linux/kernel/sched_fair.c
<<
>>
Prefs
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25
  26/*
  27 * Targeted preemption latency for CPU-bound tasks:
  28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  29 *
  30 * NOTE: this latency value is not the same as the concept of
  31 * 'timeslice length' - timeslices in CFS are of variable length
  32 * and have no persistent notion like in traditional, time-slice
  33 * based scheduling concepts.
  34 *
  35 * (to see the precise effective timeslice length of your workload,
  36 *  run vmstat and monitor the context-switches (cs) field)
  37 */
  38unsigned int sysctl_sched_latency = 6000000ULL;
  39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  40
  41/*
  42 * The initial- and re-scaling of tunables is configurable
  43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  44 *
  45 * Options are:
  46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  49 */
  50enum sched_tunable_scaling sysctl_sched_tunable_scaling
  51        = SCHED_TUNABLESCALING_LOG;
  52
  53/*
  54 * Minimal preemption granularity for CPU-bound tasks:
  55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  56 */
  57unsigned int sysctl_sched_min_granularity = 750000ULL;
  58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  59
  60/*
  61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  62 */
  63static unsigned int sched_nr_latency = 8;
  64
  65/*
  66 * After fork, child runs first. If set to 0 (default) then
  67 * parent will (try to) run first.
  68 */
  69unsigned int sysctl_sched_child_runs_first __read_mostly;
  70
  71/*
  72 * sys_sched_yield() compat mode
  73 *
  74 * This option switches the agressive yield implementation of the
  75 * old scheduler back on.
  76 */
  77unsigned int __read_mostly sysctl_sched_compat_yield;
  78
  79/*
  80 * SCHED_OTHER wake-up granularity.
  81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  82 *
  83 * This option delays the preemption effects of decoupled workloads
  84 * and reduces their over-scheduling. Synchronous workloads will still
  85 * have immediate wakeup/sleep latencies.
  86 */
  87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  89
  90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  91
  92/*
  93 * The exponential sliding  window over which load is averaged for shares
  94 * distribution.
  95 * (default: 10msec)
  96 */
  97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  98
  99static const struct sched_class fair_sched_class;
 100
 101/**************************************************************
 102 * CFS operations on generic schedulable entities:
 103 */
 104
 105#ifdef CONFIG_FAIR_GROUP_SCHED
 106
 107/* cpu runqueue to which this cfs_rq is attached */
 108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 109{
 110        return cfs_rq->rq;
 111}
 112
 113/* An entity is a task if it doesn't "own" a runqueue */
 114#define entity_is_task(se)      (!se->my_q)
 115
 116static inline struct task_struct *task_of(struct sched_entity *se)
 117{
 118#ifdef CONFIG_SCHED_DEBUG
 119        WARN_ON_ONCE(!entity_is_task(se));
 120#endif
 121        return container_of(se, struct task_struct, se);
 122}
 123
 124/* Walk up scheduling entities hierarchy */
 125#define for_each_sched_entity(se) \
 126                for (; se; se = se->parent)
 127
 128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 129{
 130        return p->se.cfs_rq;
 131}
 132
 133/* runqueue on which this entity is (to be) queued */
 134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 135{
 136        return se->cfs_rq;
 137}
 138
 139/* runqueue "owned" by this group */
 140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 141{
 142        return grp->my_q;
 143}
 144
 145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 146 * another cpu ('this_cpu')
 147 */
 148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 149{
 150        return cfs_rq->tg->cfs_rq[this_cpu];
 151}
 152
 153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 154{
 155        if (!cfs_rq->on_list) {
 156                /*
 157                 * Ensure we either appear before our parent (if already
 158                 * enqueued) or force our parent to appear after us when it is
 159                 * enqueued.  The fact that we always enqueue bottom-up
 160                 * reduces this to two cases.
 161                 */
 162                if (cfs_rq->tg->parent &&
 163                    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 164                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 165                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 166                } else {
 167                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 168                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 169                }
 170
 171                cfs_rq->on_list = 1;
 172        }
 173}
 174
 175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 176{
 177        if (cfs_rq->on_list) {
 178                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 179                cfs_rq->on_list = 0;
 180        }
 181}
 182
 183/* Iterate thr' all leaf cfs_rq's on a runqueue */
 184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 185        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 186
 187/* Do the two (enqueued) entities belong to the same group ? */
 188static inline int
 189is_same_group(struct sched_entity *se, struct sched_entity *pse)
 190{
 191        if (se->cfs_rq == pse->cfs_rq)
 192                return 1;
 193
 194        return 0;
 195}
 196
 197static inline struct sched_entity *parent_entity(struct sched_entity *se)
 198{
 199        return se->parent;
 200}
 201
 202/* return depth at which a sched entity is present in the hierarchy */
 203static inline int depth_se(struct sched_entity *se)
 204{
 205        int depth = 0;
 206
 207        for_each_sched_entity(se)
 208                depth++;
 209
 210        return depth;
 211}
 212
 213static void
 214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 215{
 216        int se_depth, pse_depth;
 217
 218        /*
 219         * preemption test can be made between sibling entities who are in the
 220         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 221         * both tasks until we find their ancestors who are siblings of common
 222         * parent.
 223         */
 224
 225        /* First walk up until both entities are at same depth */
 226        se_depth = depth_se(*se);
 227        pse_depth = depth_se(*pse);
 228
 229        while (se_depth > pse_depth) {
 230                se_depth--;
 231                *se = parent_entity(*se);
 232        }
 233
 234        while (pse_depth > se_depth) {
 235                pse_depth--;
 236                *pse = parent_entity(*pse);
 237        }
 238
 239        while (!is_same_group(*se, *pse)) {
 240                *se = parent_entity(*se);
 241                *pse = parent_entity(*pse);
 242        }
 243}
 244
 245#else   /* !CONFIG_FAIR_GROUP_SCHED */
 246
 247static inline struct task_struct *task_of(struct sched_entity *se)
 248{
 249        return container_of(se, struct task_struct, se);
 250}
 251
 252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 253{
 254        return container_of(cfs_rq, struct rq, cfs);
 255}
 256
 257#define entity_is_task(se)      1
 258
 259#define for_each_sched_entity(se) \
 260                for (; se; se = NULL)
 261
 262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 263{
 264        return &task_rq(p)->cfs;
 265}
 266
 267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 268{
 269        struct task_struct *p = task_of(se);
 270        struct rq *rq = task_rq(p);
 271
 272        return &rq->cfs;
 273}
 274
 275/* runqueue "owned" by this group */
 276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 277{
 278        return NULL;
 279}
 280
 281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 282{
 283        return &cpu_rq(this_cpu)->cfs;
 284}
 285
 286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 287{
 288}
 289
 290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 291{
 292}
 293
 294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 295                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 296
 297static inline int
 298is_same_group(struct sched_entity *se, struct sched_entity *pse)
 299{
 300        return 1;
 301}
 302
 303static inline struct sched_entity *parent_entity(struct sched_entity *se)
 304{
 305        return NULL;
 306}
 307
 308static inline void
 309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 310{
 311}
 312
 313#endif  /* CONFIG_FAIR_GROUP_SCHED */
 314
 315
 316/**************************************************************
 317 * Scheduling class tree data structure manipulation methods:
 318 */
 319
 320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 321{
 322        s64 delta = (s64)(vruntime - min_vruntime);
 323        if (delta > 0)
 324                min_vruntime = vruntime;
 325
 326        return min_vruntime;
 327}
 328
 329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 330{
 331        s64 delta = (s64)(vruntime - min_vruntime);
 332        if (delta < 0)
 333                min_vruntime = vruntime;
 334
 335        return min_vruntime;
 336}
 337
 338static inline int entity_before(struct sched_entity *a,
 339                                struct sched_entity *b)
 340{
 341        return (s64)(a->vruntime - b->vruntime) < 0;
 342}
 343
 344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 345{
 346        return se->vruntime - cfs_rq->min_vruntime;
 347}
 348
 349static void update_min_vruntime(struct cfs_rq *cfs_rq)
 350{
 351        u64 vruntime = cfs_rq->min_vruntime;
 352
 353        if (cfs_rq->curr)
 354                vruntime = cfs_rq->curr->vruntime;
 355
 356        if (cfs_rq->rb_leftmost) {
 357                struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 358                                                   struct sched_entity,
 359                                                   run_node);
 360
 361                if (!cfs_rq->curr)
 362                        vruntime = se->vruntime;
 363                else
 364                        vruntime = min_vruntime(vruntime, se->vruntime);
 365        }
 366
 367        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 368}
 369
 370/*
 371 * Enqueue an entity into the rb-tree:
 372 */
 373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 374{
 375        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 376        struct rb_node *parent = NULL;
 377        struct sched_entity *entry;
 378        s64 key = entity_key(cfs_rq, se);
 379        int leftmost = 1;
 380
 381        /*
 382         * Find the right place in the rbtree:
 383         */
 384        while (*link) {
 385                parent = *link;
 386                entry = rb_entry(parent, struct sched_entity, run_node);
 387                /*
 388                 * We dont care about collisions. Nodes with
 389                 * the same key stay together.
 390                 */
 391                if (key < entity_key(cfs_rq, entry)) {
 392                        link = &parent->rb_left;
 393                } else {
 394                        link = &parent->rb_right;
 395                        leftmost = 0;
 396                }
 397        }
 398
 399        /*
 400         * Maintain a cache of leftmost tree entries (it is frequently
 401         * used):
 402         */
 403        if (leftmost)
 404                cfs_rq->rb_leftmost = &se->run_node;
 405
 406        rb_link_node(&se->run_node, parent, link);
 407        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 408}
 409
 410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 411{
 412        if (cfs_rq->rb_leftmost == &se->run_node) {
 413                struct rb_node *next_node;
 414
 415                next_node = rb_next(&se->run_node);
 416                cfs_rq->rb_leftmost = next_node;
 417        }
 418
 419        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 420}
 421
 422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
 423{
 424        struct rb_node *left = cfs_rq->rb_leftmost;
 425
 426        if (!left)
 427                return NULL;
 428
 429        return rb_entry(left, struct sched_entity, run_node);
 430}
 431
 432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 433{
 434        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 435
 436        if (!last)
 437                return NULL;
 438
 439        return rb_entry(last, struct sched_entity, run_node);
 440}
 441
 442/**************************************************************
 443 * Scheduling class statistics methods:
 444 */
 445
 446#ifdef CONFIG_SCHED_DEBUG
 447int sched_proc_update_handler(struct ctl_table *table, int write,
 448                void __user *buffer, size_t *lenp,
 449                loff_t *ppos)
 450{
 451        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 452        int factor = get_update_sysctl_factor();
 453
 454        if (ret || !write)
 455                return ret;
 456
 457        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 458                                        sysctl_sched_min_granularity);
 459
 460#define WRT_SYSCTL(name) \
 461        (normalized_sysctl_##name = sysctl_##name / (factor))
 462        WRT_SYSCTL(sched_min_granularity);
 463        WRT_SYSCTL(sched_latency);
 464        WRT_SYSCTL(sched_wakeup_granularity);
 465#undef WRT_SYSCTL
 466
 467        return 0;
 468}
 469#endif
 470
 471/*
 472 * delta /= w
 473 */
 474static inline unsigned long
 475calc_delta_fair(unsigned long delta, struct sched_entity *se)
 476{
 477        if (unlikely(se->load.weight != NICE_0_LOAD))
 478                delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 479
 480        return delta;
 481}
 482
 483/*
 484 * The idea is to set a period in which each task runs once.
 485 *
 486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 487 * this period because otherwise the slices get too small.
 488 *
 489 * p = (nr <= nl) ? l : l*nr/nl
 490 */
 491static u64 __sched_period(unsigned long nr_running)
 492{
 493        u64 period = sysctl_sched_latency;
 494        unsigned long nr_latency = sched_nr_latency;
 495
 496        if (unlikely(nr_running > nr_latency)) {
 497                period = sysctl_sched_min_granularity;
 498                period *= nr_running;
 499        }
 500
 501        return period;
 502}
 503
 504/*
 505 * We calculate the wall-time slice from the period by taking a part
 506 * proportional to the weight.
 507 *
 508 * s = p*P[w/rw]
 509 */
 510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 511{
 512        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 513
 514        for_each_sched_entity(se) {
 515                struct load_weight *load;
 516                struct load_weight lw;
 517
 518                cfs_rq = cfs_rq_of(se);
 519                load = &cfs_rq->load;
 520
 521                if (unlikely(!se->on_rq)) {
 522                        lw = cfs_rq->load;
 523
 524                        update_load_add(&lw, se->load.weight);
 525                        load = &lw;
 526                }
 527                slice = calc_delta_mine(slice, se->load.weight, load);
 528        }
 529        return slice;
 530}
 531
 532/*
 533 * We calculate the vruntime slice of a to be inserted task
 534 *
 535 * vs = s/w
 536 */
 537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 538{
 539        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 540}
 541
 542static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
 543static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
 544
 545/*
 546 * Update the current task's runtime statistics. Skip current tasks that
 547 * are not in our scheduling class.
