linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
  19#include <linux/mman.h>
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75        struct hlist_node hash;
  76        struct list_head mm_node;
  77        struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89        struct list_head mm_head;
  90        struct mm_slot *mm_slot;
  91        unsigned long address;
  92} khugepaged_scan = {
  93        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99        struct zone *zone;
 100        int nr_zones = 0;
 101        unsigned long recommended_min;
 102        extern int min_free_kbytes;
 103
 104        if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105                      &transparent_hugepage_flags) &&
 106            !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107                      &transparent_hugepage_flags))
 108                return 0;
 109
 110        for_each_populated_zone(zone)
 111                nr_zones++;
 112
 113        /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114        recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116        /*
 117         * Make sure that on average at least two pageblocks are almost free
 118         * of another type, one for a migratetype to fall back to and a
 119         * second to avoid subsequent fallbacks of other types There are 3
 120         * MIGRATE_TYPES we care about.
 121         */
 122        recommended_min += pageblock_nr_pages * nr_zones *
 123                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125        /* don't ever allow to reserve more than 5% of the lowmem */
 126        recommended_min = min(recommended_min,
 127                              (unsigned long) nr_free_buffer_pages() / 20);
 128        recommended_min <<= (PAGE_SHIFT-10);
 129
 130        if (recommended_min > min_free_kbytes)
 131                min_free_kbytes = recommended_min;
 132        setup_per_zone_wmarks();
 133        return 0;
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139        int err = 0;
 140        if (khugepaged_enabled()) {
 141                int wakeup;
 142                if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143                        err = -ENOMEM;
 144                        goto out;
 145                }
 146                mutex_lock(&khugepaged_mutex);
 147                if (!khugepaged_thread)
 148                        khugepaged_thread = kthread_run(khugepaged, NULL,
 149                                                        "khugepaged");
 150                if (unlikely(IS_ERR(khugepaged_thread))) {
 151                        printk(KERN_ERR
 152                               "khugepaged: kthread_run(khugepaged) failed\n");
 153                        err = PTR_ERR(khugepaged_thread);
 154                        khugepaged_thread = NULL;
 155                }
 156                wakeup = !list_empty(&khugepaged_scan.mm_head);
 157                mutex_unlock(&khugepaged_mutex);
 158                if (wakeup)
 159                        wake_up_interruptible(&khugepaged_wait);
 160
 161                set_recommended_min_free_kbytes();
 162        } else
 163                /* wakeup to exit */
 164                wake_up_interruptible(&khugepaged_wait);
 165out:
 166        return err;
 167}
 168
 169#ifdef CONFIG_SYSFS
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172                                struct kobj_attribute *attr, char *buf,
 173                                enum transparent_hugepage_flag enabled,
 174                                enum transparent_hugepage_flag req_madv)
 175{
 176        if (test_bit(enabled, &transparent_hugepage_flags)) {
 177                VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178                return sprintf(buf, "[always] madvise never\n");
 179        } else if (test_bit(req_madv, &transparent_hugepage_flags))
 180                return sprintf(buf, "always [madvise] never\n");
 181        else
 182                return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185                                 struct kobj_attribute *attr,
 186                                 const char *buf, size_t count,
 187                                 enum transparent_hugepage_flag enabled,
 188                                 enum transparent_hugepage_flag req_madv)
 189{
 190        if (!memcmp("always", buf,
 191                    min(sizeof("always")-1, count))) {
 192                set_bit(enabled, &transparent_hugepage_flags);
 193                clear_bit(req_madv, &transparent_hugepage_flags);
 194        } else if (!memcmp("madvise", buf,
 195                           min(sizeof("madvise")-1, count))) {
 196                clear_bit(enabled, &transparent_hugepage_flags);
 197                set_bit(req_madv, &transparent_hugepage_flags);
 198        } else if (!memcmp("never", buf,
 199                           min(sizeof("never")-1, count))) {
 200                clear_bit(enabled, &transparent_hugepage_flags);
 201                clear_bit(req_madv, &transparent_hugepage_flags);
 202        } else
 203                return -EINVAL;
 204
 205        return count;
 206}
 207
 208static ssize_t enabled_show(struct kobject *kobj,
 209                            struct kobj_attribute *attr, char *buf)
 210{
 211        return double_flag_show(kobj, attr, buf,
 212                                TRANSPARENT_HUGEPAGE_FLAG,
 213                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 214}
 215static ssize_t enabled_store(struct kobject *kobj,
 216                             struct kobj_attribute *attr,
 217                             const char *buf, size_t count)
 218{
 219        ssize_t ret;
 220
 221        ret = double_flag_store(kobj, attr, buf, count,
 222                                TRANSPARENT_HUGEPAGE_FLAG,
 223                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 224
 225        if (ret > 0) {
 226                int err = start_khugepaged();
 227                if (err)
 228                        ret = err;
 229        }
 230
 231        if (ret > 0 &&
 232            (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233                      &transparent_hugepage_flags) ||
 234             test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235                      &transparent_hugepage_flags)))
 236                set_recommended_min_free_kbytes();
 237
 238        return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241        __ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244                                struct kobj_attribute *attr, char *buf,
 245                                enum transparent_hugepage_flag flag)
 246{
 247        if (test_bit(flag, &transparent_hugepage_flags))
 248                return sprintf(buf, "[yes] no\n");
 249        else
 250                return sprintf(buf, "yes [no]\n");
 251}
 252static ssize_t single_flag_store(struct kobject *kobj,
 253                                 struct kobj_attribute *attr,
 254                                 const char *buf, size_t count,
 255                                 enum transparent_hugepage_flag flag)
 256{
 257        if (!memcmp("yes", buf,
 258                    min(sizeof("yes")-1, count))) {
 259                set_bit(flag, &transparent_hugepage_flags);
 260        } else if (!memcmp("no", buf,
 261                           min(sizeof("no")-1, count))) {
 262                clear_bit(flag, &transparent_hugepage_flags);
 263        } else
 264                return -EINVAL;
 265
 266        return count;
 267}
 268
 269/*
 270 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 271 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 272 * memory just to allocate one more hugepage.
 273 */
 274static ssize_t defrag_show(struct kobject *kobj,
 275                           struct kobj_attribute *attr, char *buf)
 276{
 277        return double_flag_show(kobj, attr, buf,
 278                                TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 279                                TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 280}
 281static ssize_t defrag_store(struct kobject *kobj,
 282                            struct kobj_attribute *attr,
 283                            const char *buf, size_t count)
 284{
 285        return double_flag_store(kobj, attr, buf, count,
 286                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 287                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 288}
 289static struct kobj_attribute defrag_attr =
 290        __ATTR(defrag, 0644, defrag_show, defrag_store);
 291
 292#ifdef CONFIG_DEBUG_VM
 293static ssize_t debug_cow_show(struct kobject *kobj,
 294                                struct kobj_attribute *attr, char *buf)
 295{
 296        return single_flag_show(kobj, attr, buf,
 297                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 298}
 299static ssize_t debug_cow_store(struct kobject *kobj,
 300                               struct kobj_attribute *attr,
 301                               const char *buf, size_t count)
 302{
 303        return single_flag_store(kobj, attr, buf, count,
 304                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static struct kobj_attribute debug_cow_attr =
 307        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 308#endif /* CONFIG_DEBUG_VM */
 309
 310static struct attribute *hugepage_attr[] = {
 311        &enabled_attr.attr,
 312        &defrag_attr.attr,
 313#ifdef CONFIG_DEBUG_VM
 314        &debug_cow_attr.attr,
 315#endif
 316        NULL,
 317};
 318
 319static struct attribute_group hugepage_attr_group = {
 320        .attrs = hugepage_attr,
 321};
 322
 323static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 324                                         struct kobj_attribute *attr,
 325                                         char *buf)
 326{
 327        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 328}
 329
 330static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 331                                          struct kobj_attribute *attr,
 332                                          const char *buf, size_t count)
 333{
 334        unsigned long msecs;
 335        int err;
 336
 337        err = strict_strtoul(buf, 10, &msecs);
 338        if (err || msecs > UINT_MAX)
 339                return -EINVAL;
 340
 341        khugepaged_scan_sleep_millisecs = msecs;
 342        wake_up_interruptible(&khugepaged_wait);
 343
 344        return count;
 345}
 346static struct kobj_attribute scan_sleep_millisecs_attr =
 347        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 348               scan_sleep_millisecs_store);
 349
 350static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 351                                          struct kobj_attribute *attr,
 352                                          char *buf)
 353{
 354        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 355}
 356
 357static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 358                                           struct kobj_attribute *attr,
 359                                           const char *buf, size_t count)
 360{
 361        unsigned long msecs;
 362        int err;
 363
 364        err = strict_strtoul(buf, 10, &msecs);
 365        if (err || msecs > UINT_MAX)
 366                return -EINVAL;
 367
 368        khugepaged_alloc_sleep_millisecs = msecs;
 369        wake_up_interruptible(&khugepaged_wait);
 370
 371        return count;
 372}
 373static struct kobj_attribute alloc_sleep_millisecs_attr =
 374        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 375               alloc_sleep_millisecs_store);
 376
 377static ssize_t pages_to_scan_show(struct kobject *kobj,
 378                                  struct kobj_attribute *attr,
 379                                  char *buf)
 380{
 381        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 382}
 383static ssize_t pages_to_scan_store(struct kobject *kobj,
 384                                   struct kobj_attribute *attr,
 385                                   const char *buf, size_t count)
 386{
 387        int err;
 388        unsigned long pages;
 389
 390        err = strict_strtoul(buf, 10, &pages);
 391        if (err || !pages || pages > UINT_MAX)
 392                return -EINVAL;
 393
 394        khugepaged_pages_to_scan = pages;
 395
 396        return count;
 397}
 398static struct kobj_attribute pages_to_scan_attr =
 399        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 400               pages_to_scan_store);
 401
 402static ssize_t pages_collapsed_show(struct kobject *kobj,
 403                                    struct kobj_attribute *attr,
 404                                    char *buf)
 405{
 406        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 407}
 408static struct kobj_attribute pages_collapsed_attr =
 409        __ATTR_RO(pages_collapsed);
 410
 411static ssize_t full_scans_show(struct kobject *kobj,
 412                               struct kobj_attribute *attr,
 413                               char *buf)
 414{
 415        return sprintf(buf, "%u\n", khugepaged_full_scans);
 416}
 417static struct kobj_attribute full_scans_attr =
 418        __ATTR_RO(full_scans);
 419
 420static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 421                                      struct kobj_attribute *attr, char *buf)
 422{
 423        return single_flag_show(kobj, attr, buf,
 424                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 425}
 426static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 427                                       struct kobj_attribute *attr,
 428                                       const char *buf, size_t count)
 429{
 430        return single_flag_store(kobj, attr, buf, count,
 431                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 432}
 433static struct kobj_attribute khugepaged_defrag_attr =
 434        __ATTR(defrag, 0644, khugepaged_defrag_show,
 435               khugepaged_defrag_store);
 436
 437/*
 438 * max_ptes_none controls if khugepaged should collapse hugepages over
 439 * any unmapped ptes in turn potentially increasing the memory
 440 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 441 * reduce the available free memory in the system as it
 442 * runs. Increasing max_ptes_none will instead potentially reduce the
 443 * free memory in the system during the khugepaged scan.
