linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/module.h>
  13#include <linux/compiler.h>
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/memcontrol.h>
  36#include <linux/mm_inline.h> /* for page_is_file_cache() */
  37#include "internal.h"
  38
  39/*
  40 * FIXME: remove all knowledge of the buffer layer from the core VM
  41 */
  42#include <linux/buffer_head.h> /* for try_to_free_buffers */
  43
  44#include <asm/mman.h>
  45
  46/*
  47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  48 * though.
  49 *
  50 * Shared mappings now work. 15.8.1995  Bruno.
  51 *
  52 * finished 'unifying' the page and buffer cache and SMP-threaded the
  53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  54 *
  55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  56 */
  57
  58/*
  59 * Lock ordering:
  60 *
  61 *  ->i_mmap_lock               (truncate_pagecache)
  62 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  63 *      ->swap_lock             (exclusive_swap_page, others)
  64 *        ->mapping->tree_lock
  65 *
  66 *  ->i_mutex
  67 *    ->i_mmap_lock             (truncate->unmap_mapping_range)
  68 *
  69 *  ->mmap_sem
  70 *    ->i_mmap_lock
  71 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  72 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  73 *
  74 *  ->mmap_sem
  75 *    ->lock_page               (access_process_vm)
  76 *
  77 *  ->i_mutex                   (generic_file_buffered_write)
  78 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  79 *
  80 *  ->i_mutex
  81 *    ->i_alloc_sem             (various)
  82 *
  83 *  ->inode_lock
  84 *    ->sb_lock                 (fs/fs-writeback.c)
  85 *    ->mapping->tree_lock      (__sync_single_inode)
  86 *
  87 *  ->i_mmap_lock
  88 *    ->anon_vma.lock           (vma_adjust)
  89 *
  90 *  ->anon_vma.lock
  91 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  92 *
  93 *  ->page_table_lock or pte_lock
  94 *    ->swap_lock               (try_to_unmap_one)
  95 *    ->private_lock            (try_to_unmap_one)
  96 *    ->tree_lock               (try_to_unmap_one)
  97 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
  98 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
  99 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 100 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 101 *    ->inode_lock              (page_remove_rmap->set_page_dirty)
 102 *    ->inode_lock              (zap_pte_range->set_page_dirty)
 103 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 104 *
 105 *  (code doesn't rely on that order, so you could switch it around)
 106 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
 107 *    ->i_mmap_lock
 108 */
 109
 110/*
 111 * Remove a page from the page cache and free it. Caller has to make
 112 * sure the page is locked and that nobody else uses it - or that usage
 113 * is safe.  The caller must hold the mapping's tree_lock.
 114 */
 115void __remove_from_page_cache(struct page *page)
 116{
 117        struct address_space *mapping = page->mapping;
 118
 119        radix_tree_delete(&mapping->page_tree, page->index);
 120        page->mapping = NULL;
 121        mapping->nrpages--;
 122        __dec_zone_page_state(page, NR_FILE_PAGES);
 123        if (PageSwapBacked(page))
 124                __dec_zone_page_state(page, NR_SHMEM);
 125        BUG_ON(page_mapped(page));
 126
 127        /*
 128         * Some filesystems seem to re-dirty the page even after
 129         * the VM has canceled the dirty bit (eg ext3 journaling).
 130         *
 131         * Fix it up by doing a final dirty accounting check after
 132         * having removed the page entirely.
 133         */
 134        if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 135                dec_zone_page_state(page, NR_FILE_DIRTY);
 136                dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 137        }
 138}
 139
 140void remove_from_page_cache(struct page *page)
 141{
 142        struct address_space *mapping = page->mapping;
 143        void (*freepage)(struct page *);
 144
 145        BUG_ON(!PageLocked(page));
 146
 147        freepage = mapping->a_ops->freepage;
 148        spin_lock_irq(&mapping->tree_lock);
 149        __remove_from_page_cache(page);
 150        spin_unlock_irq(&mapping->tree_lock);
 151        mem_cgroup_uncharge_cache_page(page);
 152
 153        if (freepage)
 154                freepage(page);
 155}
 156EXPORT_SYMBOL(remove_from_page_cache);
 157
 158static int sync_page(void *word)
 159{
 160        struct address_space *mapping;
 161        struct page *page;
 162
 163        page = container_of((unsigned long *)word, struct page, flags);
 164
 165        /*
 166         * page_mapping() is being called without PG_locked held.
 167         * Some knowledge of the state and use of the page is used to
 168         * reduce the requirements down to a memory barrier.
 169         * The danger here is of a stale page_mapping() return value
 170         * indicating a struct address_space different from the one it's
 171         * associated with when it is associated with one.
 172         * After smp_mb(), it's either the correct page_mapping() for
 173         * the page, or an old page_mapping() and the page's own
 174         * page_mapping() has gone NULL.
 175         * The ->sync_page() address_space operation must tolerate
 176         * page_mapping() going NULL. By an amazing coincidence,
 177         * this comes about because none of the users of the page
 178         * in the ->sync_page() methods make essential use of the
 179         * page_mapping(), merely passing the page down to the backing
 180         * device's unplug functions when it's non-NULL, which in turn
 181         * ignore it for all cases but swap, where only page_private(page) is
 182         * of interest. When page_mapping() does go NULL, the entire
 183         * call stack gracefully ignores the page and returns.
 184         * -- wli
 185         */
 186        smp_mb();
 187        mapping = page_mapping(page);
 188        if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
 189                mapping->a_ops->sync_page(page);
 190        io_schedule();
 191        return 0;
 192}
 193
 194static int sync_page_killable(void *word)
 195{
 196        sync_page(word);
 197        return fatal_signal_pending(current) ? -EINTR : 0;
 198}
 199
 200/**
 201 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 202 * @mapping:    address space structure to write
 203 * @start:      offset in bytes where the range starts
 204 * @end:        offset in bytes where the range ends (inclusive)
 205 * @sync_mode:  enable synchronous operation
 206 *
 207 * Start writeback against all of a mapping's dirty pages that lie
 208 * within the byte offsets <start, end> inclusive.
 209 *
 210 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 211 * opposed to a regular memory cleansing writeback.  The difference between
 212 * these two operations is that if a dirty page/buffer is encountered, it must
 213 * be waited upon, and not just skipped over.
 214 */
 215int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 216                                loff_t end, int sync_mode)
 217{
 218        int ret;
 219        struct writeback_control wbc = {
 220                .sync_mode = sync_mode,
 221                .nr_to_write = LONG_MAX,
 222                .range_start = start,
 223                .range_end = end,
 224        };
 225
 226        if (!mapping_cap_writeback_dirty(mapping))
 227                return 0;
 228
 229        ret = do_writepages(mapping, &wbc);
 230        return ret;
 231}
 232
 233static inline int __filemap_fdatawrite(struct address_space *mapping,
 234        int sync_mode)
 235{
 236        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 237}
 238
 239int filemap_fdatawrite(struct address_space *mapping)
 240{
 241        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 242}
 243EXPORT_SYMBOL(filemap_fdatawrite);
 244
 245int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 246                                loff_t end)
 247{
 248        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 249}
 250EXPORT_SYMBOL(filemap_fdatawrite_range);
 251
 252/**
 253 * filemap_flush - mostly a non-blocking flush
 254 * @mapping:    target address_space
 255 *
 256 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 257 * purposes - I/O may not be started against all dirty pages.
 258 */
 259int filemap_flush(struct address_space *mapping)
 260{
 261        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 262}
 263EXPORT_SYMBOL(filemap_flush);
 264
 265/**
 266 * filemap_fdatawait_range - wait for writeback to complete
 267 * @mapping:            address space structure to wait for
 268 * @start_byte:         offset in bytes where the range starts
 269 * @end_byte:           offset in bytes where the range ends (inclusive)
 270 *
 271 * Walk the list of under-writeback pages of the given address space
 272 * in the given range and wait for all of them.
 273 */
 274int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 275                            loff_t end_byte)
 276{
 277        pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 278        pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 279        struct pagevec pvec;
 280        int nr_pages;
 281        int ret = 0;
 282
 283        if (end_byte < start_byte)
 284                return 0;
 285
 286        pagevec_init(&pvec, 0);
 287        while ((index <= end) &&
 288                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 289                        PAGECACHE_TAG_WRITEBACK,
 290                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 291                unsigned i;
 292
 293                for (i = 0; i < nr_pages; i++) {
 294                        struct page *page = pvec.pages[i];
 295
 296                        /* until radix tree lookup accepts end_index */
 297                        if (page->index > end)
 298                                continue;
 299
 300                        wait_on_page_writeback(page);
 301                        if (TestClearPageError(page))
 302                                ret = -EIO;
 303                }
 304                pagevec_release(&pvec);
 305                cond_resched();
 306        }
 307
 308        /* Check for outstanding write errors */
 309        if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 310                ret = -ENOSPC;
 311        if (test_and_clear_bit(AS_EIO, &mapping->flags))
 312                ret = -EIO;
 313
 314        return ret;
 315}
 316EXPORT_SYMBOL(filemap_fdatawait_range);
 317
 318/**
 319 * filemap_fdatawait - wait for all under-writeback pages to complete
 320 * @mapping: address space structure to wait for
 321 *
 322 * Walk the list of under-writeback pages of the given address space
 323 * and wait for all of them.
 324 */
 325int filemap_fdatawait(struct address_space *mapping)
 326{
 327        loff_t i_size = i_size_read(mapping->host);
 328
 329        if (i_size == 0)
 330                return 0;
 331
 332        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 333}
 334EXPORT_SYMBOL(filemap_fdatawait);
 335
 336int filemap_write_and_wait(struct address_space *mapping)
 337{
 338        int err = 0;
 339
 340        if (mapping->nrpages) {
 341                err = filemap_fdatawrite(mapping);
 342                /*
 343                 * Even if the above returned error, the pages may be
 344                 * written partially (e.g. -ENOSPC), so we wait for it.