 548 */
 549static inline void
 550__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 551              unsigned long delta_exec)
 552{
 553        unsigned long delta_exec_weighted;
 554
 555        schedstat_set(curr->statistics.exec_max,
 556                      max((u64)delta_exec, curr->statistics.exec_max));
 557
 558        curr->sum_exec_runtime += delta_exec;
 559        schedstat_add(cfs_rq, exec_clock, delta_exec);
 560        delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 561
 562        curr->vruntime += delta_exec_weighted;
 563        update_min_vruntime(cfs_rq);
 564
 565#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 566        cfs_rq->load_unacc_exec_time += delta_exec;
 567#endif
 568}
 569
 570static void update_curr(struct cfs_rq *cfs_rq)
 571{
 572        struct sched_entity *curr = cfs_rq->curr;
 573        u64 now = rq_of(cfs_rq)->clock_task;
 574        unsigned long delta_exec;
 575
 576        if (unlikely(!curr))
 577                return;
 578
 579        /*
 580         * Get the amount of time the current task was running
 581         * since the last time we changed load (this cannot
 582         * overflow on 32 bits):
 583         */
 584        delta_exec = (unsigned long)(now - curr->exec_start);
 585        if (!delta_exec)
 586                return;
 587
 588        __update_curr(cfs_rq, curr, delta_exec);
 589        curr->exec_start = now;
 590
 591        if (entity_is_task(curr)) {
 592                struct task_struct *curtask = task_of(curr);
 593
 594                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 595                cpuacct_charge(curtask, delta_exec);
 596                account_group_exec_runtime(curtask, delta_exec);
 597        }
 598}
 599
 600static inline void
 601update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 602{
 603        schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
 604}
 605
 606/*
 607 * Task is being enqueued - update stats:
 608 */
 609static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 610{
 611        /*
 612         * Are we enqueueing a waiting task? (for current tasks
 613         * a dequeue/enqueue event is a NOP)
 614         */
 615        if (se != cfs_rq->curr)
 616                update_stats_wait_start(cfs_rq, se);
 617}
 618
 619static void
 620update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 621{
 622        schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 623                        rq_of(cfs_rq)->clock - se->statistics.wait_start));
 624        schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 625        schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 626                        rq_of(cfs_rq)->clock - se->statistics.wait_start);
 627#ifdef CONFIG_SCHEDSTATS
 628        if (entity_is_task(se)) {
 629                trace_sched_stat_wait(task_of(se),
 630                        rq_of(cfs_rq)->clock - se->statistics.wait_start);
 631        }
 632#endif
 633        schedstat_set(se->statistics.wait_start, 0);
 634}
 635
 636static inline void
 637update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 638{
 639        /*
 640         * Mark the end of the wait period if dequeueing a
 641         * waiting task:
 642         */
 643        if (se != cfs_rq->curr)
 644                update_stats_wait_end(cfs_rq, se);
 645}
 646
 647/*
 648 * We are picking a new current task - update its stats:
 649 */
 650static inline void
 651update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 652{
 653        /*
 654         * We are starting a new run period:
 655         */
 656        se->exec_start = rq_of(cfs_rq)->clock_task;
 657}
 658
 659/**************************************************
 660 * Scheduling class queueing methods:
 661 */
 662
 663#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 664static void
 665add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 666{
 667        cfs_rq->task_weight += weight;
 668}
 669#else
 670static inline void
 671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 672{
 673}
 674#endif
 675
 676static void
 677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 678{
 679        update_load_add(&cfs_rq->load, se->load.weight);
 680        if (!parent_entity(se))
 681                inc_cpu_load(rq_of(cfs_rq), se->load.weight);
 682        if (entity_is_task(se)) {
 683                add_cfs_task_weight(cfs_rq, se->load.weight);
 684                list_add(&se->group_node, &cfs_rq->tasks);
 685        }
 686        cfs_rq->nr_running++;
 687}
 688
 689static void
 690account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 691{
 692        update_load_sub(&cfs_rq->load, se->load.weight);
 693        if (!parent_entity(se))
 694                dec_cpu_load(rq_of(cfs_rq), se->load.weight);
 695        if (entity_is_task(se)) {
 696                add_cfs_task_weight(cfs_rq, -se->load.weight);
 697                list_del_init(&se->group_node);
 698        }
 699        cfs_rq->nr_running--;
 700}
 701
 702#ifdef CONFIG_FAIR_GROUP_SCHED
 703# ifdef CONFIG_SMP
 704static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
 705                                            int global_update)
 706{
 707        struct task_group *tg = cfs_rq->tg;
 708        long load_avg;
 709
 710        load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
 711        load_avg -= cfs_rq->load_contribution;
 712
 713        if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
 714                atomic_add(load_avg, &tg->load_weight);
 715                cfs_rq->load_contribution += load_avg;
 716        }
 717}
 718
 719static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 720{
 721        u64 period = sysctl_sched_shares_window;
 722        u64 now, delta;
 723        unsigned long load = cfs_rq->load.weight;
 724
 725        if (cfs_rq->tg == &root_task_group)
 726                return;
 727
 728        now = rq_of(cfs_rq)->clock_task;
 729        delta = now - cfs_rq->load_stamp;
 730
 731        /* truncate load history at 4 idle periods */
 732        if (cfs_rq->load_stamp > cfs_rq->load_last &&
 733            now - cfs_rq->load_last > 4 * period) {
 734                cfs_rq->load_period = 0;
 735                cfs_rq->load_avg = 0;
 736        }
 737
 738        cfs_rq->load_stamp = now;
 739        cfs_rq->load_unacc_exec_time = 0;
 740        cfs_rq->load_period += delta;
 741        if (load) {
 742                cfs_rq->load_last = now;
 743                cfs_rq->load_avg += delta * load;
 744        }
 745
 746        /* consider updating load contribution on each fold or truncate */
 747        if (global_update || cfs_rq->load_period > period
 748            || !cfs_rq->load_period)
 749                update_cfs_rq_load_contribution(cfs_rq, global_update);
 750
 751        while (cfs_rq->load_period > period) {
 752                /*
 753                 * Inline assembly required to prevent the compiler
 754                 * optimising this loop into a divmod call.
 755                 * See __iter_div_u64_rem() for another example of this.
 756                 */
 757                asm("" : "+rm" (cfs_rq->load_period));
 758                cfs_rq->load_period /= 2;
 759                cfs_rq->load_avg /= 2;
 760        }
 761
 762        if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
 763                list_del_leaf_cfs_rq(cfs_rq);
 764}
 765
 766static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
 767                                long weight_delta)
 768{
 769        long load_weight, load, shares;
 770
 771        load = cfs_rq->load.weight + weight_delta;
 772
 773        load_weight = atomic_read(&tg->load_weight);
 774        load_weight -= cfs_rq->load_contribution;
 775        load_weight += load;
 776
 777        shares = (tg->shares * load);
 778        if (load_weight)
 779                shares /= load_weight;
 780
 781        if (shares < MIN_SHARES)
 782                shares = MIN_SHARES;
 783        if (shares > tg->shares)
 784                shares = tg->shares;
 785
 786        return shares;
 787}
 788
 789static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 790{
 791        if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
 792                update_cfs_load(cfs_rq, 0);
 793                update_cfs_shares(cfs_rq, 0);
 794        }
 795}
 796# else /* CONFIG_SMP */
 797static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 798{
 799}
 800
 801static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
 802                                long weight_delta)
 803{
 804        return tg->shares;
 805}
 806
 807static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 808{
 809}
 810# endif /* CONFIG_SMP */
 811static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 812                            unsigned long weight)
 813{
 814        if (se->on_rq) {
 815                /* commit outstanding execution time */
 816                if (cfs_rq->curr == se)
 817                        update_curr(cfs_rq);
 818                account_entity_dequeue(cfs_rq, se);
 819        }
 820
 821        update_load_set(&se->load, weight);
 822
 823        if (se->on_rq)
 824                account_entity_enqueue(cfs_rq, se);
 825}
 826
 827static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
 828{
 829        struct task_group *tg;
 830        struct sched_entity *se;
 831        long shares;
 832
 833        tg = cfs_rq->tg;
 834        se = tg->se[cpu_of(rq_of(cfs_rq))];
 835        if (!se)
 836                return;
 837#ifndef CONFIG_SMP
 838        if (likely(se->load.weight == tg->shares))
 839                return;
 840#endif
 841        shares = calc_cfs_shares(cfs_rq, tg, weight_delta);
 842
 843        reweight_entity(cfs_rq_of(se), se, shares);
 844}
 845#else /* CONFIG_FAIR_GROUP_SCHED */
 846static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 847{
 848}
 849
 850static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
 851{
 852}
 853
 854static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 855{
 856}
 857#endif /* CONFIG_FAIR_GROUP_SCHED */
 858
 859static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 860{
 861#ifdef CONFIG_SCHEDSTATS
 862        struct task_struct *tsk = NULL;
 863
 864        if (entity_is_task(se))
 865                tsk = task_of(se);
 866
 867        if (se->statistics.sleep_start) {
 868                u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
 869
 870                if ((s64)delta < 0)
 871                        delta = 0;
 872
 873                if (unlikely(delta > se->statistics.sleep_max))
 874                        se->statistics.sleep_max = delta;
 875
 876                se->statistics.sleep_start = 0;
 877                se->statistics.sum_sleep_runtime += delta;
 878
 879                if (tsk) {
 880                        account_scheduler_latency(tsk, delta >> 10, 1);
 881                        trace_sched_stat_sleep(tsk, delta);
 882                }
 883        }
 884        if (se->statistics.block_start) {
 885                u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
 886
 887                if ((s64)delta < 0)
 888                        delta = 0;
 889
 890                if (unlikely(delta > se->statistics.block_max))
 891                        se->statistics.block_max = delta;
 892
 893                se->statistics.block_start = 0;
 894                se->statistics.sum_sleep_runtime += delta;
 895
 896                if (tsk) {
 897                        if (tsk->in_iowait) {
 898                                se->statistics.iowait_sum += delta;
 899                                se->statistics.iowait_count++;
 900                                trace_sched_stat_iowait(tsk, delta);
 901                        }
 902
 903                        /*
 904                         * Blocking time is in units of nanosecs, so shift by
 905                         * 20 to get a milliseconds-range estimation of the
 906                         * amount of time that the task spent sleeping:
 907                         */
 908                        if (unlikely(prof_on == SLEEP_PROFILING)) {
 909                                profile_hits(SLEEP_PROFILING,
 910                                                (void *)get_wchan(tsk),
 911                                                delta >> 20);
 912                        }
 913                        account_scheduler_latency(tsk, delta >> 10, 0);
 914                }
 915        }
 916#endif
 917}
 918
 919static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 920{
 921#ifdef CONFIG_SCHED_DEBUG
 922        s64 d = se->vruntime - cfs_rq->min_vruntime;
 923
 924        if (d < 0)
 925                d = -d;
 926
 927        if (d > 3*sysctl_sched_latency)
 928                schedstat_inc(cfs_rq, nr_spread_over);
 929#endif
 930}
 931
 932static void
 933place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 934{
 935        u64 vruntime = cfs_rq->min_vruntime;
 936
 937        /*
 938         * The 'current' period is already promised to the current tasks,
 939         * however the extra weight of the new task will slow them down a
 940         * little, place the new task so that it fits in the slot that
 941         * stays open at the end.
 942         */
 943        if (initial && sched_feat(START_DEBIT))
 944                vruntime += sched_vslice(cfs_rq, se);
 945
 946        /* sleeps up to a single latency don't count. */
 947        if (!initial) {
 948                unsigned long thresh = sysctl_sched_latency;
 949
 950                /*
 951                 * Halve their sleep time's effect, to allow
 952                 * for a gentler effect of sleepers:
 953                 */
 954                if (sched_feat(GENTLE_FAIR_SLEEPERS))
 955                        thresh >>= 1;
 956
 957                vruntime -= thresh;
 958        }
 959
 960        /* ensure we never gain time by being placed backwards. */
 961        vruntime = max_vruntime(se->vruntime, vruntime);
 962
 963        se->vruntime = vruntime;
 964}
 965
 966static void
 967enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 968{
 969        /*
 970         * Update the normalized vruntime before updating min_vruntime
 971         * through callig update_curr().
 972         */
 973        if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
 974                se->vruntime += cfs_rq->min_vruntime;
 975
 976        /*
 977         * Update run-time statistics of the 'current'.
 978         */
 979        update_curr(cfs_rq);
 980        update_cfs_load(cfs_rq, 0);
 981        update_cfs_shares(cfs_rq, se->load.weight);
 982        account_entity_enqueue(cfs_rq, se);
 983
 984        if (flags & ENQUEUE_WAKEUP) {
 985                place_entity(cfs_rq, se, 0);
 986                enqueue_sleeper(cfs_rq, se);
 987        }
 988
 989        update_stats_enqueue(cfs_rq, se);
 990        check_spread(cfs_rq, se);
 991        if (se != cfs_rq->curr)
 992                __enqueue_entity(cfs_rq, se);
 993        se->on_rq = 1;
 994
 995        if (cfs_rq->nr_running == 1)
 996                list_add_leaf_cfs_rq(cfs_rq);
 997}
 998
 999static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1000{
1001        if (!se || cfs_rq->last == se)
1002                cfs_rq->last = NULL;
1003
1004        if (!se || cfs_rq->next == se)
1005                cfs_rq->next = NULL;
1006}
1007
1008static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1009{
1010        for_each_sched_entity(se)
1011                __clear_buddies(cfs_rq_of(se), se);
1012}
1013
1014static void
1015dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1016{
1017        /*
1018         * Update run-time statistics of the 'current'.
1019         */
1020        update_curr(cfs_rq);
1021
1022        update_stats_dequeue(cfs_rq, se);
1023        if (flags & DEQUEUE_SLEEP) {
1024#ifdef CONFIG_SCHEDSTATS
1025                if (entity_is_task(se)) {
1026                        struct task_struct *tsk = task_of(se);
1027
1028                        if (tsk->state & TASK_INTERRUPTIBLE)
1029                                se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1030                        if (tsk->state & TASK_UNINTERRUPTIBLE)
1031                                se->statistics.block_start = rq_of(cfs_rq)->clock;
1032                }
1033#endif
1034        }
1035
1036        clear_buddies(cfs_rq, se);
1037
1038        if (se != cfs_rq->curr)
1039                __dequeue_entity(cfs_rq, se);
1040        se->on_rq = 0;
1041        update_cfs_load(cfs_rq, 0);
1042        account_entity_dequeue(cfs_rq, se);
1043        update_min_vruntime(cfs_rq);
1044        update_cfs_shares(cfs_rq, 0);
1045
1046        /*
1047         * Normalize the entity after updating the min_vruntime because the
1048         * update can refer to the ->curr item and we need to reflect this
1049         * movement in our normalized position.
1050         */
1051        if (!(flags & DEQUEUE_SLEEP))
1052                se->vruntime -= cfs_rq->min_vruntime;
1053}
1054
1055/*
1056 * Preempt the current task with a newly woken task if needed:
1057 */
1058static void
1059check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1060{
1061        unsigned long ideal_runtime, delta_exec;
1062
1063        ideal_runtime = sched_slice(cfs_rq, curr);
1064        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1065        if (delta_exec > ideal_runtime) {
1066                resched_task(rq_of(cfs_rq)->curr);
1067                /*
1068                 * The current task ran long enough, ensure it doesn't get
1069                 * re-elected due to buddy favours.
1070                 */
1071                clear_buddies(cfs_rq, curr);
1072                return;
1073        }
1074
1075        /*
1076         * Ensure that a task that missed wakeup preemption by a
1077         * narrow margin doesn't have to wait for a full slice.
1078         * This also mitigates buddy induced latencies under load.
1079         */
1080        if (!sched_feat(WAKEUP_PREEMPT))
1081                return;
1082
1083        if (delta_exec < sysctl_sched_min_granularity)
1084                return;
1085
1086        if (cfs_rq->nr_running > 1) {
1087                struct sched_entity *se = __pick_next_entity(cfs_rq);
1088                s64 delta = curr->vruntime - se->vruntime;
1089
1090                if (delta < 0)
1091                        return;
1092
1093                if (delta > ideal_runtime)
1094                        resched_task(rq_of(cfs_rq)->curr);
1095        }
1096}
1097
1098static void
1099set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1100{
1101        /* 'current' is not kept within the tree. */
1102        if (se->on_rq) {
1103                /*
1104                 * Any task has to be enqueued before it get to execute on
1105                 * a CPU. So account for the time it spent waiting on the
1106                 * runqueue.
1107                 */
1108                update_stats_wait_end(cfs_rq, se);
1109                __dequeue_entity(cfs_rq, se);
1110        }
1111
1112        update_stats_curr_start(cfs_rq, se);
1113        cfs_rq->curr = se;
1114#ifdef CONFIG_SCHEDSTATS
1115        /*
1116         * Track our maximum slice length, if the CPU's load is at
1117         * least twice that of our own weight (i.e. dont track it
1118         * when there are only lesser-weight tasks around):
1119         */
1120        if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1121                se->statistics.slice_max = max(se->statistics.slice_max,
1122                        se->sum_exec_runtime - se->prev_sum_exec_runtime);
1123        }
1124#endif
1125        se->prev_sum_exec_runtime = se->sum_exec_runtime;
1126}
1127
1128static int
1129wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1130
1131static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1132{
1133        struct sched_entity *se = __pick_next_entity(cfs_rq);
1134        struct sched_entity *left = se;
1135
1136        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1137                se = cfs_rq->next;
1138
1139        /*
1140         * Prefer last buddy, try to return the CPU to a preempted task.
1141         */
1142        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1143                se = cfs_rq->last;
1144
1145        clear_buddies(cfs_rq, se);
1146
1147        return se;
1148}
1149
1150static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1151{
1152        /*
1153         * If still on the runqueue then deactivate_task()
1154         * was not called and update_curr() has to be done:
1155         */
1156        if (prev->on_rq)
1157                update_curr(cfs_rq);
1158
1159        check_spread(cfs_rq, prev);
1160        if (prev->on_rq) {
1161                update_stats_wait_start(cfs_rq, prev);
1162                /* Put 'current' back into the tree. */
1163                __enqueue_entity(cfs_rq, prev);
1164        }
1165        cfs_rq->curr = NULL;
1166}
1167
1168static void
1169entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1170{
1171        /*
1172         * Update run-time statistics of the 'current'.
1173         */
1174        update_curr(cfs_rq);
1175
1176        /*
1177         * Update share accounting for long-running entities.
