linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
  60
  61#include <asm/io.h>
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
  68#include "internal.h"
  69
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
  72unsigned long max_mapnr;
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100                                        1;
 101#else
 102                                        2;
 103#endif
 104
 105static int __init disable_randmaps(char *s)
 106{
 107        randomize_va_space = 0;
 108        return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121        return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
 129{
 130        int i;
 131
 132        for (i = 0; i < NR_MM_COUNTERS; i++) {
 133                if (task->rss_stat.count[i]) {
 134                        add_mm_counter(mm, i, task->rss_stat.count[i]);
 135                        task->rss_stat.count[i] = 0;
 136                }
 137        }
 138        task->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143        struct task_struct *task = current;
 144
 145        if (likely(task->mm == mm))
 146                task->rss_stat.count[member] += val;
 147        else
 148                add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH  (64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157        if (unlikely(task != current))
 158                return;
 159        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160                __sync_task_rss_stat(task, task->mm);
 161}
 162
 163unsigned long get_mm_counter(struct mm_struct *mm, int member)
 164{
 165        long val = 0;
 166
 167        /*
 168         * Don't use task->mm here...for avoiding to use task_get_mm()..
 169         * The caller must guarantee task->mm is not invalid.
 170         */
 171        val = atomic_long_read(&mm->rss_stat.count[member]);
 172        /*
 173         * counter is updated in asynchronous manner and may go to minus.
 174         * But it's never be expected number for users.
 175         */
 176        if (val < 0)
 177                return 0;
 178        return (unsigned long)val;
 179}
 180
 181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
 182{
 183        __sync_task_rss_stat(task, mm);
 184}
 185#else
 186
 187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 189
 190static void check_sync_rss_stat(struct task_struct *task)
 191{
 192}
 193
 194#endif
 195
 196/*
 197 * If a p?d_bad entry is found while walking page tables, report
 198 * the error, before resetting entry to p?d_none.  Usually (but
 199 * very seldom) called out from the p?d_none_or_clear_bad macros.
 200 */
 201
 202void pgd_clear_bad(pgd_t *pgd)
 203{
 204        pgd_ERROR(*pgd);
 205        pgd_clear(pgd);
 206}
 207
 208void pud_clear_bad(pud_t *pud)
 209{
 210        pud_ERROR(*pud);
 211        pud_clear(pud);
 212}
 213
 214void pmd_clear_bad(pmd_t *pmd)
 215{
 216        pmd_ERROR(*pmd);
 217        pmd_clear(pmd);
 218}
 219
 220/*
 221 * Note: this doesn't free the actual pages themselves. That
 222 * has been handled earlier when unmapping all the memory regions.
 223 */
 224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 225                           unsigned long addr)
 226{
 227        pgtable_t token = pmd_pgtable(*pmd);
 228        pmd_clear(pmd);
 229        pte_free_tlb(tlb, token, addr);
 230        tlb->mm->nr_ptes--;
 231}
 232
 233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 234                                unsigned long addr, unsigned long end,
 235                                unsigned long floor, unsigned long ceiling)
 236{
 237        pmd_t *pmd;
 238        unsigned long next;
 239        unsigned long start;
 240
 241        start = addr;
 242        pmd = pmd_offset(pud, addr);
 243        do {
 244                next = pmd_addr_end(addr, end);
 245                if (pmd_none_or_clear_bad(pmd))
 246                        continue;
 247                free_pte_range(tlb, pmd, addr);
 248        } while (pmd++, addr = next, addr != end);
 249
 250        start &= PUD_MASK;
 251        if (start < floor)
 252                return;
 253        if (ceiling) {
 254                ceiling &= PUD_MASK;
 255                if (!ceiling)
 256                        return;
 257        }
 258        if (end - 1 > ceiling - 1)
 259                return;
 260
 261        pmd = pmd_offset(pud, start);
 262        pud_clear(pud);
 263        pmd_free_tlb(tlb, pmd, start);
 264}
 265
 266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 267                                unsigned long addr, unsigned long end,
 268                                unsigned long floor, unsigned long ceiling)
 269{
 270        pud_t *pud;
 271        unsigned long next;
 272        unsigned long start;
 273
 274        start = addr;
 275        pud = pud_offset(pgd, addr);
 276        do {
 277                next = pud_addr_end(addr, end);
 278                if (pud_none_or_clear_bad(pud))
 279                        continue;
 280                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 281        } while (pud++, addr = next, addr != end);
 282
 283        start &= PGDIR_MASK;
 284        if (start < floor)
 285                return;
 286        if (ceiling) {
 287                ceiling &= PGDIR_MASK;
 288                if (!ceiling)
 289                        return;
 290        }
 291        if (end - 1 > ceiling - 1)
 292                return;
 293
 294        pud = pud_offset(pgd, start);
 295        pgd_clear(pgd);
 296        pud_free_tlb(tlb, pud, start);
 297}
 298
 299/*
 300 * This function frees user-level page tables of a process.
 301 *
 302 * Must be called with pagetable lock held.
 303 */
 304void free_pgd_range(struct mmu_gather *tlb,
 305                        unsigned long addr, unsigned long end,
 306                        unsigned long floor, unsigned long ceiling)
 307{
 308        pgd_t *pgd;
 309        unsigned long next;
 310
 311        /*
 312         * The next few lines have given us lots of grief...
 313         *
 314         * Why are we testing PMD* at this top level?  Because often
 315         * there will be no work to do at all, and we'd prefer not to
 316         * go all the way down to the bottom just to discover that.
 317         *
 318         * Why all these "- 1"s?  Because 0 represents both the bottom
 319         * of the address space and the top of it (using -1 for the
 320         * top wouldn't help much: the masks would do the wrong thing).
 321         * The rule is that addr 0 and floor 0 refer to the bottom of
 322         * the address space, but end 0 and ceiling 0 refer to the top
 323         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 324         * that end 0 case should be mythical).
 325         *
 326         * Wherever addr is brought up or ceiling brought down, we must
 327         * be careful to reject "the opposite 0" before it confuses the
 328         * subsequent tests.  But what about where end is brought down
 329         * by PMD_SIZE below? no, end can't go down to 0 there.
 330         *
 331         * Whereas we round start (addr) and ceiling down, by different
 332         * masks at different levels, in order to test whether a table
 333         * now has no other vmas using it, so can be freed, we don't
 334         * bother to round floor or end up - the tests don't need that.
 335         */
 336
 337        addr &= PMD_MASK;
 338        if (addr < floor) {
 339                addr += PMD_SIZE;
 340                if (!addr)
 341                        return;
 342        }
 343        if (ceiling) {
 344                ceiling &= PMD_MASK;
 345                if (!ceiling)
 346                        return;
 347        }
 348        if (end - 1 > ceiling - 1)
 349                end -= PMD_SIZE;
 350        if (addr > end - 1)
 351                return;
 352
 353        pgd = pgd_offset(tlb->mm, addr);
 354        do {
 355                next = pgd_addr_end(addr, end);
 356                if (pgd_none_or_clear_bad(pgd))
 357                        continue;
 358                free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 359        } while (pgd++, addr = next, addr != end);
 360}
 361
 362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 363                unsigned long floor, unsigned long ceiling)
 364{
 365        while (vma) {
 366                struct vm_area_struct *next = vma->vm_next;
 367                unsigned long addr = vma->vm_start;
 368
 369                /*
 370                 * Hide vma from rmap and truncate_pagecache before freeing
 371                 * pgtables
 372                 */
 373                unlink_anon_vmas(vma);
 374                unlink_file_vma(vma);
 375
 376                if (is_vm_hugetlb_page(vma)) {
 377                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 378                                floor, next? next->vm_start: ceiling);
 379                } else {
 380                        /*
 381                         * Optimization: gather nearby vmas into one call down
 382                         */
 383                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 384                               && !is_vm_hugetlb_page(next)) {
 385                                vma = next;
 386                                next = vma->vm_next;
 387                                unlink_anon_vmas(vma);
 388                                unlink_file_vma(vma);
 389                        }
 390                        free_pgd_range(tlb, addr, vma->vm_end,
 391                                floor, next? next->vm_start: ceiling);
 392                }
 393                vma = next;
 394        }
 395}
 396
 397int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 398                pmd_t *pmd, unsigned long address)
 399{
 400        pgtable_t new = pte_alloc_one(mm, address);
 401        int wait_split_huge_page;
 402        if (!new)
 403                return -ENOMEM;
 404
 405        /*
 406         * Ensure all pte setup (eg. pte page lock and page clearing) are
 407         * visible before the pte is made visible to other CPUs by being
 408         * put into page tables.
 409         *
 410         * The other side of the story is the pointer chasing in the page
 411         * table walking code (when walking the page table without locking;
 412         * ie. most of the time). Fortunately, these data accesses consist
 413         * of a chain of data-dependent loads, meaning most CPUs (alpha
 414         * being the notable exception) will already guarantee loads are
 415         * seen in-order. See the alpha page table accessors for the
 416         * smp_read_barrier_depends() barriers in page table walking code.
 417         */
 418        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 419
 420        spin_lock(&mm->page_table_lock);
 421        wait_split_huge_page = 0;
 422        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 423                mm->nr_ptes++;
 424                pmd_populate(mm, pmd, new);
 425                new = NULL;
 426        } else if (unlikely(pmd_trans_splitting(*pmd)))
 427                wait_split_huge_page = 1;
 428        spin_unlock(&mm->page_table_lock);
 429        if (new)
 430                pte_free(mm, new);
 431        if (wait_split_huge_page)
 432                wait_split_huge_page(vma->anon_vma, pmd);
 433        return 0;
 434}
 435
 436int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 437{
 438        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 439        if (!new)
 440                return -ENOMEM;
 441
 442        smp_wmb(); /* See comment in __pte_alloc */
 443
 444        spin_lock(&init_mm.page_table_lock);
 445        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 446                pmd_populate_kernel(&init_mm, pmd, new);
 447                new = NULL;
 448        } else
 449                VM_BUG_ON(pmd_trans_splitting(*pmd));
 450        spin_unlock(&init_mm.page_table_lock);
 451        if (new)
 452                pte_free_kernel(&init_mm, new);
 453        return 0;
 454}
 455
 456static inline void init_rss_vec(int *rss)
 457{
 458        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 459}
 460
 461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 462{
 463        int i;
 464
 465        if (current->mm == mm)
 466                sync_mm_rss(current, mm);
 467        for (i = 0; i < NR_MM_COUNTERS; i++)
 468                if (rss[i])
 469                        add_mm_counter(mm, i, rss[i]);
 470}
 471
 472/*
 473 * This function is called to print an error when a bad pte
 474 * is found. For example, we might have a PFN-mapped pte in
 475 * a region that doesn't allow it.
 476 *
 477 * The calling function must still handle the error.
 478 */
 479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 480                          pte_t pte, struct page *page)
 481{
 482        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 483        pud_t *pud = pud_offset(pgd, addr);
 484        pmd_t *pmd = pmd_offset(pud, addr);
 485        struct address_space *mapping;
 486        pgoff_t index;
 487        static unsigned long resume;
 488        static unsigned long nr_shown;
 489        static unsigned long nr_unshown;
 490
 491        /*
 492         * Allow a burst of 60 reports, then keep quiet for that minute;
 493         * or allow a steady drip of one report per second.
 494         */
 495        if (nr_shown == 60) {
 496                if (time_before(jiffies, resume)) {
 497                        nr_unshown++;
 498                        return;
 499                }
 500                if (nr_unshown) {
 501                        printk(KERN_ALERT
 502                                "BUG: Bad page map: %lu messages suppressed\n",
 503                                nr_unshown);
 504                        nr_unshown = 0;
 505                }
 506                nr_shown = 0;
 507        }
 508        if (nr_shown++ == 0)
 509                resume = jiffies + 60 * HZ;
 510
 511        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 512        index = linear_page_index(vma, addr);
 513
 514        printk(KERN_ALERT
 515                "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 516                current->comm,
 517                (long long)pte_val(pte), (long long)pmd_val(*pmd));
 518        if (page)
 519                dump_page(page);
 520        printk(KERN_ALERT
 521                "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 522                (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523        /*
 524         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 525         */
 526        if (vma->vm_ops)
 527                print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 528                                (unsigned long)vma->vm_ops->fault);
 529        if (vma->vm_file && vma->vm_file->f_op)
 530                print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 531                                (unsigned long)vma->vm_file->f_op->mmap);
 532        dump_stack();
 533        add_taint(TAINT_BAD_PAGE);
 534}
 535
 536static inline int is_cow_mapping(unsigned int flags)
 537{
 538        return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 539}
 540
 541#ifndef is_zero_pfn
 542static inline int is_zero_pfn(unsigned long pfn)
 543{
 544        return pfn == zero_pfn;
 545}
 546#endif
 547
 548#ifndef my_zero_pfn
 549static inline unsigned long my_zero_pfn(unsigned long addr)
 550{
 551        return zero_pfn;
 552}
 553#endif
 554
 555/*
 556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 557 *
 558 * "Special" mappings do not wish to be associated with a "struct page" (either
 559 * it doesn't exist, or it exists but they don't want to touch it). In this
 560 * case, NULL is returned here. "Normal" mappings do have a struct page.
 561 *
 562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 563 * pte bit, in which case this function is trivial. Secondly, an architecture
 564 * may not have a spare pte bit, which requires a more complicated scheme,
 565 * described below.
 566 *
 567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 568 * special mapping (even if there are underlying and valid "struct pages").
 569 * COWed pages of a VM_PFNMAP are always normal.
 570 *
 571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 574 * mapping will always honor the rule
 575 *
 576 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 577 *
 578 * And for normal mappings this is false.
 579 *
 580 * This restricts such mappings to be a linear translation from virtual address
 581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 582 * as the vma is not a COW mapping; in that case, we know that all ptes are
 583 * special (because none can have been COWed).