 345                 * But the -EIO is special case, it may indicate the worst
 346                 * thing (e.g. bug) happened, so we avoid waiting for it.
 347                 */
 348                if (err != -EIO) {
 349                        int err2 = filemap_fdatawait(mapping);
 350                        if (!err)
 351                                err = err2;
 352                }
 353        }
 354        return err;
 355}
 356EXPORT_SYMBOL(filemap_write_and_wait);
 357
 358/**
 359 * filemap_write_and_wait_range - write out & wait on a file range
 360 * @mapping:    the address_space for the pages
 361 * @lstart:     offset in bytes where the range starts
 362 * @lend:       offset in bytes where the range ends (inclusive)
 363 *
 364 * Write out and wait upon file offsets lstart->lend, inclusive.
 365 *
 366 * Note that `lend' is inclusive (describes the last byte to be written) so
 367 * that this function can be used to write to the very end-of-file (end = -1).
 368 */
 369int filemap_write_and_wait_range(struct address_space *mapping,
 370                                 loff_t lstart, loff_t lend)
 371{
 372        int err = 0;
 373
 374        if (mapping->nrpages) {
 375                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 376                                                 WB_SYNC_ALL);
 377                /* See comment of filemap_write_and_wait() */
 378                if (err != -EIO) {
 379                        int err2 = filemap_fdatawait_range(mapping,
 380                                                lstart, lend);
 381                        if (!err)
 382                                err = err2;
 383                }
 384        }
 385        return err;
 386}
 387EXPORT_SYMBOL(filemap_write_and_wait_range);
 388
 389/**
 390 * add_to_page_cache_locked - add a locked page to the pagecache
 391 * @page:       page to add
 392 * @mapping:    the page's address_space
 393 * @offset:     page index
 394 * @gfp_mask:   page allocation mode
 395 *
 396 * This function is used to add a page to the pagecache. It must be locked.
 397 * This function does not add the page to the LRU.  The caller must do that.
 398 */
 399int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 400                pgoff_t offset, gfp_t gfp_mask)
 401{
 402        int error;
 403
 404        VM_BUG_ON(!PageLocked(page));
 405
 406        error = mem_cgroup_cache_charge(page, current->mm,
 407                                        gfp_mask & GFP_RECLAIM_MASK);
 408        if (error)
 409                goto out;
 410
 411        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 412        if (error == 0) {
 413                page_cache_get(page);
 414                page->mapping = mapping;
 415                page->index = offset;
 416
 417                spin_lock_irq(&mapping->tree_lock);
 418                error = radix_tree_insert(&mapping->page_tree, offset, page);
 419                if (likely(!error)) {
 420                        mapping->nrpages++;
 421                        __inc_zone_page_state(page, NR_FILE_PAGES);
 422                        if (PageSwapBacked(page))
 423                                __inc_zone_page_state(page, NR_SHMEM);
 424                        spin_unlock_irq(&mapping->tree_lock);
 425                } else {
 426                        page->mapping = NULL;
 427                        spin_unlock_irq(&mapping->tree_lock);
 428                        mem_cgroup_uncharge_cache_page(page);
 429                        page_cache_release(page);
 430                }
 431                radix_tree_preload_end();
 432        } else
 433                mem_cgroup_uncharge_cache_page(page);
 434out:
 435        return error;
 436}
 437EXPORT_SYMBOL(add_to_page_cache_locked);
 438
 439int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 440                                pgoff_t offset, gfp_t gfp_mask)
 441{
 442        int ret;
 443
 444        /*
 445         * Splice_read and readahead add shmem/tmpfs pages into the page cache
 446         * before shmem_readpage has a chance to mark them as SwapBacked: they
 447         * need to go on the anon lru below, and mem_cgroup_cache_charge
 448         * (called in add_to_page_cache) needs to know where they're going too.
 449         */
 450        if (mapping_cap_swap_backed(mapping))
 451                SetPageSwapBacked(page);
 452
 453        ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 454        if (ret == 0) {
 455                if (page_is_file_cache(page))
 456                        lru_cache_add_file(page);
 457                else
 458                        lru_cache_add_anon(page);
 459        }
 460        return ret;
 461}
 462EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 463
 464#ifdef CONFIG_NUMA
 465struct page *__page_cache_alloc(gfp_t gfp)
 466{
 467        int n;
 468        struct page *page;
 469
 470        if (cpuset_do_page_mem_spread()) {
 471                get_mems_allowed();
 472                n = cpuset_mem_spread_node();
 473                page = alloc_pages_exact_node(n, gfp, 0);
 474                put_mems_allowed();
 475                return page;
 476        }
 477        return alloc_pages(gfp, 0);
 478}
 479EXPORT_SYMBOL(__page_cache_alloc);
 480#endif
 481
 482static int __sleep_on_page_lock(void *word)
 483{
 484        io_schedule();
 485        return 0;
 486}
 487
 488/*
 489 * In order to wait for pages to become available there must be
 490 * waitqueues associated with pages. By using a hash table of
 491 * waitqueues where the bucket discipline is to maintain all
 492 * waiters on the same queue and wake all when any of the pages
 493 * become available, and for the woken contexts to check to be
 494 * sure the appropriate page became available, this saves space
 495 * at a cost of "thundering herd" phenomena during rare hash
 496 * collisions.
 497 */
 498static wait_queue_head_t *page_waitqueue(struct page *page)
 499{
 500        const struct zone *zone = page_zone(page);
 501
 502        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 503}
 504
 505static inline void wake_up_page(struct page *page, int bit)
 506{
 507        __wake_up_bit(page_waitqueue(page), &page->flags, bit);
 508}
 509
 510void wait_on_page_bit(struct page *page, int bit_nr)
 511{
 512        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 513
 514        if (test_bit(bit_nr, &page->flags))
 515                __wait_on_bit(page_waitqueue(page), &wait, sync_page,
 516                                                        TASK_UNINTERRUPTIBLE);
 517}
 518EXPORT_SYMBOL(wait_on_page_bit);
 519
 520/**
 521 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 522 * @page: Page defining the wait queue of interest
 523 * @waiter: Waiter to add to the queue
 524 *
 525 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 526 */
 527void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 528{
 529        wait_queue_head_t *q = page_waitqueue(page);
 530        unsigned long flags;
 531
 532        spin_lock_irqsave(&q->lock, flags);
 533        __add_wait_queue(q, waiter);
 534        spin_unlock_irqrestore(&q->lock, flags);
 535}
 536EXPORT_SYMBOL_GPL(add_page_wait_queue);
 537
 538/**
 539 * unlock_page - unlock a locked page
 540 * @page: the page
 541 *
 542 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 543 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 544 * mechananism between PageLocked pages and PageWriteback pages is shared.
 545 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 546 *
 547 * The mb is necessary to enforce ordering between the clear_bit and the read
 548 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 549 */
 550void unlock_page(struct page *page)
 551{
 552        VM_BUG_ON(!PageLocked(page));
 553        clear_bit_unlock(PG_locked, &page->flags);
 554        smp_mb__after_clear_bit();
 555        wake_up_page(page, PG_locked);
 556}
 557EXPORT_SYMBOL(unlock_page);
 558
 559/**
 560 * end_page_writeback - end writeback against a page
 561 * @page: the page
 562 */
 563void end_page_writeback(struct page *page)
 564{
 565        if (TestClearPageReclaim(page))
 566                rotate_reclaimable_page(page);
 567
 568        if (!test_clear_page_writeback(page))
 569                BUG();
 570
 571        smp_mb__after_clear_bit();
 572        wake_up_page(page, PG_writeback);
 573}
 574EXPORT_SYMBOL(end_page_writeback);
 575
 576/**
 577 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 578 * @page: the page to lock
 579 *
 580 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
 581 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
 582 * chances are that on the second loop, the block layer's plug list is empty,
 583 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
 584 */
 585void __lock_page(struct page *page)
 586{
 587        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 588
 589        __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
 590                                                        TASK_UNINTERRUPTIBLE);
 591}
 592EXPORT_SYMBOL(__lock_page);
 593
 594int __lock_page_killable(struct page *page)
 595{
 596        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 597
 598        return __wait_on_bit_lock(page_waitqueue(page), &wait,
 599                                        sync_page_killable, TASK_KILLABLE);
 600}
 601EXPORT_SYMBOL_GPL(__lock_page_killable);
 602
 603/**
 604 * __lock_page_nosync - get a lock on the page, without calling sync_page()
 605 * @page: the page to lock
 606 *
 607 * Variant of lock_page that does not require the caller to hold a reference
 608 * on the page's mapping.
 609 */
 610void __lock_page_nosync(struct page *page)
 611{
 612        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 613        __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
 614                                                        TASK_UNINTERRUPTIBLE);
 615}
 616
 617int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 618                         unsigned int flags)
 619{
 620        if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
 621                __lock_page(page);
 622                return 1;
 623        } else {
 624                up_read(&mm->mmap_sem);
 625                wait_on_page_locked(page);
 626                return 0;
 627        }
 628}
 629
 630/**
 631 * find_get_page - find and get a page reference
 632 * @mapping: the address_space to search
 633 * @offset: the page index
 634 *
 635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 636 * If yes, increment its refcount and return it; if no, return NULL.
 637 */
 638struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 639{
 640        void **pagep;
 641        struct page *page;
 642
 643        rcu_read_lock();
 644repeat:
 645        page = NULL;
 646        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 647        if (pagep) {
 648                page = radix_tree_deref_slot(pagep);
 649                if (unlikely(!page))
 650                        goto out;
 651                if (radix_tree_deref_retry(page))
 652                        goto repeat;
 653
 654                if (!page_cache_get_speculative(page))
 655                        goto repeat;
 656
 657                /*
 658                 * Has the page moved?