1178         */
1179        update_entity_shares_tick(cfs_rq);
1180
1181#ifdef CONFIG_SCHED_HRTICK
1182        /*
1183         * queued ticks are scheduled to match the slice, so don't bother
1184         * validating it and just reschedule.
1185         */
1186        if (queued) {
1187                resched_task(rq_of(cfs_rq)->curr);
1188                return;
1189        }
1190        /*
1191         * don't let the period tick interfere with the hrtick preemption
1192         */
1193        if (!sched_feat(DOUBLE_TICK) &&
1194                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1195                return;
1196#endif
1197
1198        if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1199                check_preempt_tick(cfs_rq, curr);
1200}
1201
1202/**************************************************
1203 * CFS operations on tasks:
1204 */
1205
1206#ifdef CONFIG_SCHED_HRTICK
1207static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1208{
1209        struct sched_entity *se = &p->se;
1210        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1211
1212        WARN_ON(task_rq(p) != rq);
1213
1214        if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1215                u64 slice = sched_slice(cfs_rq, se);
1216                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1217                s64 delta = slice - ran;
1218
1219                if (delta < 0) {
1220                        if (rq->curr == p)
1221                                resched_task(p);
1222                        return;
1223                }
1224
1225                /*
1226                 * Don't schedule slices shorter than 10000ns, that just
1227                 * doesn't make sense. Rely on vruntime for fairness.
1228                 */
1229                if (rq->curr != p)
1230                        delta = max_t(s64, 10000LL, delta);
1231
1232                hrtick_start(rq, delta);
1233        }
1234}
1235
1236/*
1237 * called from enqueue/dequeue and updates the hrtick when the
1238 * current task is from our class and nr_running is low enough
1239 * to matter.
1240 */
1241static void hrtick_update(struct rq *rq)
1242{
1243        struct task_struct *curr = rq->curr;
1244
1245        if (curr->sched_class != &fair_sched_class)
1246                return;
1247
1248        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1249                hrtick_start_fair(rq, curr);
1250}
1251#else /* !CONFIG_SCHED_HRTICK */
1252static inline void
1253hrtick_start_fair(struct rq *rq, struct task_struct *p)
1254{
1255}
1256
1257static inline void hrtick_update(struct rq *rq)
1258{
1259}
1260#endif
1261
1262/*
1263 * The enqueue_task method is called before nr_running is
1264 * increased. Here we update the fair scheduling stats and
1265 * then put the task into the rbtree:
1266 */
1267static void
1268enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1269{
1270        struct cfs_rq *cfs_rq;
1271        struct sched_entity *se = &p->se;
1272
1273        for_each_sched_entity(se) {
1274                if (se->on_rq)
1275                        break;
1276                cfs_rq = cfs_rq_of(se);
1277                enqueue_entity(cfs_rq, se, flags);
1278                flags = ENQUEUE_WAKEUP;
1279        }
1280
1281        for_each_sched_entity(se) {
1282                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1283
1284                update_cfs_load(cfs_rq, 0);
1285                update_cfs_shares(cfs_rq, 0);
1286        }
1287
1288        hrtick_update(rq);
1289}
1290
1291/*
1292 * The dequeue_task method is called before nr_running is
1293 * decreased. We remove the task from the rbtree and
1294 * update the fair scheduling stats:
1295 */
1296static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1297{
1298        struct cfs_rq *cfs_rq;
1299        struct sched_entity *se = &p->se;
1300
1301        for_each_sched_entity(se) {
1302                cfs_rq = cfs_rq_of(se);
1303                dequeue_entity(cfs_rq, se, flags);
1304
1305                /* Don't dequeue parent if it has other entities besides us */
1306                if (cfs_rq->load.weight)
1307                        break;
1308                flags |= DEQUEUE_SLEEP;
1309        }
1310
1311        for_each_sched_entity(se) {
1312                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1313
1314                update_cfs_load(cfs_rq, 0);
1315                update_cfs_shares(cfs_rq, 0);
1316        }
1317
1318        hrtick_update(rq);
1319}
1320
1321/*
1322 * sched_yield() support is very simple - we dequeue and enqueue.
1323 *
1324 * If compat_yield is turned on then we requeue to the end of the tree.
1325 */
1326static void yield_task_fair(struct rq *rq)
1327{
1328        struct task_struct *curr = rq->curr;
1329        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1330        struct sched_entity *rightmost, *se = &curr->se;
1331
1332        /*
1333         * Are we the only task in the tree?
1334         */
1335        if (unlikely(cfs_rq->nr_running == 1))
1336                return;
1337
1338        clear_buddies(cfs_rq, se);
1339
1340        if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1341                update_rq_clock(rq);
1342                /*
1343                 * Update run-time statistics of the 'current'.
1344                 */
1345                update_curr(cfs_rq);
1346
1347                return;
1348        }
1349        /*
1350         * Find the rightmost entry in the rbtree:
1351         */
1352        rightmost = __pick_last_entity(cfs_rq);
1353        /*
1354         * Already in the rightmost position?
1355         */
1356        if (unlikely(!rightmost || entity_before(rightmost, se)))
1357                return;
1358
1359        /*
1360         * Minimally necessary key value to be last in the tree:
1361         * Upon rescheduling, sched_class::put_prev_task() will place
1362         * 'current' within the tree based on its new key value.
1363         */
1364        se->vruntime = rightmost->vruntime + 1;
1365}
1366
1367#ifdef CONFIG_SMP
1368
1369static void task_waking_fair(struct rq *rq, struct task_struct *p)
1370{
1371        struct sched_entity *se = &p->se;
1372        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1373
1374        se->vruntime -= cfs_rq->min_vruntime;
1375}
1376
1377#ifdef CONFIG_FAIR_GROUP_SCHED
1378/*
1379 * effective_load() calculates the load change as seen from the root_task_group
1380 *
1381 * Adding load to a group doesn't make a group heavier, but can cause movement
1382 * of group shares between cpus. Assuming the shares were perfectly aligned one
1383 * can calculate the shift in shares.
1384 */
1385static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1386{
1387        struct sched_entity *se = tg->se[cpu];
1388
1389        if (!tg->parent)
1390                return wl;
1391
1392        for_each_sched_entity(se) {
1393                long lw, w;
1394
1395                tg = se->my_q->tg;
1396                w = se->my_q->load.weight;
1397
1398                /* use this cpu's instantaneous contribution */
1399                lw = atomic_read(&tg->load_weight);
1400                lw -= se->my_q->load_contribution;
1401                lw += w + wg;
1402
1403                wl += w;
1404
1405                if (lw > 0 && wl < lw)
1406                        wl = (wl * tg->shares) / lw;
1407                else
1408                        wl = tg->shares;
1409
1410                /* zero point is MIN_SHARES */
1411                if (wl < MIN_SHARES)
1412                        wl = MIN_SHARES;
1413                wl -= se->load.weight;
1414                wg = 0;
1415        }
1416
1417        return wl;
1418}
1419
1420#else
1421
1422static inline unsigned long effective_load(struct task_group *tg, int cpu,
1423                unsigned long wl, unsigned long wg)
1424{
1425        return wl;
1426}
1427
1428#endif
1429
1430static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1431{
1432        s64 this_load, load;
1433        int idx, this_cpu, prev_cpu;
1434        unsigned long tl_per_task;
1435        struct task_group *tg;
1436        unsigned long weight;
1437        int balanced;
1438
1439        idx       = sd->wake_idx;
1440        this_cpu  = smp_processor_id();
1441        prev_cpu  = task_cpu(p);
1442        load      = source_load(prev_cpu, idx);
1443        this_load = target_load(this_cpu, idx);
1444
1445        /*
1446         * If sync wakeup then subtract the (maximum possible)
1447         * effect of the currently running task from the load
1448         * of the current CPU:
1449         */
1450        rcu_read_lock();
1451        if (sync) {
1452                tg = task_group(current);
1453                weight = current->se.load.weight;
1454
1455                this_load += effective_load(tg, this_cpu, -weight, -weight);
1456                load += effective_load(tg, prev_cpu, 0, -weight);
1457        }
1458
1459        tg = task_group(p);
1460        weight = p->se.load.weight;
1461
1462        /*
1463         * In low-load situations, where prev_cpu is idle and this_cpu is idle
1464         * due to the sync cause above having dropped this_load to 0, we'll
1465         * always have an imbalance, but there's really nothing you can do
1466         * about that, so that's good too.
1467         *
1468         * Otherwise check if either cpus are near enough in load to allow this
1469         * task to be woken on this_cpu.
1470         */
1471        if (this_load > 0) {
1472                s64 this_eff_load, prev_eff_load;
1473
1474                this_eff_load = 100;
1475                this_eff_load *= power_of(prev_cpu);
1476                this_eff_load *= this_load +
1477                        effective_load(tg, this_cpu, weight, weight);
1478
1479                prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1480                prev_eff_load *= power_of(this_cpu);
1481                prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1482
1483                balanced = this_eff_load <= prev_eff_load;
1484        } else
1485                balanced = true;
1486        rcu_read_unlock();
1487
1488        /*
1489         * If the currently running task will sleep within
1490         * a reasonable amount of time then attract this newly
1491         * woken task:
1492         */
1493        if (sync && balanced)
1494                return 1;
1495
1496        schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1497        tl_per_task = cpu_avg_load_per_task(this_cpu);
1498
1499        if (balanced ||
1500            (this_load <= load &&
1501             this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1502                /*
1503                 * This domain has SD_WAKE_AFFINE and
1504                 * p is cache cold in this domain, and
1505                 * there is no bad imbalance.
1506                 */
1507                schedstat_inc(sd, ttwu_move_affine);
1508                schedstat_inc(p, se.statistics.nr_wakeups_affine);
1509
1510                return 1;
1511        }
1512        return 0;
1513}
1514
1515/*
1516 * find_idlest_group finds and returns the least busy CPU group within the
1517 * domain.
1518 */
1519static struct sched_group *
1520find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1521                  int this_cpu, int load_idx)
1522{
1523        struct sched_group *idlest = NULL, *group = sd->groups;
1524        unsigned long min_load = ULONG_MAX, this_load = 0;
1525        int imbalance = 100 + (sd->imbalance_pct-100)/2;
1526
1527        do {
1528                unsigned long load, avg_load;
1529                int local_group;
1530                int i;
1531
1532                /* Skip over this group if it has no CPUs allowed */
1533                if (!cpumask_intersects(sched_group_cpus(group),
1534                                        &p->cpus_allowed))
1535                        continue;
1536
1537                local_group = cpumask_test_cpu(this_cpu,
1538                                               sched_group_cpus(group));
1539
1540                /* Tally up the load of all CPUs in the group */
1541                avg_load = 0;
1542
1543                for_each_cpu(i, sched_group_cpus(group)) {
1544                        /* Bias balancing toward cpus of our domain */
1545                        if (local_group)
1546                                load = source_load(i, load_idx);
1547                        else
1548                                load = target_load(i, load_idx);
1549
1550                        avg_load += load;
1551                }
1552
1553                /* Adjust by relative CPU power of the group */
1554                avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1555
1556                if (local_group) {
1557                        this_load = avg_load;
1558                } else if (avg_load < min_load) {
1559                        min_load = avg_load;
1560                        idlest = group;
1561                }
1562        } while (group = group->next, group != sd->groups);
1563
1564        if (!idlest || 100*this_load < imbalance*min_load)
1565                return NULL;
1566        return idlest;
1567}
1568
1569/*
1570 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1571 */
1572static int
1573find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1574{
1575        unsigned long load, min_load = ULONG_MAX;
1576        int idlest = -1;
1577        int i;
1578
1579        /* Traverse only the allowed CPUs */
1580        for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1581                load = weighted_cpuload(i);
1582
1583                if (load < min_load || (load == min_load && i == this_cpu)) {
1584                        min_load = load;
1585                        idlest = i;
1586                }
1587        }
1588
1589        return idlest;
1590}
1591
1592/*
1593 * Try and locate an idle CPU in the sched_domain.
1594 */
1595static int select_idle_sibling(struct task_struct *p, int target)
1596{
1597        int cpu = smp_processor_id();
1598        int prev_cpu = task_cpu(p);
1599        struct sched_domain *sd;
1600        int i;
1601
1602        /*
1603         * If the task is going to be woken-up on this cpu and if it is
1604         * already idle, then it is the right target.
1605         */
1606        if (target == cpu && idle_cpu(cpu))
1607                return cpu;
1608
1609        /*
1610         * If the task is going to be woken-up on the cpu where it previously
1611         * ran and if it is currently idle, then it the right target.
1612         */
1613        if (target == prev_cpu && idle_cpu(prev_cpu))
1614                return prev_cpu;
1615
1616        /*
1617         * Otherwise, iterate the domains and find an elegible idle cpu.
1618         */
1619        for_each_domain(target, sd) {
1620                if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1621                        break;
1622
1623                for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1624                        if (idle_cpu(i)) {
1625                                target = i;
1626                                break;
1627                        }
1628                }
1629
1630                /*
1631                 * Lets stop looking for an idle sibling when we reached
1632                 * the domain that spans the current cpu and prev_cpu.
1633                 */
1634                if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1635                    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1636                        break;
1637        }
1638
1639        return target;
1640}
1641
1642/*
1643 * sched_balance_self: balance the current task (running on cpu) in domains
1644 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1645 * SD_BALANCE_EXEC.
1646 *
1647 * Balance, ie. select the least loaded group.
1648 *
1649 * Returns the target CPU number, or the same CPU if no balancing is needed.
1650 *
1651 * preempt must be disabled.
1652 */
1653static int
1654select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1655{
1656        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1657        int cpu = smp_processor_id();
1658        int prev_cpu = task_cpu(p);
1659        int new_cpu = cpu;
1660        int want_affine = 0;
1661        int want_sd = 1;
1662        int sync = wake_flags & WF_SYNC;
1663
1664        if (sd_flag & SD_BALANCE_WAKE) {
1665                if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1666                        want_affine = 1;
1667                new_cpu = prev_cpu;
1668        }
1669
1670        for_each_domain(cpu, tmp) {
1671                if (!(tmp->flags & SD_LOAD_BALANCE))
1672                        continue;
1673
1674                /*
1675                 * If power savings logic is enabled for a domain, see if we
1676                 * are not overloaded, if so, don't balance wider.
1677                 */
1678                if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1679                        unsigned long power = 0;
1680                        unsigned long nr_running = 0;
1681                        unsigned long capacity;
1682                        int i;
1683
1684                        for_each_cpu(i, sched_domain_span(tmp)) {
1685                                power += power_of(i);
1686                                nr_running += cpu_rq(i)->cfs.nr_running;
1687                        }
1688
1689                        capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1690
1691                        if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1692                                nr_running /= 2;
1693
1694                        if (nr_running < capacity)
1695                                want_sd = 0;
1696                }
1697
1698                /*
1699                 * If both cpu and prev_cpu are part of this domain,
1700                 * cpu is a valid SD_WAKE_AFFINE target.