 584 *
 585 *
 586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 587 *
 588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 589 * page" backing, however the difference is that _all_ pages with a struct
 590 * page (that is, those where pfn_valid is true) are refcounted and considered
 591 * normal pages by the VM. The disadvantage is that pages are refcounted
 592 * (which can be slower and simply not an option for some PFNMAP users). The
 593 * advantage is that we don't have to follow the strict linearity rule of
 594 * PFNMAP mappings in order to support COWable mappings.
 595 *
 596 */
 597#ifdef __HAVE_ARCH_PTE_SPECIAL
 598# define HAVE_PTE_SPECIAL 1
 599#else
 600# define HAVE_PTE_SPECIAL 0
 601#endif
 602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 603                                pte_t pte)
 604{
 605        unsigned long pfn = pte_pfn(pte);
 606
 607        if (HAVE_PTE_SPECIAL) {
 608                if (likely(!pte_special(pte)))
 609                        goto check_pfn;
 610                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 611                        return NULL;
 612                if (!is_zero_pfn(pfn))
 613                        print_bad_pte(vma, addr, pte, NULL);
 614                return NULL;
 615        }
 616
 617        /* !HAVE_PTE_SPECIAL case follows: */
 618
 619        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 620                if (vma->vm_flags & VM_MIXEDMAP) {
 621                        if (!pfn_valid(pfn))
 622                                return NULL;
 623                        goto out;
 624                } else {
 625                        unsigned long off;
 626                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 627                        if (pfn == vma->vm_pgoff + off)
 628                                return NULL;
 629                        if (!is_cow_mapping(vma->vm_flags))
 630                                return NULL;
 631                }
 632        }
 633
 634        if (is_zero_pfn(pfn))
 635                return NULL;
 636check_pfn:
 637        if (unlikely(pfn > highest_memmap_pfn)) {
 638                print_bad_pte(vma, addr, pte, NULL);
 639                return NULL;
 640        }
 641
 642        /*
 643         * NOTE! We still have PageReserved() pages in the page tables.
 644         * eg. VDSO mappings can cause them to exist.
 645         */
 646out:
 647        return pfn_to_page(pfn);
 648}
 649
 650/*
 651 * copy one vm_area from one task to the other. Assumes the page tables
 652 * already present in the new task to be cleared in the whole range
 653 * covered by this vma.
 654 */
 655
 656static inline unsigned long
 657copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 658                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 659                unsigned long addr, int *rss)
 660{
 661        unsigned long vm_flags = vma->vm_flags;
 662        pte_t pte = *src_pte;
 663        struct page *page;
 664
 665        /* pte contains position in swap or file, so copy. */
 666        if (unlikely(!pte_present(pte))) {
 667                if (!pte_file(pte)) {
 668                        swp_entry_t entry = pte_to_swp_entry(pte);
 669
 670                        if (swap_duplicate(entry) < 0)
 671                                return entry.val;
 672
 673                        /* make sure dst_mm is on swapoff's mmlist. */
 674                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 675                                spin_lock(&mmlist_lock);
 676                                if (list_empty(&dst_mm->mmlist))
 677                                        list_add(&dst_mm->mmlist,
 678                                                 &src_mm->mmlist);
 679                                spin_unlock(&mmlist_lock);
 680                        }
 681                        if (likely(!non_swap_entry(entry)))
 682                                rss[MM_SWAPENTS]++;
 683                        else if (is_write_migration_entry(entry) &&
 684                                        is_cow_mapping(vm_flags)) {
 685                                /*
 686                                 * COW mappings require pages in both parent
 687                                 * and child to be set to read.
 688                                 */
 689                                make_migration_entry_read(&entry);
 690                                pte = swp_entry_to_pte(entry);
 691                                set_pte_at(src_mm, addr, src_pte, pte);
 692                        }
 693                }
 694                goto out_set_pte;
 695        }
 696
 697        /*
 698         * If it's a COW mapping, write protect it both
 699         * in the parent and the child
 700         */
 701        if (is_cow_mapping(vm_flags)) {
 702                ptep_set_wrprotect(src_mm, addr, src_pte);
 703                pte = pte_wrprotect(pte);
 704        }
 705
 706        /*
 707         * If it's a shared mapping, mark it clean in
 708         * the child
 709         */
 710        if (vm_flags & VM_SHARED)
 711                pte = pte_mkclean(pte);
 712        pte = pte_mkold(pte);
 713
 714        page = vm_normal_page(vma, addr, pte);
 715        if (page) {
 716                get_page(page);
 717                page_dup_rmap(page);
 718                if (PageAnon(page))
 719                        rss[MM_ANONPAGES]++;
 720                else
 721                        rss[MM_FILEPAGES]++;
 722        }
 723
 724out_set_pte:
 725        set_pte_at(dst_mm, addr, dst_pte, pte);
 726        return 0;
 727}
 728
 729int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 730                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 731                   unsigned long addr, unsigned long end)
 732{
 733        pte_t *orig_src_pte, *orig_dst_pte;
 734        pte_t *src_pte, *dst_pte;
 735        spinlock_t *src_ptl, *dst_ptl;
 736        int progress = 0;
 737        int rss[NR_MM_COUNTERS];
 738        swp_entry_t entry = (swp_entry_t){0};
 739
 740again:
 741        init_rss_vec(rss);
 742
 743        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 744        if (!dst_pte)
 745                return -ENOMEM;
 746        src_pte = pte_offset_map(src_pmd, addr);
 747        src_ptl = pte_lockptr(src_mm, src_pmd);
 748        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 749        orig_src_pte = src_pte;
 750        orig_dst_pte = dst_pte;
 751        arch_enter_lazy_mmu_mode();
 752
 753        do {
 754                /*
 755                 * We are holding two locks at this point - either of them
 756                 * could generate latencies in another task on another CPU.
 757                 */
 758                if (progress >= 32) {
 759                        progress = 0;
 760                        if (need_resched() ||
 761                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 762                                break;
 763                }
 764                if (pte_none(*src_pte)) {
 765                        progress++;
 766                        continue;
 767                }
 768                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 769                                                        vma, addr, rss);
 770                if (entry.val)
 771                        break;
 772                progress += 8;
 773        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 774
 775        arch_leave_lazy_mmu_mode();
 776        spin_unlock(src_ptl);
 777        pte_unmap(orig_src_pte);
 778        add_mm_rss_vec(dst_mm, rss);
 779        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 780        cond_resched();
 781
 782        if (entry.val) {
 783                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 784                        return -ENOMEM;
 785                progress = 0;
 786        }
 787        if (addr != end)
 788                goto again;
 789        return 0;
 790}
 791
 792static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 793                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 794                unsigned long addr, unsigned long end)
 795{
 796        pmd_t *src_pmd, *dst_pmd;
 797        unsigned long next;
 798
 799        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 800        if (!dst_pmd)
 801                return -ENOMEM;
 802        src_pmd = pmd_offset(src_pud, addr);
 803        do {
 804                next = pmd_addr_end(addr, end);
 805                if (pmd_trans_huge(*src_pmd)) {
 806                        int err;
 807                        VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 808                        err = copy_huge_pmd(dst_mm, src_mm,
 809                                            dst_pmd, src_pmd, addr, vma);
 810                        if (err == -ENOMEM)
 811                                return -ENOMEM;
 812                        if (!err)
 813                                continue;
 814                        /* fall through */
 815                }
 816                if (pmd_none_or_clear_bad(src_pmd))
 817                        continue;
 818                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 819                                                vma, addr, next))
 820                        return -ENOMEM;
 821        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 822        return 0;
 823}
 824
 825static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 826                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 827                unsigned long addr, unsigned long end)
 828{
 829        pud_t *src_pud, *dst_pud;
 830        unsigned long next;
 831
 832        dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 833        if (!dst_pud)
 834                return -ENOMEM;
 835        src_pud = pud_offset(src_pgd, addr);
 836        do {
 837                next = pud_addr_end(addr, end);
 838                if (pud_none_or_clear_bad(src_pud))
 839                        continue;
 840                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 841                                                vma, addr, next))
 842                        return -ENOMEM;
 843        } while (dst_pud++, src_pud++, addr = next, addr != end);
 844        return 0;
 845}
 846
 847int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 848                struct vm_area_struct *vma)
 849{
 850        pgd_t *src_pgd, *dst_pgd;
 851        unsigned long next;
 852        unsigned long addr = vma->vm_start;
 853        unsigned long end = vma->vm_end;
 854        int ret;
 855
 856        /*
 857         * Don't copy ptes where a page fault will fill them correctly.
 858         * Fork becomes much lighter when there are big shared or private
 859         * readonly mappings. The tradeoff is that copy_page_range is more
 860         * efficient than faulting.
 861         */
 862        if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
 863                if (!vma->anon_vma)
 864                        return 0;
 865        }
 866
 867        if (is_vm_hugetlb_page(vma))
 868                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 869
 870        if (unlikely(is_pfn_mapping(vma))) {
 871                /*
 872                 * We do not free on error cases below as remove_vma
 873                 * gets called on error from higher level routine
 874                 */
 875                ret = track_pfn_vma_copy(vma);
 876                if (ret)
 877                        return ret;
 878        }
 879
 880        /*
 881         * We need to invalidate the secondary MMU mappings only when
 882         * there could be a permission downgrade on the ptes of the
 883         * parent mm. And a permission downgrade will only happen if
 884         * is_cow_mapping() returns true.
 885         */
 886        if (is_cow_mapping(vma->vm_flags))
 887                mmu_notifier_invalidate_range_start(src_mm, addr, end);
 888
 889        ret = 0;
 890        dst_pgd = pgd_offset(dst_mm, addr);
 891        src_pgd = pgd_offset(src_mm, addr);
 892        do {
 893                next = pgd_addr_end(addr, end);
 894                if (pgd_none_or_clear_bad(src_pgd))
 895                        continue;
 896                if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
 897                                            vma, addr, next))) {
 898                        ret = -ENOMEM;
 899                        break;
 900                }
 901        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
 902
 903        if (is_cow_mapping(vma->vm_flags))
 904                mmu_notifier_invalidate_range_end(src_mm,
 905                                                  vma->vm_start, end);
 906        return ret;
 907}
 908
 909static unsigned long zap_pte_range(struct mmu_gather *tlb,
 910                                struct vm_area_struct *vma, pmd_t *pmd,
 911                                unsigned long addr, unsigned long end,
 912                                long *zap_work, struct zap_details *details)
 913{
 914        struct mm_struct *mm = tlb->mm;
 915        pte_t *pte;
 916        spinlock_t *ptl;
 917        int rss[NR_MM_COUNTERS];
 918
 919        init_rss_vec(rss);
 920
 921        pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 922        arch_enter_lazy_mmu_mode();
 923        do {
 924                pte_t ptent = *pte;
 925                if (pte_none(ptent)) {
 926                        (*zap_work)--;
 927                        continue;
 928                }
 929
 930                (*zap_work) -= PAGE_SIZE;
 931
 932                if (pte_present(ptent)) {
 933                        struct page *page;
 934
 935                        page = vm_normal_page(vma, addr, ptent);
 936                        if (unlikely(details) && page) {
 937                                /*
 938                                 * unmap_shared_mapping_pages() wants to
 939                                 * invalidate cache without truncating:
 940                                 * unmap shared but keep private pages.
 941                                 */
 942                                if (details->check_mapping &&
 943                                    details->check_mapping != page->mapping)
 944                                        continue;
 945                                /*
 946                                 * Each page->index must be checked when
 947                                 * invalidating or truncating nonlinear.
 948                                 */
 949                                if (details->nonlinear_vma &&
 950                                    (page->index < details->first_index ||
 951                                     page->index > details->last_index))
 952                                        continue;
 953                        }
 954                        ptent = ptep_get_and_clear_full(mm, addr, pte,
 955                                                        tlb->fullmm);
 956                        tlb_remove_tlb_entry(tlb, pte, addr);
 957                        if (unlikely(!page))
 958                                continue;
 959                        if (unlikely(details) && details->nonlinear_vma
 960                            && linear_page_index(details->nonlinear_vma,
 961                                                addr) != page->index)
 962                                set_pte_at(mm, addr, pte,
 963                                           pgoff_to_pte(page->index));
 964                        if (PageAnon(page))
 965                                rss[MM_ANONPAGES]--;
 966                        else {
 967                                if (pte_dirty(ptent))
 968                                        set_page_dirty(page);
 969                                if (pte_young(ptent) &&
 970                                    likely(!VM_SequentialReadHint(vma)))
 971                                        mark_page_accessed(page);
 972                                rss[MM_FILEPAGES]--;
 973                        }
 974                        page_remove_rmap(page);
 975                        if (unlikely(page_mapcount(page) < 0))
 976                                print_bad_pte(vma, addr, ptent, page);
 977                        tlb_remove_page(tlb, page);
 978                        continue;
 979                }
 980                /*
 981                 * If details->check_mapping, we leave swap entries;
 982                 * if details->nonlinear_vma, we leave file entries.
