linux/lib/radix-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation; either version 2, or (at
  10 * your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful, but
  13 * WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/errno.h>
  23#include <linux/init.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/radix-tree.h>
  27#include <linux/percpu.h>
  28#include <linux/slab.h>
  29#include <linux/notifier.h>
  30#include <linux/cpu.h>
  31#include <linux/string.h>
  32#include <linux/bitops.h>
  33#include <linux/rcupdate.h>
  34
  35
  36#ifdef __KERNEL__
  37#define RADIX_TREE_MAP_SHIFT    (CONFIG_BASE_SMALL ? 4 : 6)
  38#else
  39#define RADIX_TREE_MAP_SHIFT    3       /* For more stressful testing */
  40#endif
  41
  42#define RADIX_TREE_MAP_SIZE     (1UL << RADIX_TREE_MAP_SHIFT)
  43#define RADIX_TREE_MAP_MASK     (RADIX_TREE_MAP_SIZE-1)
  44
  45#define RADIX_TREE_TAG_LONGS    \
  46        ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
  47
  48struct radix_tree_node {
  49        unsigned int    height;         /* Height from the bottom */
  50        unsigned int    count;
  51        struct rcu_head rcu_head;
  52        void __rcu      *slots[RADIX_TREE_MAP_SIZE];
  53        unsigned long   tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
  54};
  55
  56struct radix_tree_path {
  57        struct radix_tree_node *node;
  58        int offset;
  59};
  60
  61#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
  62#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
  63                                          RADIX_TREE_MAP_SHIFT))
  64
  65/*
  66 * The height_to_maxindex array needs to be one deeper than the maximum
  67 * path as height 0 holds only 1 entry.
  68 */
  69static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  70
  71/*
  72 * Radix tree node cache.
  73 */
  74static struct kmem_cache *radix_tree_node_cachep;
  75
  76/*
  77 * Per-cpu pool of preloaded nodes
  78 */
  79struct radix_tree_preload {
  80        int nr;
  81        struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
  82};
  83static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  84
  85static inline void *ptr_to_indirect(void *ptr)
  86{
  87        return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  88}
  89
  90static inline void *indirect_to_ptr(void *ptr)
  91{
  92        return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
  93}
  94
  95static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  96{
  97        return root->gfp_mask & __GFP_BITS_MASK;
  98}
  99
 100static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 101                int offset)
 102{
 103        __set_bit(offset, node->tags[tag]);
 104}
 105
 106static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 107                int offset)
 108{
 109        __clear_bit(offset, node->tags[tag]);
 110}
 111
 112static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 113                int offset)
 114{
 115        return test_bit(offset, node->tags[tag]);
 116}
 117
 118static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 119{
 120        root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 121}
 122
 123static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 124{
 125        root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 126}
 127
 128static inline void root_tag_clear_all(struct radix_tree_root *root)
 129{
 130        root->gfp_mask &= __GFP_BITS_MASK;
 131}
 132
 133static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 134{
 135        return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 136}
 137
 138/*
 139 * Returns 1 if any slot in the node has this tag set.
 140 * Otherwise returns 0.
 141 */
 142static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 143{
 144        int idx;
 145        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 146                if (node->tags[tag][idx])
 147                        return 1;
 148        }
 149        return 0;
 150}
 151/*
 152 * This assumes that the caller has performed appropriate preallocation, and
 153 * that the caller has pinned this thread of control to the current CPU.
 154 */
 155static struct radix_tree_node *
 156radix_tree_node_alloc(struct radix_tree_root *root)
 157{
 158        struct radix_tree_node *ret = NULL;
 159        gfp_t gfp_mask = root_gfp_mask(root);
 160
 161        if (!(gfp_mask & __GFP_WAIT)) {
 162                struct radix_tree_preload *rtp;
 163
 164                /*
 165                 * Provided the caller has preloaded here, we will always
 166                 * succeed in getting a node here (and never reach
 167                 * kmem_cache_alloc)
 168                 */
 169                rtp = &__get_cpu_var(radix_tree_preloads);
 170                if (rtp->nr) {
 171                        ret = rtp->nodes[rtp->nr - 1];
 172                        rtp->nodes[rtp->nr - 1] = NULL;
 173                        rtp->nr--;
 174                }
 175        }
 176        if (ret == NULL)
 177                ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 178
 179        BUG_ON(radix_tree_is_indirect_ptr(ret));
 180        return ret;
 181}
 182
 183static void radix_tree_node_rcu_free(struct rcu_head *head)
 184{
 185        struct radix_tree_node *node =
 186                        container_of(head, struct radix_tree_node, rcu_head);
 187        int i;
 188
 189        /*
 190         * must only free zeroed nodes into the slab. radix_tree_shrink
 191         * can leave us with a non-NULL entry in the first slot, so clear
 192         * that here to make sure.
 193         */
 194        for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 195                tag_clear(node, i, 0);
 196
 197        node->slots[0] = NULL;
 198        node->count = 0;
 199
 200        kmem_cache_free(radix_tree_node_cachep, node);
 201}
 202
 203static inline void
 204radix_tree_node_free(struct radix_tree_node *node)
 205{
 206        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 207}
 208
 209/*
 210 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 211 * ensure that the addition of a single element in the tree cannot fail.  On
 212 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 213 * with preemption not disabled.