1701                 */
1702                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1703                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1704                        affine_sd = tmp;
1705                        want_affine = 0;
1706                }
1707
1708                if (!want_sd && !want_affine)
1709                        break;
1710
1711                if (!(tmp->flags & sd_flag))
1712                        continue;
1713
1714                if (want_sd)
1715                        sd = tmp;
1716        }
1717
1718        if (affine_sd) {
1719                if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1720                        return select_idle_sibling(p, cpu);
1721                else
1722                        return select_idle_sibling(p, prev_cpu);
1723        }
1724
1725        while (sd) {
1726                int load_idx = sd->forkexec_idx;
1727                struct sched_group *group;
1728                int weight;
1729
1730                if (!(sd->flags & sd_flag)) {
1731                        sd = sd->child;
1732                        continue;
1733                }
1734
1735                if (sd_flag & SD_BALANCE_WAKE)
1736                        load_idx = sd->wake_idx;
1737
1738                group = find_idlest_group(sd, p, cpu, load_idx);
1739                if (!group) {
1740                        sd = sd->child;
1741                        continue;
1742                }
1743
1744                new_cpu = find_idlest_cpu(group, p, cpu);
1745                if (new_cpu == -1 || new_cpu == cpu) {
1746                        /* Now try balancing at a lower domain level of cpu */
1747                        sd = sd->child;
1748                        continue;
1749                }
1750
1751                /* Now try balancing at a lower domain level of new_cpu */
1752                cpu = new_cpu;
1753                weight = sd->span_weight;
1754                sd = NULL;
1755                for_each_domain(cpu, tmp) {
1756                        if (weight <= tmp->span_weight)
1757                                break;
1758                        if (tmp->flags & sd_flag)
1759                                sd = tmp;
1760                }
1761                /* while loop will break here if sd == NULL */
1762        }
1763
1764        return new_cpu;
1765}
1766#endif /* CONFIG_SMP */
1767
1768static unsigned long
1769wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1770{
1771        unsigned long gran = sysctl_sched_wakeup_granularity;
1772
1773        /*
1774         * Since its curr running now, convert the gran from real-time
1775         * to virtual-time in his units.
1776         *
1777         * By using 'se' instead of 'curr' we penalize light tasks, so
1778         * they get preempted easier. That is, if 'se' < 'curr' then
1779         * the resulting gran will be larger, therefore penalizing the
1780         * lighter, if otoh 'se' > 'curr' then the resulting gran will
1781         * be smaller, again penalizing the lighter task.
1782         *
1783         * This is especially important for buddies when the leftmost
1784         * task is higher priority than the buddy.
1785         */
1786        if (unlikely(se->load.weight != NICE_0_LOAD))
1787                gran = calc_delta_fair(gran, se);
1788
1789        return gran;
1790}
1791
1792/*
1793 * Should 'se' preempt 'curr'.
1794 *
1795 *             |s1
1796 *        |s2
1797 *   |s3
1798 *         g
1799 *      |<--->|c
1800 *
1801 *  w(c, s1) = -1
1802 *  w(c, s2) =  0
1803 *  w(c, s3) =  1
1804 *
1805 */
1806static int
1807wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1808{
1809        s64 gran, vdiff = curr->vruntime - se->vruntime;
1810
1811        if (vdiff <= 0)
1812                return -1;
1813
1814        gran = wakeup_gran(curr, se);
1815        if (vdiff > gran)
1816                return 1;
1817
1818        return 0;
1819}
1820
1821static void set_last_buddy(struct sched_entity *se)
1822{
1823        if (likely(task_of(se)->policy != SCHED_IDLE)) {
1824                for_each_sched_entity(se)
1825                        cfs_rq_of(se)->last = se;
1826        }
1827}
1828
1829static void set_next_buddy(struct sched_entity *se)
1830{
1831        if (likely(task_of(se)->policy != SCHED_IDLE)) {
1832                for_each_sched_entity(se)
1833                        cfs_rq_of(se)->next = se;
1834        }
1835}
1836
1837/*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
1840static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1841{
1842        struct task_struct *curr = rq->curr;
1843        struct sched_entity *se = &curr->se, *pse = &p->se;
1844        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1845        int scale = cfs_rq->nr_running >= sched_nr_latency;
1846
1847        if (unlikely(se == pse))
1848                return;
1849
1850        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1851                set_next_buddy(pse);
1852
1853        /*
1854         * We can come here with TIF_NEED_RESCHED already set from new task
1855         * wake up path.
1856         */
1857        if (test_tsk_need_resched(curr))
1858                return;
1859
1860        /*
1861         * Batch and idle tasks do not preempt (their preemption is driven by
1862         * the tick):
1863         */
1864        if (unlikely(p->policy != SCHED_NORMAL))
1865                return;
1866
1867        /* Idle tasks are by definition preempted by everybody. */
1868        if (unlikely(curr->policy == SCHED_IDLE))
1869                goto preempt;
1870
1871        if (!sched_feat(WAKEUP_PREEMPT))
1872                return;
1873
1874        update_curr(cfs_rq);
1875        find_matching_se(&se, &pse);
1876        BUG_ON(!pse);
1877        if (wakeup_preempt_entity(se, pse) == 1)
1878                goto preempt;
1879
1880        return;
1881
1882preempt:
1883        resched_task(curr);
1884        /*
1885         * Only set the backward buddy when the current task is still
1886         * on the rq. This can happen when a wakeup gets interleaved
1887         * with schedule on the ->pre_schedule() or idle_balance()
1888         * point, either of which can * drop the rq lock.
1889         *
1890         * Also, during early boot the idle thread is in the fair class,
1891         * for obvious reasons its a bad idea to schedule back to it.
1892         */
1893        if (unlikely(!se->on_rq || curr == rq->idle))
1894                return;
1895
1896        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1897                set_last_buddy(se);
1898}
1899
1900static struct task_struct *pick_next_task_fair(struct rq *rq)
1901{
1902        struct task_struct *p;
1903        struct cfs_rq *cfs_rq = &rq->cfs;
1904        struct sched_entity *se;
1905
1906        if (!cfs_rq->nr_running)
1907                return NULL;
1908
1909        do {
1910                se = pick_next_entity(cfs_rq);
1911                set_next_entity(cfs_rq, se);
1912                cfs_rq = group_cfs_rq(se);
1913        } while (cfs_rq);
1914
1915        p = task_of(se);
1916        hrtick_start_fair(rq, p);
1917
1918        return p;
1919}
1920
1921/*
1922 * Account for a descheduled task:
1923 */
1924static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1925{
1926        struct sched_entity *se = &prev->se;
1927        struct cfs_rq *cfs_rq;
1928
1929        for_each_sched_entity(se) {
1930                cfs_rq = cfs_rq_of(se);
1931                put_prev_entity(cfs_rq, se);
1932        }
1933}
1934
1935#ifdef CONFIG_SMP
1936/**************************************************
1937 * Fair scheduling class load-balancing methods:
1938 */
1939
1940/*
1941 * pull_task - move a task from a remote runqueue to the local runqueue.
1942 * Both runqueues must be locked.
1943 */
1944static void pull_task(struct rq *src_rq, struct task_struct *p,
1945                      struct rq *this_rq, int this_cpu)
1946{
1947        deactivate_task(src_rq, p, 0);
1948        set_task_cpu(p, this_cpu);
1949        activate_task(this_rq, p, 0);
1950        check_preempt_curr(this_rq, p, 0);
1951}
1952
1953/*
1954 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1955 */
1956static
1957int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1958                     struct sched_domain *sd, enum cpu_idle_type idle,
1959                     int *all_pinned)
1960{
1961        int tsk_cache_hot = 0;
1962        /*
1963         * We do not migrate tasks that are:
1964         * 1) running (obviously), or
1965         * 2) cannot be migrated to this CPU due to cpus_allowed, or
1966         * 3) are cache-hot on their current CPU.
1967         */
1968        if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1969                schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1970                return 0;
1971        }
1972        *all_pinned = 0;
1973
1974        if (task_running(rq, p)) {
1975                schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1976                return 0;
1977        }
1978
1979        /*
1980         * Aggressive migration if:
1981         * 1) task is cache cold, or
1982         * 2) too many balance attempts have failed.
1983         */
1984
1985        tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1986        if (!tsk_cache_hot ||
1987                sd->nr_balance_failed > sd->cache_nice_tries) {
1988#ifdef CONFIG_SCHEDSTATS
1989                if (tsk_cache_hot) {
1990                        schedstat_inc(sd, lb_hot_gained[idle]);
1991                        schedstat_inc(p, se.statistics.nr_forced_migrations);
1992                }
1993#endif
1994                return 1;
1995        }
1996
1997        if (tsk_cache_hot) {
1998                schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1999                return 0;
2000        }
2001        return 1;
2002}
2003
2004/*
2005 * move_one_task tries to move exactly one task from busiest to this_rq, as
2006 * part of active balancing operations within "domain".
2007 * Returns 1 if successful and 0 otherwise.
2008 *
2009 * Called with both runqueues locked.
2010 */
2011static int
2012move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2013              struct sched_domain *sd, enum cpu_idle_type idle)
2014{
2015        struct task_struct *p, *n;
2016        struct cfs_rq *cfs_rq;
2017        int pinned = 0;
2018
2019        for_each_leaf_cfs_rq(busiest, cfs_rq) {
2020                list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2021
2022                        if (!can_migrate_task(p, busiest, this_cpu,
2023                                                sd, idle, &pinned))
2024                                continue;
2025
2026                        pull_task(busiest, p, this_rq, this_cpu);
2027                        /*
2028                         * Right now, this is only the second place pull_task()
2029                         * is called, so we can safely collect pull_task()
2030                         * stats here rather than inside pull_task().
2031                         */
2032                        schedstat_inc(sd, lb_gained[idle]);
2033                        return 1;
2034                }
2035        }
2036
2037        return 0;
2038}
2039
2040static unsigned long
2041balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2042              unsigned long max_load_move, struct sched_domain *sd,
2043              enum cpu_idle_type idle, int *all_pinned,
2044              int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2045{
2046        int loops = 0, pulled = 0, pinned = 0;
2047        long rem_load_move = max_load_move;
2048        struct task_struct *p, *n;
2049
2050        if (max_load_move == 0)
2051                goto out;
2052
2053        pinned = 1;
2054
2055        list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2056                if (loops++ > sysctl_sched_nr_migrate)
2057                        break;
2058
2059                if ((p->se.load.weight >> 1) > rem_load_move ||
2060                    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2061                        continue;
2062
2063                pull_task(busiest, p, this_rq, this_cpu);
2064                pulled++;
2065                rem_load_move -= p->se.load.weight;
2066
2067#ifdef CONFIG_PREEMPT
2068                /*
2069                 * NEWIDLE balancing is a source of latency, so preemptible
2070                 * kernels will stop after the first task is pulled to minimize
2071                 * the critical section.
2072                 */
2073                if (idle == CPU_NEWLY_IDLE)
2074                        break;
2075#endif
2076
2077                /*
2078                 * We only want to steal up to the prescribed amount of
2079                 * weighted load.
2080                 */
2081                if (rem_load_move <= 0)
2082                        break;
2083
2084                if (p->prio < *this_best_prio)
2085                        *this_best_prio = p->prio;
2086        }
2087out:
2088        /*
2089         * Right now, this is one of only two places pull_task() is called,
2090         * so we can safely collect pull_task() stats here rather than
2091         * inside pull_task().
2092         */
2093        schedstat_add(sd, lb_gained[idle], pulled);
2094
2095        if (all_pinned)
2096                *all_pinned = pinned;
2097
2098        return max_load_move - rem_load_move;
2099}
2100
2101#ifdef CONFIG_FAIR_GROUP_SCHED
2102/*
2103 * update tg->load_weight by folding this cpu's load_avg
2104 */
2105static int update_shares_cpu(struct task_group *tg, int cpu)
2106{
2107        struct cfs_rq *cfs_rq;
2108        unsigned long flags;
2109        struct rq *rq;
2110
2111        if (!tg->se[cpu])
2112                return 0;
2113
2114        rq = cpu_rq(cpu);
2115        cfs_rq = tg->cfs_rq[cpu];
2116
2117        raw_spin_lock_irqsave(&rq->lock, flags);
2118
2119        update_rq_clock(rq);
2120        update_cfs_load(cfs_rq, 1);
2121
2122        /*
2123         * We need to update shares after updating tg->load_weight in
2124         * order to adjust the weight of groups with long running tasks.
2125         */
2126        update_cfs_shares(cfs_rq, 0);
2127
2128        raw_spin_unlock_irqrestore(&rq->lock, flags);
2129
2130        return 0;
2131}
2132
2133static void update_shares(int cpu)
2134{
2135        struct cfs_rq *cfs_rq;
2136        struct rq *rq = cpu_rq(cpu);
2137
2138        rcu_read_lock();
2139        for_each_leaf_cfs_rq(rq, cfs_rq)
2140                update_shares_cpu(cfs_rq->tg, cpu);
2141        rcu_read_unlock();
2142}
2143
2144static unsigned long
2145load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146                  unsigned long max_load_move,
2147                  struct sched_domain *sd, enum cpu_idle_type idle,
2148                  int *all_pinned, int *this_best_prio)
2149{
2150        long rem_load_move = max_load_move;
2151        int busiest_cpu = cpu_of(busiest);
2152        struct task_group *tg;
2153
2154        rcu_read_lock();
2155        update_h_load(busiest_cpu);
2156
2157        list_for_each_entry_rcu(tg, &task_groups, list) {
2158                struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2159                unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2160                unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2161                u64 rem_load, moved_load;
2162
2163                /*
2164                 * empty group
2165                 */
2166                if (!busiest_cfs_rq->task_weight)
2167                        continue;
2168
2169                rem_load = (u64)rem_load_move * busiest_weight;
2170                rem_load = div_u64(rem_load, busiest_h_load + 1);
2171
2172                moved_load = balance_tasks(this_rq, this_cpu, busiest,
2173                                rem_load, sd, idle, all_pinned, this_best_prio,
2174                                busiest_cfs_rq);
2175
2176                if (!moved_load)
2177                        continue;
2178
2179                moved_load *= busiest_h_load;
2180                moved_load = div_u64(moved_load, busiest_weight + 1);
2181
2182                rem_load_move -= moved_load;
2183                if (rem_load_move < 0)
2184                        break;
2185        }
2186        rcu_read_unlock();
2187
2188        return max_load_move - rem_load_move;
2189}
2190#else
2191static inline void update_shares(int cpu)
2192{
2193}
2194
2195static unsigned long
2196load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2197                  unsigned long max_load_move,
2198                  struct sched_domain *sd, enum cpu_idle_type idle,
2199                  int *all_pinned, int *this_best_prio)
2200{
2201        return balance_tasks(this_rq, this_cpu, busiest,
2202                        max_load_move, sd, idle, all_pinned,
2203                        this_best_prio, &busiest->cfs);
2204}
2205#endif
2206
2207/*
2208 * move_tasks tries to move up to max_load_move weighted load from busiest to
2209 * this_rq, as part of a balancing operation within domain "sd".
2210 * Returns 1 if successful and 0 otherwise.
2211 *
2212 * Called with both runqueues locked.
2213 */
2214static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2215                      unsigned long max_load_move,
2216                      struct sched_domain *sd, enum cpu_idle_type idle,
2217                      int *all_pinned)
2218{
2219        unsigned long total_load_moved = 0, load_moved;
2220        int this_best_prio = this_rq->curr->prio;
2221
2222        do {
2223                load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2224                                max_load_move - total_load_moved,
2225                                sd, idle, all_pinned, &this_best_prio);
2226
2227                total_load_moved += load_moved;
2228
2229#ifdef CONFIG_PREEMPT
2230                /*
2231                 * NEWIDLE balancing is a source of latency, so preemptible
2232                 * kernels will stop after the first task is pulled to minimize
2233                 * the critical section.
2234                 */
2235                if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2236                        break;
2237
2238                if (raw_spin_is_contended(&this_rq->lock) ||
2239                                raw_spin_is_contended(&busiest->lock))
2240                        break;
2241#endif
2242        } while (load_moved && max_load_move > total_load_moved);
2243
2244        return total_load_moved > 0;
2245}
2246
2247/********** Helpers for find_busiest_group ************************/
2248/*
2249 * sd_lb_stats - Structure to store the statistics of a sched_domain
2250 *              during load balancing.