 659                 * This is part of the lockless pagecache protocol. See
 660                 * include/linux/pagemap.h for details.
 661                 */
 662                if (unlikely(page != *pagep)) {
 663                        page_cache_release(page);
 664                        goto repeat;
 665                }
 666        }
 667out:
 668        rcu_read_unlock();
 669
 670        return page;
 671}
 672EXPORT_SYMBOL(find_get_page);
 673
 674/**
 675 * find_lock_page - locate, pin and lock a pagecache page
 676 * @mapping: the address_space to search
 677 * @offset: the page index
 678 *
 679 * Locates the desired pagecache page, locks it, increments its reference
 680 * count and returns its address.
 681 *
 682 * Returns zero if the page was not present. find_lock_page() may sleep.
 683 */
 684struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 685{
 686        struct page *page;
 687
 688repeat:
 689        page = find_get_page(mapping, offset);
 690        if (page) {
 691                lock_page(page);
 692                /* Has the page been truncated? */
 693                if (unlikely(page->mapping != mapping)) {
 694                        unlock_page(page);
 695                        page_cache_release(page);
 696                        goto repeat;
 697                }
 698                VM_BUG_ON(page->index != offset);
 699        }
 700        return page;
 701}
 702EXPORT_SYMBOL(find_lock_page);
 703
 704/**
 705 * find_or_create_page - locate or add a pagecache page
 706 * @mapping: the page's address_space
 707 * @index: the page's index into the mapping
 708 * @gfp_mask: page allocation mode
 709 *
 710 * Locates a page in the pagecache.  If the page is not present, a new page
 711 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 712 * LRU list.  The returned page is locked and has its reference count
 713 * incremented.
 714 *
 715 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 716 * allocation!
 717 *
 718 * find_or_create_page() returns the desired page's address, or zero on
 719 * memory exhaustion.
 720 */
 721struct page *find_or_create_page(struct address_space *mapping,
 722                pgoff_t index, gfp_t gfp_mask)
 723{
 724        struct page *page;
 725        int err;
 726repeat:
 727        page = find_lock_page(mapping, index);
 728        if (!page) {
 729                page = __page_cache_alloc(gfp_mask);
 730                if (!page)
 731                        return NULL;
 732                /*
 733                 * We want a regular kernel memory (not highmem or DMA etc)
 734                 * allocation for the radix tree nodes, but we need to honour
 735                 * the context-specific requirements the caller has asked for.
 736                 * GFP_RECLAIM_MASK collects those requirements.
 737                 */
 738                err = add_to_page_cache_lru(page, mapping, index,
 739                        (gfp_mask & GFP_RECLAIM_MASK));
 740                if (unlikely(err)) {
 741                        page_cache_release(page);
 742                        page = NULL;
 743                        if (err == -EEXIST)
 744                                goto repeat;
 745                }
 746        }
 747        return page;
 748}
 749EXPORT_SYMBOL(find_or_create_page);
 750
 751/**
 752 * find_get_pages - gang pagecache lookup
 753 * @mapping:    The address_space to search
 754 * @start:      The starting page index
 755 * @nr_pages:   The maximum number of pages
 756 * @pages:      Where the resulting pages are placed
 757 *
 758 * find_get_pages() will search for and return a group of up to
 759 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 760 * find_get_pages() takes a reference against the returned pages.
 761 *
 762 * The search returns a group of mapping-contiguous pages with ascending
 763 * indexes.  There may be holes in the indices due to not-present pages.
 764 *
 765 * find_get_pages() returns the number of pages which were found.
 766 */
 767unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 768                            unsigned int nr_pages, struct page **pages)
 769{
 770        unsigned int i;
 771        unsigned int ret;
 772        unsigned int nr_found;
 773
 774        rcu_read_lock();
 775restart:
 776        nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 777                                (void ***)pages, start, nr_pages);
 778        ret = 0;
 779        for (i = 0; i < nr_found; i++) {
 780                struct page *page;
 781repeat:
 782                page = radix_tree_deref_slot((void **)pages[i]);
 783                if (unlikely(!page))
 784                        continue;
 785                if (radix_tree_deref_retry(page)) {
 786                        if (ret)
 787                                start = pages[ret-1]->index;
 788                        goto restart;
 789                }
 790
 791                if (!page_cache_get_speculative(page))
 792                        goto repeat;
 793
 794                /* Has the page moved? */
 795                if (unlikely(page != *((void **)pages[i]))) {
 796                        page_cache_release(page);
 797                        goto repeat;
 798                }
 799
 800                pages[ret] = page;
 801                ret++;
 802        }
 803        rcu_read_unlock();
 804        return ret;
 805}
 806
 807/**
 808 * find_get_pages_contig - gang contiguous pagecache lookup
 809 * @mapping:    The address_space to search
 810 * @index:      The starting page index
 811 * @nr_pages:   The maximum number of pages
 812 * @pages:      Where the resulting pages are placed
 813 *
 814 * find_get_pages_contig() works exactly like find_get_pages(), except
 815 * that the returned number of pages are guaranteed to be contiguous.
 816 *
 817 * find_get_pages_contig() returns the number of pages which were found.
 818 */
 819unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 820                               unsigned int nr_pages, struct page **pages)
 821{
 822        unsigned int i;
 823        unsigned int ret;
 824        unsigned int nr_found;
 825
 826        rcu_read_lock();
 827restart:
 828        nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 829                                (void ***)pages, index, nr_pages);
 830        ret = 0;
 831        for (i = 0; i < nr_found; i++) {
 832                struct page *page;
 833repeat:
 834                page = radix_tree_deref_slot((void **)pages[i]);
 835                if (unlikely(!page))
 836                        continue;
 837                if (radix_tree_deref_retry(page))
 838                        goto restart;
 839
 840                if (!page_cache_get_speculative(page))
 841                        goto repeat;
 842
 843                /* Has the page moved? */
 844                if (unlikely(page != *((void **)pages[i]))) {
 845                        page_cache_release(page);
 846                        goto repeat;
 847                }
 848
 849                /*
 850                 * must check mapping and index after taking the ref.
 851                 * otherwise we can get both false positives and false
 852                 * negatives, which is just confusing to the caller.
 853                 */
 854                if (page->mapping == NULL || page->index != index) {
 855                        page_cache_release(page);
 856                        break;
 857                }
 858
 859                pages[ret] = page;
 860                ret++;
 861                index++;
 862        }
 863        rcu_read_unlock();
 864        return ret;
 865}
 866EXPORT_SYMBOL(find_get_pages_contig);
 867
 868/**
 869 * find_get_pages_tag - find and return pages that match @tag
 870 * @mapping:    the address_space to search
 871 * @index:      the starting page index
 872 * @tag:        the tag index
 873 * @nr_pages:   the maximum number of pages
 874 * @pages:      where the resulting pages are placed
 875 *
 876 * Like find_get_pages, except we only return pages which are tagged with
 877 * @tag.   We update @index to index the next page for the traversal.
 878 */
 879unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 880                        int tag, unsigned int nr_pages, struct page **pages)
 881{
 882        unsigned int i;
 883        unsigned int ret;
 884        unsigned int nr_found;
 885
 886        rcu_read_lock();
 887restart:
 888        nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
 889                                (void ***)pages, *index, nr_pages, tag);
 890        ret = 0;
 891        for (i = 0; i < nr_found; i++) {
 892                struct page *page;
 893repeat:
 894                page = radix_tree_deref_slot((void **)pages[i]);
 895                if (unlikely(!page))
 896                        continue;
 897                if (radix_tree_deref_retry(page))
 898                        goto restart;
 899
 900                if (!page_cache_get_speculative(page))
 901                        goto repeat;
 902
 903                /* Has the page moved? */
 904                if (unlikely(page != *((void **)pages[i]))) {
 905                        page_cache_release(page);
 906                        goto repeat;
 907                }
 908
 909                pages[ret] = page;
 910                ret++;
 911        }
 912        rcu_read_unlock();
 913
 914        if (ret)
 915                *index = pages[ret - 1]->index + 1;
 916
 917        return ret;
 918}
 919EXPORT_SYMBOL(find_get_pages_tag);
 920
 921/**
 922 * grab_cache_page_nowait - returns locked page at given index in given cache
 923 * @mapping: target address_space
 924 * @index: the page index
 925 *
 926 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 927 * This is intended for speculative data generators, where the data can
 928 * be regenerated if the page couldn't be grabbed.  This routine should
 929 * be safe to call while holding the lock for another page.
 930 *
 931 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 932 * and deadlock against the caller's locked page.
 933 */
 934struct page *
 935grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
 936{
 937        struct page *page = find_get_page(mapping, index);
 938
 939        if (page) {
 940                if (trylock_page(page))
 941                        return page;
 942                page_cache_release(page);
 943                return NULL;
 944        }
 945        page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
 946        if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
 947                page_cache_release(page);
 948                page = NULL;
 949        }
 950        return page;
 951}
 952EXPORT_SYMBOL(grab_cache_page_nowait);
 953
 954/*
 955 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 956 * a _large_ part of the i/o request. Imagine the worst scenario:
 957 *
 958 *      ---R__________________________________________B__________
 959 *         ^ reading here                             ^ bad block(assume 4k)
 960 *
 961 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 962 * => failing the whole request => read(R) => read(R+1) =>
 963 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 964 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 965 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 966 *
 967 * It is going insane. Fix it by quickly scaling down the readahead size.
 968 */
 969static void shrink_readahead_size_eio(struct file *filp,
 970                                        struct file_ra_state *ra)
 971{
 972        ra->ra_pages /= 4;
 973}
 974
 975/**
 976 * do_generic_file_read - generic file read routine
 977 * @filp:       the file to read
 978 * @ppos:       current file position
 979 * @desc:       read_descriptor
 980 * @actor:      read method
 981 *
 982 * This is a generic file read routine, and uses the
 983 * mapping->a_ops->readpage() function for the actual low-level stuff.
