca = task_ca(tsk);
9241
9242        do {
9243                __percpu_counter_add(&ca->cpustat[idx], val, batch);
9244                ca = ca->parent;
9245        } while (ca);
9246        rcu_read_unlock();
9247}
9248
9249struct cgroup_subsys cpuacct_subsys = {
9250        .name = "cpuacct",
9251        .create = cpuacct_create,
9252        .destroy = cpuacct_destroy,
9253        .populate = cpuacct_populate,
9254        .subsys_id = cpuacct_subsys_id,
9255};
9256#endif  /* CONFIG_CGROUP_CPUACCT */
9257
9258