 214 *
 215 * To make use of this facility, the radix tree must be initialised without
 216 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 217 */
 218int radix_tree_preload(gfp_t gfp_mask)
 219{
 220        struct radix_tree_preload *rtp;
 221        struct radix_tree_node *node;
 222        int ret = -ENOMEM;
 223
 224        preempt_disable();
 225        rtp = &__get_cpu_var(radix_tree_preloads);
 226        while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
 227                preempt_enable();
 228                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 229                if (node == NULL)
 230                        goto out;
 231                preempt_disable();
 232                rtp = &__get_cpu_var(radix_tree_preloads);
 233                if (rtp->nr < ARRAY_SIZE(rtp->nodes))
 234                        rtp->nodes[rtp->nr++] = node;
 235                else
 236                        kmem_cache_free(radix_tree_node_cachep, node);
 237        }
 238        ret = 0;
 239out:
 240        return ret;
 241}
 242EXPORT_SYMBOL(radix_tree_preload);
 243
 244/*
 245 *      Return the maximum key which can be store into a
 246 *      radix tree with height HEIGHT.
 247 */
 248static inline unsigned long radix_tree_maxindex(unsigned int height)
 249{
 250        return height_to_maxindex[height];
 251}
 252
 253/*
 254 *      Extend a radix tree so it can store key @index.
 255 */
 256static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
 257{
 258        struct radix_tree_node *node;
 259        unsigned int height;
 260        int tag;
 261
 262        /* Figure out what the height should be.  */
 263        height = root->height + 1;
 264        while (index > radix_tree_maxindex(height))
 265                height++;
 266
 267        if (root->rnode == NULL) {
 268                root->height = height;
 269                goto out;
 270        }
 271
 272        do {
 273                unsigned int newheight;
 274                if (!(node = radix_tree_node_alloc(root)))
 275                        return -ENOMEM;
 276
 277                /* Increase the height.  */
 278                node->slots[0] = indirect_to_ptr(root->rnode);
 279
 280                /* Propagate the aggregated tag info into the new root */
 281                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 282                        if (root_tag_get(root, tag))
 283                                tag_set(node, tag, 0);
 284                }
 285
 286                newheight = root->height+1;
 287                node->height = newheight;
 288                node->count = 1;
 289                node = ptr_to_indirect(node);
 290                rcu_assign_pointer(root->rnode, node);
 291                root->height = newheight;
 292        } while (height > root->height);
 293out:
 294        return 0;
 295}
 296
 297/**
 298 *      radix_tree_insert    -    insert into a radix tree
 299 *      @root:          radix tree root
 300 *      @index:         index key
 301 *      @item:          item to insert
 302 *
 303 *      Insert an item into the radix tree at position @index.
 304 */
 305int radix_tree_insert(struct radix_tree_root *root,
 306                        unsigned long index, void *item)
 307{
 308        struct radix_tree_node *node = NULL, *slot;
 309        unsigned int height, shift;
 310        int offset;
 311        int error;
 312
 313        BUG_ON(radix_tree_is_indirect_ptr(item));
 314
 315        /* Make sure the tree is high enough.  */
 316        if (index > radix_tree_maxindex(root->height)) {
 317                error = radix_tree_extend(root, index);
 318                if (error)
 319                        return error;
 320        }
 321
 322        slot = indirect_to_ptr(root->rnode);
 323
 324        height = root->height;
 325        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 326
 327        offset = 0;                     /* uninitialised var warning */
 328        while (height > 0) {
 329                if (slot == NULL) {
 330                        /* Have to add a child node.  */
 331                        if (!(slot = radix_tree_node_alloc(root)))
 332                                return -ENOMEM;
 333                        slot->height = height;
 334                        if (node) {
 335                                rcu_assign_pointer(node->slots[offset], slot);
 336                                node->count++;
 337                        } else
 338                                rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
 339                }
 340
 341                /* Go a level down */
 342                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 343                node = slot;
 344                slot = node->slots[offset];
 345                shift -= RADIX_TREE_MAP_SHIFT;
 346                height--;
 347        }
 348
 349        if (slot != NULL)
 350                return -EEXIST;
 351
 352        if (node) {
 353                node->count++;
 354                rcu_assign_pointer(node->slots[offset], item);
 355                BUG_ON(tag_get(node, 0, offset));
 356                BUG_ON(tag_get(node, 1, offset));
 357        } else {
 358                rcu_assign_pointer(root->rnode, item);
 359                BUG_ON(root_tag_get(root, 0));
 360                BUG_ON(root_tag_get(root, 1));
 361        }
 362
 363        return 0;
 364}
 365EXPORT_SYMBOL(radix_tree_insert);
 366
 367/*
 368 * is_slot == 1 : search for the slot.
 369 * is_slot == 0 : search for the node.
 370 */
 371static void *radix_tree_lookup_element(struct radix_tree_root *root,
 372                                unsigned long index, int is_slot)
 373{
 374        unsigned int height, shift;
 375        struct radix_tree_node *node, **slot;
 376
 377        node = rcu_dereference_raw(root->rnode);
 378        if (node == NULL)
 379                return NULL;
 380
 381        if (!radix_tree_is_indirect_ptr(node)) {
 382                if (index > 0)
 383                        return NULL;
 384                return is_slot ? (void *)&root->rnode : node;
 385        }
 386        node = indirect_to_ptr(node);
 387
 388        height = node->height;
 389        if (index > radix_tree_maxindex(height))
 390                return NULL;
 391
 392        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 393
 394        do {
 395                slot = (struct radix_tree_node **)
 396                        (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
 397                node = rcu_dereference_raw(*slot);
 398                if (node == NULL)
 399                        return NULL;
 400
 401                shift -= RADIX_TREE_MAP_SHIFT;
 402                height--;
 403        } while (height > 0);
 404
 405        return is_slot ? (void *)slot : indirect_to_ptr(node);
 406}
 407
 408/**
 409 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 410 *      @root:          radix tree root
 411 *      @index:         index key
 412 *
 413 *      Returns:  the slot corresponding to the position @index in the
 414 *      radix tree @root. This is useful for update-if-exists operations.