2251 */
2252struct sd_lb_stats {
2253        struct sched_group *busiest; /* Busiest group in this sd */
2254        struct sched_group *this;  /* Local group in this sd */
2255        unsigned long total_load;  /* Total load of all groups in sd */
2256        unsigned long total_pwr;   /*   Total power of all groups in sd */
2257        unsigned long avg_load;    /* Average load across all groups in sd */
2258
2259        /** Statistics of this group */
2260        unsigned long this_load;
2261        unsigned long this_load_per_task;
2262        unsigned long this_nr_running;
2263        unsigned long this_has_capacity;
2264        unsigned int  this_idle_cpus;
2265
2266        /* Statistics of the busiest group */
2267        unsigned int  busiest_idle_cpus;
2268        unsigned long max_load;
2269        unsigned long busiest_load_per_task;
2270        unsigned long busiest_nr_running;
2271        unsigned long busiest_group_capacity;
2272        unsigned long busiest_has_capacity;
2273        unsigned int  busiest_group_weight;
2274
2275        int group_imb; /* Is there imbalance in this sd */
2276#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2277        int power_savings_balance; /* Is powersave balance needed for this sd */
2278        struct sched_group *group_min; /* Least loaded group in sd */
2279        struct sched_group *group_leader; /* Group which relieves group_min */
2280        unsigned long min_load_per_task; /* load_per_task in group_min */
2281        unsigned long leader_nr_running; /* Nr running of group_leader */
2282        unsigned long min_nr_running; /* Nr running of group_min */
2283#endif
2284};
2285
2286/*
2287 * sg_lb_stats - stats of a sched_group required for load_balancing
2288 */
2289struct sg_lb_stats {
2290        unsigned long avg_load; /*Avg load across the CPUs of the group */
2291        unsigned long group_load; /* Total load over the CPUs of the group */
2292        unsigned long sum_nr_running; /* Nr tasks running in the group */
2293        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2294        unsigned long group_capacity;
2295        unsigned long idle_cpus;
2296        unsigned long group_weight;
2297        int group_imb; /* Is there an imbalance in the group ? */
2298        int group_has_capacity; /* Is there extra capacity in the group? */
2299};
2300
2301/**
2302 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2303 * @group: The group whose first cpu is to be returned.
2304 */
2305static inline unsigned int group_first_cpu(struct sched_group *group)
2306{
2307        return cpumask_first(sched_group_cpus(group));
2308}
2309
2310/**
2311 * get_sd_load_idx - Obtain the load index for a given sched domain.
2312 * @sd: The sched_domain whose load_idx is to be obtained.
2313 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2314 */
2315static inline int get_sd_load_idx(struct sched_domain *sd,
2316                                        enum cpu_idle_type idle)
2317{
2318        int load_idx;
2319
2320        switch (idle) {
2321        case CPU_NOT_IDLE:
2322                load_idx = sd->busy_idx;
2323                break;
2324
2325        case CPU_NEWLY_IDLE:
2326                load_idx = sd->newidle_idx;
2327                break;
2328        default:
2329                load_idx = sd->idle_idx;
2330                break;
2331        }
2332
2333        return load_idx;
2334}
2335
2336
2337#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2338/**
2339 * init_sd_power_savings_stats - Initialize power savings statistics for
2340 * the given sched_domain, during load balancing.
2341 *
2342 * @sd: Sched domain whose power-savings statistics are to be initialized.
2343 * @sds: Variable containing the statistics for sd.
2344 * @idle: Idle status of the CPU at which we're performing load-balancing.
2345 */
2346static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2347        struct sd_lb_stats *sds, enum cpu_idle_type idle)
2348{
2349        /*
2350         * Busy processors will not participate in power savings
2351         * balance.
2352         */
2353        if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2354                sds->power_savings_balance = 0;
2355        else {
2356                sds->power_savings_balance = 1;
2357                sds->min_nr_running = ULONG_MAX;
2358                sds->leader_nr_running = 0;
2359        }
2360}
2361
2362/**
2363 * update_sd_power_savings_stats - Update the power saving stats for a
2364 * sched_domain while performing load balancing.
2365 *
2366 * @group: sched_group belonging to the sched_domain under consideration.
2367 * @sds: Variable containing the statistics of the sched_domain
2368 * @local_group: Does group contain the CPU for which we're performing
2369 *              load balancing ?
2370 * @sgs: Variable containing the statistics of the group.
2371 */
2372static inline void update_sd_power_savings_stats(struct sched_group *group,
2373        struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2374{
2375
2376        if (!sds->power_savings_balance)
2377                return;
2378
2379        /*
2380         * If the local group is idle or completely loaded
2381         * no need to do power savings balance at this domain
2382         */
2383        if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2384                                !sds->this_nr_running))
2385                sds->power_savings_balance = 0;
2386
2387        /*
2388         * If a group is already running at full capacity or idle,
2389         * don't include that group in power savings calculations
2390         */
2391        if (!sds->power_savings_balance ||
2392                sgs->sum_nr_running >= sgs->group_capacity ||
2393                !sgs->sum_nr_running)
2394                return;
2395
2396        /*
2397         * Calculate the group which has the least non-idle load.
2398         * This is the group from where we need to pick up the load
2399         * for saving power
2400         */
2401        if ((sgs->sum_nr_running < sds->min_nr_running) ||
2402            (sgs->sum_nr_running == sds->min_nr_running &&
2403             group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2404                sds->group_min = group;
2405                sds->min_nr_running = sgs->sum_nr_running;
2406                sds->min_load_per_task = sgs->sum_weighted_load /
2407                                                sgs->sum_nr_running;
2408        }
2409
2410        /*
2411         * Calculate the group which is almost near its
2412         * capacity but still has some space to pick up some load
2413         * from other group and save more power
2414         */
2415        if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2416                return;
2417
2418        if (sgs->sum_nr_running > sds->leader_nr_running ||
2419            (sgs->sum_nr_running == sds->leader_nr_running &&
2420             group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2421                sds->group_leader = group;
2422                sds->leader_nr_running = sgs->sum_nr_running;
2423        }
2424}
2425
2426/**
2427 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2428 * @sds: Variable containing the statistics of the sched_domain
2429 *      under consideration.
2430 * @this_cpu: Cpu at which we're currently performing load-balancing.
2431 * @imbalance: Variable to store the imbalance.
2432 *
2433 * Description:
2434 * Check if we have potential to perform some power-savings balance.
2435 * If yes, set the busiest group to be the least loaded group in the
2436 * sched_domain, so that it's CPUs can be put to idle.
2437 *
2438 * Returns 1 if there is potential to perform power-savings balance.
2439 * Else returns 0.
2440 */
2441static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2442                                        int this_cpu, unsigned long *imbalance)
2443{
2444        if (!sds->power_savings_balance)
2445                return 0;
2446
2447        if (sds->this != sds->group_leader ||
2448                        sds->group_leader == sds->group_min)
2449                return 0;
2450
2451        *imbalance = sds->min_load_per_task;
2452        sds->busiest = sds->group_min;
2453
2454        return 1;
2455
2456}
2457#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2458static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2459        struct sd_lb_stats *sds, enum cpu_idle_type idle)
2460{
2461        return;
2462}
2463
2464static inline void update_sd_power_savings_stats(struct sched_group *group,
2465        struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2466{
2467        return;
2468}
2469
2470static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2471                                        int this_cpu, unsigned long *imbalance)
2472{
2473        return 0;
2474}
2475#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2476
2477
2478unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2479{
2480        return SCHED_LOAD_SCALE;
2481}
2482
2483unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2484{
2485        return default_scale_freq_power(sd, cpu);
2486}
2487
2488unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2489{
2490        unsigned long weight = sd->span_weight;
2491        unsigned long smt_gain = sd->smt_gain;
2492
2493        smt_gain /= weight;
2494
2495        return smt_gain;
2496}
2497
2498unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2499{
2500        return default_scale_smt_power(sd, cpu);
2501}
2502
2503unsigned long scale_rt_power(int cpu)
2504{
2505        struct rq *rq = cpu_rq(cpu);
2506        u64 total, available;
2507
2508        total = sched_avg_period() + (rq->clock - rq->age_stamp);
2509
2510        if (unlikely(total < rq->rt_avg)) {
2511                /* Ensures that power won't end up being negative */
2512                available = 0;
2513        } else {
2514                available = total - rq->rt_avg;
2515        }
2516
2517        if (unlikely((s64)total < SCHED_LOAD_SCALE))
2518                total = SCHED_LOAD_SCALE;
2519
2520        total >>= SCHED_LOAD_SHIFT;
2521
2522        return div_u64(available, total);
2523}
2524
2525static void update_cpu_power(struct sched_domain *sd, int cpu)
2526{
2527        unsigned long weight = sd->span_weight;
2528        unsigned long power = SCHED_LOAD_SCALE;
2529        struct sched_group *sdg = sd->groups;
2530
2531        if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2532                if (sched_feat(ARCH_POWER))
2533                        power *= arch_scale_smt_power(sd, cpu);
2534                else
2535                        power *= default_scale_smt_power(sd, cpu);
2536
2537                power >>= SCHED_LOAD_SHIFT;
2538        }
2539
2540        sdg->cpu_power_orig = power;
2541
2542        if (sched_feat(ARCH_POWER))
2543                power *= arch_scale_freq_power(sd, cpu);
2544        else
2545                power *= default_scale_freq_power(sd, cpu);
2546
2547        power >>= SCHED_LOAD_SHIFT;
2548
2549        power *= scale_rt_power(cpu);
2550        power >>= SCHED_LOAD_SHIFT;
2551
2552        if (!power)
2553                power = 1;
2554
2555        cpu_rq(cpu)->cpu_power = power;
2556        sdg->cpu_power = power;
2557}
2558
2559static void update_group_power(struct sched_domain *sd, int cpu)
2560{
2561        struct sched_domain *child = sd->child;
2562        struct sched_group *group, *sdg = sd->groups;
2563        unsigned long power;
2564
2565        if (!child) {
2566                update_cpu_power(sd, cpu);
2567                return;
2568        }
2569
2570        power = 0;
2571
2572        group = child->groups;
2573        do {
2574                power += group->cpu_power;
2575                group = group->next;
2576        } while (group != child->groups);
2577
2578        sdg->cpu_power = power;
2579}
2580
2581/*
2582 * Try and fix up capacity for tiny siblings, this is needed when
2583 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2584 * which on its own isn't powerful enough.
2585 *
2586 * See update_sd_pick_busiest() and check_asym_packing().
2587 */
2588static inline int
2589fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2590{
2591        /*
2592         * Only siblings can have significantly less than SCHED_LOAD_SCALE
2593         */
2594        if (sd->level != SD_LV_SIBLING)
2595                return 0;
2596
2597        /*
2598         * If ~90% of the cpu_power is still there, we're good.
2599         */
2600        if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2601                return 1;
2602
2603        return 0;
2604}
2605
2606/**
2607 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2608 * @sd: The sched_domain whose statistics are to be updated.
2609 * @group: sched_group whose statistics are to be updated.
2610 * @this_cpu: Cpu for which load balance is currently performed.
2611 * @idle: Idle status of this_cpu
2612 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2613 * @sd_idle: Idle status of the sched_domain containing group.
2614 * @local_group: Does group contain this_cpu.
2615 * @cpus: Set of cpus considered for load balancing.
2616 * @balance: Should we balance.
2617 * @sgs: variable to hold the statistics for this group.
2618 */
2619static inline void update_sg_lb_stats(struct sched_domain *sd,
2620                        struct sched_group *group, int this_cpu,
2621                        enum cpu_idle_type idle, int load_idx, int *sd_idle,
2622                        int local_group, const struct cpumask *cpus,
2623                        int *balance, struct sg_lb_stats *sgs)
2624{
2625        unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2626        int i;
2627        unsigned int balance_cpu = -1, first_idle_cpu = 0;
2628        unsigned long avg_load_per_task = 0;
2629
2630        if (local_group)
2631                balance_cpu = group_first_cpu(group);
2632
2633        /* Tally up the load of all CPUs in the group */
2634        max_cpu_load = 0;
2635        min_cpu_load = ~0UL;
2636        max_nr_running = 0;
2637
2638        for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2639                struct rq *rq = cpu_rq(i);
2640
2641                if (*sd_idle && rq->nr_running)
2642                        *sd_idle = 0;
2643
2644                /* Bias balancing toward cpus of our domain */
2645                if (local_group) {
2646                        if (idle_cpu(i) && !first_idle_cpu) {
2647                                first_idle_cpu = 1;
2648                                balance_cpu = i;
2649                        }
2650
2651                        load = target_load(i, load_idx);
2652                } else {
2653                        load = source_load(i, load_idx);
2654                        if (load > max_cpu_load) {
2655                                max_cpu_load = load;
2656                                max_nr_running = rq->nr_running;
2657                        }
2658                        if (min_cpu_load > load)
2659                                min_cpu_load = load;
2660                }
2661
2662                sgs->group_load += load;
2663                sgs->sum_nr_running += rq->nr_running;
2664                sgs->sum_weighted_load += weighted_cpuload(i);
2665                if (idle_cpu(i))
2666                        sgs->idle_cpus++;
2667        }
2668
2669        /*
2670         * First idle cpu or the first cpu(busiest) in this sched group
2671         * is eligible for doing load balancing at this and above
2672         * domains. In the newly idle case, we will allow all the cpu's
2673         * to do the newly idle load balance.
2674         */
2675        if (idle != CPU_NEWLY_IDLE && local_group) {
2676                if (balance_cpu != this_cpu) {
2677                        *balance = 0;
2678                        return;
2679                }
2680                update_group_power(sd, this_cpu);
2681        }
2682
2683        /* Adjust by relative CPU power of the group */
2684        sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2685
2686        /*
2687         * Consider the group unbalanced when the imbalance is larger
2688         * than the average weight of two tasks.
2689         *
2690         * APZ: with cgroup the avg task weight can vary wildly and
2691         *      might not be a suitable number - should we keep a
2692         *      normalized nr_running number somewhere that negates
2693         *      the hierarchy?
2694         */
2695        if (sgs->sum_nr_running)
2696                avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2697
2698        if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2699                sgs->group_imb = 1;
2700
2701        sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2702        if (!sgs->group_capacity)
2703                sgs->group_capacity = fix_small_capacity(sd, group);
2704        sgs->group_weight = group->group_weight;
2705
2706        if (sgs->group_capacity > sgs->sum_nr_running)
2707                sgs->group_has_capacity = 1;
2708}
2709
2710/**
2711 * update_sd_pick_busiest - return 1 on busiest group
2712 * @sd: sched_domain whose statistics are to be checked
2713 * @sds: sched_domain statistics
2714 * @sg: sched_group candidate to be checked for being the busiest
2715 * @sgs: sched_group statistics
2716 * @this_cpu: the current cpu
2717 *
2718 * Determine if @sg is a busier group than the previously selected
2719 * busiest group.
2720 */
2721static bool update_sd_pick_busiest(struct sched_domain *sd,
2722                                   struct sd_lb_stats *sds,
2723                                   struct sched_group *sg,
2724                                   struct sg_lb_stats *sgs,
2725                                   int this_cpu)
2726{
2727        if (sgs->avg_load <= sds->max_load)
2728                return false;
2729
2730        if (sgs->sum_nr_running > sgs->group_capacity)
2731                return true;
2732
2733        if (sgs->group_imb)
2734                return true;
2735
2736        /*
2737         * ASYM_PACKING needs to move all the work to the lowest
2738         * numbered CPUs in the group, therefore mark all groups
2739         * higher than ourself as busy.
2740         */
2741        if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2742            this_cpu < group_first_cpu(sg)) {
2743                if (!sds->busiest)
2744                        return true;
2745
2746                if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2747                        return true;
2748        }
2749
2750        return false;
2751}
2752
2753/**
2754 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2755 * @sd: sched_domain whose statistics are to be updated.
2756 * @this_cpu: Cpu for which load balance is currently performed.
2757 * @idle: Idle status of this_cpu
2758 * @sd_idle: Idle status of the sched_domain containing sg.