 983                 */
 984                if (unlikely(details))
 985                        continue;
 986                if (pte_file(ptent)) {
 987                        if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
 988                                print_bad_pte(vma, addr, ptent, NULL);
 989                } else {
 990                        swp_entry_t entry = pte_to_swp_entry(ptent);
 991
 992                        if (!non_swap_entry(entry))
 993                                rss[MM_SWAPENTS]--;
 994                        if (unlikely(!free_swap_and_cache(entry)))
 995                                print_bad_pte(vma, addr, ptent, NULL);
 996                }
 997                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 998        } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
 999
1000        add_mm_rss_vec(mm, rss);
1001        arch_leave_lazy_mmu_mode();
1002        pte_unmap_unlock(pte - 1, ptl);
1003
1004        return addr;
1005}
1006
1007static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1008                                struct vm_area_struct *vma, pud_t *pud,
1009                                unsigned long addr, unsigned long end,
1010                                long *zap_work, struct zap_details *details)
1011{
1012        pmd_t *pmd;
1013        unsigned long next;
1014
1015        pmd = pmd_offset(pud, addr);
1016        do {
1017                next = pmd_addr_end(addr, end);
1018                if (pmd_trans_huge(*pmd)) {
1019                        if (next-addr != HPAGE_PMD_SIZE) {
1020                                VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1021                                split_huge_page_pmd(vma->vm_mm, pmd);
1022                        } else if (zap_huge_pmd(tlb, vma, pmd)) {
1023                                (*zap_work)--;
1024                                continue;
1025                        }
1026                        /* fall through */
1027                }
1028                if (pmd_none_or_clear_bad(pmd)) {
1029                        (*zap_work)--;
1030                        continue;
1031                }
1032                next = zap_pte_range(tlb, vma, pmd, addr, next,
1033                                                zap_work, details);
1034        } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1035
1036        return addr;
1037}
1038
1039static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1040                                struct vm_area_struct *vma, pgd_t *pgd,
1041                                unsigned long addr, unsigned long end,
1042                                long *zap_work, struct zap_details *details)
1043{
1044        pud_t *pud;
1045        unsigned long next;
1046
1047        pud = pud_offset(pgd, addr);
1048        do {
1049                next = pud_addr_end(addr, end);
1050                if (pud_none_or_clear_bad(pud)) {
1051                        (*zap_work)--;
1052                        continue;
1053                }
1054                next = zap_pmd_range(tlb, vma, pud, addr, next,
1055                                                zap_work, details);
1056        } while (pud++, addr = next, (addr != end && *zap_work > 0));
1057
1058        return addr;
1059}
1060
1061static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062                                struct vm_area_struct *vma,
1063                                unsigned long addr, unsigned long end,
1064                                long *zap_work, struct zap_details *details)
1065{
1066        pgd_t *pgd;
1067        unsigned long next;
1068
1069        if (details && !details->check_mapping && !details->nonlinear_vma)
1070                details = NULL;
1071
1072        BUG_ON(addr >= end);
1073        mem_cgroup_uncharge_start();
1074        tlb_start_vma(tlb, vma);
1075        pgd = pgd_offset(vma->vm_mm, addr);
1076        do {
1077                next = pgd_addr_end(addr, end);
1078                if (pgd_none_or_clear_bad(pgd)) {
1079                        (*zap_work)--;
1080                        continue;
1081                }
1082                next = zap_pud_range(tlb, vma, pgd, addr, next,
1083                                                zap_work, details);
1084        } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1085        tlb_end_vma(tlb, vma);
1086        mem_cgroup_uncharge_end();
1087
1088        return addr;
1089}
1090
1091#ifdef CONFIG_PREEMPT
1092# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1093#else
1094/* No preempt: go for improved straight-line efficiency */
1095# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1096#endif
1097
1098/**
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1106 *
1107 * Returns the end address of the unmapping (restart addr if interrupted).
1108 *
1109 * Unmap all pages in the vma list.
1110 *
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1113 * return the ending mmu_gather to the caller.
1114 *
1115 * Only addresses between `start' and `end' will be unmapped.
1116 *
1117 * The VMA list must be sorted in ascending virtual address order.
1118 *
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns.  So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1123 */
1124unsigned long unmap_vmas(struct mmu_gather **tlbp,
1125                struct vm_area_struct *vma, unsigned long start_addr,
1126                unsigned long end_addr, unsigned long *nr_accounted,
1127                struct zap_details *details)
1128{
1129        long zap_work = ZAP_BLOCK_SIZE;
1130        unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
1131        int tlb_start_valid = 0;
1132        unsigned long start = start_addr;
1133        spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1134        int fullmm = (*tlbp)->fullmm;
1135        struct mm_struct *mm = vma->vm_mm;
1136
1137        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1138        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1139                unsigned long end;
1140
1141                start = max(vma->vm_start, start_addr);
1142                if (start >= vma->vm_end)
1143                        continue;
1144                end = min(vma->vm_end, end_addr);
1145                if (end <= vma->vm_start)
1146                        continue;
1147
1148                if (vma->vm_flags & VM_ACCOUNT)
1149                        *nr_accounted += (end - start) >> PAGE_SHIFT;
1150
1151                if (unlikely(is_pfn_mapping(vma)))
1152                        untrack_pfn_vma(vma, 0, 0);
1153
1154                while (start != end) {
1155                        if (!tlb_start_valid) {
1156                                tlb_start = start;
1157                                tlb_start_valid = 1;
1158                        }
1159
1160                        if (unlikely(is_vm_hugetlb_page(vma))) {
1161                                /*
1162                                 * It is undesirable to test vma->vm_file as it
1163                                 * should be non-null for valid hugetlb area.
1164                                 * However, vm_file will be NULL in the error
1165                                 * cleanup path of do_mmap_pgoff. When
1166                                 * hugetlbfs ->mmap method fails,
1167                                 * do_mmap_pgoff() nullifies vma->vm_file
1168                                 * before calling this function to clean up.
1169                                 * Since no pte has actually been setup, it is
1170                                 * safe to do nothing in this case.
1171                                 */
1172                                if (vma->vm_file) {
1173                                        unmap_hugepage_range(vma, start, end, NULL);
1174                                        zap_work -= (end - start) /
1175                                        pages_per_huge_page(hstate_vma(vma));
1176                                }
1177
1178                                start = end;
1179                        } else
1180                                start = unmap_page_range(*tlbp, vma,
1181                                                start, end, &zap_work, details);
1182
1183                        if (zap_work > 0) {
1184                                BUG_ON(start != end);
1185                                break;
1186                        }
1187
1188                        tlb_finish_mmu(*tlbp, tlb_start, start);
1189
1190                        if (need_resched() ||
1191                                (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1192                                if (i_mmap_lock) {
1193                                        *tlbp = NULL;
1194                                        goto out;
1195                                }
1196                                cond_resched();
1197                        }
1198
1199                        *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1200                        tlb_start_valid = 0;
1201                        zap_work = ZAP_BLOCK_SIZE;
1202                }
1203        }
1204out:
1205        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1206        return start;   /* which is now the end (or restart) address */
1207}
1208
1209/**
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1215 */
1216unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1217                unsigned long size, struct zap_details *details)
1218{
1219        struct mm_struct *mm = vma->vm_mm;
1220        struct mmu_gather *tlb;
1221        unsigned long end = address + size;
1222        unsigned long nr_accounted = 0;
1223
1224        lru_add_drain();
1225        tlb = tlb_gather_mmu(mm, 0);
1226        update_hiwater_rss(mm);
1227        end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228        if (tlb)
1229                tlb_finish_mmu(tlb, address, end);
1230        return end;
1231}
1232
1233/**
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1238 *
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1240 *
1241 * The entire address range must be fully contained within the vma.
1242 *
1243 * Returns 0 if successful.
1244 */
1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246                unsigned long size)
1247{
1248        if (address < vma->vm_start || address + size > vma->vm_end ||
1249                        !(vma->vm_flags & VM_PFNMAP))
1250                return -1;
1251        zap_page_range(vma, address, size, NULL);
1252        return 0;
1253}
1254EXPORT_SYMBOL_GPL(zap_vma_ptes);
1255
1256/**
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1261 *
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1263 *
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1267 */
1268struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1269                        unsigned int flags)
1270{
1271        pgd_t *pgd;
1272        pud_t *pud;
1273        pmd_t *pmd;
1274        pte_t *ptep, pte;
1275        spinlock_t *ptl;
1276        struct page *page;
1277        struct mm_struct *mm = vma->vm_mm;
1278
1279        page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280        if (!IS_ERR(page)) {
1281                BUG_ON(flags & FOLL_GET);
1282                goto out;
1283        }
1284
1285        page = NULL;
1286        pgd = pgd_offset(mm, address);
1287        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1288                goto no_page_table;
1289
1290        pud = pud_offset(pgd, address);
1291        if (pud_none(*pud))
1292                goto no_page_table;
1293        if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1294                BUG_ON(flags & FOLL_GET);
1295                page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296                goto out;
1297        }
1298        if (unlikely(pud_bad(*pud)))
1299                goto no_page_table;
1300
1301        pmd = pmd_offset(pud, address);
1302        if (pmd_none(*pmd))
1303                goto no_page_table;
1304        if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1305                BUG_ON(flags & FOLL_GET);
1306                page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1307                goto out;
1308        }
1309        if (pmd_trans_huge(*pmd)) {
1310                if (flags & FOLL_SPLIT) {
1311                        split_huge_page_pmd(mm, pmd);
1312                        goto split_fallthrough;
1313                }
1314                spin_lock(&mm->page_table_lock);
1315                if (likely(pmd_trans_huge(*pmd))) {
1316                        if (unlikely(pmd_trans_splitting(*pmd))) {
1317                                spin_unlock(&mm->page_table_lock);
1318                                wait_split_huge_page(vma->anon_vma, pmd);
1319                        } else {
1320                                page = follow_trans_huge_pmd(mm, address,
1321                                                             pmd, flags);
1322                                spin_unlock(&mm->page_table_lock);
1323                                goto out;
1324                        }
1325                } else
1326                        spin_unlock(&mm->page_table_lock);
1327                /* fall through */
1328        }
1329split_fallthrough:
1330        if (unlikely(pmd_bad(*pmd)))
1331                goto no_page_table;
1332
1333        ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1334
1335        pte = *ptep;
1336        if (!pte_present(pte))
1337                goto no_page;
1338        if ((flags & FOLL_WRITE) && !pte_write(pte))
1339                goto unlock;
1340
1341        page = vm_normal_page(vma, address, pte);
1342        if (unlikely(!page)) {
1343                if ((flags & FOLL_DUMP) ||
1344                    !is_zero_pfn(pte_pfn(pte)))
1345                        goto bad_page;
1346                page = pte_page(pte);
1347        }
1348
1349        if (flags & FOLL_GET)
1350                get_page(page);
1351        if (flags & FOLL_TOUCH) {
1352                if ((flags & FOLL_WRITE) &&
1353                    !pte_dirty(pte) && !PageDirty(page))
1354                        set_page_dirty(page);
1355                /*
1356                 * pte_mkyoung() would be more correct here, but atomic care
1357                 * is needed to avoid losing the dirty bit: it is easier to use
1358                 * mark_page_accessed().
1359                 */
1360                mark_page_accessed(page);
1361        }
1362        if (flags & FOLL_MLOCK) {
1363                /*
1364                 * The preliminary mapping check is mainly to avoid the
1365                 * pointless overhead of lock_page on the ZERO_PAGE
1366                 * which might bounce very badly if there is contention.
1367                 *
1368                 * If the page is already locked, we don't need to
1369                 * handle it now - vmscan will handle it later if and
1370                 * when it attempts to reclaim the page.
1371                 */
1372                if (page->mapping && trylock_page(page)) {
1373                        lru_add_drain();  /* push cached pages to LRU */
1374                        /*
1375                         * Because we lock page here and migration is
1376                         * blocked by the pte's page reference, we need
1377                         * only check for file-cache page truncation.
1378                         */
1379                        if (page->mapping)
1380                                mlock_vma_page(page);
1381                        unlock_page(page);
1382                }
1383        }
1384unlock:
1385        pte_unmap_unlock(ptep, ptl);
1386out:
1387        return page;
1388
1389bad_page:
1390        pte_unmap_unlock(ptep, ptl);
1391        return ERR_PTR(-EFAULT);
1392
1393no_page:
1394        pte_unmap_unlock(ptep, ptl);
1395        if (!pte_none(pte))
1396                return page;
1397
1398no_page_table:
1399        /*
1400         * When core dumping an enormous anonymous area that nobody
1401         * has touched so far, we don't want to allocate unnecessary pages or
1402         * page tables.  Return error instead of NULL to skip handle_mm_fault,
1403         * then get_dump_page() will return NULL to leave a hole in the dump.
1404         * But we can only make this optimization where a hole would surely
1405         * be zero-filled if handle_mm_fault() actually did handle it.
1406         */
1407        if ((flags & FOLL_DUMP) &&
1408            (!vma->vm_ops || !vma->vm_ops->fault))
1409                return ERR_PTR(-EFAULT);
1410        return page;
1411}
1412
1413int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1414                     unsigned long start, int nr_pages, unsigned int gup_flags,
1415                     struct page **pages, struct vm_area_struct **vmas,
1416                     int *nonblocking)
1417{
1418        int i;
1419        unsigned long vm_flags;
1420
1421        if (nr_pages <= 0)
1422                return 0;
1423
1424        VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1425
1426        /* 
1427         * Require read or write permissions.
1428         * If FOLL_FORCE is set, we only require the "MAY" flags.
1429         */
1430        vm_flags  = (gup_flags & FOLL_WRITE) ?
1431                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1432        vm_flags &= (gup_flags & FOLL_FORCE) ?