 415 *
 416 *      This function can be called under rcu_read_lock iff the slot is not
 417 *      modified by radix_tree_replace_slot, otherwise it must be called
 418 *      exclusive from other writers. Any dereference of the slot must be done
 419 *      using radix_tree_deref_slot.
 420 */
 421void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 422{
 423        return (void **)radix_tree_lookup_element(root, index, 1);
 424}
 425EXPORT_SYMBOL(radix_tree_lookup_slot);
 426
 427/**
 428 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 429 *      @root:          radix tree root
 430 *      @index:         index key
 431 *
 432 *      Lookup the item at the position @index in the radix tree @root.
 433 *
 434 *      This function can be called under rcu_read_lock, however the caller
 435 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 436 *      them safely). No RCU barriers are required to access or modify the
 437 *      returned item, however.
 438 */
 439void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 440{
 441        return radix_tree_lookup_element(root, index, 0);
 442}
 443EXPORT_SYMBOL(radix_tree_lookup);
 444
 445/**
 446 *      radix_tree_tag_set - set a tag on a radix tree node
 447 *      @root:          radix tree root
 448 *      @index:         index key
 449 *      @tag:           tag index
 450 *
 451 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 452 *      corresponding to @index in the radix tree.  From
 453 *      the root all the way down to the leaf node.
 454 *
 455 *      Returns the address of the tagged item.   Setting a tag on a not-present
 456 *      item is a bug.
 457 */
 458void *radix_tree_tag_set(struct radix_tree_root *root,
 459                        unsigned long index, unsigned int tag)
 460{
 461        unsigned int height, shift;
 462        struct radix_tree_node *slot;
 463
 464        height = root->height;
 465        BUG_ON(index > radix_tree_maxindex(height));
 466
 467        slot = indirect_to_ptr(root->rnode);
 468        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 469
 470        while (height > 0) {
 471                int offset;
 472
 473                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 474                if (!tag_get(slot, tag, offset))
 475                        tag_set(slot, tag, offset);
 476                slot = slot->slots[offset];
 477                BUG_ON(slot == NULL);
 478                shift -= RADIX_TREE_MAP_SHIFT;
 479                height--;
 480        }
 481
 482        /* set the root's tag bit */
 483        if (slot && !root_tag_get(root, tag))
 484                root_tag_set(root, tag);
 485
 486        return slot;
 487}
 488EXPORT_SYMBOL(radix_tree_tag_set);
 489
 490/**
 491 *      radix_tree_tag_clear - clear a tag on a radix tree node
 492 *      @root:          radix tree root
 493 *      @index:         index key
 494 *      @tag:           tag index
 495 *
 496 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 497 *      corresponding to @index in the radix tree.  If
 498 *      this causes the leaf node to have no tags set then clear the tag in the
 499 *      next-to-leaf node, etc.
 500 *
 501 *      Returns the address of the tagged item on success, else NULL.  ie:
 502 *      has the same return value and semantics as radix_tree_lookup().
 503 */
 504void *radix_tree_tag_clear(struct radix_tree_root *root,
 505                        unsigned long index, unsigned int tag)
 506{
 507        /*
 508         * The radix tree path needs to be one longer than the maximum path
 509         * since the "list" is null terminated.
 510         */
 511        struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
 512        struct radix_tree_node *slot = NULL;
 513        unsigned int height, shift;
 514
 515        height = root->height;
 516        if (index > radix_tree_maxindex(height))
 517                goto out;
 518
 519        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 520        pathp->node = NULL;
 521        slot = indirect_to_ptr(root->rnode);
 522
 523        while (height > 0) {
 524                int offset;
 525
 526                if (slot == NULL)
 527                        goto out;
 528
 529                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 530                pathp[1].offset = offset;
 531                pathp[1].node = slot;
 532                slot = slot->slots[offset];
 533                pathp++;
 534                shift -= RADIX_TREE_MAP_SHIFT;
 535                height--;
 536        }
 537
 538        if (slot == NULL)
 539                goto out;
 540
 541        while (pathp->node) {
 542                if (!tag_get(pathp->node, tag, pathp->offset))
 543                        goto out;
 544                tag_clear(pathp->node, tag, pathp->offset);
 545                if (any_tag_set(pathp->node, tag))
 546                        goto out;
 547                pathp--;
 548        }
 549
 550        /* clear the root's tag bit */
 551        if (root_tag_get(root, tag))
 552                root_tag_clear(root, tag);
 553
 554out:
 555        return slot;
 556}
 557EXPORT_SYMBOL(radix_tree_tag_clear);
 558
 559/**
 560 * radix_tree_tag_get - get a tag on a radix tree node
 561 * @root:               radix tree root
 562 * @index:              index key
 563 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
 564 *
 565 * Return values:
 566 *
 567 *  0: tag not present or not set
 568 *  1: tag set
 569 *
 570 * Note that the return value of this function may not be relied on, even if
 571 * the RCU lock is held, unless tag modification and node deletion are excluded
 572 * from concurrency.