 984 *
 985 * This is really ugly. But the goto's actually try to clarify some
 986 * of the logic when it comes to error handling etc.
 987 */
 988static void do_generic_file_read(struct file *filp, loff_t *ppos,
 989                read_descriptor_t *desc, read_actor_t actor)
 990{
 991        struct address_space *mapping = filp->f_mapping;
 992        struct inode *inode = mapping->host;
 993        struct file_ra_state *ra = &filp->f_ra;
 994        pgoff_t index;
 995        pgoff_t last_index;
 996        pgoff_t prev_index;
 997        unsigned long offset;      /* offset into pagecache page */
 998        unsigned int prev_offset;
 999        int error;
1000
1001        index = *ppos >> PAGE_CACHE_SHIFT;
1002        prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1003        prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1004        last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1005        offset = *ppos & ~PAGE_CACHE_MASK;
1006
1007        for (;;) {
1008                struct page *page;
1009                pgoff_t end_index;
1010                loff_t isize;
1011                unsigned long nr, ret;
1012
1013                cond_resched();
1014find_page:
1015                page = find_get_page(mapping, index);
1016                if (!page) {
1017                        page_cache_sync_readahead(mapping,
1018                                        ra, filp,
1019                                        index, last_index - index);
1020                        page = find_get_page(mapping, index);
1021                        if (unlikely(page == NULL))
1022                                goto no_cached_page;
1023                }
1024                if (PageReadahead(page)) {
1025                        page_cache_async_readahead(mapping,
1026                                        ra, filp, page,
1027                                        index, last_index - index);
1028                }
1029                if (!PageUptodate(page)) {
1030                        if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1031                                        !mapping->a_ops->is_partially_uptodate)
1032                                goto page_not_up_to_date;
1033                        if (!trylock_page(page))
1034                                goto page_not_up_to_date;
1035                        /* Did it get truncated before we got the lock? */
1036                        if (!page->mapping)
1037                                goto page_not_up_to_date_locked;
1038                        if (!mapping->a_ops->is_partially_uptodate(page,
1039                                                                desc, offset))
1040                                goto page_not_up_to_date_locked;
1041                        unlock_page(page);
1042                }
1043page_ok:
1044                /*
1045                 * i_size must be checked after we know the page is Uptodate.
1046                 *
1047                 * Checking i_size after the check allows us to calculate
1048                 * the correct value for "nr", which means the zero-filled
1049                 * part of the page is not copied back to userspace (unless
1050                 * another truncate extends the file - this is desired though).
1051                 */
1052
1053                isize = i_size_read(inode);
1054                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1055                if (unlikely(!isize || index > end_index)) {
1056                        page_cache_release(page);
1057                        goto out;
1058                }
1059
1060                /* nr is the maximum number of bytes to copy from this page */
1061                nr = PAGE_CACHE_SIZE;
1062                if (index == end_index) {
1063                        nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1064                        if (nr <= offset) {
1065                                page_cache_release(page);
1066                                goto out;
1067                        }
1068                }
1069                nr = nr - offset;
1070
1071                /* If users can be writing to this page using arbitrary
1072                 * virtual addresses, take care about potential aliasing
1073                 * before reading the page on the kernel side.
1074                 */
1075                if (mapping_writably_mapped(mapping))
1076                        flush_dcache_page(page);
1077
1078                /*
1079                 * When a sequential read accesses a page several times,
1080                 * only mark it as accessed the first time.
1081                 */
1082                if (prev_index != index || offset != prev_offset)
1083                        mark_page_accessed(page);
1084                prev_index = index;
1085
1086                /*
1087                 * Ok, we have the page, and it's up-to-date, so
1088                 * now we can copy it to user space...
1089                 *
1090                 * The actor routine returns how many bytes were actually used..
1091                 * NOTE! This may not be the same as how much of a user buffer
1092                 * we filled up (we may be padding etc), so we can only update
1093                 * "pos" here (the actor routine has to update the user buffer
1094                 * pointers and the remaining count).
1095                 */
1096                ret = actor(desc, page, offset, nr);
1097                offset += ret;
1098                index += offset >> PAGE_CACHE_SHIFT;
1099                offset &= ~PAGE_CACHE_MASK;
1100                prev_offset = offset;
1101
1102                page_cache_release(page);
1103                if (ret == nr && desc->count)
1104                        continue;
1105                goto out;
1106
1107page_not_up_to_date:
1108                /* Get exclusive access to the page ... */
1109                error = lock_page_killable(page);
1110                if (unlikely(error))
1111                        goto readpage_error;
1112
1113page_not_up_to_date_locked:
1114                /* Did it get truncated before we got the lock? */
1115                if (!page->mapping) {
1116                        unlock_page(page);
1117                        page_cache_release(page);
1118                        continue;
1119                }
1120
1121                /* Did somebody else fill it already? */
1122                if (PageUptodate(page)) {
1123                        unlock_page(page);
1124                        goto page_ok;
1125                }
1126
1127readpage:
1128                /*
1129                 * A previous I/O error may have been due to temporary
1130                 * failures, eg. multipath errors.
1131                 * PG_error will be set again if readpage fails.
1132                 */
1133                ClearPageError(page);
1134                /* Start the actual read. The read will unlock the page. */
1135                error = mapping->a_ops->readpage(filp, page);
1136
1137                if (unlikely(error)) {
1138                        if (error == AOP_TRUNCATED_PAGE) {
1139                                page_cache_release(page);
1140                                goto find_page;
1141                        }
1142                        goto readpage_error;
1143                }
1144
1145                if (!PageUptodate(page)) {
1146                        error = lock_page_killable(page);
1147                        if (unlikely(error))
1148                                goto readpage_error;
1149                        if (!PageUptodate(page)) {
1150                                if (page->mapping == NULL) {
1151                                        /*
1152                                         * invalidate_mapping_pages got it
1153                                         */
1154                                        unlock_page(page);
1155                                        page_cache_release(page);
1156                                        goto find_page;
1157                                }
1158                                unlock_page(page);
1159                                shrink_readahead_size_eio(filp, ra);
1160                                error = -EIO;
1161                                goto readpage_error;
1162                        }
1163                        unlock_page(page);
1164                }
1165
1166                goto page_ok;
1167
1168readpage_error:
1169                /* UHHUH! A synchronous read error occurred. Report it */
1170                desc->error = error;
1171                page_cache_release(page);
1172                goto out;
1173
1174no_cached_page:
1175                /*
1176                 * Ok, it wasn't cached, so we need to create a new
1177                 * page..
1178                 */
1179                page = page_cache_alloc_cold(mapping);
1180                if (!page) {
1181                        desc->error = -ENOMEM;
1182                        goto out;
1183                }
1184                error = add_to_page_cache_lru(page, mapping,
1185                                                index, GFP_KERNEL);
1186                if (error) {
1187                        page_cache_release(page);
1188                        if (error == -EEXIST)
1189                                goto find_page;
1190                        desc->error = error;
1191                        goto out;
1192                }
1193                goto readpage;
1194        }
1195
1196out:
1197        ra->prev_pos = prev_index;
1198        ra->prev_pos <<= PAGE_CACHE_SHIFT;
1199        ra->prev_pos |= prev_offset;
1200
1201        *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1202        file_accessed(filp);
1203}
1204
1205int file_read_actor(read_descriptor_t *desc, struct page *page,
1206                        unsigned long offset, unsigned long size)
1207{
1208        char *kaddr;
1209        unsigned long left, count = desc->count;
1210
1211        if (size > count)
1212                size = count;
1213
1214        /*
1215         * Faults on the destination of a read are common, so do it before
1216         * taking the kmap.
1217         */
1218        if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1219                kaddr = kmap_atomic(page, KM_USER0);
1220                left = __copy_to_user_inatomic(desc->arg.buf,
1221                                                kaddr + offset, size);
1222                kunmap_atomic(kaddr, KM_USER0);
1223                if (left == 0)
1224                        goto success;
1225        }
1226
1227        /* Do it the slow way */
1228        kaddr = kmap(page);
1229        left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1230        kunmap(page);
1231
1232        if (left) {
1233                size -= left;
1234                desc->error = -EFAULT;
1235        }
1236success:
1237        desc->count = count - size;
1238        desc->written += size;
1239        desc->arg.buf += size;
1240        return size;
1241}
1242
1243/*
1244 * Performs necessary checks before doing a write
1245 * @iov:        io vector request
1246 * @nr_segs:    number of segments in the iovec
1247 * @count:      number of bytes to write
1248 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1249 *
1250 * Adjust number of segments and amount of bytes to write (nr_segs should be
1251 * properly initialized first). Returns appropriate error code that caller
1252 * should return or zero in case that write should be allowed.
1253 */
1254int generic_segment_checks(const struct iovec *iov,
1255                        unsigned long *nr_segs, size_t *count, int access_flags)
1256{
1257        unsigned long   seg;
1258        size_t cnt = 0;
1259        for (seg = 0; seg < *nr_segs; seg++) {
1260                const struct iovec *iv = &iov[seg];
1261
1262                /*
1263                 * If any segment has a negative length, or the cumulative
1264                 * length ever wraps negative then return -EINVAL.
1265                 */
1266                cnt += iv->iov_len;
1267                if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1268                        return -EINVAL;
1269                if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1270                        continue;
1271                if (seg == 0)
1272                        return -EFAULT;
1273                *nr_segs = seg;
1274                cnt -= iv->iov_len;     /* This segment is no good */
1275                break;
1276        }
1277        *count = cnt;
1278        return 0;
1279}
1280EXPORT_SYMBOL(generic_segment_checks);
1281
1282/**
1283 * generic_file_aio_read - generic filesystem read routine
1284 * @iocb:       kernel I/O control block
1285 * @iov:        io vector request
1286 * @nr_segs:    number of segments in the iovec
1287 * @pos:        current file position
1288 *
1289 * This is the "read()" routine for all filesystems
1290 * that can use the page cache directly.