1433                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1434        i = 0;
1435
1436        do {
1437                struct vm_area_struct *vma;
1438
1439                vma = find_extend_vma(mm, start);
1440                if (!vma && in_gate_area(tsk, start)) {
1441                        unsigned long pg = start & PAGE_MASK;
1442                        struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1443                        pgd_t *pgd;
1444                        pud_t *pud;
1445                        pmd_t *pmd;
1446                        pte_t *pte;
1447
1448                        /* user gate pages are read-only */
1449                        if (gup_flags & FOLL_WRITE)
1450                                return i ? : -EFAULT;
1451                        if (pg > TASK_SIZE)
1452                                pgd = pgd_offset_k(pg);
1453                        else
1454                                pgd = pgd_offset_gate(mm, pg);
1455                        BUG_ON(pgd_none(*pgd));
1456                        pud = pud_offset(pgd, pg);
1457                        BUG_ON(pud_none(*pud));
1458                        pmd = pmd_offset(pud, pg);
1459                        if (pmd_none(*pmd))
1460                                return i ? : -EFAULT;
1461                        VM_BUG_ON(pmd_trans_huge(*pmd));
1462                        pte = pte_offset_map(pmd, pg);
1463                        if (pte_none(*pte)) {
1464                                pte_unmap(pte);
1465                                return i ? : -EFAULT;
1466                        }
1467                        if (pages) {
1468                                struct page *page;
1469
1470                                page = vm_normal_page(gate_vma, start, *pte);
1471                                if (!page) {
1472                                        if (!(gup_flags & FOLL_DUMP) &&
1473                                             is_zero_pfn(pte_pfn(*pte)))
1474                                                page = pte_page(*pte);
1475                                        else {
1476                                                pte_unmap(pte);
1477                                                return i ? : -EFAULT;
1478                                        }
1479                                }
1480                                pages[i] = page;
1481                                get_page(page);
1482                        }
1483                        pte_unmap(pte);
1484                        if (vmas)
1485                                vmas[i] = gate_vma;
1486                        i++;
1487                        start += PAGE_SIZE;
1488                        nr_pages--;
1489                        continue;
1490                }
1491
1492                if (!vma ||
1493                    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1494                    !(vm_flags & vma->vm_flags))
1495                        return i ? : -EFAULT;
1496
1497                if (is_vm_hugetlb_page(vma)) {
1498                        i = follow_hugetlb_page(mm, vma, pages, vmas,
1499                                        &start, &nr_pages, i, gup_flags);
1500                        continue;
1501                }
1502
1503                do {
1504                        struct page *page;
1505                        unsigned int foll_flags = gup_flags;
1506
1507                        /*
1508                         * If we have a pending SIGKILL, don't keep faulting
1509                         * pages and potentially allocating memory.
1510                         */
1511                        if (unlikely(fatal_signal_pending(current)))
1512                                return i ? i : -ERESTARTSYS;
1513
1514                        cond_resched();
1515                        while (!(page = follow_page(vma, start, foll_flags))) {
1516                                int ret;
1517                                unsigned int fault_flags = 0;
1518
1519                                if (foll_flags & FOLL_WRITE)
1520                                        fault_flags |= FAULT_FLAG_WRITE;
1521                                if (nonblocking)
1522                                        fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1523
1524                                ret = handle_mm_fault(mm, vma, start,
1525                                                        fault_flags);
1526
1527                                if (ret & VM_FAULT_ERROR) {
1528                                        if (ret & VM_FAULT_OOM)
1529                                                return i ? i : -ENOMEM;
1530                                        if (ret &
1531                                            (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1532                                             VM_FAULT_SIGBUS))
1533                                                return i ? i : -EFAULT;
1534                                        BUG();
1535                                }
1536                                if (ret & VM_FAULT_MAJOR)
1537                                        tsk->maj_flt++;
1538                                else
1539                                        tsk->min_flt++;
1540
1541                                if (ret & VM_FAULT_RETRY) {
1542                                        *nonblocking = 0;
1543                                        return i;
1544                                }
1545
1546                                /*
1547                                 * The VM_FAULT_WRITE bit tells us that
1548                                 * do_wp_page has broken COW when necessary,
1549                                 * even if maybe_mkwrite decided not to set
1550                                 * pte_write. We can thus safely do subsequent
1551                                 * page lookups as if they were reads. But only
1552                                 * do so when looping for pte_write is futile:
1553                                 * in some cases userspace may also be wanting
1554                                 * to write to the gotten user page, which a
1555                                 * read fault here might prevent (a readonly
1556                                 * page might get reCOWed by userspace write).
1557                                 */
1558                                if ((ret & VM_FAULT_WRITE) &&
1559                                    !(vma->vm_flags & VM_WRITE))
1560                                        foll_flags &= ~FOLL_WRITE;
1561
1562                                cond_resched();
1563                        }
1564                        if (IS_ERR(page))
1565                                return i ? i : PTR_ERR(page);
1566                        if (pages) {
1567                                pages[i] = page;
1568
1569                                flush_anon_page(vma, page, start);
1570                                flush_dcache_page(page);
1571                        }
1572                        if (vmas)
1573                                vmas[i] = vma;
1574                        i++;
1575                        start += PAGE_SIZE;
1576                        nr_pages--;
1577                } while (nr_pages && start < vma->vm_end);
1578        } while (nr_pages);
1579        return i;
1580}
1581
1582/**
1583 * get_user_pages() - pin user pages in memory
1584 * @tsk:        task_struct of target task
1585 * @mm:         mm_struct of target mm
1586 * @start:      starting user address
1587 * @nr_pages:   number of pages from start to pin
1588 * @write:      whether pages will be written to by the caller
1589 * @force:      whether to force write access even if user mapping is
1590 *              readonly. This will result in the page being COWed even
1591 *              in MAP_SHARED mappings. You do not want this.
1592 * @pages:      array that receives pointers to the pages pinned.
1593 *              Should be at least nr_pages long. Or NULL, if caller
1594 *              only intends to ensure the pages are faulted in.
1595 * @vmas:       array of pointers to vmas corresponding to each page.
1596 *              Or NULL if the caller does not require them.
1597 *
1598 * Returns number of pages pinned. This may be fewer than the number
1599 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1600 * were pinned, returns -errno. Each page returned must be released
1601 * with a put_page() call when it is finished with. vmas will only
1602 * remain valid while mmap_sem is held.
1603 *
1604 * Must be called with mmap_sem held for read or write.
1605 *
1606 * get_user_pages walks a process's page tables and takes a reference to
1607 * each struct page that each user address corresponds to at a given
1608 * instant. That is, it takes the page that would be accessed if a user
1609 * thread accesses the given user virtual address at that instant.
1610 *
1611 * This does not guarantee that the page exists in the user mappings when
1612 * get_user_pages returns, and there may even be a completely different
1613 * page there in some cases (eg. if mmapped pagecache has been invalidated
1614 * and subsequently re faulted). However it does guarantee that the page
1615 * won't be freed completely. And mostly callers simply care that the page
1616 * contains data that was valid *at some point in time*. Typically, an IO
1617 * or similar operation cannot guarantee anything stronger anyway because
1618 * locks can't be held over the syscall boundary.
1619 *
1620 * If write=0, the page must not be written to. If the page is written to,
1621 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1622 * after the page is finished with, and before put_page is called.
1623 *
1624 * get_user_pages is typically used for fewer-copy IO operations, to get a
1625 * handle on the memory by some means other than accesses via the user virtual
1626 * addresses. The pages may be submitted for DMA to devices or accessed via
1627 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1628 * use the correct cache flushing APIs.
1629 *
1630 * See also get_user_pages_fast, for performance critical applications.
1631 */
1632int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1633                unsigned long start, int nr_pages, int write, int force,
1634                struct page **pages, struct vm_area_struct **vmas)
1635{
1636        int flags = FOLL_TOUCH;
1637
1638        if (pages)
1639                flags |= FOLL_GET;
1640        if (write)
1641                flags |= FOLL_WRITE;
1642        if (force)
1643                flags |= FOLL_FORCE;
1644
1645        return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1646                                NULL);
1647}
1648EXPORT_SYMBOL(get_user_pages);
1649
1650/**
1651 * get_dump_page() - pin user page in memory while writing it to core dump
1652 * @addr: user address
1653 *
1654 * Returns struct page pointer of user page pinned for dump,
1655 * to be freed afterwards by page_cache_release() or put_page().
1656 *
1657 * Returns NULL on any kind of failure - a hole must then be inserted into
1658 * the corefile, to preserve alignment with its headers; and also returns
1659 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1660 * allowing a hole to be left in the corefile to save diskspace.
1661 *
1662 * Called without mmap_sem, but after all other threads have been killed.
1663 */
1664#ifdef CONFIG_ELF_CORE
1665struct page *get_dump_page(unsigned long addr)
1666{
1667        struct vm_area_struct *vma;
1668        struct page *page;
1669
1670        if (__get_user_pages(current, current->mm, addr, 1,
1671                             FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1672                             NULL) < 1)
1673                return NULL;
1674        flush_cache_page(vma, addr, page_to_pfn(page));
1675        return page;
1676}
1677#endif /* CONFIG_ELF_CORE */
1678
1679pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1680                        spinlock_t **ptl)
1681{
1682        pgd_t * pgd = pgd_offset(mm, addr);
1683        pud_t * pud = pud_alloc(mm, pgd, addr);
1684        if (pud) {
1685                pmd_t * pmd = pmd_alloc(mm, pud, addr);
1686                if (pmd) {
1687                        VM_BUG_ON(pmd_trans_huge(*pmd));
1688                        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1689                }
1690        }
1691        return NULL;
1692}
1693
1694/*
1695 * This is the old fallback for page remapping.
1696 *
1697 * For historical reasons, it only allows reserved pages. Only
1698 * old drivers should use this, and they needed to mark their
1699 * pages reserved for the old functions anyway.
1700 */
1701static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1702                        struct page *page, pgprot_t prot)
1703{
1704        struct mm_struct *mm = vma->vm_mm;
1705        int retval;
1706        pte_t *pte;
1707        spinlock_t *ptl;
1708
1709        retval = -EINVAL;
1710        if (PageAnon(page))
1711                goto out;
1712        retval = -ENOMEM;
1713        flush_dcache_page(page);
1714        pte = get_locked_pte(mm, addr, &ptl);
1715        if (!pte)
1716                goto out;
1717        retval = -EBUSY;
1718        if (!pte_none(*pte))
1719                goto out_unlock;
1720
1721        /* Ok, finally just insert the thing.. */
1722        get_page(page);
1723        inc_mm_counter_fast(mm, MM_FILEPAGES);
1724        page_add_file_rmap(page);
1725        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1726
1727        retval = 0;
1728        pte_unmap_unlock(pte, ptl);
1729        return retval;
1730out_unlock:
1731        pte_unmap_unlock(pte, ptl);
1732out:
1733        return retval;
1734}
1735
1736/**
1737 * vm_insert_page - insert single page into user vma
1738 * @vma: user vma to map to
1739 * @addr: target user address of this page
1740 * @page: source kernel page
1741 *
1742 * This allows drivers to insert individual pages they've allocated
1743 * into a user vma.
1744 *
1745 * The page has to be a nice clean _individual_ kernel allocation.
1746 * If you allocate a compound page, you need to have marked it as
1747 * such (__GFP_COMP), or manually just split the page up yourself
1748 * (see split_page()).
1749 *
1750 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1751 * took an arbitrary page protection parameter. This doesn't allow
1752 * that. Your vma protection will have to be set up correctly, which
1753 * means that if you want a shared writable mapping, you'd better
1754 * ask for a shared writable mapping!
1755 *
1756 * The page does not need to be reserved.
1757 */
1758int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1759                        struct page *page)
1760{
1761        if (addr < vma->vm_start || addr >= vma->vm_end)
1762                return -EFAULT;
1763        if (!page_count(page))
1764                return -EINVAL;
1765        vma->vm_flags |= VM_INSERTPAGE;
1766        return insert_page(vma, addr, page, vma->vm_page_prot);
1767}
1768EXPORT_SYMBOL(vm_insert_page);
1769
1770static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771                        unsigned long pfn, pgprot_t prot)
1772{
1773        struct mm_struct *mm = vma->vm_mm;
1774        int retval;
1775        pte_t *pte, entry;
1776        spinlock_t *ptl;
1777
1778        retval = -ENOMEM;
1779        pte = get_locked_pte(mm, addr, &ptl);
1780        if (!pte)
1781                goto out;
1782        retval = -EBUSY;
1783        if (!pte_none(*pte))
1784                goto out_unlock;
1785
1786        /* Ok, finally just insert the thing.. */
1787        entry = pte_mkspecial(pfn_pte(pfn, prot));
1788        set_pte_at(mm, addr, pte, entry);
1789        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790
1791        retval = 0;
1792out_unlock:
1793        pte_unmap_unlock(pte, ptl);
1794out:
1795        return retval;
1796}
1797
1798/**
1799 * vm_insert_pfn - insert single pfn into user vma
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 *
1804 * Similar to vm_inert_page, this allows drivers to insert individual pages
1805 * they've allocated into a user vma. Same comments apply.
1806 *
1807 * This function should only be called from a vm_ops->fault handler, and
1808 * in that case the handler should return NULL.
1809 *
1810 * vma cannot be a COW mapping.
1811 *
1812 * As this is called only for pages that do not currently exist, we
1813 * do not need to flush old virtual caches or the TLB.
1814 */
1815int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1816                        unsigned long pfn)
1817{
1818        int ret;
1819        pgprot_t pgprot = vma->vm_page_prot;
1820        /*
1821         * Technically, architectures with pte_special can avoid all these
1822         * restrictions (same for remap_pfn_range).  However we would like
1823         * consistency in testing and feature parity among all, so we should
1824         * try to keep these invariants in place for everybody.
1825         */
1826        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828                                                (VM_PFNMAP|VM_MIXEDMAP));
1829        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832        if (addr < vma->vm_start || addr >= vma->vm_end)
1833                return -EFAULT;
1834        if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1835                return -EINVAL;
1836
1837        ret = insert_pfn(vma, addr, pfn, pgprot);
1838
1839        if (ret)
1840                untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1841
1842        return ret;
1843}
1844EXPORT_SYMBOL(vm_insert_pfn);
1845
1846int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1847                        unsigned long pfn)
1848{
1849        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1850
1851        if (addr < vma->vm_start || addr >= vma->vm_end)
1852                return -EFAULT;
1853
1854        /*
1855         * If we don't have pte special, then we have to use the pfn_valid()
1856         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1857         * refcount the page if pfn_valid is true (hence insert_page rather
1858         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1859         * without pte special, it would there be refcounted as a normal page.