 573 */
 574int radix_tree_tag_get(struct radix_tree_root *root,
 575                        unsigned long index, unsigned int tag)
 576{
 577        unsigned int height, shift;
 578        struct radix_tree_node *node;
 579        int saw_unset_tag = 0;
 580
 581        /* check the root's tag bit */
 582        if (!root_tag_get(root, tag))
 583                return 0;
 584
 585        node = rcu_dereference_raw(root->rnode);
 586        if (node == NULL)
 587                return 0;
 588
 589        if (!radix_tree_is_indirect_ptr(node))
 590                return (index == 0);
 591        node = indirect_to_ptr(node);
 592
 593        height = node->height;
 594        if (index > radix_tree_maxindex(height))
 595                return 0;
 596
 597        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 598
 599        for ( ; ; ) {
 600                int offset;
 601
 602                if (node == NULL)
 603                        return 0;
 604
 605                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 606
 607                /*
 608                 * This is just a debug check.  Later, we can bale as soon as
 609                 * we see an unset tag.
 610                 */
 611                if (!tag_get(node, tag, offset))
 612                        saw_unset_tag = 1;
 613                if (height == 1)
 614                        return !!tag_get(node, tag, offset);
 615                node = rcu_dereference_raw(node->slots[offset]);
 616                shift -= RADIX_TREE_MAP_SHIFT;
 617                height--;
 618        }
 619}
 620EXPORT_SYMBOL(radix_tree_tag_get);
 621
 622/**
 623 * radix_tree_range_tag_if_tagged - for each item in given range set given
 624 *                                 tag if item has another tag set
 625 * @root:               radix tree root
 626 * @first_indexp:       pointer to a starting index of a range to scan
 627 * @last_index:         last index of a range to scan
 628 * @nr_to_tag:          maximum number items to tag
 629 * @iftag:              tag index to test
 630 * @settag:             tag index to set if tested tag is set
 631 *
 632 * This function scans range of radix tree from first_index to last_index
 633 * (inclusive).  For each item in the range if iftag is set, the function sets
 634 * also settag. The function stops either after tagging nr_to_tag items or
 635 * after reaching last_index.
 636 *
 637 * The tags must be set from the leaf level only and propagated back up the
 638 * path to the root. We must do this so that we resolve the full path before
 639 * setting any tags on intermediate nodes. If we set tags as we descend, then
 640 * we can get to the leaf node and find that the index that has the iftag
 641 * set is outside the range we are scanning. This reults in dangling tags and
 642 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 643 *
 644 * The function returns number of leaves where the tag was set and sets
 645 * *first_indexp to the first unscanned index.
 646 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 647 * be prepared to handle that.
 648 */
 649unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 650                unsigned long *first_indexp, unsigned long last_index,
 651                unsigned long nr_to_tag,
 652                unsigned int iftag, unsigned int settag)
 653{
 654        unsigned int height = root->height;
 655        struct radix_tree_path path[height];
 656        struct radix_tree_path *pathp = path;
 657        struct radix_tree_node *slot;
 658        unsigned int shift;
 659        unsigned long tagged = 0;
 660        unsigned long index = *first_indexp;
 661
 662        last_index = min(last_index, radix_tree_maxindex(height));
 663        if (index > last_index)
 664                return 0;
 665        if (!nr_to_tag)
 666                return 0;
 667        if (!root_tag_get(root, iftag)) {
 668                *first_indexp = last_index + 1;
 669                return 0;
 670        }
 671        if (height == 0) {
 672                *first_indexp = last_index + 1;
 673                root_tag_set(root, settag);
 674                return 1;
 675        }
 676
 677        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 678        slot = indirect_to_ptr(root->rnode);
 679
 680        /*
 681         * we fill the path from (root->height - 2) to 0, leaving the index at
 682         * (root->height - 1) as a terminator. Zero the node in the terminator
 683         * so that we can use this to end walk loops back up the path.
 684         */
 685        path[height - 1].node = NULL;
 686
 687        for (;;) {
 688                int offset;
 689
 690                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 691                if (!slot->slots[offset])
 692                        goto next;
 693                if (!tag_get(slot, iftag, offset))
 694                        goto next;
 695                if (height > 1) {
 696                        /* Go down one level */
 697                        height--;
 698                        shift -= RADIX_TREE_MAP_SHIFT;
 699                        path[height - 1].node = slot;
 700                        path[height - 1].offset = offset;
 701                        slot = slot->slots[offset];
 702                        continue;
 703                }
 704
 705                /* tag the leaf */
 706                tagged++;
 707                tag_set(slot, settag, offset);
 708
 709                /* walk back up the path tagging interior nodes */
 710                pathp = &path[0];
 711                while (pathp->node) {
 712                        /* stop if we find a node with the tag already set */
 713                        if (tag_get(pathp->node, settag, pathp->offset))
 714                                break;
 715                        tag_set(pathp->node, settag, pathp->offset);
 716                        pathp++;
 717                }
 718
 719next:
 720                /* Go to next item at level determined by 'shift' */
 721                index = ((index >> shift) + 1) << shift;
 722                /* Overflow can happen when last_index is ~0UL... */
 723                if (index > last_index || !index)
 724                        break;
 725                if (tagged >= nr_to_tag)
 726                        break;
 727                while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
 728                        /*
 729                         * We've fully scanned this node. Go up. Because
 730                         * last_index is guaranteed to be in the tree, what
 731                         * we do below cannot wander astray.
 732                         */
 733                        slot = path[height - 1].node;
 734                        height++;
 735                        shift += RADIX_TREE_MAP_SHIFT;
 736                }
 737        }
 738        /*
 739         * We need not to tag the root tag if there is no tag which is set with
 740         * settag within the range from *first_indexp to last_index.