1291 */
1292ssize_t
1293generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1294                unsigned long nr_segs, loff_t pos)
1295{
1296        struct file *filp = iocb->ki_filp;
1297        ssize_t retval;
1298        unsigned long seg = 0;
1299        size_t count;
1300        loff_t *ppos = &iocb->ki_pos;
1301
1302        count = 0;
1303        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1304        if (retval)
1305                return retval;
1306
1307        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1308        if (filp->f_flags & O_DIRECT) {
1309                loff_t size;
1310                struct address_space *mapping;
1311                struct inode *inode;
1312
1313                mapping = filp->f_mapping;
1314                inode = mapping->host;
1315                if (!count)
1316                        goto out; /* skip atime */
1317                size = i_size_read(inode);
1318                if (pos < size) {
1319                        retval = filemap_write_and_wait_range(mapping, pos,
1320                                        pos + iov_length(iov, nr_segs) - 1);
1321                        if (!retval) {
1322                                retval = mapping->a_ops->direct_IO(READ, iocb,
1323                                                        iov, pos, nr_segs);
1324                        }
1325                        if (retval > 0) {
1326                                *ppos = pos + retval;
1327                                count -= retval;
1328                        }
1329
1330                        /*
1331                         * Btrfs can have a short DIO read if we encounter
1332                         * compressed extents, so if there was an error, or if
1333                         * we've already read everything we wanted to, or if
1334                         * there was a short read because we hit EOF, go ahead
1335                         * and return.  Otherwise fallthrough to buffered io for
1336                         * the rest of the read.
1337                         */
1338                        if (retval < 0 || !count || *ppos >= size) {
1339                                file_accessed(filp);
1340                                goto out;
1341                        }
1342                }
1343        }
1344
1345        count = retval;
1346        for (seg = 0; seg < nr_segs; seg++) {
1347                read_descriptor_t desc;
1348                loff_t offset = 0;
1349
1350                /*
1351                 * If we did a short DIO read we need to skip the section of the
1352                 * iov that we've already read data into.
1353                 */
1354                if (count) {
1355                        if (count > iov[seg].iov_len) {
1356                                count -= iov[seg].iov_len;
1357                                continue;
1358                        }
1359                        offset = count;
1360                        count = 0;
1361                }
1362
1363                desc.written = 0;
1364                desc.arg.buf = iov[seg].iov_base + offset;
1365                desc.count = iov[seg].iov_len - offset;
1366                if (desc.count == 0)
1367                        continue;
1368                desc.error = 0;
1369                do_generic_file_read(filp, ppos, &desc, file_read_actor);
1370                retval += desc.written;
1371                if (desc.error) {
1372                        retval = retval ?: desc.error;
1373                        break;
1374                }
1375                if (desc.count > 0)
1376                        break;
1377        }
1378out:
1379        return retval;
1380}
1381EXPORT_SYMBOL(generic_file_aio_read);
1382
1383static ssize_t
1384do_readahead(struct address_space *mapping, struct file *filp,
1385             pgoff_t index, unsigned long nr)
1386{
1387        if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1388                return -EINVAL;
1389
1390        force_page_cache_readahead(mapping, filp, index, nr);
1391        return 0;
1392}
1393
1394SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1395{
1396        ssize_t ret;
1397        struct file *file;
1398
1399        ret = -EBADF;
1400        file = fget(fd);
1401        if (file) {
1402                if (file->f_mode & FMODE_READ) {
1403                        struct address_space *mapping = file->f_mapping;
1404                        pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1405                        pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1406                        unsigned long len = end - start + 1;
1407                        ret = do_readahead(mapping, file, start, len);
1408                }
1409                fput(file);
1410        }
1411        return ret;
1412}
1413#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1414asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1415{
1416        return SYSC_readahead((int) fd, offset, (size_t) count);
1417}
1418SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1419#endif
1420
1421#ifdef CONFIG_MMU
1422/**
1423 * page_cache_read - adds requested page to the page cache if not already there
1424 * @file:       file to read
1425 * @offset:     page index
1426 *
1427 * This adds the requested page to the page cache if it isn't already there,
1428 * and schedules an I/O to read in its contents from disk.
1429 */
1430static int page_cache_read(struct file *file, pgoff_t offset)
1431{
1432        struct address_space *mapping = file->f_mapping;
1433        struct page *page; 
1434        int ret;
1435
1436        do {
1437                page = page_cache_alloc_cold(mapping);
1438                if (!page)
1439                        return -ENOMEM;
1440
1441                ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1442                if (ret == 0)
1443                        ret = mapping->a_ops->readpage(file, page);
1444                else if (ret == -EEXIST)
1445                        ret = 0; /* losing race to add is OK */
1446
1447                page_cache_release(page);
1448
1449        } while (ret == AOP_TRUNCATED_PAGE);
1450                
1451        return ret;
1452}
1453
1454#define MMAP_LOTSAMISS  (100)
1455
1456/*
1457 * Synchronous readahead happens when we don't even find
1458 * a page in the page cache at all.
1459 */
1460static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1461                                   struct file_ra_state *ra,
1462                                   struct file *file,
1463                                   pgoff_t offset)
1464{
1465        unsigned long ra_pages;
1466        struct address_space *mapping = file->f_mapping;
1467
1468        /* If we don't want any read-ahead, don't bother */
1469        if (VM_RandomReadHint(vma))
1470                return;
1471
1472        if (VM_SequentialReadHint(vma) ||
1473                        offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1474                page_cache_sync_readahead(mapping, ra, file, offset,
1475                                          ra->ra_pages);
1476                return;
1477        }
1478
1479        if (ra->mmap_miss < INT_MAX)
1480                ra->mmap_miss++;
1481
1482        /*
1483         * Do we miss much more than hit in this file? If so,
1484         * stop bothering with read-ahead. It will only hurt.
1485         */
1486        if (ra->mmap_miss > MMAP_LOTSAMISS)
1487                return;
1488
1489        /*
1490         * mmap read-around
1491         */
1492        ra_pages = max_sane_readahead(ra->ra_pages);
1493        if (ra_pages) {
1494                ra->start = max_t(long, 0, offset - ra_pages/2);
1495                ra->size = ra_pages;
1496                ra->async_size = 0;
1497                ra_submit(ra, mapping, file);
1498        }
1499}
1500
1501/*
1502 * Asynchronous readahead happens when we find the page and PG_readahead,
1503 * so we want to possibly extend the readahead further..
1504 */
1505static void do_async_mmap_readahead(struct vm_area_struct *vma,
1506                                    struct file_ra_state *ra,
1507                                    struct file *file,
1508                                    struct page *page,
1509                                    pgoff_t offset)
1510{
1511        struct address_space *mapping = file->f_mapping;
1512
1513        /* If we don't want any read-ahead, don't bother */
1514        if (VM_RandomReadHint(vma))
1515                return;
1516        if (ra->mmap_miss > 0)
1517                ra->mmap_miss--;
1518        if (PageReadahead(page))
1519                page_cache_async_readahead(mapping, ra, file,
1520                                           page, offset, ra->ra_pages);
1521}
1522
1523/**
1524 * filemap_fault - read in file data for page fault handling
1525 * @vma:        vma in which the fault was taken
1526 * @vmf:        struct vm_fault containing details of the fault
1527 *
1528 * filemap_fault() is invoked via the vma operations vector for a
1529 * mapped memory region to read in file data during a page fault.
1530 *
1531 * The goto's are kind of ugly, but this streamlines the normal case of having
1532 * it in the page cache, and handles the special cases reasonably without
1533 * having a lot of duplicated code.
1534 */
1535int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1536{
1537        int error;
1538        struct file *file = vma->vm_file;
1539        struct address_space *mapping = file->f_mapping;
1540        struct file_ra_state *ra = &file->f_ra;
1541        struct inode *inode = mapping->host;
1542        pgoff_t offset = vmf->pgoff;
1543        struct page *page;
1544        pgoff_t size;
1545        int ret = 0;
1546
1547        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1548        if (offset >= size)
1549                return VM_FAULT_SIGBUS;
1550
1551        /*
1552         * Do we have something in the page cache already?
1553         */
1554        page = find_get_page(mapping, offset);
1555        if (likely(page)) {
1556                /*
1557                 * We found the page, so try async readahead before
1558                 * waiting for the lock.
1559                 */
1560                do_async_mmap_readahead(vma, ra, file, page, offset);
1561        } else {
1562                /* No page in the page cache at all */
1563                do_sync_mmap_readahead(vma, ra, file, offset);
1564                count_vm_event(PGMAJFAULT);
1565                ret = VM_FAULT_MAJOR;
1566retry_find:
1567                page = find_get_page(mapping, offset);
1568                if (!page)
1569                        goto no_cached_page;
1570        }
1571
1572        if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1573                page_cache_release(page);
1574                return ret | VM_FAULT_RETRY;
1575        }
1576
1577        /* Did it get truncated? */
1578        if (unlikely(page->mapping != mapping)) {
1579                unlock_page(page);
1580                put_page(page);
1581                goto retry_find;
1582        }
1583        VM_BUG_ON(page->index != offset);
1584
1585        /*
1586         * We have a locked page in the page cache, now we need to check
1587         * that it's up-to-date. If not, it is going to be due to an error.
1588         */
1589        if (unlikely(!PageUptodate(page)))
1590                goto page_not_uptodate;
1591
1592        /*
1593         * Found the page and have a reference on it.
1594         * We must recheck i_size under page lock.