 444 */
 445static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 446                                             struct kobj_attribute *attr,
 447                                             char *buf)
 448{
 449        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 450}
 451static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 452                                              struct kobj_attribute *attr,
 453                                              const char *buf, size_t count)
 454{
 455        int err;
 456        unsigned long max_ptes_none;
 457
 458        err = strict_strtoul(buf, 10, &max_ptes_none);
 459        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 460                return -EINVAL;
 461
 462        khugepaged_max_ptes_none = max_ptes_none;
 463
 464        return count;
 465}
 466static struct kobj_attribute khugepaged_max_ptes_none_attr =
 467        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 468               khugepaged_max_ptes_none_store);
 469
 470static struct attribute *khugepaged_attr[] = {
 471        &khugepaged_defrag_attr.attr,
 472        &khugepaged_max_ptes_none_attr.attr,
 473        &pages_to_scan_attr.attr,
 474        &pages_collapsed_attr.attr,
 475        &full_scans_attr.attr,
 476        &scan_sleep_millisecs_attr.attr,
 477        &alloc_sleep_millisecs_attr.attr,
 478        NULL,
 479};
 480
 481static struct attribute_group khugepaged_attr_group = {
 482        .attrs = khugepaged_attr,
 483        .name = "khugepaged",
 484};
 485#endif /* CONFIG_SYSFS */
 486
 487static int __init hugepage_init(void)
 488{
 489        int err;
 490#ifdef CONFIG_SYSFS
 491        static struct kobject *hugepage_kobj;
 492#endif
 493
 494        err = -EINVAL;
 495        if (!has_transparent_hugepage()) {
 496                transparent_hugepage_flags = 0;
 497                goto out;
 498        }
 499
 500#ifdef CONFIG_SYSFS
 501        err = -ENOMEM;
 502        hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 503        if (unlikely(!hugepage_kobj)) {
 504                printk(KERN_ERR "hugepage: failed kobject create\n");
 505                goto out;
 506        }
 507
 508        err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 509        if (err) {
 510                printk(KERN_ERR "hugepage: failed register hugeage group\n");
 511                goto out;
 512        }
 513
 514        err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 515        if (err) {
 516                printk(KERN_ERR "hugepage: failed register hugeage group\n");
 517                goto out;
 518        }
 519#endif
 520
 521        err = khugepaged_slab_init();
 522        if (err)
 523                goto out;
 524
 525        err = mm_slots_hash_init();
 526        if (err) {
 527                khugepaged_slab_free();
 528                goto out;
 529        }
 530
 531        /*
 532         * By default disable transparent hugepages on smaller systems,
 533         * where the extra memory used could hurt more than TLB overhead
 534         * is likely to save.  The admin can still enable it through /sys.
 535         */
 536        if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 537                transparent_hugepage_flags = 0;
 538
 539        start_khugepaged();
 540
 541        set_recommended_min_free_kbytes();
 542
 543out:
 544        return err;
 545}
 546module_init(hugepage_init)
 547
 548static int __init setup_transparent_hugepage(char *str)
 549{
 550        int ret = 0;
 551        if (!str)
 552                goto out;
 553        if (!strcmp(str, "always")) {
 554                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 555                        &transparent_hugepage_flags);
 556                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 557                          &transparent_hugepage_flags);
 558                ret = 1;
 559        } else if (!strcmp(str, "madvise")) {
 560                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 561                          &transparent_hugepage_flags);
 562                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 563                        &transparent_hugepage_flags);
 564                ret = 1;
 565        } else if (!strcmp(str, "never")) {
 566                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 567                          &transparent_hugepage_flags);
 568                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 569                          &transparent_hugepage_flags);
 570                ret = 1;
 571        }
 572out:
 573        if (!ret)
 574                printk(KERN_WARNING
 575                       "transparent_hugepage= cannot parse, ignored\n");
 576        return ret;
 577}
 578__setup("transparent_hugepage=", setup_transparent_hugepage);
 579
 580static void prepare_pmd_huge_pte(pgtable_t pgtable,
 581                                 struct mm_struct *mm)
 582{
 583        assert_spin_locked(&mm->page_table_lock);
 584
 585        /* FIFO */
 586        if (!mm->pmd_huge_pte)
 587                INIT_LIST_HEAD(&pgtable->lru);
 588        else
 589                list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 590        mm->pmd_huge_pte = pgtable;
 591}
 592
 593static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 594{
 595        if (likely(vma->vm_flags & VM_WRITE))
 596                pmd = pmd_mkwrite(pmd);
 597        return pmd;
 598}
 599
 600static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 601                                        struct vm_area_struct *vma,
 602                                        unsigned long haddr, pmd_t *pmd,
 603                                        struct page *page)
 604{
 605        int ret = 0;
 606        pgtable_t pgtable;
 607
 608        VM_BUG_ON(!PageCompound(page));
 609        pgtable = pte_alloc_one(mm, haddr);
 610        if (unlikely(!pgtable)) {
 611                mem_cgroup_uncharge_page(page);
 612                put_page(page);
 613                return VM_FAULT_OOM;
 614        }
 615
 616        clear_huge_page(page, haddr, HPAGE_PMD_NR);
 617        __SetPageUptodate(page);
 618
 619        spin_lock(&mm->page_table_lock);
 620        if (unlikely(!pmd_none(*pmd))) {
 621                spin_unlock(&mm->page_table_lock);
 622                mem_cgroup_uncharge_page(page);
 623                put_page(page);
 624                pte_free(mm, pgtable);
 625        } else {
 626                pmd_t entry;
 627                entry = mk_pmd(page, vma->vm_page_prot);
 628                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 629                entry = pmd_mkhuge(entry);
 630                /*
 631                 * The spinlocking to take the lru_lock inside
 632                 * page_add_new_anon_rmap() acts as a full memory
 633                 * barrier to be sure clear_huge_page writes become
 634                 * visible after the set_pmd_at() write.
 635                 */
 636                page_add_new_anon_rmap(page, vma, haddr);
 637                set_pmd_at(mm, haddr, pmd, entry);
 638                prepare_pmd_huge_pte(pgtable, mm);
 639                add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 640                spin_unlock(&mm->page_table_lock);
 641        }
 642
 643        return ret;
 644}
 645
 646static inline gfp_t alloc_hugepage_gfpmask(int defrag)
 647{
 648        return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
 649}
 650
 651static inline struct page *alloc_hugepage_vma(int defrag,
 652                                              struct vm_area_struct *vma,
 653                                              unsigned long haddr, int nd)
 654{
 655        return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
 656                               HPAGE_PMD_ORDER, vma, haddr, nd);
 657}
 658
 659#ifndef CONFIG_NUMA
 660static inline struct page *alloc_hugepage(int defrag)
 661{
 662        return alloc_pages(alloc_hugepage_gfpmask(defrag),
 663                           HPAGE_PMD_ORDER);
 664}
 665#endif
 666
 667int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 668                               unsigned long address, pmd_t *pmd,
 669                               unsigned int flags)
 670{
 671        struct page *page;
 672        unsigned long haddr = address & HPAGE_PMD_MASK;
 673        pte_t *pte;
 674
 675        if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 676                if (unlikely(anon_vma_prepare(vma)))
 677                        return VM_FAULT_OOM;
 678                if (unlikely(khugepaged_enter(vma)))
 679                        return VM_FAULT_OOM;
 680                page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 681                                          vma, haddr, numa_node_id());
 682                if (unlikely(!page))
 683                        goto out;
 684                if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 685                        put_page(page);
 686                        goto out;
 687                }
 688
 689                return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 690        }
 691out:
 692        /*
 693         * Use __pte_alloc instead of pte_alloc_map, because we can't
 694         * run pte_offset_map on the pmd, if an huge pmd could
 695         * materialize from under us from a different thread.