 741         */
 742        if (tagged > 0)
 743                root_tag_set(root, settag);
 744        *first_indexp = index;
 745
 746        return tagged;
 747}
 748EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
 749
 750
 751/**
 752 *      radix_tree_next_hole    -    find the next hole (not-present entry)
 753 *      @root:          tree root
 754 *      @index:         index key
 755 *      @max_scan:      maximum range to search
 756 *
 757 *      Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
 758 *      indexed hole.
 759 *
 760 *      Returns: the index of the hole if found, otherwise returns an index
 761 *      outside of the set specified (in which case 'return - index >= max_scan'
 762 *      will be true). In rare cases of index wrap-around, 0 will be returned.
 763 *
 764 *      radix_tree_next_hole may be called under rcu_read_lock. However, like
 765 *      radix_tree_gang_lookup, this will not atomically search a snapshot of
 766 *      the tree at a single point in time. For example, if a hole is created
 767 *      at index 5, then subsequently a hole is created at index 10,
 768 *      radix_tree_next_hole covering both indexes may return 10 if called
 769 *      under rcu_read_lock.
 770 */
 771unsigned long radix_tree_next_hole(struct radix_tree_root *root,
 772                                unsigned long index, unsigned long max_scan)
 773{
 774        unsigned long i;
 775
 776        for (i = 0; i < max_scan; i++) {
 777                if (!radix_tree_lookup(root, index))
 778                        break;
 779                index++;
 780                if (index == 0)
 781                        break;
 782        }
 783
 784        return index;
 785}
 786EXPORT_SYMBOL(radix_tree_next_hole);
 787
 788/**
 789 *      radix_tree_prev_hole    -    find the prev hole (not-present entry)
 790 *      @root:          tree root
 791 *      @index:         index key
 792 *      @max_scan:      maximum range to search
 793 *
 794 *      Search backwards in the range [max(index-max_scan+1, 0), index]
 795 *      for the first hole.
 796 *
 797 *      Returns: the index of the hole if found, otherwise returns an index
 798 *      outside of the set specified (in which case 'index - return >= max_scan'
 799 *      will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
 800 *
 801 *      radix_tree_next_hole may be called under rcu_read_lock. However, like
 802 *      radix_tree_gang_lookup, this will not atomically search a snapshot of
 803 *      the tree at a single point in time. For example, if a hole is created
 804 *      at index 10, then subsequently a hole is created at index 5,
 805 *      radix_tree_prev_hole covering both indexes may return 5 if called under
 806 *      rcu_read_lock.
 807 */
 808unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
 809                                   unsigned long index, unsigned long max_scan)
 810{
 811        unsigned long i;
 812
 813        for (i = 0; i < max_scan; i++) {
 814                if (!radix_tree_lookup(root, index))
 815                        break;
 816                index--;
 817                if (index == ULONG_MAX)
 818                        break;
 819        }
 820
 821        return index;
 822}
 823EXPORT_SYMBOL(radix_tree_prev_hole);
 824
 825static unsigned int
 826__lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
 827        unsigned int max_items, unsigned long *next_index)
 828{
 829        unsigned int nr_found = 0;
 830        unsigned int shift, height;
 831        unsigned long i;
 832
 833        height = slot->height;
 834        if (height == 0)
 835                goto out;
 836        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 837
 838        for ( ; height > 1; height--) {
 839                i = (index >> shift) & RADIX_TREE_MAP_MASK;
 840                for (;;) {
 841                        if (slot->slots[i] != NULL)
 842                                break;
 843                        index &= ~((1UL << shift) - 1);
 844                        index += 1UL << shift;
 845                        if (index == 0)
 846                                goto out;       /* 32-bit wraparound */
 847                        i++;
 848                        if (i == RADIX_TREE_MAP_SIZE)
 849                                goto out;
 850                }
 851
 852                shift -= RADIX_TREE_MAP_SHIFT;
 853                slot = rcu_dereference_raw(slot->slots[i]);
 854                if (slot == NULL)
 855                        goto out;
 856        }
 857
 858        /* Bottom level: grab some items */
 859        for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
 860                index++;
 861                if (slot->slots[i]) {
 862                        results[nr_found++] = &(slot->slots[i]);
 863                        if (nr_found == max_items)
 864                                goto out;
 865                }
 866        }
 867out:
 868        *next_index = index;
 869        return nr_found;
 870}
 871
 872/**
 873 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
 874 *      @root:          radix tree root
 875 *      @results:       where the results of the lookup are placed
 876 *      @first_index:   start the lookup from this key
 877 *      @max_items:     place up to this many items at *results
 878 *
 879 *      Performs an index-ascending scan of the tree for present items.  Places
 880 *      them at *@results and returns the number of items which were placed at
 881 *      *@results.
 882 *
 883 *      The implementation is naive.
 884 *
 885 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 886 *      rcu_read_lock. In this case, rather than the returned results being
 887 *      an atomic snapshot of the tree at a single point in time, the semantics
 888 *      of an RCU protected gang lookup are as though multiple radix_tree_lookups
 889 *      have been issued in individual locks, and results stored in 'results'.