1595         */
1596        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1597        if (unlikely(offset >= size)) {
1598                unlock_page(page);
1599                page_cache_release(page);
1600                return VM_FAULT_SIGBUS;
1601        }
1602
1603        ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1604        vmf->page = page;
1605        return ret | VM_FAULT_LOCKED;
1606
1607no_cached_page:
1608        /*
1609         * We're only likely to ever get here if MADV_RANDOM is in
1610         * effect.
1611         */
1612        error = page_cache_read(file, offset);
1613
1614        /*
1615         * The page we want has now been added to the page cache.
1616         * In the unlikely event that someone removed it in the
1617         * meantime, we'll just come back here and read it again.
1618         */
1619        if (error >= 0)
1620                goto retry_find;
1621
1622        /*
1623         * An error return from page_cache_read can result if the
1624         * system is low on memory, or a problem occurs while trying
1625         * to schedule I/O.
1626         */
1627        if (error == -ENOMEM)
1628                return VM_FAULT_OOM;
1629        return VM_FAULT_SIGBUS;
1630
1631page_not_uptodate:
1632        /*
1633         * Umm, take care of errors if the page isn't up-to-date.
1634         * Try to re-read it _once_. We do this synchronously,
1635         * because there really aren't any performance issues here
1636         * and we need to check for errors.
1637         */
1638        ClearPageError(page);
1639        error = mapping->a_ops->readpage(file, page);
1640        if (!error) {
1641                wait_on_page_locked(page);
1642                if (!PageUptodate(page))
1643                        error = -EIO;
1644        }
1645        page_cache_release(page);
1646
1647        if (!error || error == AOP_TRUNCATED_PAGE)
1648                goto retry_find;
1649
1650        /* Things didn't work out. Return zero to tell the mm layer so. */
1651        shrink_readahead_size_eio(file, ra);
1652        return VM_FAULT_SIGBUS;
1653}
1654EXPORT_SYMBOL(filemap_fault);
1655
1656const struct vm_operations_struct generic_file_vm_ops = {
1657        .fault          = filemap_fault,
1658};
1659
1660/* This is used for a general mmap of a disk file */
1661
1662int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1663{
1664        struct address_space *mapping = file->f_mapping;
1665
1666        if (!mapping->a_ops->readpage)
1667                return -ENOEXEC;
1668        file_accessed(file);
1669        vma->vm_ops = &generic_file_vm_ops;
1670        vma->vm_flags |= VM_CAN_NONLINEAR;
1671        return 0;
1672}
1673
1674/*
1675 * This is for filesystems which do not implement ->writepage.
1676 */
1677int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1678{
1679        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1680                return -EINVAL;
1681        return generic_file_mmap(file, vma);
1682}
1683#else
1684int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1685{
1686        return -ENOSYS;
1687}
1688int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1689{
1690        return -ENOSYS;
1691}
1692#endif /* CONFIG_MMU */
1693
1694EXPORT_SYMBOL(generic_file_mmap);
1695EXPORT_SYMBOL(generic_file_readonly_mmap);
1696
1697static struct page *__read_cache_page(struct address_space *mapping,
1698                                pgoff_t index,
1699                                int (*filler)(void *,struct page*),
1700                                void *data,
1701                                gfp_t gfp)
1702{
1703        struct page *page;
1704        int err;
1705repeat:
1706        page = find_get_page(mapping, index);
1707        if (!page) {
1708                page = __page_cache_alloc(gfp | __GFP_COLD);
1709                if (!page)
1710                        return ERR_PTR(-ENOMEM);
1711                err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1712                if (unlikely(err)) {
1713                        page_cache_release(page);
1714                        if (err == -EEXIST)
1715                                goto repeat;
1716                        /* Presumably ENOMEM for radix tree node */
1717                        return ERR_PTR(err);
1718                }
1719                err = filler(data, page);
1720                if (err < 0) {
1721                        page_cache_release(page);
1722                        page = ERR_PTR(err);
1723                }
1724        }
1725        return page;
1726}
1727
1728static struct page *do_read_cache_page(struct address_space *mapping,
1729                                pgoff_t index,
1730                                int (*filler)(void *,struct page*),
1731                                void *data,
1732                                gfp_t gfp)
1733
1734{
1735        struct page *page;
1736        int err;
1737
1738retry:
1739        page = __read_cache_page(mapping, index, filler, data, gfp);
1740        if (IS_ERR(page))
1741                return page;
1742        if (PageUptodate(page))
1743                goto out;
1744
1745        lock_page(page);
1746        if (!page->mapping) {
1747                unlock_page(page);
1748                page_cache_release(page);
1749                goto retry;
1750        }
1751        if (PageUptodate(page)) {
1752                unlock_page(page);
1753                goto out;
1754        }
1755        err = filler(data, page);
1756        if (err < 0) {
1757                page_cache_release(page);
1758                return ERR_PTR(err);
1759        }
1760out:
1761        mark_page_accessed(page);
1762        return page;
1763}
1764
1765/**
1766 * read_cache_page_async - read into page cache, fill it if needed
1767 * @mapping:    the page's address_space
1768 * @index:      the page index
1769 * @filler:     function to perform the read
1770 * @data:       destination for read data
1771 *
1772 * Same as read_cache_page, but don't wait for page to become unlocked
1773 * after submitting it to the filler.
1774 *
1775 * Read into the page cache. If a page already exists, and PageUptodate() is
1776 * not set, try to fill the page but don't wait for it to become unlocked.
1777 *
1778 * If the page does not get brought uptodate, return -EIO.
1779 */
1780struct page *read_cache_page_async(struct address_space *mapping,
1781                                pgoff_t index,
1782                                int (*filler)(void *,struct page*),
1783                                void *data)
1784{
1785        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1786}
1787EXPORT_SYMBOL(read_cache_page_async);
1788
1789static struct page *wait_on_page_read(struct page *page)
1790{
1791        if (!IS_ERR(page)) {
1792                wait_on_page_locked(page);
1793                if (!PageUptodate(page)) {
1794                        page_cache_release(page);
1795                        page = ERR_PTR(-EIO);
1796                }
1797        }
1798        return page;
1799}
1800
1801/**
1802 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1803 * @mapping:    the page's address_space
1804 * @index:      the page index
1805 * @gfp:        the page allocator flags to use if allocating
1806 *
1807 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1808 * any new page allocations done using the specified allocation flags. Note
1809 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1810 * expect to do this atomically or anything like that - but you can pass in
1811 * other page requirements.
1812 *
1813 * If the page does not get brought uptodate, return -EIO.
1814 */
1815struct page *read_cache_page_gfp(struct address_space *mapping,
1816                                pgoff_t index,
1817                                gfp_t gfp)
1818{
1819        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1820
1821        return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1822}
1823EXPORT_SYMBOL(read_cache_page_gfp);
1824
1825/**
1826 * read_cache_page - read into page cache, fill it if needed
1827 * @mapping:    the page's address_space
1828 * @index:      the page index
1829 * @filler:     function to perform the read
1830 * @data:       destination for read data
1831 *
1832 * Read into the page cache. If a page already exists, and PageUptodate() is
1833 * not set, try to fill the page then wait for it to become unlocked.
1834 *
1835 * If the page does not get brought uptodate, return -EIO.
1836 */
1837struct page *read_cache_page(struct address_space *mapping,
1838                                pgoff_t index,
1839                                int (*filler)(void *,struct page*),
1840                                void *data)
1841{
1842        return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1843}
1844EXPORT_SYMBOL(read_cache_page);
1845
1846/*
1847 * The logic we want is
1848 *
1849 *      if suid or (sgid and xgrp)
1850 *              remove privs
1851 */
1852int should_remove_suid(struct dentry *dentry)
1853{
1854        mode_t mode = dentry->d_inode->i_mode;
1855        int kill = 0;
1856
1857        /* suid always must be killed */
1858        if (unlikely(mode & S_ISUID))
1859                kill = ATTR_KILL_SUID;
1860
1861        /*
1862         * sgid without any exec bits is just a mandatory locking mark; leave
1863         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1864         */
1865        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866                kill |= ATTR_KILL_SGID;
1867
1868        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1869                return kill;
1870
1871        return 0;
1872}
1873EXPORT_SYMBOL(should_remove_suid);
1874
1875static int __remove_suid(struct dentry *dentry, int kill)
1876{
1877        struct iattr newattrs;
1878
1879        newattrs.ia_valid = ATTR_FORCE | kill;
1880        return notify_change(dentry, &newattrs);
1881}
1882
1883int file_remove_suid(struct file *file)
1884{
1885        struct dentry *dentry = file->f_path.dentry;
1886        int killsuid = should_remove_suid(dentry);
1887        int killpriv = security_inode_need_killpriv(dentry);
1888        int error = 0;
1889
1890        if (killpriv < 0)
1891                return killpriv;
1892        if (killpriv)
1893                error = security_inode_killpriv(dentry);
1894        if (!error && killsuid)
1895                error = __remove_suid(dentry, killsuid);
1896
1897        return error;
1898}
1899EXPORT_SYMBOL(file_remove_suid);
1900
1901static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1902                        const struct iovec *iov, size_t base, size_t bytes)
1903{
1904        size_t copied = 0, left = 0;
1905
1906        while (bytes) {
1907                char __user *buf = iov->iov_base + base;
1908                int copy = min(bytes, iov->iov_len - base);
1909
1910                base = 0;
1911                left = __copy_from_user_inatomic(vaddr, buf, copy);
1912                copied += copy;
1913                bytes -= copy;
1914                vaddr += copy;
1915                iov++;
1916
1917                if (unlikely(left))
1918                        break;
1919        }
1920        return copied - left;
1921}
1922
1923/*
1924 * Copy as much as we can into the page and return the number of bytes which
1925 * were successfully copied.  If a fault is encountered then return the number of
1926 * bytes which were copied.