1860         */
1861        if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1862                struct page *page;
1863
1864                page = pfn_to_page(pfn);
1865                return insert_page(vma, addr, page, vma->vm_page_prot);
1866        }
1867        return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1868}
1869EXPORT_SYMBOL(vm_insert_mixed);
1870
1871/*
1872 * maps a range of physical memory into the requested pages. the old
1873 * mappings are removed. any references to nonexistent pages results
1874 * in null mappings (currently treated as "copy-on-access")
1875 */
1876static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1877                        unsigned long addr, unsigned long end,
1878                        unsigned long pfn, pgprot_t prot)
1879{
1880        pte_t *pte;
1881        spinlock_t *ptl;
1882
1883        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1884        if (!pte)
1885                return -ENOMEM;
1886        arch_enter_lazy_mmu_mode();
1887        do {
1888                BUG_ON(!pte_none(*pte));
1889                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1890                pfn++;
1891        } while (pte++, addr += PAGE_SIZE, addr != end);
1892        arch_leave_lazy_mmu_mode();
1893        pte_unmap_unlock(pte - 1, ptl);
1894        return 0;
1895}
1896
1897static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1898                        unsigned long addr, unsigned long end,
1899                        unsigned long pfn, pgprot_t prot)
1900{
1901        pmd_t *pmd;
1902        unsigned long next;
1903
1904        pfn -= addr >> PAGE_SHIFT;
1905        pmd = pmd_alloc(mm, pud, addr);
1906        if (!pmd)
1907                return -ENOMEM;
1908        VM_BUG_ON(pmd_trans_huge(*pmd));
1909        do {
1910                next = pmd_addr_end(addr, end);
1911                if (remap_pte_range(mm, pmd, addr, next,
1912                                pfn + (addr >> PAGE_SHIFT), prot))
1913                        return -ENOMEM;
1914        } while (pmd++, addr = next, addr != end);
1915        return 0;
1916}
1917
1918static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919                        unsigned long addr, unsigned long end,
1920                        unsigned long pfn, pgprot_t prot)
1921{
1922        pud_t *pud;
1923        unsigned long next;
1924
1925        pfn -= addr >> PAGE_SHIFT;
1926        pud = pud_alloc(mm, pgd, addr);
1927        if (!pud)
1928                return -ENOMEM;
1929        do {
1930                next = pud_addr_end(addr, end);
1931                if (remap_pmd_range(mm, pud, addr, next,
1932                                pfn + (addr >> PAGE_SHIFT), prot))
1933                        return -ENOMEM;
1934        } while (pud++, addr = next, addr != end);
1935        return 0;
1936}
1937
1938/**
1939 * remap_pfn_range - remap kernel memory to userspace
1940 * @vma: user vma to map to
1941 * @addr: target user address to start at
1942 * @pfn: physical address of kernel memory
1943 * @size: size of map area
1944 * @prot: page protection flags for this mapping
1945 *
1946 *  Note: this is only safe if the mm semaphore is held when called.
1947 */
1948int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1949                    unsigned long pfn, unsigned long size, pgprot_t prot)
1950{
1951        pgd_t *pgd;
1952        unsigned long next;
1953        unsigned long end = addr + PAGE_ALIGN(size);
1954        struct mm_struct *mm = vma->vm_mm;
1955        int err;
1956
1957        /*
1958         * Physically remapped pages are special. Tell the
1959         * rest of the world about it:
1960         *   VM_IO tells people not to look at these pages
1961         *      (accesses can have side effects).
1962         *   VM_RESERVED is specified all over the place, because
1963         *      in 2.4 it kept swapout's vma scan off this vma; but
1964         *      in 2.6 the LRU scan won't even find its pages, so this
1965         *      flag means no more than count its pages in reserved_vm,
1966         *      and omit it from core dump, even when VM_IO turned off.
1967         *   VM_PFNMAP tells the core MM that the base pages are just
1968         *      raw PFN mappings, and do not have a "struct page" associated
1969         *      with them.
1970         *
1971         * There's a horrible special case to handle copy-on-write
1972         * behaviour that some programs depend on. We mark the "original"
1973         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1974         */
1975        if (addr == vma->vm_start && end == vma->vm_end) {
1976                vma->vm_pgoff = pfn;
1977                vma->vm_flags |= VM_PFN_AT_MMAP;
1978        } else if (is_cow_mapping(vma->vm_flags))
1979                return -EINVAL;
1980
1981        vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1982
1983        err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1984        if (err) {
1985                /*
1986                 * To indicate that track_pfn related cleanup is not
1987                 * needed from higher level routine calling unmap_vmas
1988                 */
1989                vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1990                vma->vm_flags &= ~VM_PFN_AT_MMAP;
1991                return -EINVAL;
1992        }
1993
1994        BUG_ON(addr >= end);
1995        pfn -= addr >> PAGE_SHIFT;
1996        pgd = pgd_offset(mm, addr);
1997        flush_cache_range(vma, addr, end);
1998        do {
1999                next = pgd_addr_end(addr, end);
2000                err = remap_pud_range(mm, pgd, addr, next,
2001                                pfn + (addr >> PAGE_SHIFT), prot);
2002                if (err)
2003                        break;
2004        } while (pgd++, addr = next, addr != end);
2005
2006        if (err)
2007                untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2008
2009        return err;
2010}
2011EXPORT_SYMBOL(remap_pfn_range);
2012
2013static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2014                                     unsigned long addr, unsigned long end,
2015                                     pte_fn_t fn, void *data)
2016{
2017        pte_t *pte;
2018        int err;
2019        pgtable_t token;
2020        spinlock_t *uninitialized_var(ptl);
2021
2022        pte = (mm == &init_mm) ?
2023                pte_alloc_kernel(pmd, addr) :
2024                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2025        if (!pte)
2026                return -ENOMEM;
2027
2028        BUG_ON(pmd_huge(*pmd));
2029
2030        arch_enter_lazy_mmu_mode();
2031
2032        token = pmd_pgtable(*pmd);
2033
2034        do {
2035                err = fn(pte++, token, addr, data);
2036                if (err)
2037                        break;
2038        } while (addr += PAGE_SIZE, addr != end);
2039
2040        arch_leave_lazy_mmu_mode();
2041
2042        if (mm != &init_mm)
2043                pte_unmap_unlock(pte-1, ptl);
2044        return err;
2045}
2046
2047static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2048                                     unsigned long addr, unsigned long end,
2049                                     pte_fn_t fn, void *data)
2050{
2051        pmd_t *pmd;
2052        unsigned long next;
2053        int err;
2054
2055        BUG_ON(pud_huge(*pud));
2056
2057        pmd = pmd_alloc(mm, pud, addr);
2058        if (!pmd)
2059                return -ENOMEM;
2060        do {
2061                next = pmd_addr_end(addr, end);
2062                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2063                if (err)
2064                        break;
2065        } while (pmd++, addr = next, addr != end);
2066        return err;
2067}
2068
2069static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2070                                     unsigned long addr, unsigned long end,
2071                                     pte_fn_t fn, void *data)
2072{
2073        pud_t *pud;
2074        unsigned long next;
2075        int err;
2076
2077        pud = pud_alloc(mm, pgd, addr);
2078        if (!pud)
2079                return -ENOMEM;
2080        do {
2081                next = pud_addr_end(addr, end);
2082                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2083                if (err)
2084                        break;
2085        } while (pud++, addr = next, addr != end);
2086        return err;
2087}
2088
2089/*
2090 * Scan a region of virtual memory, filling in page tables as necessary
2091 * and calling a provided function on each leaf page table.
2092 */
2093int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2094                        unsigned long size, pte_fn_t fn, void *data)
2095{
2096        pgd_t *pgd;
2097        unsigned long next;
2098        unsigned long end = addr + size;
2099        int err;
2100
2101        BUG_ON(addr >= end);
2102        pgd = pgd_offset(mm, addr);
2103        do {
2104                next = pgd_addr_end(addr, end);
2105                err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2106                if (err)
2107                        break;
2108        } while (pgd++, addr = next, addr != end);
2109
2110        return err;
2111}
2112EXPORT_SYMBOL_GPL(apply_to_page_range);
2113
2114/*
2115 * handle_pte_fault chooses page fault handler according to an entry
2116 * which was read non-atomically.  Before making any commitment, on
2117 * those architectures or configurations (e.g. i386 with PAE) which
2118 * might give a mix of unmatched parts, do_swap_page and do_file_page
2119 * must check under lock before unmapping the pte and proceeding
2120 * (but do_wp_page is only called after already making such a check;
2121 * and do_anonymous_page and do_no_page can safely check later on).
2122 */
2123static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2124                                pte_t *page_table, pte_t orig_pte)
2125{
2126        int same = 1;
2127#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2128        if (sizeof(pte_t) > sizeof(unsigned long)) {
2129                spinlock_t *ptl = pte_lockptr(mm, pmd);
2130                spin_lock(ptl);
2131                same = pte_same(*page_table, orig_pte);
2132                spin_unlock(ptl);
2133        }
2134#endif
2135        pte_unmap(page_table);
2136        return same;
2137}
2138
2139static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2140{
2141        /*
2142         * If the source page was a PFN mapping, we don't have
2143         * a "struct page" for it. We do a best-effort copy by
2144         * just copying from the original user address. If that
2145         * fails, we just zero-fill it. Live with it.
2146         */
2147        if (unlikely(!src)) {
2148                void *kaddr = kmap_atomic(dst, KM_USER0);
2149                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2150
2151                /*
2152                 * This really shouldn't fail, because the page is there
2153                 * in the page tables. But it might just be unreadable,
2154                 * in which case we just give up and fill the result with
2155                 * zeroes.
2156                 */
2157                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2158                        clear_page(kaddr);
2159                kunmap_atomic(kaddr, KM_USER0);
2160                flush_dcache_page(dst);
2161        } else
2162                copy_user_highpage(dst, src, va, vma);
2163}
2164
2165/*
2166 * This routine handles present pages, when users try to write
2167 * to a shared page. It is done by copying the page to a new address
2168 * and decrementing the shared-page counter for the old page.
2169 *
2170 * Note that this routine assumes that the protection checks have been
2171 * done by the caller (the low-level page fault routine in most cases).
2172 * Thus we can safely just mark it writable once we've done any necessary
2173 * COW.
2174 *
2175 * We also mark the page dirty at this point even though the page will
2176 * change only once the write actually happens. This avoids a few races,
2177 * and potentially makes it more efficient.
2178 *
2179 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2180 * but allow concurrent faults), with pte both mapped and locked.
2181 * We return with mmap_sem still held, but pte unmapped and unlocked.
2182 */
2183static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2184                unsigned long address, pte_t *page_table, pmd_t *pmd,
2185                spinlock_t *ptl, pte_t orig_pte)
2186        __releases(ptl)
2187{
2188        struct page *old_page, *new_page;
2189        pte_t entry;
2190        int ret = 0;
2191        int page_mkwrite = 0;
2192        struct page *dirty_page = NULL;
2193
2194        old_page = vm_normal_page(vma, address, orig_pte);
2195        if (!old_page) {
2196                /*
2197                 * VM_MIXEDMAP !pfn_valid() case
2198                 *
2199                 * We should not cow pages in a shared writeable mapping.
2200                 * Just mark the pages writable as we can't do any dirty
2201                 * accounting on raw pfn maps.
2202                 */
2203                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2204                                     (VM_WRITE|VM_SHARED))
2205                        goto reuse;
2206                goto gotten;
2207        }
2208
2209        /*
2210         * Take out anonymous pages first, anonymous shared vmas are
2211         * not dirty accountable.
2212         */
2213        if (PageAnon(old_page) && !PageKsm(old_page)) {
2214                if (!trylock_page(old_page)) {
2215                        page_cache_get(old_page);
2216                        pte_unmap_unlock(page_table, ptl);
2217                        lock_page(old_page);
2218                        page_table = pte_offset_map_lock(mm, pmd, address,
2219                                                         &ptl);
2220                        if (!pte_same(*page_table, orig_pte)) {
2221                                unlock_page(old_page);
2222                                goto unlock;
2223                        }
2224                        page_cache_release(old_page);
2225                }
2226                if (reuse_swap_page(old_page)) {
2227                        /*
2228                         * The page is all ours.  Move it to our anon_vma so
2229                         * the rmap code will not search our parent or siblings.
2230                         * Protected against the rmap code by the page lock.
2231                         */
2232                        page_move_anon_rmap(old_page, vma, address);
2233                        unlock_page(old_page);
2234                        goto reuse;
2235                }
2236                unlock_page(old_page);
2237        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2238                                        (VM_WRITE|VM_SHARED))) {
2239                /*
2240                 * Only catch write-faults on shared writable pages,
2241                 * read-only shared pages can get COWed by
2242                 * get_user_pages(.write=1, .force=1).
2243                 */
2244                if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2245                        struct vm_fault vmf;
2246                        int tmp;
2247
2248                        vmf.virtual_address = (void __user *)(address &
2249                                                                PAGE_MASK);
2250                        vmf.pgoff = old_page->index;
2251                        vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2252                        vmf.page = old_page;
2253
2254                        /*
2255                         * Notify the address space that the page is about to
2256                         * become writable so that it can prohibit this or wait
2257                         * for the page to get into an appropriate state.
2258                         *
2259                         * We do this without the lock held, so that it can
2260                         * sleep if it needs to.
2261                         */
2262                        page_cache_get(old_page);
2263                        pte_unmap_unlock(page_table, ptl);
2264
2265                        tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2266                        if (unlikely(tmp &
2267                                        (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2268                                ret = tmp;
2269                                goto unwritable_page;
2270                        }
2271                        if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2272                                lock_page(old_page);
2273                                if (!old_page->mapping) {
2274                                        ret = 0; /* retry the fault */
2275                                        unlock_page(old_page);
2276                                        goto unwritable_page;
2277                                }
2278                        } else
2279                                VM_BUG_ON(!PageLocked(old_page));
2280
2281                        /*
2282                         * Since we dropped the lock we need to revalidate
2283                         * the PTE as someone else may have changed it.  If
2284                         * they did, we just return, as we can count on the
2285                         * MMU to tell us if they didn't also make it writable.