 890 */
 891unsigned int
 892radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
 893                        unsigned long first_index, unsigned int max_items)
 894{
 895        unsigned long max_index;
 896        struct radix_tree_node *node;
 897        unsigned long cur_index = first_index;
 898        unsigned int ret;
 899
 900        node = rcu_dereference_raw(root->rnode);
 901        if (!node)
 902                return 0;
 903
 904        if (!radix_tree_is_indirect_ptr(node)) {
 905                if (first_index > 0)
 906                        return 0;
 907                results[0] = node;
 908                return 1;
 909        }
 910        node = indirect_to_ptr(node);
 911
 912        max_index = radix_tree_maxindex(node->height);
 913
 914        ret = 0;
 915        while (ret < max_items) {
 916                unsigned int nr_found, slots_found, i;
 917                unsigned long next_index;       /* Index of next search */
 918
 919                if (cur_index > max_index)
 920                        break;
 921                slots_found = __lookup(node, (void ***)results + ret, cur_index,
 922                                        max_items - ret, &next_index);
 923                nr_found = 0;
 924                for (i = 0; i < slots_found; i++) {
 925                        struct radix_tree_node *slot;
 926                        slot = *(((void ***)results)[ret + i]);
 927                        if (!slot)
 928                                continue;
 929                        results[ret + nr_found] =
 930                                indirect_to_ptr(rcu_dereference_raw(slot));
 931                        nr_found++;
 932                }
 933                ret += nr_found;
 934                if (next_index == 0)
 935                        break;
 936                cur_index = next_index;
 937        }
 938
 939        return ret;
 940}
 941EXPORT_SYMBOL(radix_tree_gang_lookup);
 942
 943/**
 944 *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
 945 *      @root:          radix tree root
 946 *      @results:       where the results of the lookup are placed
 947 *      @first_index:   start the lookup from this key
 948 *      @max_items:     place up to this many items at *results
 949 *
 950 *      Performs an index-ascending scan of the tree for present items.  Places
 951 *      their slots at *@results and returns the number of items which were
 952 *      placed at *@results.
 953 *
 954 *      The implementation is naive.
 955 *
 956 *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
 957 *      be dereferenced with radix_tree_deref_slot, and if using only RCU
 958 *      protection, radix_tree_deref_slot may fail requiring a retry.
 959 */
 960unsigned int
 961radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
 962                        unsigned long first_index, unsigned int max_items)
 963{
 964        unsigned long max_index;
 965        struct radix_tree_node *node;
 966        unsigned long cur_index = first_index;
 967        unsigned int ret;
 968
 969        node = rcu_dereference_raw(root->rnode);
 970        if (!node)
 971                return 0;
 972
 973        if (!radix_tree_is_indirect_ptr(node)) {
 974                if (first_index > 0)
 975                        return 0;
 976                results[0] = (void **)&root->rnode;
 977                return 1;
 978        }
 979        node = indirect_to_ptr(node);
 980
 981        max_index = radix_tree_maxindex(node->height);
 982
 983        ret = 0;
 984        while (ret < max_items) {
 985                unsigned int slots_found;
 986                unsigned long next_index;       /* Index of next search */
 987
 988                if (cur_index > max_index)
 989                        break;
 990                slots_found = __lookup(node, results + ret, cur_index,
 991                                        max_items - ret, &next_index);
 992                ret += slots_found;
 993                if (next_index == 0)
 994                        break;
 995                cur_index = next_index;
 996        }
 997
 998        return ret;
 999}
1000EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1001
1002/*
1003 * FIXME: the two tag_get()s here should use find_next_bit() instead of
1004 * open-coding the search.
1005 */
1006static unsigned int
1007__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1008        unsigned int max_items, unsigned long *next_index, unsigned int tag)
1009{
1010        unsigned int nr_found = 0;
1011        unsigned int shift, height;
1012
1013        height = slot->height;
1014        if (height == 0)
1015                goto out;
1016        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1017
1018        while (height > 0) {
1019                unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1020
1021                for (;;) {
1022                        if (tag_get(slot, tag, i))
1023                                break;
1024                        index &= ~((1UL << shift) - 1);
1025                        index += 1UL << shift;
1026                        if (index == 0)
1027                                goto out;       /* 32-bit wraparound */
1028                        i++;
1029                        if (i == RADIX_TREE_MAP_SIZE)
1030                                goto out;
1031                }
1032                height--;
1033                if (height == 0) {      /* Bottom level: grab some items */
1034                        unsigned long j = index & RADIX_TREE_MAP_MASK;
1035
1036                        for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1037                                index++;
1038                                if (!tag_get(slot, tag, j))
1039                                        continue;
1040                                /*
1041                                 * Even though the tag was found set, we need to
1042                                 * recheck that we have a non-NULL node, because
1043                                 * if this lookup is lockless, it may have been
1044                                 * subsequently deleted.
1045                                 *
1046                                 * Similar care must be taken in any place that
1047                                 * lookup ->slots[x] without a lock (ie. can't
1048                                 * rely on its value remaining the same).
1049                                 */
1050                                if (slot->slots[j]) {
1051                                        results[nr_found++] = &(slot->slots[j]);
1052                                        if (nr_found == max_items)
1053                                                goto out;
1054                                }
1055                        }
1056                }
1057                shift -= RADIX_TREE_MAP_SHIFT;
1058                slot = rcu_dereference_raw(slot->slots[i]);
1059                if (slot == NULL)
1060                        break;
1061        }
1062out:
1063        *next_index = index;
1064        return nr_found;
1065}
1066
1067/**
1068 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1069 *                                   based on a tag
1070 *      @root:          radix tree root
1071 *      @results:       where the results of the lookup are placed
1072 *      @first_index:   start the lookup from this key
1073 *      @max_items:     place up to this many items at *results
1074 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1075 *
1076 *      Performs an index-ascending scan of the tree for present items which
1077 *      have the tag indexed by @tag set.  Places the items at *@results and
1078 *      returns the number of items which were placed at *@results.