1927 */
1928size_t iov_iter_copy_from_user_atomic(struct page *page,
1929                struct iov_iter *i, unsigned long offset, size_t bytes)
1930{
1931        char *kaddr;
1932        size_t copied;
1933
1934        BUG_ON(!in_atomic());
1935        kaddr = kmap_atomic(page, KM_USER0);
1936        if (likely(i->nr_segs == 1)) {
1937                int left;
1938                char __user *buf = i->iov->iov_base + i->iov_offset;
1939                left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1940                copied = bytes - left;
1941        } else {
1942                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1943                                                i->iov, i->iov_offset, bytes);
1944        }
1945        kunmap_atomic(kaddr, KM_USER0);
1946
1947        return copied;
1948}
1949EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1950
1951/*
1952 * This has the same sideeffects and return value as
1953 * iov_iter_copy_from_user_atomic().
1954 * The difference is that it attempts to resolve faults.
1955 * Page must not be locked.
1956 */
1957size_t iov_iter_copy_from_user(struct page *page,
1958                struct iov_iter *i, unsigned long offset, size_t bytes)
1959{
1960        char *kaddr;
1961        size_t copied;
1962
1963        kaddr = kmap(page);
1964        if (likely(i->nr_segs == 1)) {
1965                int left;
1966                char __user *buf = i->iov->iov_base + i->iov_offset;
1967                left = __copy_from_user(kaddr + offset, buf, bytes);
1968                copied = bytes - left;
1969        } else {
1970                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1971                                                i->iov, i->iov_offset, bytes);
1972        }
1973        kunmap(page);
1974        return copied;
1975}
1976EXPORT_SYMBOL(iov_iter_copy_from_user);
1977
1978void iov_iter_advance(struct iov_iter *i, size_t bytes)
1979{
1980        BUG_ON(i->count < bytes);
1981
1982        if (likely(i->nr_segs == 1)) {
1983                i->iov_offset += bytes;
1984                i->count -= bytes;
1985        } else {
1986                const struct iovec *iov = i->iov;
1987                size_t base = i->iov_offset;
1988
1989                /*
1990                 * The !iov->iov_len check ensures we skip over unlikely
1991                 * zero-length segments (without overruning the iovec).
1992                 */
1993                while (bytes || unlikely(i->count && !iov->iov_len)) {
1994                        int copy;
1995
1996                        copy = min(bytes, iov->iov_len - base);
1997                        BUG_ON(!i->count || i->count < copy);
1998                        i->count -= copy;
1999                        bytes -= copy;
2000                        base += copy;
2001                        if (iov->iov_len == base) {
2002                                iov++;
2003                                base = 0;
2004                        }
2005                }
2006                i->iov = iov;
2007                i->iov_offset = base;
2008        }
2009}
2010EXPORT_SYMBOL(iov_iter_advance);
2011
2012/*
2013 * Fault in the first iovec of the given iov_iter, to a maximum length
2014 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2015 * accessed (ie. because it is an invalid address).
2016 *
2017 * writev-intensive code may want this to prefault several iovecs -- that
2018 * would be possible (callers must not rely on the fact that _only_ the
2019 * first iovec will be faulted with the current implementation).
2020 */
2021int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2022{
2023        char __user *buf = i->iov->iov_base + i->iov_offset;
2024        bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2025        return fault_in_pages_readable(buf, bytes);
2026}
2027EXPORT_SYMBOL(iov_iter_fault_in_readable);
2028
2029/*
2030 * Return the count of just the current iov_iter segment.
2031 */
2032size_t iov_iter_single_seg_count(struct iov_iter *i)
2033{
2034        const struct iovec *iov = i->iov;
2035        if (i->nr_segs == 1)
2036                return i->count;
2037        else
2038                return min(i->count, iov->iov_len - i->iov_offset);
2039}
2040EXPORT_SYMBOL(iov_iter_single_seg_count);
2041
2042/*
2043 * Performs necessary checks before doing a write
2044 *
2045 * Can adjust writing position or amount of bytes to write.
2046 * Returns appropriate error code that caller should return or
2047 * zero in case that write should be allowed.
2048 */
2049inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2050{
2051        struct inode *inode = file->f_mapping->host;
2052        unsigned long limit = rlimit(RLIMIT_FSIZE);
2053
2054        if (unlikely(*pos < 0))
2055                return -EINVAL;
2056
2057        if (!isblk) {
2058                /* FIXME: this is for backwards compatibility with 2.4 */
2059                if (file->f_flags & O_APPEND)
2060                        *pos = i_size_read(inode);
2061
2062                if (limit != RLIM_INFINITY) {
2063                        if (*pos >= limit) {
2064                                send_sig(SIGXFSZ, current, 0);
2065                                return -EFBIG;
2066                        }
2067                        if (*count > limit - (typeof(limit))*pos) {
2068                                *count = limit - (typeof(limit))*pos;
2069                        }
2070                }
2071        }
2072
2073        /*
2074         * LFS rule
2075         */
2076        if (unlikely(*pos + *count > MAX_NON_LFS &&
2077                                !(file->f_flags & O_LARGEFILE))) {
2078                if (*pos >= MAX_NON_LFS) {
2079                        return -EFBIG;
2080                }
2081                if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2082                        *count = MAX_NON_LFS - (unsigned long)*pos;
2083                }
2084        }
2085
2086        /*
2087         * Are we about to exceed the fs block limit ?
2088         *
2089         * If we have written data it becomes a short write.  If we have
2090         * exceeded without writing data we send a signal and return EFBIG.
2091         * Linus frestrict idea will clean these up nicely..
2092         */
2093        if (likely(!isblk)) {
2094                if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2095                        if (*count || *pos > inode->i_sb->s_maxbytes) {
2096                                return -EFBIG;
2097                        }
2098                        /* zero-length writes at ->s_maxbytes are OK */
2099                }
2100
2101                if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2102                        *count = inode->i_sb->s_maxbytes - *pos;
2103        } else {
2104#ifdef CONFIG_BLOCK
2105                loff_t isize;
2106                if (bdev_read_only(I_BDEV(inode)))
2107                        return -EPERM;
2108                isize = i_size_read(inode);
2109                if (*pos >= isize) {
2110                        if (*count || *pos > isize)
2111                                return -ENOSPC;
2112                }
2113
2114                if (*pos + *count > isize)
2115                        *count = isize - *pos;
2116#else
2117                return -EPERM;
2118#endif
2119        }
2120        return 0;
2121}
2122EXPORT_SYMBOL(generic_write_checks);
2123
2124int pagecache_write_begin(struct file *file, struct address_space *mapping,
2125                                loff_t pos, unsigned len, unsigned flags,
2126                                struct page **pagep, void **fsdata)
2127{
2128        const struct address_space_operations *aops = mapping->a_ops;
2129
2130        return aops->write_begin(file, mapping, pos, len, flags,
2131                                                        pagep, fsdata);
2132}
2133EXPORT_SYMBOL(pagecache_write_begin);
2134
2135int pagecache_write_end(struct file *file, struct address_space *mapping,
2136                                loff_t pos, unsigned len, unsigned copied,
2137                                struct page *page, void *fsdata)
2138{
2139        const struct address_space_operations *aops = mapping->a_ops;
2140
2141        mark_page_accessed(page);
2142        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2143}
2144EXPORT_SYMBOL(pagecache_write_end);
2145
2146ssize_t
2147generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2148                unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2149                size_t count, size_t ocount)
2150{
2151        struct file     *file = iocb->ki_filp;
2152        struct address_space *mapping = file->f_mapping;
2153        struct inode    *inode = mapping->host;
2154        ssize_t         written;
2155        size_t          write_len;
2156        pgoff_t         end;
2157
2158        if (count != ocount)
2159                *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2160
2161        write_len = iov_length(iov, *nr_segs);
2162        end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2163
2164        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2165        if (written)
2166                goto out;
2167
2168        /*
2169         * After a write we want buffered reads to be sure to go to disk to get
2170         * the new data.  We invalidate clean cached page from the region we're
2171         * about to write.  We do this *before* the write so that we can return
2172         * without clobbering -EIOCBQUEUED from ->direct_IO().
2173         */
2174        if (mapping->nrpages) {
2175                written = invalidate_inode_pages2_range(mapping,
2176                                        pos >> PAGE_CACHE_SHIFT, end);
2177                /*
2178                 * If a page can not be invalidated, return 0 to fall back
2179                 * to buffered write.
2180                 */
2181                if (written) {
2182                        if (written == -EBUSY)
2183                                return 0;
2184                        goto out;
2185                }
2186        }
2187
2188        written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2189
2190        /*
2191         * Finally, try again to invalidate clean pages which might have been
2192         * cached by non-direct readahead, or faulted in by get_user_pages()
2193         * if the source of the write was an mmap'ed region of the file
2194         * we're writing.  Either one is a pretty crazy thing to do,
2195         * so we don't support it 100%.  If this invalidation
2196         * fails, tough, the write still worked...
2197         */
2198        if (mapping->nrpages) {
2199                invalidate_inode_pages2_range(mapping,
2200                                              pos >> PAGE_CACHE_SHIFT, end);
2201        }
2202
2203        if (written > 0) {
2204                pos += written;
2205                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2206                        i_size_write(inode, pos);
2207                        mark_inode_dirty(inode);
2208                }
2209                *ppos = pos;
2210        }
2211out:
2212        return written;
2213}
2214EXPORT_SYMBOL(generic_file_direct_write);
2215
2216/*
2217 * Find or create a page at the given pagecache position. Return the locked
2218 * page. This function is specifically for buffered writes.