2286                         */
2287                        page_table = pte_offset_map_lock(mm, pmd, address,
2288                                                         &ptl);
2289                        if (!pte_same(*page_table, orig_pte)) {
2290                                unlock_page(old_page);
2291                                goto unlock;
2292                        }
2293
2294                        page_mkwrite = 1;
2295                }
2296                dirty_page = old_page;
2297                get_page(dirty_page);
2298
2299reuse:
2300                flush_cache_page(vma, address, pte_pfn(orig_pte));
2301                entry = pte_mkyoung(orig_pte);
2302                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2303                if (ptep_set_access_flags(vma, address, page_table, entry,1))
2304                        update_mmu_cache(vma, address, page_table);
2305                pte_unmap_unlock(page_table, ptl);
2306                ret |= VM_FAULT_WRITE;
2307
2308                if (!dirty_page)
2309                        return ret;
2310
2311                /*
2312                 * Yes, Virginia, this is actually required to prevent a race
2313                 * with clear_page_dirty_for_io() from clearing the page dirty
2314                 * bit after it clear all dirty ptes, but before a racing
2315                 * do_wp_page installs a dirty pte.
2316                 *
2317                 * do_no_page is protected similarly.
2318                 */
2319                if (!page_mkwrite) {
2320                        wait_on_page_locked(dirty_page);
2321                        set_page_dirty_balance(dirty_page, page_mkwrite);
2322                }
2323                put_page(dirty_page);
2324                if (page_mkwrite) {
2325                        struct address_space *mapping = dirty_page->mapping;
2326
2327                        set_page_dirty(dirty_page);
2328                        unlock_page(dirty_page);
2329                        page_cache_release(dirty_page);
2330                        if (mapping)    {
2331                                /*
2332                                 * Some device drivers do not set page.mapping
2333                                 * but still dirty their pages
2334                                 */
2335                                balance_dirty_pages_ratelimited(mapping);
2336                        }
2337                }
2338
2339                /* file_update_time outside page_lock */
2340                if (vma->vm_file)
2341                        file_update_time(vma->vm_file);
2342
2343                return ret;
2344        }
2345
2346        /*
2347         * Ok, we need to copy. Oh, well..
2348         */
2349        page_cache_get(old_page);
2350gotten:
2351        pte_unmap_unlock(page_table, ptl);
2352
2353        if (unlikely(anon_vma_prepare(vma)))
2354                goto oom;
2355
2356        if (is_zero_pfn(pte_pfn(orig_pte))) {
2357                new_page = alloc_zeroed_user_highpage_movable(vma, address);
2358                if (!new_page)
2359                        goto oom;
2360        } else {
2361                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2362                if (!new_page)
2363                        goto oom;
2364                cow_user_page(new_page, old_page, address, vma);
2365        }
2366        __SetPageUptodate(new_page);
2367
2368        if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2369                goto oom_free_new;
2370
2371        /*
2372         * Re-check the pte - we dropped the lock
2373         */
2374        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2375        if (likely(pte_same(*page_table, orig_pte))) {
2376                if (old_page) {
2377                        if (!PageAnon(old_page)) {
2378                                dec_mm_counter_fast(mm, MM_FILEPAGES);
2379                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2380                        }
2381                } else
2382                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2383                flush_cache_page(vma, address, pte_pfn(orig_pte));
2384                entry = mk_pte(new_page, vma->vm_page_prot);
2385                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2386                /*
2387                 * Clear the pte entry and flush it first, before updating the
2388                 * pte with the new entry. This will avoid a race condition
2389                 * seen in the presence of one thread doing SMC and another
2390                 * thread doing COW.
2391                 */
2392                ptep_clear_flush(vma, address, page_table);
2393                page_add_new_anon_rmap(new_page, vma, address);
2394                /*
2395                 * We call the notify macro here because, when using secondary
2396                 * mmu page tables (such as kvm shadow page tables), we want the
2397                 * new page to be mapped directly into the secondary page table.
2398                 */
2399                set_pte_at_notify(mm, address, page_table, entry);
2400                update_mmu_cache(vma, address, page_table);
2401                if (old_page) {
2402                        /*
2403                         * Only after switching the pte to the new page may
2404                         * we remove the mapcount here. Otherwise another
2405                         * process may come and find the rmap count decremented
2406                         * before the pte is switched to the new page, and
2407                         * "reuse" the old page writing into it while our pte
2408                         * here still points into it and can be read by other
2409                         * threads.
2410                         *
2411                         * The critical issue is to order this
2412                         * page_remove_rmap with the ptp_clear_flush above.
2413                         * Those stores are ordered by (if nothing else,)
2414                         * the barrier present in the atomic_add_negative
2415                         * in page_remove_rmap.
2416                         *
2417                         * Then the TLB flush in ptep_clear_flush ensures that
2418                         * no process can access the old page before the
2419                         * decremented mapcount is visible. And the old page
2420                         * cannot be reused until after the decremented
2421                         * mapcount is visible. So transitively, TLBs to
2422                         * old page will be flushed before it can be reused.
2423                         */
2424                        page_remove_rmap(old_page);
2425                }
2426
2427                /* Free the old page.. */
2428                new_page = old_page;
2429                ret |= VM_FAULT_WRITE;
2430        } else
2431                mem_cgroup_uncharge_page(new_page);
2432
2433        if (new_page)
2434                page_cache_release(new_page);
2435unlock:
2436        pte_unmap_unlock(page_table, ptl);
2437        if (old_page) {
2438                /*
2439                 * Don't let another task, with possibly unlocked vma,
2440                 * keep the mlocked page.
2441                 */
2442                if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2443                        lock_page(old_page);    /* LRU manipulation */
2444                        munlock_vma_page(old_page);
2445                        unlock_page(old_page);
2446                }
2447                page_cache_release(old_page);
2448        }
2449        return ret;
2450oom_free_new:
2451        page_cache_release(new_page);
2452oom:
2453        if (old_page) {
2454                if (page_mkwrite) {
2455                        unlock_page(old_page);
2456                        page_cache_release(old_page);
2457                }
2458                page_cache_release(old_page);
2459        }
2460        return VM_FAULT_OOM;
2461
2462unwritable_page:
2463        page_cache_release(old_page);
2464        return ret;
2465}
2466
2467/*
2468 * Helper functions for unmap_mapping_range().
2469 *
2470 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2471 *
2472 * We have to restart searching the prio_tree whenever we drop the lock,
2473 * since the iterator is only valid while the lock is held, and anyway
2474 * a later vma might be split and reinserted earlier while lock dropped.
2475 *
2476 * The list of nonlinear vmas could be handled more efficiently, using
2477 * a placeholder, but handle it in the same way until a need is shown.
2478 * It is important to search the prio_tree before nonlinear list: a vma
2479 * may become nonlinear and be shifted from prio_tree to nonlinear list
2480 * while the lock is dropped; but never shifted from list to prio_tree.
2481 *
2482 * In order to make forward progress despite restarting the search,
2483 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2484 * quickly skip it next time around.  Since the prio_tree search only
2485 * shows us those vmas affected by unmapping the range in question, we
2486 * can't efficiently keep all vmas in step with mapping->truncate_count:
2487 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2488 * mapping->truncate_count and vma->vm_truncate_count are protected by
2489 * i_mmap_lock.
2490 *
2491 * In order to make forward progress despite repeatedly restarting some
2492 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2493 * and restart from that address when we reach that vma again.  It might
2494 * have been split or merged, shrunk or extended, but never shifted: so
2495 * restart_addr remains valid so long as it remains in the vma's range.
2496 * unmap_mapping_range forces truncate_count to leap over page-aligned
2497 * values so we can save vma's restart_addr in its truncate_count field.
2498 */
2499#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2500
2501static void reset_vma_truncate_counts(struct address_space *mapping)
2502{
2503        struct vm_area_struct *vma;
2504        struct prio_tree_iter iter;
2505
2506        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2507                vma->vm_truncate_count = 0;
2508        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2509                vma->vm_truncate_count = 0;
2510}
2511
2512static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2513                unsigned long start_addr, unsigned long end_addr,
2514                struct zap_details *details)
2515{
2516        unsigned long restart_addr;
2517        int need_break;
2518
2519        /*
2520         * files that support invalidating or truncating portions of the
2521         * file from under mmaped areas must have their ->fault function
2522         * return a locked page (and set VM_FAULT_LOCKED in the return).
2523         * This provides synchronisation against concurrent unmapping here.
2524         */
2525
2526again:
2527        restart_addr = vma->vm_truncate_count;
2528        if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2529                start_addr = restart_addr;
2530                if (start_addr >= end_addr) {
2531                        /* Top of vma has been split off since last time */
2532                        vma->vm_truncate_count = details->truncate_count;
2533                        return 0;
2534                }
2535        }
2536
2537        restart_addr = zap_page_range(vma, start_addr,
2538                                        end_addr - start_addr, details);
2539        need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2540
2541        if (restart_addr >= end_addr) {
2542                /* We have now completed this vma: mark it so */
2543                vma->vm_truncate_count = details->truncate_count;
2544                if (!need_break)
2545                        return 0;
2546        } else {
2547                /* Note restart_addr in vma's truncate_count field */
2548                vma->vm_truncate_count = restart_addr;
2549                if (!need_break)
2550                        goto again;
2551        }
2552
2553        spin_unlock(details->i_mmap_lock);
2554        cond_resched();
2555        spin_lock(details->i_mmap_lock);
2556        return -EINTR;
2557}
2558
2559static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2560                                            struct zap_details *details)
2561{
2562        struct vm_area_struct *vma;
2563        struct prio_tree_iter iter;
2564        pgoff_t vba, vea, zba, zea;
2565
2566restart:
2567        vma_prio_tree_foreach(vma, &iter, root,
2568                        details->first_index, details->last_index) {
2569                /* Skip quickly over those we have already dealt with */
2570                if (vma->vm_truncate_count == details->truncate_count)
2571                        continue;
2572
2573                vba = vma->vm_pgoff;
2574                vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2575                /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2576                zba = details->first_index;
2577                if (zba < vba)
2578                        zba = vba;
2579                zea = details->last_index;
2580                if (zea > vea)
2581                        zea = vea;
2582
2583                if (unmap_mapping_range_vma(vma,
2584                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2585                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2586                                details) < 0)
2587                        goto restart;
2588        }
2589}
2590
2591static inline void unmap_mapping_range_list(struct list_head *head,
2592                                            struct zap_details *details)
2593{
2594        struct vm_area_struct *vma;
2595
2596        /*
2597         * In nonlinear VMAs there is no correspondence between virtual address
2598         * offset and file offset.  So we must perform an exhaustive search
2599         * across *all* the pages in each nonlinear VMA, not just the pages
2600         * whose virtual address lies outside the file truncation point.
2601         */
2602restart:
2603        list_for_each_entry(vma, head, shared.vm_set.list) {
2604                /* Skip quickly over those we have already dealt with */
2605                if (vma->vm_truncate_count == details->truncate_count)
2606                        continue;
2607                details->nonlinear_vma = vma;
2608                if (unmap_mapping_range_vma(vma, vma->vm_start,
2609                                        vma->vm_end, details) < 0)
2610                        goto restart;
2611        }
2612}
2613
2614/**
2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2616 * @mapping: the address space containing mmaps to be unmapped.
2617 * @holebegin: byte in first page to unmap, relative to the start of
2618 * the underlying file.  This will be rounded down to a PAGE_SIZE
2619 * boundary.  Note that this is different from truncate_pagecache(), which
2620 * must keep the partial page.  In contrast, we must get rid of
2621 * partial pages.
2622 * @holelen: size of prospective hole in bytes.  This will be rounded
2623 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2624 * end of the file.
2625 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2626 * but 0 when invalidating pagecache, don't throw away private data.
2627 */
2628void unmap_mapping_range(struct address_space *mapping,
2629                loff_t const holebegin, loff_t const holelen, int even_cows)
2630{
2631        struct zap_details details;
2632        pgoff_t hba = holebegin >> PAGE_SHIFT;
2633        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2634
2635        /* Check for overflow. */
2636        if (sizeof(holelen) > sizeof(hlen)) {
2637                long long holeend =
2638                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2639                if (holeend & ~(long long)ULONG_MAX)
2640                        hlen = ULONG_MAX - hba + 1;
2641        }
2642
2643        details.check_mapping = even_cows? NULL: mapping;
2644        details.nonlinear_vma = NULL;
2645        details.first_index = hba;
2646        details.last_index = hba + hlen - 1;
2647        if (details.last_index < details.first_index)
2648                details.last_index = ULONG_MAX;
2649        details.i_mmap_lock = &mapping->i_mmap_lock;
2650
2651        mutex_lock(&mapping->unmap_mutex);
2652        spin_lock(&mapping->i_mmap_lock);
2653
2654        /* Protect against endless unmapping loops */
2655        mapping->truncate_count++;
2656        if (unlikely(is_restart_addr(mapping->truncate_count))) {
2657                if (mapping->truncate_count == 0)
2658                        reset_vma_truncate_counts(mapping);
2659                mapping->truncate_count++;
2660        }
2661        details.truncate_count = mapping->truncate_count;
2662
2663        if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2664                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2665        if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2666                unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2667        spin_unlock(&mapping->i_mmap_lock);
2668        mutex_unlock(&mapping->unmap_mutex);
2669}
2670EXPORT_SYMBOL(unmap_mapping_range);
2671
2672int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2673{
2674        struct address_space *mapping = inode->i_mapping;
2675
2676        /*
2677         * If the underlying filesystem is not going to provide
2678         * a way to truncate a range of blocks (punch a hole) -
2679         * we should return failure right now.