 696         */
 697        if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 698                return VM_FAULT_OOM;
 699        /* if an huge pmd materialized from under us just retry later */
 700        if (unlikely(pmd_trans_huge(*pmd)))
 701                return 0;
 702        /*
 703         * A regular pmd is established and it can't morph into a huge pmd
 704         * from under us anymore at this point because we hold the mmap_sem
 705         * read mode and khugepaged takes it in write mode. So now it's
 706         * safe to run pte_offset_map().
 707         */
 708        pte = pte_offset_map(pmd, address);
 709        return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 710}
 711
 712int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 713                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 714                  struct vm_area_struct *vma)
 715{
 716        struct page *src_page;
 717        pmd_t pmd;
 718        pgtable_t pgtable;
 719        int ret;
 720
 721        ret = -ENOMEM;
 722        pgtable = pte_alloc_one(dst_mm, addr);
 723        if (unlikely(!pgtable))
 724                goto out;
 725
 726        spin_lock(&dst_mm->page_table_lock);
 727        spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 728
 729        ret = -EAGAIN;
 730        pmd = *src_pmd;
 731        if (unlikely(!pmd_trans_huge(pmd))) {
 732                pte_free(dst_mm, pgtable);
 733                goto out_unlock;
 734        }
 735        if (unlikely(pmd_trans_splitting(pmd))) {
 736                /* split huge page running from under us */
 737                spin_unlock(&src_mm->page_table_lock);
 738                spin_unlock(&dst_mm->page_table_lock);
 739                pte_free(dst_mm, pgtable);
 740
 741                wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 742                goto out;
 743        }
 744        src_page = pmd_page(pmd);
 745        VM_BUG_ON(!PageHead(src_page));
 746        get_page(src_page);
 747        page_dup_rmap(src_page);
 748        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 749
 750        pmdp_set_wrprotect(src_mm, addr, src_pmd);
 751        pmd = pmd_mkold(pmd_wrprotect(pmd));
 752        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 753        prepare_pmd_huge_pte(pgtable, dst_mm);
 754
 755        ret = 0;
 756out_unlock:
 757        spin_unlock(&src_mm->page_table_lock);
 758        spin_unlock(&dst_mm->page_table_lock);
 759out:
 760        return ret;
 761}
 762
 763/* no "address" argument so destroys page coloring of some arch */
 764pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 765{
 766        pgtable_t pgtable;
 767
 768        assert_spin_locked(&mm->page_table_lock);
 769
 770        /* FIFO */
 771        pgtable = mm->pmd_huge_pte;
 772        if (list_empty(&pgtable->lru))
 773                mm->pmd_huge_pte = NULL;
 774        else {
 775                mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 776                                              struct page, lru);
 777                list_del(&pgtable->lru);
 778        }
 779        return pgtable;
 780}
 781
 782static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 783                                        struct vm_area_struct *vma,
 784                                        unsigned long address,
 785                                        pmd_t *pmd, pmd_t orig_pmd,
 786                                        struct page *page,
 787                                        unsigned long haddr)
 788{
 789        pgtable_t pgtable;
 790        pmd_t _pmd;
 791        int ret = 0, i;
 792        struct page **pages;
 793
 794        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 795                        GFP_KERNEL);
 796        if (unlikely(!pages)) {
 797                ret |= VM_FAULT_OOM;
 798                goto out;
 799        }
 800
 801        for (i = 0; i < HPAGE_PMD_NR; i++) {
 802                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE,
 803                                               vma, address, page_to_nid(page));
 804                if (unlikely(!pages[i] ||
 805                             mem_cgroup_newpage_charge(pages[i], mm,
 806                                                       GFP_KERNEL))) {
 807                        if (pages[i])
 808                                put_page(pages[i]);
 809                        mem_cgroup_uncharge_start();
 810                        while (--i >= 0) {
 811                                mem_cgroup_uncharge_page(pages[i]);
 812                                put_page(pages[i]);
 813                        }
 814                        mem_cgroup_uncharge_end();
 815                        kfree(pages);
 816                        ret |= VM_FAULT_OOM;
 817                        goto out;
 818                }
 819        }
 820
 821        for (i = 0; i < HPAGE_PMD_NR; i++) {
 822                copy_user_highpage(pages[i], page + i,
 823                                   haddr + PAGE_SHIFT*i, vma);
 824                __SetPageUptodate(pages[i]);
 825                cond_resched();
 826        }
 827
 828        spin_lock(&mm->page_table_lock);
 829        if (unlikely(!pmd_same(*pmd, orig_pmd)))
 830                goto out_free_pages;
 831        VM_BUG_ON(!PageHead(page));
 832
 833        pmdp_clear_flush_notify(vma, haddr, pmd);
 834        /* leave pmd empty until pte is filled */
 835
 836        pgtable = get_pmd_huge_pte(mm);
 837        pmd_populate(mm, &_pmd, pgtable);
 838
 839        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 840                pte_t *pte, entry;
 841                entry = mk_pte(pages[i], vma->vm_page_prot);
 842                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 843                page_add_new_anon_rmap(pages[i], vma, haddr);
 844                pte = pte_offset_map(&_pmd, haddr);
 845                VM_BUG_ON(!pte_none(*pte));
 846                set_pte_at(mm, haddr, pte, entry);
 847                pte_unmap(pte);
 848        }
 849        kfree(pages);
 850
 851        mm->nr_ptes++;
 852        smp_wmb(); /* make pte visible before pmd */
 853        pmd_populate(mm, pmd, pgtable);
 854        page_remove_rmap(page);
 855        spin_unlock(&mm->page_table_lock);
 856
 857        ret |= VM_FAULT_WRITE;
 858        put_page(page);
 859
 860out:
 861        return ret;
 862
 863out_free_pages:
 864        spin_unlock(&mm->page_table_lock);
 865        mem_cgroup_uncharge_start();
 866        for (i = 0; i < HPAGE_PMD_NR; i++) {
 867                mem_cgroup_uncharge_page(pages[i]);
 868                put_page(pages[i]);
 869        }
 870        mem_cgroup_uncharge_end();
 871        kfree(pages);
 872        goto out;
 873}
 874
 875int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 876                        unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 877{
 878        int ret = 0;
 879        struct page *page, *new_page;
 880        unsigned long haddr;
 881
 882        VM_BUG_ON(!vma->anon_vma);
 883        spin_lock(&mm->page_table_lock);
 884        if (unlikely(!pmd_same(*pmd, orig_pmd)))
 885                goto out_unlock;
 886
 887        page = pmd_page(orig_pmd);
 888        VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 889        haddr = address & HPAGE_PMD_MASK;
 890        if (page_mapcount(page) == 1) {
 891                pmd_t entry;
 892                entry = pmd_mkyoung(orig_pmd);
 893                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 894                if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 895                        update_mmu_cache(vma, address, entry);
 896                ret |= VM_FAULT_WRITE;
 897                goto out_unlock;
 898        }
 899        get_page(page);
 900        spin_unlock(&mm->page_table_lock);
 901
 902        if (transparent_hugepage_enabled(vma) &&
 903            !transparent_hugepage_debug_cow())
 904                new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 905                                              vma, haddr, numa_node_id());
 906        else
 907                new_page = NULL;
 908
 909        if (unlikely(!new_page)) {
 910                ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 911                                                   pmd, orig_pmd, page, haddr);
 912                put_page(page);
 913                goto out;
 914        }
 915
 916        if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 917                put_page(new_page);
 918                put_page(page);
 919                ret |= VM_FAULT_OOM;
 920                goto out;
 921        }
 922
 923        copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 924        __SetPageUptodate(new_page);
 925
 926        spin_lock(&mm->page_table_lock);
 927        put_page(page);
 928        if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 929                mem_cgroup_uncharge_page(new_page);
 930                put_page(new_page);
 931        } else {
 932                pmd_t entry;
 933                VM_BUG_ON(!PageHead(page));
 934                entry = mk_pmd(new_page, vma->vm_page_prot);
 935                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 936                entry = pmd_mkhuge(entry);
 937                pmdp_clear_flush_notify(vma, haddr, pmd);
 938                page_add_new_anon_rmap(new_page, vma, haddr);
 939                set_pmd_at(mm, haddr, pmd, entry);
 940                update_mmu_cache(vma, address, entry);
 941                page_remove_rmap(page);
 942                put_page(page);
 943                ret |= VM_FAULT_WRITE;
 944        }
 945out_unlock:
 946        spin_unlock(&mm->page_table_lock);
 947out:
 948        return ret;
 949}
 950
 951struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 952                                   unsigned long addr,
 953                                   pmd_t *pmd,
 954                                   unsigned int flags)
 955{
 956        struct page *page = NULL;
 957
 958        assert_spin_locked(&mm->page_table_lock);
 959
 960        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 961                goto out;
 962
 963        page = pmd_page(*pmd);
 964        VM_BUG_ON(!PageHead(page));
 965        if (flags & FOLL_TOUCH) {
 966                pmd_t _pmd;
 967                /*
 968                 * We should set the dirty bit only for FOLL_WRITE but
 969                 * for now the dirty bit in the pmd is meaningless.