2759 * @cpus: Set of cpus considered for load balancing.
2760 * @balance: Should we balance.
2761 * @sds: variable to hold the statistics for this sched_domain.
2762 */
2763static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2764                        enum cpu_idle_type idle, int *sd_idle,
2765                        const struct cpumask *cpus, int *balance,
2766                        struct sd_lb_stats *sds)
2767{
2768        struct sched_domain *child = sd->child;
2769        struct sched_group *sg = sd->groups;
2770        struct sg_lb_stats sgs;
2771        int load_idx, prefer_sibling = 0;
2772
2773        if (child && child->flags & SD_PREFER_SIBLING)
2774                prefer_sibling = 1;
2775
2776        init_sd_power_savings_stats(sd, sds, idle);
2777        load_idx = get_sd_load_idx(sd, idle);
2778
2779        do {
2780                int local_group;
2781
2782                local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2783                memset(&sgs, 0, sizeof(sgs));
2784                update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2785                                local_group, cpus, balance, &sgs);
2786
2787                if (local_group && !(*balance))
2788                        return;
2789
2790                sds->total_load += sgs.group_load;
2791                sds->total_pwr += sg->cpu_power;
2792
2793                /*
2794                 * In case the child domain prefers tasks go to siblings
2795                 * first, lower the sg capacity to one so that we'll try
2796                 * and move all the excess tasks away. We lower the capacity
2797                 * of a group only if the local group has the capacity to fit
2798                 * these excess tasks, i.e. nr_running < group_capacity. The
2799                 * extra check prevents the case where you always pull from the
2800                 * heaviest group when it is already under-utilized (possible
2801                 * with a large weight task outweighs the tasks on the system).
2802                 */
2803                if (prefer_sibling && !local_group && sds->this_has_capacity)
2804                        sgs.group_capacity = min(sgs.group_capacity, 1UL);
2805
2806                if (local_group) {
2807                        sds->this_load = sgs.avg_load;
2808                        sds->this = sg;
2809                        sds->this_nr_running = sgs.sum_nr_running;
2810                        sds->this_load_per_task = sgs.sum_weighted_load;
2811                        sds->this_has_capacity = sgs.group_has_capacity;
2812                        sds->this_idle_cpus = sgs.idle_cpus;
2813                } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2814                        sds->max_load = sgs.avg_load;
2815                        sds->busiest = sg;
2816                        sds->busiest_nr_running = sgs.sum_nr_running;
2817                        sds->busiest_idle_cpus = sgs.idle_cpus;
2818                        sds->busiest_group_capacity = sgs.group_capacity;
2819                        sds->busiest_load_per_task = sgs.sum_weighted_load;
2820                        sds->busiest_has_capacity = sgs.group_has_capacity;
2821                        sds->busiest_group_weight = sgs.group_weight;
2822                        sds->group_imb = sgs.group_imb;
2823                }
2824
2825                update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2826                sg = sg->next;
2827        } while (sg != sd->groups);
2828}
2829
2830int __weak arch_sd_sibling_asym_packing(void)
2831{
2832       return 0*SD_ASYM_PACKING;
2833}
2834
2835/**
2836 * check_asym_packing - Check to see if the group is packed into the
2837 *                      sched doman.
2838 *
2839 * This is primarily intended to used at the sibling level.  Some
2840 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
2841 * case of POWER7, it can move to lower SMT modes only when higher
2842 * threads are idle.  When in lower SMT modes, the threads will
2843 * perform better since they share less core resources.  Hence when we
2844 * have idle threads, we want them to be the higher ones.
2845 *
2846 * This packing function is run on idle threads.  It checks to see if
2847 * the busiest CPU in this domain (core in the P7 case) has a higher
2848 * CPU number than the packing function is being run on.  Here we are
2849 * assuming lower CPU number will be equivalent to lower a SMT thread
2850 * number.
2851 *
2852 * Returns 1 when packing is required and a task should be moved to
2853 * this CPU.  The amount of the imbalance is returned in *imbalance.
2854 *
2855 * @sd: The sched_domain whose packing is to be checked.
2856 * @sds: Statistics of the sched_domain which is to be packed
2857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2858 * @imbalance: returns amount of imbalanced due to packing.
2859 */
2860static int check_asym_packing(struct sched_domain *sd,
2861                              struct sd_lb_stats *sds,
2862                              int this_cpu, unsigned long *imbalance)
2863{
2864        int busiest_cpu;
2865
2866        if (!(sd->flags & SD_ASYM_PACKING))
2867                return 0;
2868
2869        if (!sds->busiest)
2870                return 0;
2871
2872        busiest_cpu = group_first_cpu(sds->busiest);
2873        if (this_cpu > busiest_cpu)
2874                return 0;
2875
2876        *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2877                                       SCHED_LOAD_SCALE);
2878        return 1;
2879}
2880
2881/**
2882 * fix_small_imbalance - Calculate the minor imbalance that exists
2883 *                      amongst the groups of a sched_domain, during
2884 *                      load balancing.
2885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2887 * @imbalance: Variable to store the imbalance.
2888 */
2889static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2890                                int this_cpu, unsigned long *imbalance)
2891{
2892        unsigned long tmp, pwr_now = 0, pwr_move = 0;
2893        unsigned int imbn = 2;
2894        unsigned long scaled_busy_load_per_task;
2895
2896        if (sds->this_nr_running) {
2897                sds->this_load_per_task /= sds->this_nr_running;
2898                if (sds->busiest_load_per_task >
2899                                sds->this_load_per_task)
2900                        imbn = 1;
2901        } else
2902                sds->this_load_per_task =
2903                        cpu_avg_load_per_task(this_cpu);
2904
2905        scaled_busy_load_per_task = sds->busiest_load_per_task
2906                                                 * SCHED_LOAD_SCALE;
2907        scaled_busy_load_per_task /= sds->busiest->cpu_power;
2908
2909        if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2910                        (scaled_busy_load_per_task * imbn)) {
2911                *imbalance = sds->busiest_load_per_task;
2912                return;
2913        }
2914
2915        /*
2916         * OK, we don't have enough imbalance to justify moving tasks,
2917         * however we may be able to increase total CPU power used by
2918         * moving them.
2919         */
2920
2921        pwr_now += sds->busiest->cpu_power *
2922                        min(sds->busiest_load_per_task, sds->max_load);
2923        pwr_now += sds->this->cpu_power *
2924                        min(sds->this_load_per_task, sds->this_load);
2925        pwr_now /= SCHED_LOAD_SCALE;
2926
2927        /* Amount of load we'd subtract */
2928        tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2929                sds->busiest->cpu_power;
2930        if (sds->max_load > tmp)
2931                pwr_move += sds->busiest->cpu_power *
2932                        min(sds->busiest_load_per_task, sds->max_load - tmp);
2933
2934        /* Amount of load we'd add */
2935        if (sds->max_load * sds->busiest->cpu_power <
2936                sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2937                tmp = (sds->max_load * sds->busiest->cpu_power) /
2938                        sds->this->cpu_power;
2939        else
2940                tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2941                        sds->this->cpu_power;
2942        pwr_move += sds->this->cpu_power *
2943                        min(sds->this_load_per_task, sds->this_load + tmp);
2944        pwr_move /= SCHED_LOAD_SCALE;
2945
2946        /* Move if we gain throughput */
2947        if (pwr_move > pwr_now)
2948                *imbalance = sds->busiest_load_per_task;
2949}
2950
2951/**
2952 * calculate_imbalance - Calculate the amount of imbalance present within the
2953 *                       groups of a given sched_domain during load balance.
2954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2955 * @this_cpu: Cpu for which currently load balance is being performed.
2956 * @imbalance: The variable to store the imbalance.
2957 */
2958static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2959                unsigned long *imbalance)
2960{
2961        unsigned long max_pull, load_above_capacity = ~0UL;
2962
2963        sds->busiest_load_per_task /= sds->busiest_nr_running;
2964        if (sds->group_imb) {
2965                sds->busiest_load_per_task =
2966                        min(sds->busiest_load_per_task, sds->avg_load);
2967        }
2968
2969        /*
2970         * In the presence of smp nice balancing, certain scenarios can have
2971         * max load less than avg load(as we skip the groups at or below
2972         * its cpu_power, while calculating max_load..)
2973         */
2974        if (sds->max_load < sds->avg_load) {
2975                *imbalance = 0;
2976                return fix_small_imbalance(sds, this_cpu, imbalance);
2977        }
2978
2979        if (!sds->group_imb) {
2980                /*
2981                 * Don't want to pull so many tasks that a group would go idle.
2982                 */
2983                load_above_capacity = (sds->busiest_nr_running -
2984                                                sds->busiest_group_capacity);
2985
2986                load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2987
2988                load_above_capacity /= sds->busiest->cpu_power;
2989        }
2990
2991        /*
2992         * We're trying to get all the cpus to the average_load, so we don't
2993         * want to push ourselves above the average load, nor do we wish to
2994         * reduce the max loaded cpu below the average load. At the same time,
2995         * we also don't want to reduce the group load below the group capacity
2996         * (so that we can implement power-savings policies etc). Thus we look
2997         * for the minimum possible imbalance.
2998         * Be careful of negative numbers as they'll appear as very large values
2999         * with unsigned longs.
3000         */
3001        max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3002
3003        /* How much load to actually move to equalise the imbalance */
3004        *imbalance = min(max_pull * sds->busiest->cpu_power,
3005                (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3006                        / SCHED_LOAD_SCALE;
3007
3008        /*
3009         * if *imbalance is less than the average load per runnable task
3010         * there is no gaurantee that any tasks will be moved so we'll have
3011         * a think about bumping its value to force at least one task to be
3012         * moved
3013         */
3014        if (*imbalance < sds->busiest_load_per_task)
3015                return fix_small_imbalance(sds, this_cpu, imbalance);
3016
3017}
3018
3019/******* find_busiest_group() helpers end here *********************/
3020
3021/**
3022 * find_busiest_group - Returns the busiest group within the sched_domain
3023 * if there is an imbalance. If there isn't an imbalance, and
3024 * the user has opted for power-savings, it returns a group whose
3025 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3026 * such a group exists.
3027 *
3028 * Also calculates the amount of weighted load which should be moved
3029 * to restore balance.
3030 *
3031 * @sd: The sched_domain whose busiest group is to be returned.
3032 * @this_cpu: The cpu for which load balancing is currently being performed.
3033 * @imbalance: Variable which stores amount of weighted load which should
3034 *              be moved to restore balance/put a group to idle.
3035 * @idle: The idle status of this_cpu.
3036 * @sd_idle: The idleness of sd
3037 * @cpus: The set of CPUs under consideration for load-balancing.
3038 * @balance: Pointer to a variable indicating if this_cpu
3039 *      is the appropriate cpu to perform load balancing at this_level.
3040 *
3041 * Returns:     - the busiest group if imbalance exists.
3042 *              - If no imbalance and user has opted for power-savings balance,
3043 *                 return the least loaded group whose CPUs can be
3044 *                 put to idle by rebalancing its tasks onto our group.
3045 */
3046static struct sched_group *
3047find_busiest_group(struct sched_domain *sd, int this_cpu,
3048                   unsigned long *imbalance, enum cpu_idle_type idle,
3049                   int *sd_idle, const struct cpumask *cpus, int *balance)
3050{
3051        struct sd_lb_stats sds;
3052
3053        memset(&sds, 0, sizeof(sds));
3054
3055        /*
3056         * Compute the various statistics relavent for load balancing at
3057         * this level.
3058         */
3059        update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3060                                        balance, &sds);
3061
3062        /* Cases where imbalance does not exist from POV of this_cpu */
3063        /* 1) this_cpu is not the appropriate cpu to perform load balancing
3064         *    at this level.
3065         * 2) There is no busy sibling group to pull from.
3066         * 3) This group is the busiest group.
3067         * 4) This group is more busy than the avg busieness at this
3068         *    sched_domain.
3069         * 5) The imbalance is within the specified limit.
3070         *
3071         * Note: when doing newidle balance, if the local group has excess
3072         * capacity (i.e. nr_running < group_capacity) and the busiest group
3073         * does not have any capacity, we force a load balance to pull tasks
3074         * to the local group. In this case, we skip past checks 3, 4 and 5.
3075         */
3076        if (!(*balance))
3077                goto ret;
3078
3079        if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3080            check_asym_packing(sd, &sds, this_cpu, imbalance))
3081                return sds.busiest;
3082
3083        if (!sds.busiest || sds.busiest_nr_running == 0)
3084                goto out_balanced;
3085
3086        /*  SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3087        if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3088                        !sds.busiest_has_capacity)
3089                goto force_balance;
3090
3091        if (sds.this_load >= sds.max_load)
3092                goto out_balanced;
3093
3094        sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3095
3096        if (sds.this_load >= sds.avg_load)
3097                goto out_balanced;
3098
3099        /*
3100         * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3101         * And to check for busy balance use !idle_cpu instead of
3102         * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3103         * even when they are idle.
3104         */
3105        if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3106                if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3107                        goto out_balanced;
3108        } else {
3109                /*
3110                 * This cpu is idle. If the busiest group load doesn't
3111                 * have more tasks than the number of available cpu's and
3112                 * there is no imbalance between this and busiest group
3113                 * wrt to idle cpu's, it is balanced.
3114                 */
3115                if ((sds.this_idle_cpus  <= sds.busiest_idle_cpus + 1) &&
3116                    sds.busiest_nr_running <= sds.busiest_group_weight)
3117                        goto out_balanced;
3118        }
3119
3120force_balance:
3121        /* Looks like there is an imbalance. Compute it */
3122        calculate_imbalance(&sds, this_cpu, imbalance);
3123        return sds.busiest;
3124
3125out_balanced:
3126        /*
3127         * There is no obvious imbalance. But check if we can do some balancing
3128         * to save power.
3129         */
3130        if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3131                return sds.busiest;
3132ret:
3133        *imbalance = 0;
3134        return NULL;
3135}
3136
3137/*
3138 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3139 */
3140static struct rq *
3141find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3142                   enum cpu_idle_type idle, unsigned long imbalance,
3143                   const struct cpumask *cpus)
3144{
3145        struct rq *busiest = NULL, *rq;
3146        unsigned long max_load = 0;
3147        int i;
3148
3149        for_each_cpu(i, sched_group_cpus(group)) {
3150                unsigned long power = power_of(i);
3151                unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3152                unsigned long wl;
3153
3154                if (!capacity)
3155                        capacity = fix_small_capacity(sd, group);
3156
3157                if (!cpumask_test_cpu(i, cpus))
3158                        continue;
3159
3160                rq = cpu_rq(i);
3161                wl = weighted_cpuload(i);
3162
3163                /*
3164                 * When comparing with imbalance, use weighted_cpuload()
3165                 * which is not scaled with the cpu power.
3166                 */
3167                if (capacity && rq->nr_running == 1 && wl > imbalance)
3168                        continue;
3169
3170                /*
3171                 * For the load comparisons with the other cpu's, consider
3172                 * the weighted_cpuload() scaled with the cpu power, so that
3173                 * the load can be moved away from the cpu that is potentially
3174                 * running at a lower capacity.
3175                 */
3176                wl = (wl * SCHED_LOAD_SCALE) / power;
3177
3178                if (wl > max_load) {
3179                        max_load = wl;
3180                        busiest = rq;
3181                }
3182        }
3183
3184        return busiest;
3185}
3186
3187/*
3188 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3189 * so long as it is large enough.
3190 */
3191#define MAX_PINNED_INTERVAL     512
3192
3193/* Working cpumask for load_balance and load_balance_newidle. */
3194static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3195
3196static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3197                               int busiest_cpu, int this_cpu)
3198{
3199        if (idle == CPU_NEWLY_IDLE) {
3200
3201                /*
3202                 * ASYM_PACKING needs to force migrate tasks from busy but
3203                 * higher numbered CPUs in order to pack all tasks in the
3204                 * lowest numbered CPUs.