1079 */
1080unsigned int
1081radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1082                unsigned long first_index, unsigned int max_items,
1083                unsigned int tag)
1084{
1085        struct radix_tree_node *node;
1086        unsigned long max_index;
1087        unsigned long cur_index = first_index;
1088        unsigned int ret;
1089
1090        /* check the root's tag bit */
1091        if (!root_tag_get(root, tag))
1092                return 0;
1093
1094        node = rcu_dereference_raw(root->rnode);
1095        if (!node)
1096                return 0;
1097
1098        if (!radix_tree_is_indirect_ptr(node)) {
1099                if (first_index > 0)
1100                        return 0;
1101                results[0] = node;
1102                return 1;
1103        }
1104        node = indirect_to_ptr(node);
1105
1106        max_index = radix_tree_maxindex(node->height);
1107
1108        ret = 0;
1109        while (ret < max_items) {
1110                unsigned int nr_found, slots_found, i;
1111                unsigned long next_index;       /* Index of next search */
1112
1113                if (cur_index > max_index)
1114                        break;
1115                slots_found = __lookup_tag(node, (void ***)results + ret,
1116                                cur_index, max_items - ret, &next_index, tag);
1117                nr_found = 0;
1118                for (i = 0; i < slots_found; i++) {
1119                        struct radix_tree_node *slot;
1120                        slot = *(((void ***)results)[ret + i]);
1121                        if (!slot)
1122                                continue;
1123                        results[ret + nr_found] =
1124                                indirect_to_ptr(rcu_dereference_raw(slot));
1125                        nr_found++;
1126                }
1127                ret += nr_found;
1128                if (next_index == 0)
1129                        break;
1130                cur_index = next_index;
1131        }
1132
1133        return ret;
1134}
1135EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1136
1137/**
1138 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1139 *                                        radix tree based on a tag
1140 *      @root:          radix tree root
1141 *      @results:       where the results of the lookup are placed
1142 *      @first_index:   start the lookup from this key
1143 *      @max_items:     place up to this many items at *results
1144 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1145 *
1146 *      Performs an index-ascending scan of the tree for present items which
1147 *      have the tag indexed by @tag set.  Places the slots at *@results and
1148 *      returns the number of slots which were placed at *@results.
1149 */
1150unsigned int
1151radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1152                unsigned long first_index, unsigned int max_items,
1153                unsigned int tag)
1154{
1155        struct radix_tree_node *node;
1156        unsigned long max_index;
1157        unsigned long cur_index = first_index;
1158        unsigned int ret;
1159
1160        /* check the root's tag bit */
1161        if (!root_tag_get(root, tag))
1162                return 0;
1163
1164        node = rcu_dereference_raw(root->rnode);
1165        if (!node)
1166                return 0;
1167
1168        if (!radix_tree_is_indirect_ptr(node)) {
1169                if (first_index > 0)
1170                        return 0;
1171                results[0] = (void **)&root->rnode;
1172                return 1;
1173        }
1174        node = indirect_to_ptr(node);
1175
1176        max_index = radix_tree_maxindex(node->height);
1177
1178        ret = 0;
1179        while (ret < max_items) {
1180                unsigned int slots_found;
1181                unsigned long next_index;       /* Index of next search */
1182
1183                if (cur_index > max_index)
1184                        break;
1185                slots_found = __lookup_tag(node, results + ret,
1186                                cur_index, max_items - ret, &next_index, tag);
1187                ret += slots_found;
1188                if (next_index == 0)
1189                        break;
1190                cur_index = next_index;
1191        }
1192
1193        return ret;
1194}
1195EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1196
1197
1198/**
1199 *      radix_tree_shrink    -    shrink height of a radix tree to minimal
1200 *      @root           radix tree root
1201 */
1202static inline void radix_tree_shrink(struct radix_tree_root *root)
1203{
1204        /* try to shrink tree height */
1205        while (root->height > 0) {
1206                struct radix_tree_node *to_free = root->rnode;
1207                void *newptr;
1208
1209                BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1210                to_free = indirect_to_ptr(to_free);
1211
1212                /*
1213                 * The candidate node has more than one child, or its child
1214                 * is not at the leftmost slot, we cannot shrink.
1215                 */
1216                if (to_free->count != 1)
1217                        break;
1218                if (!to_free->slots[0])
1219                        break;
1220
1221                /*
1222                 * We don't need rcu_assign_pointer(), since we are simply
1223                 * moving the node from one part of the tree to another: if it
1224                 * was safe to dereference the old pointer to it
1225                 * (to_free->slots[0]), it will be safe to dereference the new
1226                 * one (root->rnode) as far as dependent read barriers go.
1227                 */
1228                newptr = to_free->slots[0];
1229                if (root->height > 1)
1230                        newptr = ptr_to_indirect(newptr);
1231                root->rnode = newptr;
1232                root->height--;
1233
1234                /*
1235                 * We have a dilemma here. The node's slot[0] must not be
1236                 * NULLed in case there are concurrent lookups expecting to
1237                 * find the item. However if this was a bottom-level node,
1238                 * then it may be subject to the slot pointer being visible
1239                 * to callers dereferencing it. If item corresponding to
1240                 * slot[0] is subsequently deleted, these callers would expect
1241                 * their slot to become empty sooner or later.