 970                 * And if the dirty bit will become meaningful and
 971                 * we'll only set it with FOLL_WRITE, an atomic
 972                 * set_bit will be required on the pmd to set the
 973                 * young bit, instead of the current set_pmd_at.
 974                 */
 975                _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 976                set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 977        }
 978        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 979        VM_BUG_ON(!PageCompound(page));
 980        if (flags & FOLL_GET)
 981                get_page(page);
 982
 983out:
 984        return page;
 985}
 986
 987int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 988                 pmd_t *pmd)
 989{
 990        int ret = 0;
 991
 992        spin_lock(&tlb->mm->page_table_lock);
 993        if (likely(pmd_trans_huge(*pmd))) {
 994                if (unlikely(pmd_trans_splitting(*pmd))) {
 995                        spin_unlock(&tlb->mm->page_table_lock);
 996                        wait_split_huge_page(vma->anon_vma,
 997                                             pmd);
 998                } else {
 999                        struct page *page;
1000                        pgtable_t pgtable;
1001                        pgtable = get_pmd_huge_pte(tlb->mm);
1002                        page = pmd_page(*pmd);
1003                        pmd_clear(pmd);
1004                        page_remove_rmap(page);
1005                        VM_BUG_ON(page_mapcount(page) < 0);
1006                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1007                        VM_BUG_ON(!PageHead(page));
1008                        spin_unlock(&tlb->mm->page_table_lock);
1009                        tlb_remove_page(tlb, page);
1010                        pte_free(tlb->mm, pgtable);
1011                        ret = 1;
1012                }
1013        } else
1014                spin_unlock(&tlb->mm->page_table_lock);
1015
1016        return ret;
1017}
1018
1019int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1020                unsigned long addr, unsigned long end,
1021                unsigned char *vec)
1022{
1023        int ret = 0;
1024
1025        spin_lock(&vma->vm_mm->page_table_lock);
1026        if (likely(pmd_trans_huge(*pmd))) {
1027                ret = !pmd_trans_splitting(*pmd);
1028                spin_unlock(&vma->vm_mm->page_table_lock);
1029                if (unlikely(!ret))
1030                        wait_split_huge_page(vma->anon_vma, pmd);
1031                else {
1032                        /*
1033                         * All logical pages in the range are present
1034                         * if backed by a huge page.
1035                         */
1036                        memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1037                }
1038        } else
1039                spin_unlock(&vma->vm_mm->page_table_lock);
1040
1041        return ret;
1042}
1043
1044int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1045                unsigned long addr, pgprot_t newprot)
1046{
1047        struct mm_struct *mm = vma->vm_mm;
1048        int ret = 0;
1049
1050        spin_lock(&mm->page_table_lock);
1051        if (likely(pmd_trans_huge(*pmd))) {
1052                if (unlikely(pmd_trans_splitting(*pmd))) {
1053                        spin_unlock(&mm->page_table_lock);
1054                        wait_split_huge_page(vma->anon_vma, pmd);
1055                } else {
1056                        pmd_t entry;
1057
1058                        entry = pmdp_get_and_clear(mm, addr, pmd);
1059                        entry = pmd_modify(entry, newprot);
1060                        set_pmd_at(mm, addr, pmd, entry);
1061                        spin_unlock(&vma->vm_mm->page_table_lock);
1062                        flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1063                        ret = 1;
1064                }
1065        } else
1066                spin_unlock(&vma->vm_mm->page_table_lock);
1067
1068        return ret;
1069}
1070
1071pmd_t *page_check_address_pmd(struct page *page,
1072                              struct mm_struct *mm,
1073                              unsigned long address,
1074                              enum page_check_address_pmd_flag flag)
1075{
1076        pgd_t *pgd;
1077        pud_t *pud;
1078        pmd_t *pmd, *ret = NULL;
1079
1080        if (address & ~HPAGE_PMD_MASK)
1081                goto out;
1082
1083        pgd = pgd_offset(mm, address);
1084        if (!pgd_present(*pgd))
1085                goto out;
1086
1087        pud = pud_offset(pgd, address);
1088        if (!pud_present(*pud))
1089                goto out;
1090
1091        pmd = pmd_offset(pud, address);
1092        if (pmd_none(*pmd))
1093                goto out;
1094        if (pmd_page(*pmd) != page)
1095                goto out;
1096        /*
1097         * split_vma() may create temporary aliased mappings. There is
1098         * no risk as long as all huge pmd are found and have their
1099         * splitting bit set before __split_huge_page_refcount
1100         * runs. Finding the same huge pmd more than once during the
1101         * same rmap walk is not a problem.
1102         */
1103        if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1104            pmd_trans_splitting(*pmd))
1105                goto out;
1106        if (pmd_trans_huge(*pmd)) {
1107                VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1108                          !pmd_trans_splitting(*pmd));
1109                ret = pmd;
1110        }
1111out:
1112        return ret;
1113}
1114
1115static int __split_huge_page_splitting(struct page *page,
1116                                       struct vm_area_struct *vma,
1117                                       unsigned long address)
1118{
1119        struct mm_struct *mm = vma->vm_mm;
1120        pmd_t *pmd;
1121        int ret = 0;
1122
1123        spin_lock(&mm->page_table_lock);
1124        pmd = page_check_address_pmd(page, mm, address,
1125                                     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1126        if (pmd) {
1127                /*
1128                 * We can't temporarily set the pmd to null in order
1129                 * to split it, the pmd must remain marked huge at all
1130                 * times or the VM won't take the pmd_trans_huge paths
1131                 * and it won't wait on the anon_vma->root->lock to
1132                 * serialize against split_huge_page*.
1133                 */
1134                pmdp_splitting_flush_notify(vma, address, pmd);
1135                ret = 1;
1136        }
1137        spin_unlock(&mm->page_table_lock);
1138
1139        return ret;
1140}
1141
1142static void __split_huge_page_refcount(struct page *page)
1143{
1144        int i;
1145        unsigned long head_index = page->index;
1146        struct zone *zone = page_zone(page);
1147        int zonestat;
1148
1149        /* prevent PageLRU to go away from under us, and freeze lru stats */
1150        spin_lock_irq(&zone->lru_lock);
1151        compound_lock(page);
1152
1153        for (i = 1; i < HPAGE_PMD_NR; i++) {
1154                struct page *page_tail = page + i;
1155
1156                /* tail_page->_count cannot change */
1157                atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1158                BUG_ON(page_count(page) <= 0);
1159                atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1160                BUG_ON(atomic_read(&page_tail->_count) <= 0);
1161
1162                /* after clearing PageTail the gup refcount can be released */
1163                smp_mb();
1164
1165                /*
1166                 * retain hwpoison flag of the poisoned tail page:
1167                 *   fix for the unsuitable process killed on Guest Machine(KVM)
1168                 *   by the memory-failure.
1169                 */
1170                page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1171                page_tail->flags |= (page->flags &
1172                                     ((1L << PG_referenced) |
1173                                      (1L << PG_swapbacked) |
1174                                      (1L << PG_mlocked) |
1175                                      (1L << PG_uptodate)));
1176                page_tail->flags |= (1L << PG_dirty);
1177
1178                /*
1179                 * 1) clear PageTail before overwriting first_page
1180                 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1181                 */
1182                smp_wmb();
1183
1184                /*
1185                 * __split_huge_page_splitting() already set the
1186                 * splitting bit in all pmd that could map this
1187                 * hugepage, that will ensure no CPU can alter the
1188                 * mapcount on the head page. The mapcount is only
1189                 * accounted in the head page and it has to be
1190                 * transferred to all tail pages in the below code. So
1191                 * for this code to be safe, the split the mapcount
1192                 * can't change. But that doesn't mean userland can't
1193                 * keep changing and reading the page contents while
1194                 * we transfer the mapcount, so the pmd splitting
1195                 * status is achieved setting a reserved bit in the
1196                 * pmd, not by clearing the present bit.
1197                */
1198                BUG_ON(page_mapcount(page_tail));
1199                page_tail->_mapcount = page->_mapcount;
1200
1201                BUG_ON(page_tail->mapping);
1202                page_tail->mapping = page->mapping;
1203
1204                page_tail->index = ++head_index;
1205
1206                BUG_ON(!PageAnon(page_tail));
1207                BUG_ON(!PageUptodate(page_tail));
1208                BUG_ON(!PageDirty(page_tail));
1209                BUG_ON(!PageSwapBacked(page_tail));
1210
1211                mem_cgroup_split_huge_fixup(page, page_tail);
1212
1213                lru_add_page_tail(zone, page, page_tail);
1214        }
1215
1216        __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1217        __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1218
1219        /*
1220         * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1221         * so adjust those appropriately if this page is on the LRU.
1222         */
1223        if (PageLRU(page)) {
1224                zonestat = NR_LRU_BASE + page_lru(page);
1225                __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1226        }
1227
1228        ClearPageCompound(page);
1229        compound_unlock(page);
1230        spin_unlock_irq(&zone->lru_lock);
1231
1232        for (i = 1; i < HPAGE_PMD_NR; i++) {
1233                struct page *page_tail = page + i;
1234                BUG_ON(page_count(page_tail) <= 0);
1235                /*
1236                 * Tail pages may be freed if there wasn't any mapping
1237                 * like if add_to_swap() is running on a lru page that
1238                 * had its mapping zapped. And freeing these pages
1239                 * requires taking the lru_lock so we do the put_page
1240                 * of the tail pages after the split is complete.