3205                 */
3206                if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3207                        return 1;
3208
3209                /*
3210                 * The only task running in a non-idle cpu can be moved to this
3211                 * cpu in an attempt to completely freeup the other CPU
3212                 * package.
3213                 *
3214                 * The package power saving logic comes from
3215                 * find_busiest_group(). If there are no imbalance, then
3216                 * f_b_g() will return NULL. However when sched_mc={1,2} then
3217                 * f_b_g() will select a group from which a running task may be
3218                 * pulled to this cpu in order to make the other package idle.
3219                 * If there is no opportunity to make a package idle and if
3220                 * there are no imbalance, then f_b_g() will return NULL and no
3221                 * action will be taken in load_balance_newidle().
3222                 *
3223                 * Under normal task pull operation due to imbalance, there
3224                 * will be more than one task in the source run queue and
3225                 * move_tasks() will succeed.  ld_moved will be true and this
3226                 * active balance code will not be triggered.
3227                 */
3228                if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3229                    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3230                        return 0;
3231
3232                if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3233                        return 0;
3234        }
3235
3236        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3237}
3238
3239static int active_load_balance_cpu_stop(void *data);
3240
3241/*
3242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3243 * tasks if there is an imbalance.
3244 */
3245static int load_balance(int this_cpu, struct rq *this_rq,
3246                        struct sched_domain *sd, enum cpu_idle_type idle,
3247                        int *balance)
3248{
3249        int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3250        struct sched_group *group;
3251        unsigned long imbalance;
3252        struct rq *busiest;
3253        unsigned long flags;
3254        struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3255
3256        cpumask_copy(cpus, cpu_active_mask);
3257
3258        /*
3259         * When power savings policy is enabled for the parent domain, idle
3260         * sibling can pick up load irrespective of busy siblings. In this case,
3261         * let the state of idle sibling percolate up as CPU_IDLE, instead of
3262         * portraying it as CPU_NOT_IDLE.
3263         */
3264        if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3265            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3266                sd_idle = 1;
3267
3268        schedstat_inc(sd, lb_count[idle]);
3269
3270redo:
3271        group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3272                                   cpus, balance);
3273
3274        if (*balance == 0)
3275                goto out_balanced;
3276
3277        if (!group) {
3278                schedstat_inc(sd, lb_nobusyg[idle]);
3279                goto out_balanced;
3280        }
3281
3282        busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3283        if (!busiest) {
3284                schedstat_inc(sd, lb_nobusyq[idle]);
3285                goto out_balanced;
3286        }
3287
3288        BUG_ON(busiest == this_rq);
3289
3290        schedstat_add(sd, lb_imbalance[idle], imbalance);
3291
3292        ld_moved = 0;
3293        if (busiest->nr_running > 1) {
3294                /*
3295                 * Attempt to move tasks. If find_busiest_group has found
3296                 * an imbalance but busiest->nr_running <= 1, the group is
3297                 * still unbalanced. ld_moved simply stays zero, so it is
3298                 * correctly treated as an imbalance.
3299                 */
3300                local_irq_save(flags);
3301                double_rq_lock(this_rq, busiest);
3302                ld_moved = move_tasks(this_rq, this_cpu, busiest,
3303                                      imbalance, sd, idle, &all_pinned);
3304                double_rq_unlock(this_rq, busiest);
3305                local_irq_restore(flags);
3306
3307                /*
3308                 * some other cpu did the load balance for us.
3309                 */
3310                if (ld_moved && this_cpu != smp_processor_id())
3311                        resched_cpu(this_cpu);
3312
3313                /* All tasks on this runqueue were pinned by CPU affinity */
3314                if (unlikely(all_pinned)) {
3315                        cpumask_clear_cpu(cpu_of(busiest), cpus);
3316                        if (!cpumask_empty(cpus))
3317                                goto redo;
3318                        goto out_balanced;
3319                }
3320        }
3321
3322        if (!ld_moved) {
3323                schedstat_inc(sd, lb_failed[idle]);
3324                /*
3325                 * Increment the failure counter only on periodic balance.
3326                 * We do not want newidle balance, which can be very
3327                 * frequent, pollute the failure counter causing
3328                 * excessive cache_hot migrations and active balances.
3329                 */
3330                if (idle != CPU_NEWLY_IDLE)
3331                        sd->nr_balance_failed++;
3332
3333                if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3334                                        this_cpu)) {
3335                        raw_spin_lock_irqsave(&busiest->lock, flags);
3336
3337                        /* don't kick the active_load_balance_cpu_stop,
3338                         * if the curr task on busiest cpu can't be
3339                         * moved to this_cpu
3340                         */
3341                        if (!cpumask_test_cpu(this_cpu,
3342                                              &busiest->curr->cpus_allowed)) {
3343                                raw_spin_unlock_irqrestore(&busiest->lock,
3344                                                            flags);
3345                                all_pinned = 1;
3346                                goto out_one_pinned;
3347                        }
3348
3349                        /*
3350                         * ->active_balance synchronizes accesses to
3351                         * ->active_balance_work.  Once set, it's cleared
3352                         * only after active load balance is finished.
3353                         */
3354                        if (!busiest->active_balance) {
3355                                busiest->active_balance = 1;
3356                                busiest->push_cpu = this_cpu;
3357                                active_balance = 1;
3358                        }
3359                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
3360
3361                        if (active_balance)
3362                                stop_one_cpu_nowait(cpu_of(busiest),
3363                                        active_load_balance_cpu_stop, busiest,
3364                                        &busiest->active_balance_work);
3365
3366                        /*
3367                         * We've kicked active balancing, reset the failure
3368                         * counter.
3369                         */
3370                        sd->nr_balance_failed = sd->cache_nice_tries+1;
3371                }
3372        } else
3373                sd->nr_balance_failed = 0;
3374
3375        if (likely(!active_balance)) {
3376                /* We were unbalanced, so reset the balancing interval */
3377                sd->balance_interval = sd->min_interval;
3378        } else {
3379                /*
3380                 * If we've begun active balancing, start to back off. This
3381                 * case may not be covered by the all_pinned logic if there
3382                 * is only 1 task on the busy runqueue (because we don't call
3383                 * move_tasks).
3384                 */
3385                if (sd->balance_interval < sd->max_interval)
3386                        sd->balance_interval *= 2;
3387        }
3388
3389        if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3390            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3391                ld_moved = -1;
3392
3393        goto out;
3394
3395out_balanced:
3396        schedstat_inc(sd, lb_balanced[idle]);
3397
3398        sd->nr_balance_failed = 0;
3399
3400out_one_pinned:
3401        /* tune up the balancing interval */
3402        if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3403                        (sd->balance_interval < sd->max_interval))
3404                sd->balance_interval *= 2;
3405
3406        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3407            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3408                ld_moved = -1;
3409        else
3410                ld_moved = 0;
3411out:
3412        return ld_moved;
3413}
3414
3415/*
3416 * idle_balance is called by schedule() if this_cpu is about to become
3417 * idle. Attempts to pull tasks from other CPUs.
3418 */
3419static void idle_balance(int this_cpu, struct rq *this_rq)
3420{
3421        struct sched_domain *sd;
3422        int pulled_task = 0;
3423        unsigned long next_balance = jiffies + HZ;
3424
3425        this_rq->idle_stamp = this_rq->clock;
3426
3427        if (this_rq->avg_idle < sysctl_sched_migration_cost)
3428                return;
3429
3430        /*
3431         * Drop the rq->lock, but keep IRQ/preempt disabled.
3432         */
3433        raw_spin_unlock(&this_rq->lock);
3434
3435        update_shares(this_cpu);
3436        for_each_domain(this_cpu, sd) {
3437                unsigned long interval;
3438                int balance = 1;
3439
3440                if (!(sd->flags & SD_LOAD_BALANCE))
3441                        continue;
3442
3443                if (sd->flags & SD_BALANCE_NEWIDLE) {
3444                        /* If we've pulled tasks over stop searching: */
3445                        pulled_task = load_balance(this_cpu, this_rq,
3446                                                   sd, CPU_NEWLY_IDLE, &balance);
3447                }
3448
3449                interval = msecs_to_jiffies(sd->balance_interval);
3450                if (time_after(next_balance, sd->last_balance + interval))
3451                        next_balance = sd->last_balance + interval;
3452                if (pulled_task) {
3453                        this_rq->idle_stamp = 0;
3454                        break;
3455                }
3456        }
3457
3458        raw_spin_lock(&this_rq->lock);
3459
3460        if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3461                /*
3462                 * We are going idle. next_balance may be set based on
3463                 * a busy processor. So reset next_balance.
3464                 */
3465                this_rq->next_balance = next_balance;
3466        }
3467}
3468
3469/*
3470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3471 * running tasks off the busiest CPU onto idle CPUs. It requires at
3472 * least 1 task to be running on each physical CPU where possible, and
3473 * avoids physical / logical imbalances.
3474 */
3475static int active_load_balance_cpu_stop(void *data)
3476{
3477        struct rq *busiest_rq = data;
3478        int busiest_cpu = cpu_of(busiest_rq);
3479        int target_cpu = busiest_rq->push_cpu;
3480        struct rq *target_rq = cpu_rq(target_cpu);
3481        struct sched_domain *sd;
3482
3483        raw_spin_lock_irq(&busiest_rq->lock);
3484
3485        /* make sure the requested cpu hasn't gone down in the meantime */
3486        if (unlikely(busiest_cpu != smp_processor_id() ||
3487                     !busiest_rq->active_balance))
3488                goto out_unlock;
3489
3490        /* Is there any task to move? */
3491        if (busiest_rq->nr_running <= 1)
3492                goto out_unlock;
3493
3494        /*
3495         * This condition is "impossible", if it occurs
3496         * we need to fix it. Originally reported by
3497         * Bjorn Helgaas on a 128-cpu setup.
3498         */
3499        BUG_ON(busiest_rq == target_rq);
3500
3501        /* move a task from busiest_rq to target_rq */
3502        double_lock_balance(busiest_rq, target_rq);
3503
3504        /* Search for an sd spanning us and the target CPU. */
3505        for_each_domain(target_cpu, sd) {
3506                if ((sd->flags & SD_LOAD_BALANCE) &&
3507                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3508                                break;
3509        }
3510
3511        if (likely(sd)) {
3512                schedstat_inc(sd, alb_count);
3513
3514                if (move_one_task(target_rq, target_cpu, busiest_rq,
3515                                  sd, CPU_IDLE))
3516                        schedstat_inc(sd, alb_pushed);
3517                else
3518                        schedstat_inc(sd, alb_failed);
3519        }
3520        double_unlock_balance(busiest_rq, target_rq);
3521out_unlock:
3522        busiest_rq->active_balance = 0;
3523        raw_spin_unlock_irq(&busiest_rq->lock);
3524        return 0;
3525}
3526
3527#ifdef CONFIG_NO_HZ
3528
3529static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3530
3531static void trigger_sched_softirq(void *data)
3532{
3533        raise_softirq_irqoff(SCHED_SOFTIRQ);
3534}
3535
3536static inline void init_sched_softirq_csd(struct call_single_data *csd)
3537{
3538        csd->func = trigger_sched_softirq;
3539        csd->info = NULL;
3540        csd->flags = 0;
3541        csd->priv = 0;
3542}
3543
3544/*
3545 * idle load balancing details
3546 * - One of the idle CPUs nominates itself as idle load_balancer, while
3547 *   entering idle.
3548 * - This idle load balancer CPU will also go into tickless mode when
3549 *   it is idle, just like all other idle CPUs
3550 * - When one of the busy CPUs notice that there may be an idle rebalancing
3551 *   needed, they will kick the idle load balancer, which then does idle
3552 *   load balancing for all the idle CPUs.
3553 */
3554static struct {
3555        atomic_t load_balancer;
3556        atomic_t first_pick_cpu;
3557        atomic_t second_pick_cpu;
3558        cpumask_var_t idle_cpus_mask;
3559        cpumask_var_t grp_idle_mask;
3560        unsigned long next_balance;     /* in jiffy units */
3561} nohz ____cacheline_aligned;
3562
3563int get_nohz_load_balancer(void)
3564{
3565        return atomic_read(&nohz.load_balancer);
3566}
3567
3568#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3569/**
3570 * lowest_flag_domain - Return lowest sched_domain containing flag.
3571 * @cpu:        The cpu whose lowest level of sched domain is to
3572 *              be returned.
3573 * @flag:       The flag to check for the lowest sched_domain
3574 *              for the given cpu.
3575 *
3576 * Returns the lowest sched_domain of a cpu which contains the given flag.
3577 */
3578static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3579{
3580        struct sched_domain *sd;
3581
3582        for_each_domain(cpu, sd)
3583                if (sd && (sd->flags & flag))
3584                        break;
3585
3586        return sd;
3587}
3588
3589/**
3590 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3591 * @cpu:        The cpu whose domains we're iterating over.
3592 * @sd:         variable holding the value of the power_savings_sd
3593 *              for cpu.
3594 * @flag:       The flag to filter the sched_domains to be iterated.
3595 *
3596 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3597 * set, starting from the lowest sched_domain to the highest.
3598 */
3599#define for_each_flag_domain(cpu, sd, flag) \
3600        for (sd = lowest_flag_domain(cpu, flag); \
3601                (sd && (sd->flags & flag)); sd = sd->parent)
3602
3603/**
3604 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3605 * @ilb_group:  group to be checked for semi-idleness
3606 *
3607 * Returns:     1 if the group is semi-idle. 0 otherwise.
3608 *
3609 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3610 * and atleast one non-idle CPU. This helper function checks if the given
3611 * sched_group is semi-idle or not.
3612 */
3613static inline int is_semi_idle_group(struct sched_group *ilb_group)
3614{
3615        cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3616                                        sched_group_cpus(ilb_group));
3617
3618        /*
3619         * A sched_group is semi-idle when it has atleast one busy cpu
3620         * and atleast one idle cpu.
3621         */
3622        if (cpumask_empty(nohz.grp_idle_mask))
3623                return 0;
3624
3625        if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3626                return 0;
3627
3628        return 1;
3629}
3630/**
3631 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3632 * @cpu:        The cpu which is nominating a new idle_load_balancer.
3633 *
3634 * Returns:     Returns the id of the idle load balancer if it exists,
3635 *              Else, returns >= nr_cpu_ids.
3636 *
3637 * This algorithm picks the idle load balancer such that it belongs to a
3638 * semi-idle powersavings sched_domain. The idea is to try and avoid
3639 * completely idle packages/cores just for the purpose of idle load balancing
3640 * when there are other idle cpu's which are better suited for that job.
3641 */
3642static int find_new_ilb(int cpu)
3643{
3644        struct sched_domain *sd;
3645        struct sched_group *ilb_group;
3646
3647        /*
3648         * Have idle load balancer selection from semi-idle packages only
3649         * when power-aware load balancing is enabled
3650         */
3651        if (!(sched_smt_power_savings || sched_mc_power_savings))
3652                goto out_done;
3653
3654        /*
3655         * Optimize for the case when we have no idle CPUs or only one
3656         * idle CPU. Don't walk the sched_domain hierarchy in such cases
3657         */
3658        if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3659                goto out_done;
3660
3661        for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3662                ilb_group = sd->groups;
3663
3664                do {
3665                        if (is_semi_idle_group(ilb_group))
3666                                return cpumask_first(nohz.grp_idle_mask);
3667
3668                        ilb_group = ilb_group->next;
3669
3670                } while (ilb_group != sd->groups);
3671        }
3672
3673out_done:
3674        return nr_cpu_ids;
3675}
3676#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3677static inline int find_new_ilb(int call_cpu)
3678{
3679        return nr_cpu_ids;
3680}
3681#endif
3682
3683/*
3684 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3685 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3686 * CPU (if there is one).