2680         */
2681        if (!inode->i_op->truncate_range)
2682                return -ENOSYS;
2683
2684        mutex_lock(&inode->i_mutex);
2685        down_write(&inode->i_alloc_sem);
2686        unmap_mapping_range(mapping, offset, (end - offset), 1);
2687        truncate_inode_pages_range(mapping, offset, end);
2688        unmap_mapping_range(mapping, offset, (end - offset), 1);
2689        inode->i_op->truncate_range(inode, offset, end);
2690        up_write(&inode->i_alloc_sem);
2691        mutex_unlock(&inode->i_mutex);
2692
2693        return 0;
2694}
2695
2696/*
2697 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2698 * but allow concurrent faults), and pte mapped but not yet locked.
2699 * We return with mmap_sem still held, but pte unmapped and unlocked.
2700 */
2701static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2702                unsigned long address, pte_t *page_table, pmd_t *pmd,
2703                unsigned int flags, pte_t orig_pte)
2704{
2705        spinlock_t *ptl;
2706        struct page *page, *swapcache = NULL;
2707        swp_entry_t entry;
2708        pte_t pte;
2709        int locked;
2710        struct mem_cgroup *ptr = NULL;
2711        int exclusive = 0;
2712        int ret = 0;
2713
2714        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2715                goto out;
2716
2717        entry = pte_to_swp_entry(orig_pte);
2718        if (unlikely(non_swap_entry(entry))) {
2719                if (is_migration_entry(entry)) {
2720                        migration_entry_wait(mm, pmd, address);
2721                } else if (is_hwpoison_entry(entry)) {
2722                        ret = VM_FAULT_HWPOISON;
2723                } else {
2724                        print_bad_pte(vma, address, orig_pte, NULL);
2725                        ret = VM_FAULT_SIGBUS;
2726                }
2727                goto out;
2728        }
2729        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2730        page = lookup_swap_cache(entry);
2731        if (!page) {
2732                grab_swap_token(mm); /* Contend for token _before_ read-in */
2733                page = swapin_readahead(entry,
2734                                        GFP_HIGHUSER_MOVABLE, vma, address);
2735                if (!page) {
2736                        /*
2737                         * Back out if somebody else faulted in this pte
2738                         * while we released the pte lock.
2739                         */
2740                        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2741                        if (likely(pte_same(*page_table, orig_pte)))
2742                                ret = VM_FAULT_OOM;
2743                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2744                        goto unlock;
2745                }
2746
2747                /* Had to read the page from swap area: Major fault */
2748                ret = VM_FAULT_MAJOR;
2749                count_vm_event(PGMAJFAULT);
2750        } else if (PageHWPoison(page)) {
2751                /*
2752                 * hwpoisoned dirty swapcache pages are kept for killing
2753                 * owner processes (which may be unknown at hwpoison time)
2754                 */
2755                ret = VM_FAULT_HWPOISON;
2756                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2757                goto out_release;
2758        }
2759
2760        locked = lock_page_or_retry(page, mm, flags);
2761        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2762        if (!locked) {
2763                ret |= VM_FAULT_RETRY;
2764                goto out_release;
2765        }
2766
2767        /*
2768         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2769         * release the swapcache from under us.  The page pin, and pte_same
2770         * test below, are not enough to exclude that.  Even if it is still
2771         * swapcache, we need to check that the page's swap has not changed.
2772         */
2773        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2774                goto out_page;
2775
2776        if (ksm_might_need_to_copy(page, vma, address)) {
2777                swapcache = page;
2778                page = ksm_does_need_to_copy(page, vma, address);
2779
2780                if (unlikely(!page)) {
2781                        ret = VM_FAULT_OOM;
2782                        page = swapcache;
2783                        swapcache = NULL;
2784                        goto out_page;
2785                }
2786        }
2787
2788        if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2789                ret = VM_FAULT_OOM;
2790                goto out_page;
2791        }
2792
2793        /*
2794         * Back out if somebody else already faulted in this pte.
2795         */
2796        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2797        if (unlikely(!pte_same(*page_table, orig_pte)))
2798                goto out_nomap;
2799
2800        if (unlikely(!PageUptodate(page))) {
2801                ret = VM_FAULT_SIGBUS;
2802                goto out_nomap;
2803        }
2804
2805        /*
2806         * The page isn't present yet, go ahead with the fault.
2807         *
2808         * Be careful about the sequence of operations here.
2809         * To get its accounting right, reuse_swap_page() must be called
2810         * while the page is counted on swap but not yet in mapcount i.e.
2811         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2812         * must be called after the swap_free(), or it will never succeed.
2813         * Because delete_from_swap_page() may be called by reuse_swap_page(),
2814         * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2815         * in page->private. In this case, a record in swap_cgroup  is silently
2816         * discarded at swap_free().
2817         */
2818
2819        inc_mm_counter_fast(mm, MM_ANONPAGES);
2820        dec_mm_counter_fast(mm, MM_SWAPENTS);
2821        pte = mk_pte(page, vma->vm_page_prot);
2822        if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2823                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2824                flags &= ~FAULT_FLAG_WRITE;
2825                ret |= VM_FAULT_WRITE;
2826                exclusive = 1;
2827        }
2828        flush_icache_page(vma, page);
2829        set_pte_at(mm, address, page_table, pte);
2830        do_page_add_anon_rmap(page, vma, address, exclusive);
2831        /* It's better to call commit-charge after rmap is established */
2832        mem_cgroup_commit_charge_swapin(page, ptr);
2833
2834        swap_free(entry);
2835        if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2836                try_to_free_swap(page);
2837        unlock_page(page);
2838        if (swapcache) {
2839                /*
2840                 * Hold the lock to avoid the swap entry to be reused
2841                 * until we take the PT lock for the pte_same() check
2842                 * (to avoid false positives from pte_same). For
2843                 * further safety release the lock after the swap_free
2844                 * so that the swap count won't change under a
2845                 * parallel locked swapcache.
2846                 */
2847                unlock_page(swapcache);
2848                page_cache_release(swapcache);
2849        }
2850
2851        if (flags & FAULT_FLAG_WRITE) {
2852                ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2853                if (ret & VM_FAULT_ERROR)
2854                        ret &= VM_FAULT_ERROR;
2855                goto out;
2856        }
2857
2858        /* No need to invalidate - it was non-present before */
2859        update_mmu_cache(vma, address, page_table);
2860unlock:
2861        pte_unmap_unlock(page_table, ptl);
2862out:
2863        return ret;
2864out_nomap:
2865        mem_cgroup_cancel_charge_swapin(ptr);
2866        pte_unmap_unlock(page_table, ptl);
2867out_page:
2868        unlock_page(page);
2869out_release:
2870        page_cache_release(page);
2871        if (swapcache) {
2872                unlock_page(swapcache);
2873                page_cache_release(swapcache);
2874        }
2875        return ret;
2876}
2877
2878/*
2879 * This is like a special single-page "expand_{down|up}wards()",
2880 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2881 * doesn't hit another vma.
2882 */
2883static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2884{
2885        address &= PAGE_MASK;
2886        if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2887                struct vm_area_struct *prev = vma->vm_prev;
2888
2889                /*
2890                 * Is there a mapping abutting this one below?
2891                 *
2892                 * That's only ok if it's the same stack mapping
2893                 * that has gotten split..
2894                 */
2895                if (prev && prev->vm_end == address)
2896                        return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2897
2898                expand_stack(vma, address - PAGE_SIZE);
2899        }
2900        if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2901                struct vm_area_struct *next = vma->vm_next;
2902
2903                /* As VM_GROWSDOWN but s/below/above/ */
2904                if (next && next->vm_start == address + PAGE_SIZE)
2905                        return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2906
2907                expand_upwards(vma, address + PAGE_SIZE);
2908        }
2909        return 0;
2910}
2911
2912/*
2913 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2914 * but allow concurrent faults), and pte mapped but not yet locked.
2915 * We return with mmap_sem still held, but pte unmapped and unlocked.
2916 */
2917static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2918                unsigned long address, pte_t *page_table, pmd_t *pmd,
2919                unsigned int flags)
2920{
2921        struct page *page;
2922        spinlock_t *ptl;
2923        pte_t entry;
2924
2925        pte_unmap(page_table);
2926
2927        /* Check if we need to add a guard page to the stack */
2928        if (check_stack_guard_page(vma, address) < 0)
2929                return VM_FAULT_SIGBUS;
2930
2931        /* Use the zero-page for reads */
2932        if (!(flags & FAULT_FLAG_WRITE)) {
2933                entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2934                                                vma->vm_page_prot));
2935                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2936                if (!pte_none(*page_table))
2937                        goto unlock;
2938                goto setpte;
2939        }
2940
2941        /* Allocate our own private page. */
2942        if (unlikely(anon_vma_prepare(vma)))
2943                goto oom;
2944        page = alloc_zeroed_user_highpage_movable(vma, address);
2945        if (!page)
2946                goto oom;
2947        __SetPageUptodate(page);
2948
2949        if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2950                goto oom_free_page;
2951
2952        entry = mk_pte(page, vma->vm_page_prot);
2953        if (vma->vm_flags & VM_WRITE)
2954                entry = pte_mkwrite(pte_mkdirty(entry));
2955
2956        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2957        if (!pte_none(*page_table))
2958                goto release;
2959
2960        inc_mm_counter_fast(mm, MM_ANONPAGES);
2961        page_add_new_anon_rmap(page, vma, address);
2962setpte:
2963        set_pte_at(mm, address, page_table, entry);
2964
2965        /* No need to invalidate - it was non-present before */
2966        update_mmu_cache(vma, address, page_table);
2967unlock:
2968        pte_unmap_unlock(page_table, ptl);
2969        return 0;
2970release:
2971        mem_cgroup_uncharge_page(page);
2972        page_cache_release(page);
2973        goto unlock;
2974oom_free_page:
2975        page_cache_release(page);
2976oom:
2977        return VM_FAULT_OOM;
2978}
2979
2980/*
2981 * __do_fault() tries to create a new page mapping. It aggressively
2982 * tries to share with existing pages, but makes a separate copy if
2983 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2984 * the next page fault.
2985 *
2986 * As this is called only for pages that do not currently exist, we
2987 * do not need to flush old virtual caches or the TLB.
2988 *
2989 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2990 * but allow concurrent faults), and pte neither mapped nor locked.
2991 * We return with mmap_sem still held, but pte unmapped and unlocked.
2992 */
2993static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2994                unsigned long address, pmd_t *pmd,
2995                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2996{
2997        pte_t *page_table;
2998        spinlock_t *ptl;
2999        struct page *page;
3000        pte_t entry;
3001        int anon = 0;
3002        int charged = 0;
3003        struct page *dirty_page = NULL;
3004        struct vm_fault vmf;
3005        int ret;
3006        int page_mkwrite = 0;
3007
3008        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3009        vmf.pgoff = pgoff;
3010        vmf.flags = flags;
3011        vmf.page = NULL;
3012
3013        ret = vma->vm_ops->fault(vma, &vmf);
3014        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3015                            VM_FAULT_RETRY)))
3016                return ret;
3017
3018        if (unlikely(PageHWPoison(vmf.page))) {
3019                if (ret & VM_FAULT_LOCKED)
3020                        unlock_page(vmf.page);
3021                return VM_FAULT_HWPOISON;
3022        }
3023
3024        /*
3025         * For consistency in subsequent calls, make the faulted page always
3026         * locked.
3027         */
3028        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3029                lock_page(vmf.page);
3030        else
3031                VM_BUG_ON(!PageLocked(vmf.page));
3032
3033        /*
3034         * Should we do an early C-O-W break?
3035         */
3036        page = vmf.page;
3037        if (flags & FAULT_FLAG_WRITE) {
3038                if (!(vma->vm_flags & VM_SHARED)) {
3039                        anon = 1;
3040                        if (unlikely(anon_vma_prepare(vma))) {
3041                                ret = VM_FAULT_OOM;
3042                                goto out;
3043                        }
3044                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3045                                                vma, address);
3046                        if (!page) {
3047                                ret = VM_FAULT_OOM;
3048                                goto out;
3049                        }
3050                        if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3051                                ret = VM_FAULT_OOM;
3052                                page_cache_release(page);
3053                                goto out;
3054                        }
3055                        charged = 1;
3056                        copy_user_highpage(page, vmf.page, address, vma);
3057                        __SetPageUptodate(page);
3058                } else {
3059                        /*
3060                         * If the page will be shareable, see if the backing
3061                         * address space wants to know that the page is about
3062                         * to become writable
3063                         */
3064                        if (vma->vm_ops->page_mkwrite) {
3065                                int tmp;
3066
3067                                unlock_page(page);
3068                                vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3069                                tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3070                                if (unlikely(tmp &
3071                                          (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3072                                        ret = tmp;
3073                                        goto unwritable_page;
3074                                }
3075                                if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3076                                        lock_page(page);
3077                                        if (!page->mapping) {
3078                                                ret = 0; /* retry the fault */
3079                                                unlock_page(page);
3080                                                goto unwritable_page;
3081                                        }
3082                                } else
3083                                        VM_BUG_ON(!PageLocked(page));
3084                                page_mkwrite = 1;
3085                        }
3086                }
3087
3088        }
3089
3090        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3091
3092        /*
3093         * This silly early PAGE_DIRTY setting removes a race
3094         * due to the bad i386 page protection. But it's valid
3095         * for other architectures too.
3096         *
3097         * Note that if FAULT_FLAG_WRITE is set, we either now have
3098         * an exclusive copy of the page, or this is a shared mapping,
3099         * so we can make it writable and dirty to avoid having to
3100         * handle that later.