1241                 */
1242                put_page(page_tail);
1243        }
1244
1245        /*
1246         * Only the head page (now become a regular page) is required
1247         * to be pinned by the caller.
1248         */
1249        BUG_ON(page_count(page) <= 0);
1250}
1251
1252static int __split_huge_page_map(struct page *page,
1253                                 struct vm_area_struct *vma,
1254                                 unsigned long address)
1255{
1256        struct mm_struct *mm = vma->vm_mm;
1257        pmd_t *pmd, _pmd;
1258        int ret = 0, i;
1259        pgtable_t pgtable;
1260        unsigned long haddr;
1261
1262        spin_lock(&mm->page_table_lock);
1263        pmd = page_check_address_pmd(page, mm, address,
1264                                     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1265        if (pmd) {
1266                pgtable = get_pmd_huge_pte(mm);
1267                pmd_populate(mm, &_pmd, pgtable);
1268
1269                for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1270                     i++, haddr += PAGE_SIZE) {
1271                        pte_t *pte, entry;
1272                        BUG_ON(PageCompound(page+i));
1273                        entry = mk_pte(page + i, vma->vm_page_prot);
1274                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1275                        if (!pmd_write(*pmd))
1276                                entry = pte_wrprotect(entry);
1277                        else
1278                                BUG_ON(page_mapcount(page) != 1);
1279                        if (!pmd_young(*pmd))
1280                                entry = pte_mkold(entry);
1281                        pte = pte_offset_map(&_pmd, haddr);
1282                        BUG_ON(!pte_none(*pte));
1283                        set_pte_at(mm, haddr, pte, entry);
1284                        pte_unmap(pte);
1285                }
1286
1287                mm->nr_ptes++;
1288                smp_wmb(); /* make pte visible before pmd */
1289                /*
1290                 * Up to this point the pmd is present and huge and
1291                 * userland has the whole access to the hugepage
1292                 * during the split (which happens in place). If we
1293                 * overwrite the pmd with the not-huge version
1294                 * pointing to the pte here (which of course we could
1295                 * if all CPUs were bug free), userland could trigger
1296                 * a small page size TLB miss on the small sized TLB
1297                 * while the hugepage TLB entry is still established
1298                 * in the huge TLB. Some CPU doesn't like that. See
1299                 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1300                 * Erratum 383 on page 93. Intel should be safe but is
1301                 * also warns that it's only safe if the permission
1302                 * and cache attributes of the two entries loaded in
1303                 * the two TLB is identical (which should be the case
1304                 * here). But it is generally safer to never allow
1305                 * small and huge TLB entries for the same virtual
1306                 * address to be loaded simultaneously. So instead of
1307                 * doing "pmd_populate(); flush_tlb_range();" we first
1308                 * mark the current pmd notpresent (atomically because
1309                 * here the pmd_trans_huge and pmd_trans_splitting
1310                 * must remain set at all times on the pmd until the
1311                 * split is complete for this pmd), then we flush the
1312                 * SMP TLB and finally we write the non-huge version
1313                 * of the pmd entry with pmd_populate.
1314                 */
1315                set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1316                flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1317                pmd_populate(mm, pmd, pgtable);
1318                ret = 1;
1319        }
1320        spin_unlock(&mm->page_table_lock);
1321
1322        return ret;
1323}
1324
1325/* must be called with anon_vma->root->lock hold */
1326static void __split_huge_page(struct page *page,
1327                              struct anon_vma *anon_vma)
1328{
1329        int mapcount, mapcount2;
1330        struct anon_vma_chain *avc;
1331
1332        BUG_ON(!PageHead(page));
1333        BUG_ON(PageTail(page));
1334
1335        mapcount = 0;
1336        list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1337                struct vm_area_struct *vma = avc->vma;
1338                unsigned long addr = vma_address(page, vma);
1339                BUG_ON(is_vma_temporary_stack(vma));
1340                if (addr == -EFAULT)
1341                        continue;
1342                mapcount += __split_huge_page_splitting(page, vma, addr);
1343        }
1344        /*
1345         * It is critical that new vmas are added to the tail of the
1346         * anon_vma list. This guarantes that if copy_huge_pmd() runs
1347         * and establishes a child pmd before
1348         * __split_huge_page_splitting() freezes the parent pmd (so if
1349         * we fail to prevent copy_huge_pmd() from running until the
1350         * whole __split_huge_page() is complete), we will still see
1351         * the newly established pmd of the child later during the
1352         * walk, to be able to set it as pmd_trans_splitting too.
1353         */
1354        if (mapcount != page_mapcount(page))
1355                printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1356                       mapcount, page_mapcount(page));
1357        BUG_ON(mapcount != page_mapcount(page));
1358
1359        __split_huge_page_refcount(page);
1360
1361        mapcount2 = 0;
1362        list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1363                struct vm_area_struct *vma = avc->vma;
1364                unsigned long addr = vma_address(page, vma);
1365                BUG_ON(is_vma_temporary_stack(vma));
1366                if (addr == -EFAULT)
1367                        continue;
1368                mapcount2 += __split_huge_page_map(page, vma, addr);
1369        }
1370        if (mapcount != mapcount2)
1371                printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1372                       mapcount, mapcount2, page_mapcount(page));
1373        BUG_ON(mapcount != mapcount2);
1374}
1375
1376int split_huge_page(struct page *page)
1377{
1378        struct anon_vma *anon_vma;
1379        int ret = 1;
1380
1381        BUG_ON(!PageAnon(page));
1382        anon_vma = page_lock_anon_vma(page);
1383        if (!anon_vma)
1384                goto out;
1385        ret = 0;
1386        if (!PageCompound(page))
1387                goto out_unlock;
1388
1389        BUG_ON(!PageSwapBacked(page));
1390        __split_huge_page(page, anon_vma);
1391
1392        BUG_ON(PageCompound(page));
1393out_unlock:
1394        page_unlock_anon_vma(anon_vma);
1395out:
1396        return ret;
1397}
1398
1399int hugepage_madvise(struct vm_area_struct *vma,
1400                     unsigned long *vm_flags, int advice)
1401{
1402        switch (advice) {
1403        case MADV_HUGEPAGE:
1404                /*
1405                 * Be somewhat over-protective like KSM for now!
1406                 */
1407                if (*vm_flags & (VM_HUGEPAGE |
1408                                 VM_SHARED   | VM_MAYSHARE   |
1409                                 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1410                                 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1411                                 VM_MIXEDMAP | VM_SAO))
1412                        return -EINVAL;
1413                *vm_flags &= ~VM_NOHUGEPAGE;
1414                *vm_flags |= VM_HUGEPAGE;
1415                /*
1416                 * If the vma become good for khugepaged to scan,
1417                 * register it here without waiting a page fault that
1418                 * may not happen any time soon.
1419                 */
1420                if (unlikely(khugepaged_enter_vma_merge(vma)))
1421                        return -ENOMEM;
1422                break;
1423        case MADV_NOHUGEPAGE:
1424                /*
1425                 * Be somewhat over-protective like KSM for now!
1426                 */
1427                if (*vm_flags & (VM_NOHUGEPAGE |
1428                                 VM_SHARED   | VM_MAYSHARE   |
1429                                 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1430                                 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1431                                 VM_MIXEDMAP | VM_SAO))
1432                        return -EINVAL;
1433                *vm_flags &= ~VM_HUGEPAGE;
1434                *vm_flags |= VM_NOHUGEPAGE;
1435                /*
1436                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1437                 * this vma even if we leave the mm registered in khugepaged if
1438                 * it got registered before VM_NOHUGEPAGE was set.
1439                 */
1440                break;
1441        }
1442
1443        return 0;
1444}
1445
1446static int __init khugepaged_slab_init(void)
1447{
1448        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1449                                          sizeof(struct mm_slot),
1450                                          __alignof__(struct mm_slot), 0, NULL);
1451        if (!mm_slot_cache)
1452                return -ENOMEM;
1453
1454        return 0;
1455}
1456
1457static void __init khugepaged_slab_free(void)
1458{
1459        kmem_cache_destroy(mm_slot_cache);
1460        mm_slot_cache = NULL;
1461}
1462
1463static inline struct mm_slot *alloc_mm_slot(void)
1464{
1465        if (!mm_slot_cache)     /* initialization failed */
1466                return NULL;
1467        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1468}
1469
1470static inline void free_mm_slot(struct mm_slot *mm_slot)
1471{
1472        kmem_cache_free(mm_slot_cache, mm_slot);
1473}
1474
1475static int __init mm_slots_hash_init(void)
1476{
1477        mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1478                                GFP_KERNEL);
1479        if (!mm_slots_hash)
1480                return -ENOMEM;
1481        return 0;
1482}
1483
1484#if 0
1485static void __init mm_slots_hash_free(void)
1486{
1487        kfree(mm_slots_hash);
1488        mm_slots_hash = NULL;
1489}
1490#endif
1491
1492static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1493{
1494        struct mm_slot *mm_slot;
1495        struct hlist_head *bucket;
1496        struct hlist_node *node;
1497
1498        bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1499                                % MM_SLOTS_HASH_HEADS];
1500        hlist_for_each_entry(mm_slot, node, bucket, hash) {
1501                if (mm == mm_slot->mm)
1502                        return mm_slot;
1503        }
1504        return NULL;
1505}
1506
1507static void insert_to_mm_slots_hash(struct mm_struct *mm,
1508                                    struct mm_slot *mm_slot)
1509{
1510        struct hlist_head *bucket;
1511
1512        bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1513                                % MM_SLOTS_HASH_HEADS];
1514        mm_slot->mm = mm;
1515        hlist_add_head(&mm_slot->hash, bucket);
1516}
1517
1518static inline int khugepaged_test_exit(struct mm_struct *mm)
1519{
1520        return atomic_read(&mm->mm_users) == 0;
1521}
1522
1523int __khugepaged_enter(struct mm_struct *mm)
1524{
1525        struct mm_slot *mm_slot;
1526        int wakeup;
1527
1528        mm_slot = alloc_mm_slot();
1529        if (!mm_slot)
1530                return -ENOMEM;
1531
1532        /* __khugepaged_exit() must not run from under us */
1533        VM_BUG_ON(khugepaged_test_exit(mm));
1534        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1535                free_mm_slot(mm_slot);
1536                return 0;
1537        }
1538
1539        spin_lock(&khugepaged_mm_lock);
1540        insert_to_mm_slots_hash(mm, mm_slot);
1541        /*
1542         * Insert just behind the scanning cursor, to let the area settle
1543         * down a little.