3687 */
3688static void nohz_balancer_kick(int cpu)
3689{
3690        int ilb_cpu;
3691
3692        nohz.next_balance++;
3693
3694        ilb_cpu = get_nohz_load_balancer();
3695
3696        if (ilb_cpu >= nr_cpu_ids) {
3697                ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3698                if (ilb_cpu >= nr_cpu_ids)
3699                        return;
3700        }
3701
3702        if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3703                struct call_single_data *cp;
3704
3705                cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3706                cp = &per_cpu(remote_sched_softirq_cb, cpu);
3707                __smp_call_function_single(ilb_cpu, cp, 0);
3708        }
3709        return;
3710}
3711
3712/*
3713 * This routine will try to nominate the ilb (idle load balancing)
3714 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3715 * load balancing on behalf of all those cpus.
3716 *
3717 * When the ilb owner becomes busy, we will not have new ilb owner until some
3718 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3719 * idle load balancing by kicking one of the idle CPUs.
3720 *
3721 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3722 * ilb owner CPU in future (when there is a need for idle load balancing on
3723 * behalf of all idle CPUs).
3724 */
3725void select_nohz_load_balancer(int stop_tick)
3726{
3727        int cpu = smp_processor_id();
3728
3729        if (stop_tick) {
3730                if (!cpu_active(cpu)) {
3731                        if (atomic_read(&nohz.load_balancer) != cpu)
3732                                return;
3733
3734                        /*
3735                         * If we are going offline and still the leader,
3736                         * give up!
3737                         */
3738                        if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3739                                           nr_cpu_ids) != cpu)
3740                                BUG();
3741
3742                        return;
3743                }
3744
3745                cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3746
3747                if (atomic_read(&nohz.first_pick_cpu) == cpu)
3748                        atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3749                if (atomic_read(&nohz.second_pick_cpu) == cpu)
3750                        atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3751
3752                if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3753                        int new_ilb;
3754
3755                        /* make me the ilb owner */
3756                        if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3757                                           cpu) != nr_cpu_ids)
3758                                return;
3759
3760                        /*
3761                         * Check to see if there is a more power-efficient
3762                         * ilb.
3763                         */
3764                        new_ilb = find_new_ilb(cpu);
3765                        if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3766                                atomic_set(&nohz.load_balancer, nr_cpu_ids);
3767                                resched_cpu(new_ilb);
3768                                return;
3769                        }
3770                        return;
3771                }
3772        } else {
3773                if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3774                        return;
3775
3776                cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3777
3778                if (atomic_read(&nohz.load_balancer) == cpu)
3779                        if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3780                                           nr_cpu_ids) != cpu)
3781                                BUG();
3782        }
3783        return;
3784}
3785#endif
3786
3787static DEFINE_SPINLOCK(balancing);
3788
3789/*
3790 * It checks each scheduling domain to see if it is due to be balanced,
3791 * and initiates a balancing operation if so.
3792 *
3793 * Balancing parameters are set up in arch_init_sched_domains.
3794 */
3795static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3796{
3797        int balance = 1;
3798        struct rq *rq = cpu_rq(cpu);
3799        unsigned long interval;
3800        struct sched_domain *sd;
3801        /* Earliest time when we have to do rebalance again */
3802        unsigned long next_balance = jiffies + 60*HZ;
3803        int update_next_balance = 0;
3804        int need_serialize;
3805
3806        update_shares(cpu);
3807
3808        for_each_domain(cpu, sd) {
3809                if (!(sd->flags & SD_LOAD_BALANCE))
3810                        continue;
3811
3812                interval = sd->balance_interval;
3813                if (idle != CPU_IDLE)
3814                        interval *= sd->busy_factor;
3815
3816                /* scale ms to jiffies */
3817                interval = msecs_to_jiffies(interval);
3818                if (unlikely(!interval))
3819                        interval = 1;
3820                if (interval > HZ*NR_CPUS/10)
3821                        interval = HZ*NR_CPUS/10;
3822
3823                need_serialize = sd->flags & SD_SERIALIZE;
3824
3825                if (need_serialize) {
3826                        if (!spin_trylock(&balancing))
3827                                goto out;
3828                }
3829
3830                if (time_after_eq(jiffies, sd->last_balance + interval)) {
3831                        if (load_balance(cpu, rq, sd, idle, &balance)) {
3832                                /*
3833                                 * We've pulled tasks over so either we're no
3834                                 * longer idle, or one of our SMT siblings is
3835                                 * not idle.
3836                                 */
3837                                idle = CPU_NOT_IDLE;
3838                        }
3839                        sd->last_balance = jiffies;
3840                }
3841                if (need_serialize)
3842                        spin_unlock(&balancing);
3843out:
3844                if (time_after(next_balance, sd->last_balance + interval)) {
3845                        next_balance = sd->last_balance + interval;
3846                        update_next_balance = 1;
3847                }
3848
3849                /*
3850                 * Stop the load balance at this level. There is another
3851                 * CPU in our sched group which is doing load balancing more
3852                 * actively.
3853                 */
3854                if (!balance)
3855                        break;
3856        }
3857
3858        /*
3859         * next_balance will be updated only when there is a need.
3860         * When the cpu is attached to null domain for ex, it will not be
3861         * updated.
3862         */
3863        if (likely(update_next_balance))
3864                rq->next_balance = next_balance;
3865}
3866
3867#ifdef CONFIG_NO_HZ
3868/*
3869 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3870 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3871 */
3872static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3873{
3874        struct rq *this_rq = cpu_rq(this_cpu);
3875        struct rq *rq;
3876        int balance_cpu;
3877
3878        if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3879                return;
3880
3881        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3882                if (balance_cpu == this_cpu)
3883                        continue;
3884
3885                /*
3886                 * If this cpu gets work to do, stop the load balancing
3887                 * work being done for other cpus. Next load
3888                 * balancing owner will pick it up.
3889                 */
3890                if (need_resched()) {
3891                        this_rq->nohz_balance_kick = 0;
3892                        break;
3893                }
3894
3895                raw_spin_lock_irq(&this_rq->lock);
3896                update_rq_clock(this_rq);
3897                update_cpu_load(this_rq);
3898                raw_spin_unlock_irq(&this_rq->lock);
3899
3900                rebalance_domains(balance_cpu, CPU_IDLE);
3901
3902                rq = cpu_rq(balance_cpu);
3903                if (time_after(this_rq->next_balance, rq->next_balance))
3904                        this_rq->next_balance = rq->next_balance;
3905        }
3906        nohz.next_balance = this_rq->next_balance;
3907        this_rq->nohz_balance_kick = 0;
3908}
3909
3910/*
3911 * Current heuristic for kicking the idle load balancer
3912 * - first_pick_cpu is the one of the busy CPUs. It will kick
3913 *   idle load balancer when it has more than one process active. This
3914 *   eliminates the need for idle load balancing altogether when we have
3915 *   only one running process in the system (common case).
3916 * - If there are more than one busy CPU, idle load balancer may have
3917 *   to run for active_load_balance to happen (i.e., two busy CPUs are
3918 *   SMT or core siblings and can run better if they move to different
3919 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3920 *   which will kick idle load balancer as soon as it has any load.
3921 */
3922static inline int nohz_kick_needed(struct rq *rq, int cpu)
3923{
3924        unsigned long now = jiffies;
3925        int ret;
3926        int first_pick_cpu, second_pick_cpu;
3927
3928        if (time_before(now, nohz.next_balance))
3929                return 0;
3930
3931        if (rq->idle_at_tick)
3932                return 0;
3933
3934        first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3935        second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3936
3937        if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3938            second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3939                return 0;
3940
3941        ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3942        if (ret == nr_cpu_ids || ret == cpu) {
3943                atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3944                if (rq->nr_running > 1)
3945                        return 1;
3946        } else {
3947                ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3948                if (ret == nr_cpu_ids || ret == cpu) {
3949                        if (rq->nr_running)
3950                                return 1;
3951                }
3952        }
3953        return 0;
3954}
3955#else
3956static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3957#endif
3958
3959/*
3960 * run_rebalance_domains is triggered when needed from the scheduler tick.
3961 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3962 */
3963static void run_rebalance_domains(struct softirq_action *h)
3964{
3965        int this_cpu = smp_processor_id();
3966        struct rq *this_rq = cpu_rq(this_cpu);
3967        enum cpu_idle_type idle = this_rq->idle_at_tick ?
3968                                                CPU_IDLE : CPU_NOT_IDLE;
3969
3970        rebalance_domains(this_cpu, idle);
3971
3972        /*
3973         * If this cpu has a pending nohz_balance_kick, then do the
3974         * balancing on behalf of the other idle cpus whose ticks are
3975         * stopped.
3976         */
3977        nohz_idle_balance(this_cpu, idle);
3978}
3979
3980static inline int on_null_domain(int cpu)
3981{
3982        return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3983}
3984
3985/*
3986 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3987 */
3988static inline void trigger_load_balance(struct rq *rq, int cpu)
3989{
3990        /* Don't need to rebalance while attached to NULL domain */
3991        if (time_after_eq(jiffies, rq->next_balance) &&
3992            likely(!on_null_domain(cpu)))
3993                raise_softirq(SCHED_SOFTIRQ);
3994#ifdef CONFIG_NO_HZ
3995        else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3996                nohz_balancer_kick(cpu);
3997#endif
3998}
3999
4000static void rq_online_fair(struct rq *rq)
4001{
4002        update_sysctl();
4003}
4004
4005static void rq_offline_fair(struct rq *rq)
4006{
4007        update_sysctl();
4008}
4009
4010#else   /* CONFIG_SMP */
4011
4012/*
4013 * on UP we do not need to balance between CPUs:
4014 */
4015static inline void idle_balance(int cpu, struct rq *rq)
4016{
4017}
4018
4019#endif /* CONFIG_SMP */
4020
4021/*
4022 * scheduler tick hitting a task of our scheduling class:
4023 */
4024static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4025{
4026        struct cfs_rq *cfs_rq;
4027        struct sched_entity *se = &curr->se;
4028
4029        for_each_sched_entity(se) {
4030                cfs_rq = cfs_rq_of(se);
4031                entity_tick(cfs_rq, se, queued);
4032        }
4033}
4034
4035/*
4036 * called on fork with the child task as argument from the parent's context
4037 *  - child not yet on the tasklist
4038 *  - preemption disabled
4039 */
4040static void task_fork_fair(struct task_struct *p)
4041{
4042        struct cfs_rq *cfs_rq = task_cfs_rq(current);
4043        struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4044        int this_cpu = smp_processor_id();
4045        struct rq *rq = this_rq();
4046        unsigned long flags;
4047
4048        raw_spin_lock_irqsave(&rq->lock, flags);
4049
4050        update_rq_clock(rq);
4051
4052        if (unlikely(task_cpu(p) != this_cpu)) {
4053                rcu_read_lock();
4054                __set_task_cpu(p, this_cpu);
4055                rcu_read_unlock();
4056        }
4057
4058        update_curr(cfs_rq);
4059
4060        if (curr)
4061                se->vruntime = curr->vruntime;
4062        place_entity(cfs_rq, se, 1);
4063
4064        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4065                /*
4066                 * Upon rescheduling, sched_class::put_prev_task() will place
4067                 * 'current' within the tree based on its new key value.
4068                 */
4069                swap(curr->vruntime, se->vruntime);
4070                resched_task(rq->curr);
4071        }
4072
4073        se->vruntime -= cfs_rq->min_vruntime;
4074
4075        raw_spin_unlock_irqrestore(&rq->lock, flags);
4076}
4077
4078/*
4079 * Priority of the task has changed. Check to see if we preempt
4080 * the current task.
4081 */
4082static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4083                              int oldprio, int running)
4084{
4085        /*
4086         * Reschedule if we are currently running on this runqueue and
4087         * our priority decreased, or if we are not currently running on
4088         * this runqueue and our priority is higher than the current's
4089         */
4090        if (running) {
4091                if (p->prio > oldprio)
4092                        resched_task(rq->curr);
4093        } else
4094                check_preempt_curr(rq, p, 0);
4095}
4096
4097/*
4098 * We switched to the sched_fair class.
4099 */
4100static void switched_to_fair(struct rq *rq, struct task_struct *p,
4101                             int running)
4102{
4103        /*
4104         * We were most likely switched from sched_rt, so
4105         * kick off the schedule if running, otherwise just see
4106         * if we can still preempt the current task.
4107         */
4108        if (running)
4109                resched_task(rq->curr);
4110        else
4111                check_preempt_curr(rq, p, 0);
4112}
4113
4114/* Account for a task changing its policy or group.
4115 *
4116 * This routine is mostly called to set cfs_rq->curr field when a task
4117 * migrates between groups/classes.
4118 */
4119static void set_curr_task_fair(struct rq *rq)
4120{
4121        struct sched_entity *se = &rq->curr->se;
4122
4123        for_each_sched_entity(se)
4124                set_next_entity(cfs_rq_of(se), se);
4125}
4126
4127#ifdef CONFIG_FAIR_GROUP_SCHED
4128static void task_move_group_fair(struct task_struct *p, int on_rq)
4129{
4130        /*
4131         * If the task was not on the rq at the time of this cgroup movement
4132         * it must have been asleep, sleeping tasks keep their ->vruntime
4133         * absolute on their old rq until wakeup (needed for the fair sleeper
4134         * bonus in place_entity()).
4135         *
4136         * If it was on the rq, we've just 'preempted' it, which does convert
4137         * ->vruntime to a relative base.
4138         *
4139         * Make sure both cases convert their relative position when migrating
4140         * to another cgroup's rq. This does somewhat interfere with the
4141         * fair sleeper stuff for the first placement, but who cares.
4142         */
4143        if (!on_rq)
4144                p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4145        set_task_rq(p, task_cpu(p));
4146        if (!on_rq)
4147                p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4148}
4149#endif
4150
4151static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4152{
4153        struct sched_entity *se = &task->se;
4154        unsigned int rr_interval = 0;
4155
4156        /*
4157         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4158         * idle runqueue:
4159         */
4160        if (rq->cfs.load.weight)
4161                rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4162
4163        return rr_interval;
4164}
4165
4166/*
4167 * All the scheduling class methods:
4168 */
4169static const struct sched_class fair_sched_class = {
4170        .next                   = &idle_sched_class,
4171        .enqueue_task           = enqueue_task_fair,
4172        .dequeue_task           = dequeue_task_fair,
4173        .yield_task             = yield_task_fair,
4174
4175        .check_preempt_curr     = check_preempt_wakeup,
4176
4177        .pick_next_task         = pick_next_task_fair,
4178        .put_prev_task          = put_prev_task_fair,
4179
4180#ifdef CONFIG_SMP
4181        .select_task_rq         = select_task_rq_fair,
4182
4183        .rq_online              = rq_online_fair,
4184        .rq_offline             = rq_offline_fair,
4185
4186        .task_waking            = task_waking_fair,
4187#endif
4188
4189        .set_curr_task          = set_curr_task_fair,
4190        .task_tick              = task_tick_fair,
4191        .task_fork              = task_fork_fair,
4192
4193        .prio_changed           = prio_changed_fair,
4194        .switched_to            = switched_to_fair,
4195
4196        .get_rr_interval        = get_rr_interval_fair,
4197
4198#ifdef CONFIG_FAIR_GROUP_SCHED
4199        .task_move_group        = task_move_group_fair,
4200#endif
4201};
4202
4203#ifdef CONFIG_SCHED_DEBUG
4204static void print_cfs_stats(struct seq_file *m, int cpu)
4205{
4206        struct cfs_rq *cfs_rq;
4207
4208        rcu_read_lock();
4209        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4210                print_cfs_rq(m, cpu, cfs_rq);
4211        rcu_read_unlock();
4212}
4213#endif
4214