2219 */
2220struct page *grab_cache_page_write_begin(struct address_space *mapping,
2221                                        pgoff_t index, unsigned flags)
2222{
2223        int status;
2224        struct page *page;
2225        gfp_t gfp_notmask = 0;
2226        if (flags & AOP_FLAG_NOFS)
2227                gfp_notmask = __GFP_FS;
2228repeat:
2229        page = find_lock_page(mapping, index);
2230        if (page)
2231                return page;
2232
2233        page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2234        if (!page)
2235                return NULL;
2236        status = add_to_page_cache_lru(page, mapping, index,
2237                                                GFP_KERNEL & ~gfp_notmask);
2238        if (unlikely(status)) {
2239                page_cache_release(page);
2240                if (status == -EEXIST)
2241                        goto repeat;
2242                return NULL;
2243        }
2244        return page;
2245}
2246EXPORT_SYMBOL(grab_cache_page_write_begin);
2247
2248static ssize_t generic_perform_write(struct file *file,
2249                                struct iov_iter *i, loff_t pos)
2250{
2251        struct address_space *mapping = file->f_mapping;
2252        const struct address_space_operations *a_ops = mapping->a_ops;
2253        long status = 0;
2254        ssize_t written = 0;
2255        unsigned int flags = 0;
2256
2257        /*
2258         * Copies from kernel address space cannot fail (NFSD is a big user).
2259         */
2260        if (segment_eq(get_fs(), KERNEL_DS))
2261                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2262
2263        do {
2264                struct page *page;
2265                unsigned long offset;   /* Offset into pagecache page */
2266                unsigned long bytes;    /* Bytes to write to page */
2267                size_t copied;          /* Bytes copied from user */
2268                void *fsdata;
2269
2270                offset = (pos & (PAGE_CACHE_SIZE - 1));
2271                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2272                                                iov_iter_count(i));
2273
2274again:
2275
2276                /*
2277                 * Bring in the user page that we will copy from _first_.
2278                 * Otherwise there's a nasty deadlock on copying from the
2279                 * same page as we're writing to, without it being marked
2280                 * up-to-date.
2281                 *
2282                 * Not only is this an optimisation, but it is also required
2283                 * to check that the address is actually valid, when atomic
2284                 * usercopies are used, below.
2285                 */
2286                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2287                        status = -EFAULT;
2288                        break;
2289                }
2290
2291                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2292                                                &page, &fsdata);
2293                if (unlikely(status))
2294                        break;
2295
2296                if (mapping_writably_mapped(mapping))
2297                        flush_dcache_page(page);
2298
2299                pagefault_disable();
2300                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2301                pagefault_enable();
2302                flush_dcache_page(page);
2303
2304                mark_page_accessed(page);
2305                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2306                                                page, fsdata);
2307                if (unlikely(status < 0))
2308                        break;
2309                copied = status;
2310
2311                cond_resched();
2312
2313                iov_iter_advance(i, copied);
2314                if (unlikely(copied == 0)) {
2315                        /*
2316                         * If we were unable to copy any data at all, we must
2317                         * fall back to a single segment length write.
2318                         *
2319                         * If we didn't fallback here, we could livelock
2320                         * because not all segments in the iov can be copied at
2321                         * once without a pagefault.
2322                         */
2323                        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2324                                                iov_iter_single_seg_count(i));
2325                        goto again;
2326                }
2327                pos += copied;
2328                written += copied;
2329
2330                balance_dirty_pages_ratelimited(mapping);
2331
2332        } while (iov_iter_count(i));
2333
2334        return written ? written : status;
2335}
2336
2337ssize_t
2338generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2339                unsigned long nr_segs, loff_t pos, loff_t *ppos,
2340                size_t count, ssize_t written)
2341{
2342        struct file *file = iocb->ki_filp;
2343        ssize_t status;
2344        struct iov_iter i;
2345
2346        iov_iter_init(&i, iov, nr_segs, count, written);
2347        status = generic_perform_write(file, &i, pos);
2348
2349        if (likely(status >= 0)) {
2350                written += status;
2351                *ppos = pos + status;
2352        }
2353        
2354        return written ? written : status;
2355}
2356EXPORT_SYMBOL(generic_file_buffered_write);
2357
2358/**
2359 * __generic_file_aio_write - write data to a file
2360 * @iocb:       IO state structure (file, offset, etc.)
2361 * @iov:        vector with data to write
2362 * @nr_segs:    number of segments in the vector
2363 * @ppos:       position where to write
2364 *
2365 * This function does all the work needed for actually writing data to a
2366 * file. It does all basic checks, removes SUID from the file, updates
2367 * modification times and calls proper subroutines depending on whether we
2368 * do direct IO or a standard buffered write.
2369 *
2370 * It expects i_mutex to be grabbed unless we work on a block device or similar
2371 * object which does not need locking at all.
2372 *
2373 * This function does *not* take care of syncing data in case of O_SYNC write.
2374 * A caller has to handle it. This is mainly due to the fact that we want to
2375 * avoid syncing under i_mutex.
2376 */
2377ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2378                                 unsigned long nr_segs, loff_t *ppos)
2379{
2380        struct file *file = iocb->ki_filp;
2381        struct address_space * mapping = file->f_mapping;
2382        size_t ocount;          /* original count */
2383        size_t count;           /* after file limit checks */
2384        struct inode    *inode = mapping->host;
2385        loff_t          pos;
2386        ssize_t         written;
2387        ssize_t         err;
2388
2389        ocount = 0;
2390        err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2391        if (err)
2392                return err;
2393
2394        count = ocount;
2395        pos = *ppos;
2396
2397        vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2398
2399        /* We can write back this queue in page reclaim */
2400        current->backing_dev_info = mapping->backing_dev_info;
2401        written = 0;
2402
2403        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2404        if (err)
2405                goto out;
2406
2407        if (count == 0)
2408                goto out;
2409
2410        err = file_remove_suid(file);
2411        if (err)
2412                goto out;
2413
2414        file_update_time(file);
2415
2416        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2417        if (unlikely(file->f_flags & O_DIRECT)) {
2418                loff_t endbyte;
2419                ssize_t written_buffered;
2420
2421                written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2422                                                        ppos, count, ocount);
2423                if (written < 0 || written == count)
2424                        goto out;
2425                /*
2426                 * direct-io write to a hole: fall through to buffered I/O
2427                 * for completing the rest of the request.
2428                 */
2429                pos += written;
2430                count -= written;
2431                written_buffered = generic_file_buffered_write(iocb, iov,
2432                                                nr_segs, pos, ppos, count,
2433                                                written);
2434                /*
2435                 * If generic_file_buffered_write() retuned a synchronous error
2436                 * then we want to return the number of bytes which were
2437                 * direct-written, or the error code if that was zero.  Note
2438                 * that this differs from normal direct-io semantics, which
2439                 * will return -EFOO even if some bytes were written.
2440                 */
2441                if (written_buffered < 0) {
2442                        err = written_buffered;
2443                        goto out;
2444                }
2445
2446                /*
2447                 * We need to ensure that the page cache pages are written to
2448                 * disk and invalidated to preserve the expected O_DIRECT
2449                 * semantics.
2450                 */
2451                endbyte = pos + written_buffered - written - 1;
2452                err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2453                if (err == 0) {
2454                        written = written_buffered;
2455                        invalidate_mapping_pages(mapping,
2456                                                 pos >> PAGE_CACHE_SHIFT,
2457                                                 endbyte >> PAGE_CACHE_SHIFT);
2458                } else {
2459                        /*
2460                         * We don't know how much we wrote, so just return
2461                         * the number of bytes which were direct-written
2462                         */
2463                }
2464        } else {
2465                written = generic_file_buffered_write(iocb, iov, nr_segs,
2466                                pos, ppos, count, written);
2467        }
2468out:
2469        current->backing_dev_info = NULL;
2470        return written ? written : err;
2471}
2472EXPORT_SYMBOL(__generic_file_aio_write);
2473
2474/**
2475 * generic_file_aio_write - write data to a file
2476 * @iocb:       IO state structure
2477 * @iov:        vector with data to write
2478 * @nr_segs:    number of segments in the vector
2479 * @pos:        position in file where to write
2480 *
2481 * This is a wrapper around __generic_file_aio_write() to be used by most
2482 * filesystems. It takes care of syncing the file in case of O_SYNC file
2483 * and acquires i_mutex as needed.
2484 */
2485ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2486                unsigned long nr_segs, loff_t pos)
2487{
2488        struct file *file = iocb->ki_filp;
2489        struct inode *inode = file->f_mapping->host;
2490        ssize_t ret;
2491
2492        BUG_ON(iocb->ki_pos != pos);
2493
2494        mutex_lock(&inode->i_mutex);
2495        ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2496        mutex_unlock(&inode->i_mutex);
2497
2498        if (ret > 0 || ret == -EIOCBQUEUED) {
2499                ssize_t err;
2500
2501                err = generic_write_sync(file, pos, ret);
2502                if (err < 0 && ret > 0)
2503                        ret = err;
2504        }
2505        return ret;
2506}
2507EXPORT_SYMBOL(generic_file_aio_write);
2508
2509/**
2510 * try_to_release_page() - release old fs-specific metadata on a page
2511 *
2512 * @page: the page which the kernel is trying to free
2513 * @gfp_mask: memory allocation flags (and I/O mode)
2514 *
2515 * The address_space is to try to release any data against the page
2516 * (presumably at page->private).  If the release was successful, return `1'.
2517 * Otherwise return zero.
2518 *
2519 * This may also be called if PG_fscache is set on a page, indicating that the
2520 * page is known to the local caching routines.
2521 *
2522 * The @gfp_mask argument specifies whether I/O may be performed to release
2523 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2524 *
2525 */
2526int try_to_release_page(struct page *page, gfp_t gfp_mask)
2527{
2528        struct address_space * const mapping = page->mapping;
2529
2530        BUG_ON(!PageLocked(page));
2531        if (PageWriteback(page))
2532                return 0;
2533
2534        if (mapping && mapping->a_ops->releasepage)
2535                return mapping->a_ops->releasepage(page, gfp_mask);
2536        return try_to_free_buffers(page);
2537}
2538
2539EXPORT_SYMBOL(try_to_release_page);
2540