1544         */
1545        wakeup = list_empty(&khugepaged_scan.mm_head);
1546        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1547        spin_unlock(&khugepaged_mm_lock);
1548
1549        atomic_inc(&mm->mm_count);
1550        if (wakeup)
1551                wake_up_interruptible(&khugepaged_wait);
1552
1553        return 0;
1554}
1555
1556int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1557{
1558        unsigned long hstart, hend;
1559        if (!vma->anon_vma)
1560                /*
1561                 * Not yet faulted in so we will register later in the
1562                 * page fault if needed.
1563                 */
1564                return 0;
1565        if (vma->vm_file || vma->vm_ops)
1566                /* khugepaged not yet working on file or special mappings */
1567                return 0;
1568        VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1569        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1570        hend = vma->vm_end & HPAGE_PMD_MASK;
1571        if (hstart < hend)
1572                return khugepaged_enter(vma);
1573        return 0;
1574}
1575
1576void __khugepaged_exit(struct mm_struct *mm)
1577{
1578        struct mm_slot *mm_slot;
1579        int free = 0;
1580
1581        spin_lock(&khugepaged_mm_lock);
1582        mm_slot = get_mm_slot(mm);
1583        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1584                hlist_del(&mm_slot->hash);
1585                list_del(&mm_slot->mm_node);
1586                free = 1;
1587        }
1588
1589        if (free) {
1590                spin_unlock(&khugepaged_mm_lock);
1591                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1592                free_mm_slot(mm_slot);
1593                mmdrop(mm);
1594        } else if (mm_slot) {
1595                spin_unlock(&khugepaged_mm_lock);
1596                /*
1597                 * This is required to serialize against
1598                 * khugepaged_test_exit() (which is guaranteed to run
1599                 * under mmap sem read mode). Stop here (after we
1600                 * return all pagetables will be destroyed) until
1601                 * khugepaged has finished working on the pagetables
1602                 * under the mmap_sem.
1603                 */
1604                down_write(&mm->mmap_sem);
1605                up_write(&mm->mmap_sem);
1606        } else
1607                spin_unlock(&khugepaged_mm_lock);
1608}
1609
1610static void release_pte_page(struct page *page)
1611{
1612        /* 0 stands for page_is_file_cache(page) == false */
1613        dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1614        unlock_page(page);
1615        putback_lru_page(page);
1616}
1617
1618static void release_pte_pages(pte_t *pte, pte_t *_pte)
1619{
1620        while (--_pte >= pte) {
1621                pte_t pteval = *_pte;
1622                if (!pte_none(pteval))
1623                        release_pte_page(pte_page(pteval));
1624        }
1625}
1626
1627static void release_all_pte_pages(pte_t *pte)
1628{
1629        release_pte_pages(pte, pte + HPAGE_PMD_NR);
1630}
1631
1632static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1633                                        unsigned long address,
1634                                        pte_t *pte)
1635{
1636        struct page *page;
1637        pte_t *_pte;
1638        int referenced = 0, isolated = 0, none = 0;
1639        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1640             _pte++, address += PAGE_SIZE) {
1641                pte_t pteval = *_pte;
1642                if (pte_none(pteval)) {
1643                        if (++none <= khugepaged_max_ptes_none)
1644                                continue;
1645                        else {
1646                                release_pte_pages(pte, _pte);
1647                                goto out;
1648                        }
1649                }
1650                if (!pte_present(pteval) || !pte_write(pteval)) {
1651                        release_pte_pages(pte, _pte);
1652                        goto out;
1653                }
1654                page = vm_normal_page(vma, address, pteval);
1655                if (unlikely(!page)) {
1656                        release_pte_pages(pte, _pte);
1657                        goto out;
1658                }
1659                VM_BUG_ON(PageCompound(page));
1660                BUG_ON(!PageAnon(page));
1661                VM_BUG_ON(!PageSwapBacked(page));
1662
1663                /* cannot use mapcount: can't collapse if there's a gup pin */
1664                if (page_count(page) != 1) {
1665                        release_pte_pages(pte, _pte);
1666                        goto out;
1667                }
1668                /*
1669                 * We can do it before isolate_lru_page because the
1670                 * page can't be freed from under us. NOTE: PG_lock
1671                 * is needed to serialize against split_huge_page
1672                 * when invoked from the VM.
1673                 */
1674                if (!trylock_page(page)) {
1675                        release_pte_pages(pte, _pte);
1676                        goto out;
1677                }
1678                /*
1679                 * Isolate the page to avoid collapsing an hugepage
1680                 * currently in use by the VM.
1681                 */
1682                if (isolate_lru_page(page)) {
1683                        unlock_page(page);
1684                        release_pte_pages(pte, _pte);
1685                        goto out;
1686                }
1687                /* 0 stands for page_is_file_cache(page) == false */
1688                inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1689                VM_BUG_ON(!PageLocked(page));
1690                VM_BUG_ON(PageLRU(page));
1691
1692                /* If there is no mapped pte young don't collapse the page */
1693                if (pte_young(pteval) || PageReferenced(page) ||
1694                    mmu_notifier_test_young(vma->vm_mm, address))
1695                        referenced = 1;
1696        }
1697        if (unlikely(!referenced))
1698                release_all_pte_pages(pte);
1699        else
1700                isolated = 1;
1701out:
1702        return isolated;
1703}
1704
1705static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1706                                      struct vm_area_struct *vma,
1707                                      unsigned long address,
1708                                      spinlock_t *ptl)
1709{
1710        pte_t *_pte;
1711        for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1712                pte_t pteval = *_pte;
1713                struct page *src_page;
1714
1715                if (pte_none(pteval)) {
1716                        clear_user_highpage(page, address);
1717                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1718                } else {
1719                        src_page = pte_page(pteval);
1720                        copy_user_highpage(page, src_page, address, vma);
1721                        VM_BUG_ON(page_mapcount(src_page) != 1);
1722                        VM_BUG_ON(page_count(src_page) != 2);
1723                        release_pte_page(src_page);
1724                        /*
1725                         * ptl mostly unnecessary, but preempt has to
1726                         * be disabled to update the per-cpu stats
1727                         * inside page_remove_rmap().
1728                         */
1729                        spin_lock(ptl);
1730                        /*
1731                         * paravirt calls inside pte_clear here are
1732                         * superfluous.
1733                         */
1734                        pte_clear(vma->vm_mm, address, _pte);
1735                        page_remove_rmap(src_page);
1736                        spin_unlock(ptl);
1737                        free_page_and_swap_cache(src_page);
1738                }
1739
1740                address += PAGE_SIZE;
1741                page++;
1742        }
1743}
1744
1745static void collapse_huge_page(struct mm_struct *mm,
1746                               unsigned long address,
1747                               struct page **hpage,
1748                               struct vm_area_struct *vma,
1749                               int node)
1750{
1751        pgd_t *pgd;
1752        pud_t *pud;
1753        pmd_t *pmd, _pmd;
1754        pte_t *pte;
1755        pgtable_t pgtable;
1756        struct page *new_page;
1757        spinlock_t *ptl;
1758        int isolated;
1759        unsigned long hstart, hend;
1760
1761        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1762#ifndef CONFIG_NUMA
1763        VM_BUG_ON(!*hpage);
1764        new_page = *hpage;
1765        if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1766                up_read(&mm->mmap_sem);
1767                return;
1768        }
1769#else
1770        VM_BUG_ON(*hpage);
1771        /*
1772         * Allocate the page while the vma is still valid and under
1773         * the mmap_sem read mode so there is no memory allocation
1774         * later when we take the mmap_sem in write mode. This is more
1775         * friendly behavior (OTOH it may actually hide bugs) to
1776         * filesystems in userland with daemons allocating memory in
1777         * the userland I/O paths.  Allocating memory with the
1778         * mmap_sem in read mode is good idea also to allow greater
1779         * scalability.