1242                 *
1243                 * For example, lockless pagecache will look up a slot, deref
1244                 * the page pointer, and if the page is 0 refcount it means it
1245                 * was concurrently deleted from pagecache so try the deref
1246                 * again. Fortunately there is already a requirement for logic
1247                 * to retry the entire slot lookup -- the indirect pointer
1248                 * problem (replacing direct root node with an indirect pointer
1249                 * also results in a stale slot). So tag the slot as indirect
1250                 * to force callers to retry.
1251                 */
1252                if (root->height == 0)
1253                        *((unsigned long *)&to_free->slots[0]) |=
1254                                                RADIX_TREE_INDIRECT_PTR;
1255
1256                radix_tree_node_free(to_free);
1257        }
1258}
1259
1260/**
1261 *      radix_tree_delete    -    delete an item from a radix tree
1262 *      @root:          radix tree root
1263 *      @index:         index key
1264 *
1265 *      Remove the item at @index from the radix tree rooted at @root.
1266 *
1267 *      Returns the address of the deleted item, or NULL if it was not present.
1268 */
1269void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1270{
1271        /*
1272         * The radix tree path needs to be one longer than the maximum path
1273         * since the "list" is null terminated.
1274         */
1275        struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1276        struct radix_tree_node *slot = NULL;
1277        struct radix_tree_node *to_free;
1278        unsigned int height, shift;
1279        int tag;
1280        int offset;
1281
1282        height = root->height;
1283        if (index > radix_tree_maxindex(height))
1284                goto out;
1285
1286        slot = root->rnode;
1287        if (height == 0) {
1288                root_tag_clear_all(root);
1289                root->rnode = NULL;
1290                goto out;
1291        }
1292        slot = indirect_to_ptr(slot);
1293
1294        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1295        pathp->node = NULL;
1296
1297        do {
1298                if (slot == NULL)
1299                        goto out;
1300
1301                pathp++;
1302                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1303                pathp->offset = offset;
1304                pathp->node = slot;
1305                slot = slot->slots[offset];
1306                shift -= RADIX_TREE_MAP_SHIFT;
1307                height--;
1308        } while (height > 0);
1309
1310        if (slot == NULL)
1311                goto out;
1312
1313        /*
1314         * Clear all tags associated with the just-deleted item
1315         */
1316        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1317                if (tag_get(pathp->node, tag, pathp->offset))
1318                        radix_tree_tag_clear(root, index, tag);
1319        }
1320
1321        to_free = NULL;
1322        /* Now free the nodes we do not need anymore */
1323        while (pathp->node) {
1324                pathp->node->slots[pathp->offset] = NULL;
1325                pathp->node->count--;
1326                /*
1327                 * Queue the node for deferred freeing after the
1328                 * last reference to it disappears (set NULL, above).
1329                 */
1330                if (to_free)
1331                        radix_tree_node_free(to_free);
1332
1333                if (pathp->node->count) {
1334                        if (pathp->node == indirect_to_ptr(root->rnode))
1335                                radix_tree_shrink(root);
1336                        goto out;
1337                }
1338
1339                /* Node with zero slots in use so free it */
1340                to_free = pathp->node;
1341                pathp--;
1342
1343        }
1344        root_tag_clear_all(root);
1345        root->height = 0;
1346        root->rnode = NULL;
1347        if (to_free)
1348                radix_tree_node_free(to_free);
1349
1350out:
1351        return slot;
1352}
1353EXPORT_SYMBOL(radix_tree_delete);
1354
1355/**
1356 *      radix_tree_tagged - test whether any items in the tree are tagged
1357 *      @root:          radix tree root
1358 *      @tag:           tag to test
1359 */
1360int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1361{
1362        return root_tag_get(root, tag);
1363}
1364EXPORT_SYMBOL(radix_tree_tagged);
1365
1366static void
1367radix_tree_node_ctor(void *node)
1368{
1369        memset(node, 0, sizeof(struct radix_tree_node));
1370}
1371
1372static __init unsigned long __maxindex(unsigned int height)
1373{
1374        unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1375        int shift = RADIX_TREE_INDEX_BITS - width;
1376
1377        if (shift < 0)
1378                return ~0UL;
1379        if (shift >= BITS_PER_LONG)
1380                return 0UL;
1381        return ~0UL >> shift;
1382}
1383
1384static __init void radix_tree_init_maxindex(void)
1385{
1386        unsigned int i;
1387
1388        for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1389                height_to_maxindex[i] = __maxindex(i);
1390}
1391
1392static int radix_tree_callback(struct notifier_block *nfb,
1393                            unsigned long action,
1394                            void *hcpu)
1395{
1396       int cpu = (long)hcpu;
1397       struct radix_tree_preload *rtp;
1398
1399       /* Free per-cpu pool of perloaded nodes */
1400       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1401               rtp = &per_cpu(radix_tree_preloads, cpu);
1402               while (rtp->nr) {
1403                       kmem_cache_free(radix_tree_node_cachep,
1404                                       rtp->nodes[rtp->nr-1]);
1405                       rtp->nodes[rtp->nr-1] = NULL;
1406                       rtp->nr--;
1407               }
1408       }
1409       return NOTIFY_OK;
1410}
1411
1412void __init radix_tree_init(void)
1413{
1414        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1415                        sizeof(struct radix_tree_node), 0,
1416                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1417                        radix_tree_node_ctor);
1418        radix_tree_init_maxindex();
1419        hotcpu_notifier(radix_tree_callback, 0);
1420}
1421