1780         */
1781        new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1782                                      node);
1783        if (unlikely(!new_page)) {
1784                up_read(&mm->mmap_sem);
1785                *hpage = ERR_PTR(-ENOMEM);
1786                return;
1787        }
1788        if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1789                up_read(&mm->mmap_sem);
1790                put_page(new_page);
1791                return;
1792        }
1793#endif
1794
1795        /* after allocating the hugepage upgrade to mmap_sem write mode */
1796        up_read(&mm->mmap_sem);
1797
1798        /*
1799         * Prevent all access to pagetables with the exception of
1800         * gup_fast later hanlded by the ptep_clear_flush and the VM
1801         * handled by the anon_vma lock + PG_lock.
1802         */
1803        down_write(&mm->mmap_sem);
1804        if (unlikely(khugepaged_test_exit(mm)))
1805                goto out;
1806
1807        vma = find_vma(mm, address);
1808        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1809        hend = vma->vm_end & HPAGE_PMD_MASK;
1810        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1811                goto out;
1812
1813        if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1814            (vma->vm_flags & VM_NOHUGEPAGE))
1815                goto out;
1816
1817        /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1818        if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1819                goto out;
1820        if (is_vma_temporary_stack(vma))
1821                goto out;
1822        VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1823
1824        pgd = pgd_offset(mm, address);
1825        if (!pgd_present(*pgd))
1826                goto out;
1827
1828        pud = pud_offset(pgd, address);
1829        if (!pud_present(*pud))
1830                goto out;
1831
1832        pmd = pmd_offset(pud, address);
1833        /* pmd can't go away or become huge under us */
1834        if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1835                goto out;
1836
1837        anon_vma_lock(vma->anon_vma);
1838
1839        pte = pte_offset_map(pmd, address);
1840        ptl = pte_lockptr(mm, pmd);
1841
1842        spin_lock(&mm->page_table_lock); /* probably unnecessary */
1843        /*
1844         * After this gup_fast can't run anymore. This also removes
1845         * any huge TLB entry from the CPU so we won't allow
1846         * huge and small TLB entries for the same virtual address
1847         * to avoid the risk of CPU bugs in that area.
1848         */
1849        _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1850        spin_unlock(&mm->page_table_lock);
1851
1852        spin_lock(ptl);
1853        isolated = __collapse_huge_page_isolate(vma, address, pte);
1854        spin_unlock(ptl);
1855
1856        if (unlikely(!isolated)) {
1857                pte_unmap(pte);
1858                spin_lock(&mm->page_table_lock);
1859                BUG_ON(!pmd_none(*pmd));
1860                set_pmd_at(mm, address, pmd, _pmd);
1861                spin_unlock(&mm->page_table_lock);
1862                anon_vma_unlock(vma->anon_vma);
1863                goto out;
1864        }
1865
1866        /*
1867         * All pages are isolated and locked so anon_vma rmap
1868         * can't run anymore.
1869         */
1870        anon_vma_unlock(vma->anon_vma);
1871
1872        __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1873        pte_unmap(pte);
1874        __SetPageUptodate(new_page);
1875        pgtable = pmd_pgtable(_pmd);
1876        VM_BUG_ON(page_count(pgtable) != 1);
1877        VM_BUG_ON(page_mapcount(pgtable) != 0);
1878
1879        _pmd = mk_pmd(new_page, vma->vm_page_prot);
1880        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1881        _pmd = pmd_mkhuge(_pmd);
1882
1883        /*
1884         * spin_lock() below is not the equivalent of smp_wmb(), so
1885         * this is needed to avoid the copy_huge_page writes to become
1886         * visible after the set_pmd_at() write.
1887         */
1888        smp_wmb();
1889
1890        spin_lock(&mm->page_table_lock);
1891        BUG_ON(!pmd_none(*pmd));
1892        page_add_new_anon_rmap(new_page, vma, address);
1893        set_pmd_at(mm, address, pmd, _pmd);
1894        update_mmu_cache(vma, address, entry);
1895        prepare_pmd_huge_pte(pgtable, mm);
1896        mm->nr_ptes--;
1897        spin_unlock(&mm->page_table_lock);
1898
1899#ifndef CONFIG_NUMA
1900        *hpage = NULL;
1901#endif
1902        khugepaged_pages_collapsed++;
1903out_up_write:
1904        up_write(&mm->mmap_sem);
1905        return;
1906
1907out:
1908        mem_cgroup_uncharge_page(new_page);
1909#ifdef CONFIG_NUMA
1910        put_page(new_page);
1911#endif
1912        goto out_up_write;
1913}
1914
1915static int khugepaged_scan_pmd(struct mm_struct *mm,
1916                               struct vm_area_struct *vma,
1917                               unsigned long address,
1918                               struct page **hpage)
1919{
1920        pgd_t *pgd;
1921        pud_t *pud;
1922        pmd_t *pmd;
1923        pte_t *pte, *_pte;
1924        int ret = 0, referenced = 0, none = 0;
1925        struct page *page;
1926        unsigned long _address;
1927        spinlock_t *ptl;
1928        int node = -1;
1929
1930        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1931
1932        pgd = pgd_offset(mm, address);
1933        if (!pgd_present(*pgd))
1934                goto out;
1935
1936        pud = pud_offset(pgd, address);
1937        if (!pud_present(*pud))
1938                goto out;
1939
1940        pmd = pmd_offset(pud, address);
1941        if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1942                goto out;
1943
1944        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1945        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1946             _pte++, _address += PAGE_SIZE) {
1947                pte_t pteval = *_pte;
1948                if (pte_none(pteval)) {
1949                        if (++none <= khugepaged_max_ptes_none)
1950                                continue;
1951                        else
1952                                goto out_unmap;
1953                }
1954                if (!pte_present(pteval) || !pte_write(pteval))
1955                        goto out_unmap;
1956                page = vm_normal_page(vma, _address, pteval);
1957                if (unlikely(!page))
1958                        goto out_unmap;
1959                /*
1960                 * Chose the node of the first page. This could
1961                 * be more sophisticated and look at more pages,
1962                 * but isn't for now.
1963                 */
1964                if (node == -1)
1965                        node = page_to_nid(page);
1966                VM_BUG_ON(PageCompound(page));
1967                if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1968                        goto out_unmap;
1969                /* cannot use mapcount: can't collapse if there's a gup pin */
1970                if (page_count(page) != 1)
1971                        goto out_unmap;
1972                if (pte_young(pteval) || PageReferenced(page) ||
1973                    mmu_notifier_test_young(vma->vm_mm, address))
1974                        referenced = 1;
1975        }
1976        if (referenced)
1977                ret = 1;
1978out_unmap:
1979        pte_unmap_unlock(pte, ptl);
1980        if (ret)
1981                /* collapse_huge_page will return with the mmap_sem released */
1982                collapse_huge_page(mm, address, hpage, vma, node);
1983out:
1984        return ret;
1985}
1986
1987static void collect_mm_slot(struct mm_slot *mm_slot)
1988{
1989        struct mm_struct *mm = mm_slot->mm;
1990
1991        VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1992
1993        if (khugepaged_test_exit(mm)) {
1994                /* free mm_slot */
1995                hlist_del(&mm_slot->hash);
1996                list_del(&mm_slot->mm_node);
1997
1998                /*
1999                 * Not strictly needed because the mm exited already.
2000                 *
2001                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2002                 */
2003
2004                /* khugepaged_mm_lock actually not necessary for the below */
2005                free_mm_slot(mm_slot);
2006                mmdrop(mm);
2007        }
2008}
2009
2010static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2011                                            struct page **hpage)
2012{
2013        struct mm_slot *mm_slot;
2014        struct mm_struct *mm;
2015        struct vm_area_struct *vma;
2016        int progress = 0;
2017
2018        VM_BUG_ON(!pages);
2019        VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2020
2021        if (khugepaged_scan.mm_slot)
2022                mm_slot = khugepaged_scan.mm_slot;
2023        else {
2024                mm_slot = list_entry(khugepaged_scan.mm_head.next,
2025                                     struct mm_slot, mm_node);
2026                khugepaged_scan.address = 0;
2027                khugepaged_scan.mm_slot = mm_slot;
2028        }
2029        spin_unlock(&khugepaged_mm_lock);
2030
2031        mm = mm_slot->mm;
2032        down_read(&mm->mmap_sem);
2033        if (unlikely(khugepaged_test_exit(mm)))
2034                vma = NULL;
2035        else
2036                vma = find_vma(mm, khugepaged_scan.address);
2037
2038        progress++;
2039        for (; vma; vma = vma->vm_next) {
2040                unsigned long hstart, hend;
2041
2042                cond_resched();
2043                if (unlikely(khugepaged_test_exit(mm))) {
2044                        progress++;
2045                        break;
2046                }
2047
2048                if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2049                     !khugepaged_always()) ||
2050                    (vma->vm_flags & VM_NOHUGEPAGE)) {
2051                skip:
2052                        progress++;
2053                        continue;
2054                }
2055                /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
2056                if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
2057                        goto skip;
2058                if (is_vma_temporary_stack(vma))
2059                        goto skip;
2060
2061                VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
2062
2063                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2064                hend = vma->vm_end & HPAGE_PMD_MASK;
2065                if (hstart >= hend)
2066                        goto skip;
2067                if (khugepaged_scan.address > hend)
2068                        goto skip;
2069                if (khugepaged_scan.address < hstart)
2070                        khugepaged_scan.address = hstart;
2071                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2072
2073                while (khugepaged_scan.address < hend) {
2074                        int ret;
2075                        cond_resched();
2076                        if (unlikely(khugepaged_test_exit(mm)))
2077                                goto breakouterloop;
2078
2079                        VM_BUG_ON(khugepaged_scan.address < hstart ||
2080                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
2081                                  hend);
2082                        ret = khugepaged_scan_pmd(mm, vma,
2083                                                  khugepaged_scan.address,
2084                                                  hpage);
2085                        /* move to next address */
2086                        khugepaged_scan.address += HPAGE_PMD_SIZE;
2087                        progress += HPAGE_PMD_NR;
2088                        if (ret)
2089                                /* we released mmap_sem so break loop */
2090                                goto breakouterloop_mmap_sem;
2091                        if (progress >= pages)
2092                                goto breakouterloop;
2093                }
2094        }
2095breakouterloop:
2096        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2097breakouterloop_mmap_sem:
2098
2099        spin_lock(&khugepaged_mm_lock);
2100        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2101        /*
2102         * Release the current mm_slot if this mm is about to die, or
2103         * if we scanned all vmas of this mm.
2104         */
2105        if (khugepaged_test_exit(mm) || !vma) {
2106                /*
2107                 * Make sure that if mm_users is reaching zero while
2108                 * khugepaged runs here, khugepaged_exit will find
2109                 * mm_slot not pointing to the exiting mm.
2110                 */
2111                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2112                        khugepaged_scan.mm_slot = list_entry(
2113                                mm_slot->mm_node.next,
2114                                struct mm_slot, mm_node);
2115                        khugepaged_scan.address = 0;
2116                } else {
2117                        khugepaged_scan.mm_slot = NULL;
2118                        khugepaged_full_scans++;
2119                }
2120
2121                collect_mm_slot(mm_slot);
2122        }
2123
2124        return progress;
2125}
2126
2127static int khugepaged_has_work(void)
2128{
2129        return !list_empty(&khugepaged_scan.mm_head) &&
2130                khugepaged_enabled();
2131}
2132
2133static int khugepaged_wait_event(void)
2134{
2135        return !list_empty(&khugepaged_scan.mm_head) ||
2136                !khugepaged_enabled();
2137}
2138
2139static void khugepaged_do_scan(struct page **hpage)
2140{
2141        unsigned int progress = 0, pass_through_head = 0;
2142        unsigned int pages = khugepaged_pages_to_scan;
2143
2144        barrier(); /* write khugepaged_pages_to_scan to local stack */
2145
2146        while (progress < pages) {
2147                cond_resched();
2148
2149#ifndef CONFIG_NUMA
2150                if (!*hpage) {
2151                        *hpage = alloc_hugepage(khugepaged_defrag());
2152                        if (unlikely(!*hpage))
2153                                break;
2154                }
2155#else
2156                if (IS_ERR(*hpage))
2157                        break;
2158#endif
2159
2160                if (unlikely(kthread_should_stop() || freezing(current)))
2161                        break;
2162
2163                spin_lock(&khugepaged_mm_lock);
2164                if (!khugepaged_scan.mm_slot)
2165                        pass_through_head++;
2166                if (khugepaged_has_work() &&
2167                    pass_through_head < 2)
2168                        progress += khugepaged_scan_mm_slot(pages - progress,
2169                                                            hpage);
2170                else
2171                        progress = pages;
2172                spin_unlock(&khugepaged_mm_lock);
2173        }
2174}
2175
2176static void khugepaged_alloc_sleep(void)
2177{
2178        DEFINE_WAIT(wait);
2179        add_wait_queue(&khugepaged_wait, &wait);
2180        schedule_timeout_interruptible(
2181                msecs_to_jiffies(
2182                        khugepaged_alloc_sleep_millisecs));
2183        remove_wait_queue(&khugepaged_wait, &wait);
2184}
2185
2186#ifndef CONFIG_NUMA
2187static struct page *khugepaged_alloc_hugepage(void)
2188{
2189        struct page *hpage;
2190
2191        do {
2192                hpage = alloc_hugepage(khugepaged_defrag());
2193                if (!hpage)
2194                        khugepaged_alloc_sleep();
2195        } while (unlikely(!hpage) &&
2196                 likely(khugepaged_enabled()));
2197        return hpage;
2198}
2199#endif
2200
2201static void khugepaged_loop(void)
2202{
2203        struct page *hpage;
2204
2205#ifdef CONFIG_NUMA
2206        hpage = NULL;
2207#endif
2208        while (likely(khugepaged_enabled())) {
2209#ifndef CONFIG_NUMA
2210                hpage = khugepaged_alloc_hugepage();
2211                if (unlikely(!hpage))
2212                        break;
2213#else
2214                if (IS_ERR(hpage)) {
2215                        khugepaged_alloc_sleep();
2216                        hpage = NULL;
2217                }
2218#endif
2219
2220                khugepaged_do_scan(&hpage);
2221#ifndef CONFIG_NUMA
2222                if (hpage)
2223                        put_page(hpage);
2224#endif
2225                try_to_freeze();
2226                if (unlikely(kthread_should_stop()))
2227                        break;
2228                if (khugepaged_has_work()) {
2229                        DEFINE_WAIT(wait);
2230                        if (!khugepaged_scan_sleep_millisecs)
2231                                continue;
2232                        add_wait_queue(&khugepaged_wait, &wait);
2233                        schedule_timeout_interruptible(
2234                                msecs_to_jiffies(
2235                                        khugepaged_scan_sleep_millisecs));
2236                        remove_wait_queue(&khugepaged_wait, &wait);
2237                } else if (khugepaged_enabled())
2238                        wait_event_freezable(khugepaged_wait,
2239                                             khugepaged_wait_event());
2240        }
2241}
2242
2243static int khugepaged(void *none)
2244{
2245        struct mm_slot *mm_slot;
2246
2247        set_freezable();
2248        set_user_nice(current, 19);
2249
2250        /* serialize with start_khugepaged() */
2251        mutex_lock(&khugepaged_mutex);
2252
2253        for (;;) {
2254                mutex_unlock(&khugepaged_mutex);
2255                VM_BUG_ON(khugepaged_thread != current);
2256                khugepaged_loop();
2257                VM_BUG_ON(khugepaged_thread != current);
2258
2259                mutex_lock(&khugepaged_mutex);
2260                if (!khugepaged_enabled())
2261                        break;
2262                if (unlikely(kthread_should_stop()))
2263                        break;
2264        }
2265
2266        spin_lock(&khugepaged_mm_lock);
2267        mm_slot = khugepaged_scan.mm_slot;
2268        khugepaged_scan.mm_slot = NULL;
2269        if (mm_slot)
2270                collect_mm_slot(mm_slot);
2271        spin_unlock(&khugepaged_mm_lock);
2272
2273        khugepaged_thread = NULL;
2274        mutex_unlock(&khugepaged_mutex);
2275
2276        return 0;
2277}
2278
2279void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2280{
2281        struct page *page;
2282
2283        spin_lock(&mm->page_table_lock);
2284        if (unlikely(!pmd_trans_huge(*pmd))) {
2285                spin_unlock(&mm->page_table_lock);
2286                return;
2287        }
2288        page = pmd_page(*pmd);
2289        VM_BUG_ON(!page_count(page));
2290        get_page(page);
2291        spin_unlock(&mm->page_table_lock);
2292
2293        split_huge_page(page);
2294
2295        put_page(page);
2296        BUG_ON(pmd_trans_huge(*pmd));
2297}
2298
2299static void split_huge_page_address(struct mm_struct *mm,
2300                                    unsigned long address)
2301{
2302        pgd_t *pgd;
2303        pud_t *pud;
2304        pmd_t *pmd;
2305
2306        VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2307
2308        pgd = pgd_offset(mm, address);
2309        if (!pgd_present(*pgd))
2310                return;
2311
2312        pud = pud_offset(pgd, address);
2313        if (!pud_present(*pud))
2314                return;
2315
2316        pmd = pmd_offset(pud, address);
2317        if (!pmd_present(*pmd))
2318                return;
2319        /*
2320         * Caller holds the mmap_sem write mode, so a huge pmd cannot
2321         * materialize from under us.
2322         */
2323        split_huge_page_pmd(mm, pmd);
2324}
2325
2326void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2327                             unsigned long start,
2328                             unsigned long end,
2329                             long adjust_next)
2330{
2331        /*
2332         * If the new start address isn't hpage aligned and it could
2333         * previously contain an hugepage: check if we need to split
2334         * an huge pmd.
2335         */
2336        if (start & ~HPAGE_PMD_MASK &&
2337            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2338            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2339                split_huge_page_address(vma->vm_mm, start);
2340
2341        /*
2342         * If the new end address isn't hpage aligned and it could
2343         * previously contain an hugepage: check if we need to split
2344         * an huge pmd.
2345         */
2346        if (end & ~HPAGE_PMD_MASK &&
2347            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2348            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2349                split_huge_page_address(vma->vm_mm, end);
2350
2351        /*
2352         * If we're also updating the vma->vm_next->vm_start, if the new
2353         * vm_next->vm_start isn't page aligned and it could previously
2354         * contain an hugepage: check if we need to split an huge pmd.
2355         */
2356        if (adjust_next > 0) {
2357                struct vm_area_struct *next = vma->vm_next;
2358                unsigned long nstart = next->vm_start;
2359                nstart += adjust_next << PAGE_SHIFT;
2360                if (nstart & ~HPAGE_PMD_MASK &&
2361                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2362                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2363                        split_huge_page_address(next->vm_mm, nstart);
2364        }
2365}
2366