3101         */
3102        /* Only go through if we didn't race with anybody else... */
3103        if (likely(pte_same(*page_table, orig_pte))) {
3104                flush_icache_page(vma, page);
3105                entry = mk_pte(page, vma->vm_page_prot);
3106                if (flags & FAULT_FLAG_WRITE)
3107                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3108                if (anon) {
3109                        inc_mm_counter_fast(mm, MM_ANONPAGES);
3110                        page_add_new_anon_rmap(page, vma, address);
3111                } else {
3112                        inc_mm_counter_fast(mm, MM_FILEPAGES);
3113                        page_add_file_rmap(page);
3114                        if (flags & FAULT_FLAG_WRITE) {
3115                                dirty_page = page;
3116                                get_page(dirty_page);
3117                        }
3118                }
3119                set_pte_at(mm, address, page_table, entry);
3120
3121                /* no need to invalidate: a not-present page won't be cached */
3122                update_mmu_cache(vma, address, page_table);
3123        } else {
3124                if (charged)
3125                        mem_cgroup_uncharge_page(page);
3126                if (anon)
3127                        page_cache_release(page);
3128                else
3129                        anon = 1; /* no anon but release faulted_page */
3130        }
3131
3132        pte_unmap_unlock(page_table, ptl);
3133
3134out:
3135        if (dirty_page) {
3136                struct address_space *mapping = page->mapping;
3137
3138                if (set_page_dirty(dirty_page))
3139                        page_mkwrite = 1;
3140                unlock_page(dirty_page);
3141                put_page(dirty_page);
3142                if (page_mkwrite && mapping) {
3143                        /*
3144                         * Some device drivers do not set page.mapping but still
3145                         * dirty their pages
3146                         */
3147                        balance_dirty_pages_ratelimited(mapping);
3148                }
3149
3150                /* file_update_time outside page_lock */
3151                if (vma->vm_file)
3152                        file_update_time(vma->vm_file);
3153        } else {
3154                unlock_page(vmf.page);
3155                if (anon)
3156                        page_cache_release(vmf.page);
3157        }
3158
3159        return ret;
3160
3161unwritable_page:
3162        page_cache_release(page);
3163        return ret;
3164}
3165
3166static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3167                unsigned long address, pte_t *page_table, pmd_t *pmd,
3168                unsigned int flags, pte_t orig_pte)
3169{
3170        pgoff_t pgoff = (((address & PAGE_MASK)
3171                        - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3172
3173        pte_unmap(page_table);
3174        return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3175}
3176
3177/*
3178 * Fault of a previously existing named mapping. Repopulate the pte
3179 * from the encoded file_pte if possible. This enables swappable
3180 * nonlinear vmas.
3181 *
3182 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3183 * but allow concurrent faults), and pte mapped but not yet locked.
3184 * We return with mmap_sem still held, but pte unmapped and unlocked.
3185 */
3186static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3187                unsigned long address, pte_t *page_table, pmd_t *pmd,
3188                unsigned int flags, pte_t orig_pte)
3189{
3190        pgoff_t pgoff;
3191
3192        flags |= FAULT_FLAG_NONLINEAR;
3193
3194        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3195                return 0;
3196
3197        if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3198                /*
3199                 * Page table corrupted: show pte and kill process.
3200                 */
3201                print_bad_pte(vma, address, orig_pte, NULL);
3202                return VM_FAULT_SIGBUS;
3203        }
3204
3205        pgoff = pte_to_pgoff(orig_pte);
3206        return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3207}
3208
3209/*
3210 * These routines also need to handle stuff like marking pages dirty
3211 * and/or accessed for architectures that don't do it in hardware (most
3212 * RISC architectures).  The early dirtying is also good on the i386.
3213 *
3214 * There is also a hook called "update_mmu_cache()" that architectures
3215 * with external mmu caches can use to update those (ie the Sparc or
3216 * PowerPC hashed page tables that act as extended TLBs).
3217 *
3218 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3219 * but allow concurrent faults), and pte mapped but not yet locked.
3220 * We return with mmap_sem still held, but pte unmapped and unlocked.
3221 */
3222int handle_pte_fault(struct mm_struct *mm,
3223                     struct vm_area_struct *vma, unsigned long address,
3224                     pte_t *pte, pmd_t *pmd, unsigned int flags)
3225{
3226        pte_t entry;
3227        spinlock_t *ptl;
3228
3229        entry = *pte;
3230        if (!pte_present(entry)) {
3231                if (pte_none(entry)) {
3232                        if (vma->vm_ops) {
3233                                if (likely(vma->vm_ops->fault))
3234                                        return do_linear_fault(mm, vma, address,
3235                                                pte, pmd, flags, entry);
3236                        }
3237                        return do_anonymous_page(mm, vma, address,
3238                                                 pte, pmd, flags);
3239                }
3240                if (pte_file(entry))
3241                        return do_nonlinear_fault(mm, vma, address,
3242                                        pte, pmd, flags, entry);
3243                return do_swap_page(mm, vma, address,
3244                                        pte, pmd, flags, entry);
3245        }
3246
3247        ptl = pte_lockptr(mm, pmd);
3248        spin_lock(ptl);
3249        if (unlikely(!pte_same(*pte, entry)))
3250                goto unlock;
3251        if (flags & FAULT_FLAG_WRITE) {
3252                if (!pte_write(entry))
3253                        return do_wp_page(mm, vma, address,
3254                                        pte, pmd, ptl, entry);
3255                entry = pte_mkdirty(entry);
3256        }
3257        entry = pte_mkyoung(entry);
3258        if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3259                update_mmu_cache(vma, address, pte);
3260        } else {
3261                /*
3262                 * This is needed only for protection faults but the arch code
3263                 * is not yet telling us if this is a protection fault or not.
3264                 * This still avoids useless tlb flushes for .text page faults
3265                 * with threads.
3266                 */
3267                if (flags & FAULT_FLAG_WRITE)
3268                        flush_tlb_fix_spurious_fault(vma, address);
3269        }
3270unlock:
3271        pte_unmap_unlock(pte, ptl);
3272        return 0;
3273}
3274
3275/*
3276 * By the time we get here, we already hold the mm semaphore
3277 */
3278int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3279                unsigned long address, unsigned int flags)
3280{
3281        pgd_t *pgd;
3282        pud_t *pud;
3283        pmd_t *pmd;
3284        pte_t *pte;
3285
3286        __set_current_state(TASK_RUNNING);
3287
3288        count_vm_event(PGFAULT);
3289
3290        /* do counter updates before entering really critical section. */
3291        check_sync_rss_stat(current);
3292
3293        if (unlikely(is_vm_hugetlb_page(vma)))
3294                return hugetlb_fault(mm, vma, address, flags);
3295
3296        pgd = pgd_offset(mm, address);
3297        pud = pud_alloc(mm, pgd, address);
3298        if (!pud)
3299                return VM_FAULT_OOM;
3300        pmd = pmd_alloc(mm, pud, address);
3301        if (!pmd)
3302                return VM_FAULT_OOM;
3303        if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3304                if (!vma->vm_ops)
3305                        return do_huge_pmd_anonymous_page(mm, vma, address,
3306                                                          pmd, flags);
3307        } else {
3308                pmd_t orig_pmd = *pmd;
3309                barrier();
3310                if (pmd_trans_huge(orig_pmd)) {
3311                        if (flags & FAULT_FLAG_WRITE &&
3312                            !pmd_write(orig_pmd) &&
3313                            !pmd_trans_splitting(orig_pmd))
3314                                return do_huge_pmd_wp_page(mm, vma, address,
3315                                                           pmd, orig_pmd);
3316                        return 0;
3317                }
3318        }
3319
3320        /*
3321         * Use __pte_alloc instead of pte_alloc_map, because we can't
3322         * run pte_offset_map on the pmd, if an huge pmd could
3323         * materialize from under us from a different thread.
3324         */
3325        if (unlikely(__pte_alloc(mm, vma, pmd, address)))
3326                return VM_FAULT_OOM;
3327        /* if an huge pmd materialized from under us just retry later */
3328        if (unlikely(pmd_trans_huge(*pmd)))
3329                return 0;
3330        /*
3331         * A regular pmd is established and it can't morph into a huge pmd
3332         * from under us anymore at this point because we hold the mmap_sem
3333         * read mode and khugepaged takes it in write mode. So now it's
3334         * safe to run pte_offset_map().
3335         */
3336        pte = pte_offset_map(pmd, address);
3337
3338        return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3339}
3340
3341#ifndef __PAGETABLE_PUD_FOLDED
3342/*
3343 * Allocate page upper directory.
3344 * We've already handled the fast-path in-line.
3345 */
3346int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3347{
3348        pud_t *new = pud_alloc_one(mm, address);
3349        if (!new)
3350                return -ENOMEM;
3351
3352        smp_wmb(); /* See comment in __pte_alloc */
3353
3354        spin_lock(&mm->page_table_lock);
3355        if (pgd_present(*pgd))          /* Another has populated it */
3356                pud_free(mm, new);
3357        else
3358                pgd_populate(mm, pgd, new);
3359        spin_unlock(&mm->page_table_lock);
3360        return 0;
3361}
3362#endif /* __PAGETABLE_PUD_FOLDED */
3363
3364#ifndef __PAGETABLE_PMD_FOLDED
3365/*
3366 * Allocate page middle directory.
3367 * We've already handled the fast-path in-line.
3368 */
3369int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3370{
3371        pmd_t *new = pmd_alloc_one(mm, address);
3372        if (!new)
3373                return -ENOMEM;
3374
3375        smp_wmb(); /* See comment in __pte_alloc */
3376
3377        spin_lock(&mm->page_table_lock);
3378#ifndef __ARCH_HAS_4LEVEL_HACK
3379        if (pud_present(*pud))          /* Another has populated it */
3380                pmd_free(mm, new);
3381        else
3382                pud_populate(mm, pud, new);
3383#else
3384        if (pgd_present(*pud))          /* Another has populated it */
3385                pmd_free(mm, new);
3386        else
3387                pgd_populate(mm, pud, new);
3388#endif /* __ARCH_HAS_4LEVEL_HACK */
3389        spin_unlock(&mm->page_table_lock);
3390        return 0;
3391}
3392#endif /* __PAGETABLE_PMD_FOLDED */
3393
3394int make_pages_present(unsigned long addr, unsigned long end)
3395{
3396        int ret, len, write;
3397        struct vm_area_struct * vma;
3398
3399        vma = find_vma(current->mm, addr);
3400        if (!vma)
3401                return -ENOMEM;
3402        /*
3403         * We want to touch writable mappings with a write fault in order
3404         * to break COW, except for shared mappings because these don't COW
3405         * and we would not want to dirty them for nothing.
3406         */
3407        write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3408        BUG_ON(addr >= end);
3409        BUG_ON(end > vma->vm_end);
3410        len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3411        ret = get_user_pages(current, current->mm, addr,
3412                        len, write, 0, NULL, NULL);
3413        if (ret < 0)
3414                return ret;
3415        return ret == len ? 0 : -EFAULT;
3416}
3417
3418#if !defined(__HAVE_ARCH_GATE_AREA)
3419
3420#if defined(AT_SYSINFO_EHDR)
3421static struct vm_area_struct gate_vma;
3422
3423static int __init gate_vma_init(void)
3424{
3425        gate_vma.vm_mm = NULL;
3426        gate_vma.vm_start = FIXADDR_USER_START;
3427        gate_vma.vm_end = FIXADDR_USER_END;
3428        gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3429        gate_vma.vm_page_prot = __P101;
3430        /*
3431         * Make sure the vDSO gets into every core dump.
3432         * Dumping its contents makes post-mortem fully interpretable later
3433         * without matching up the same kernel and hardware config to see
3434         * what PC values meant.
3435         */
3436        gate_vma.vm_flags |= VM_ALWAYSDUMP;
3437        return 0;
3438}
3439__initcall(gate_vma_init);
3440#endif
3441
3442struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3443{
3444#ifdef AT_SYSINFO_EHDR
3445        return &gate_vma;
3446#else
3447        return NULL;
3448#endif
3449}
3450
3451int in_gate_area_no_task(unsigned long addr)
3452{
3453#ifdef AT_SYSINFO_EHDR
3454        if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3455                return 1;
3456#endif
3457        return 0;
3458}
3459
3460#endif  /* __HAVE_ARCH_GATE_AREA */
3461
3462static int __follow_pte(struct mm_struct *mm, unsigned long address,
3463                pte_t **ptepp, spinlock_t **ptlp)
3464{
3465        pgd_t *pgd;
3466        pud_t *pud;
3467        pmd_t *pmd;
3468        pte_t *ptep;
3469
3470        pgd = pgd_offset(mm, address);
3471        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3472                goto out;
3473
3474        pud = pud_offset(pgd, address);
3475        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3476                goto out;
3477
3478        pmd = pmd_offset(pud, address);
3479        VM_BUG_ON(pmd_trans_huge(*pmd));
3480        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3481                goto out;
3482
3483        /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3484        if (pmd_huge(*pmd))
3485                goto out;
3486
3487        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3488        if (!ptep)
3489                goto out;
3490        if (!pte_present(*ptep))
3491                goto unlock;
3492        *ptepp = ptep;
3493        return 0;
3494unlock:
3495        pte_unmap_unlock(ptep, *ptlp);
3496out:
3497        return -EINVAL;
3498}
3499
3500static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3501                             pte_t **ptepp, spinlock_t **ptlp)
3502{
3503        int res;
3504
3505        /* (void) is needed to make gcc happy */
3506        (void) __cond_lock(*ptlp,
3507                           !(res = __follow_pte(mm, address, ptepp, ptlp)));
3508        return res;
3509}
3510
3511/**
3512 * follow_pfn - look up PFN at a user virtual address
3513 * @vma: memory mapping
3514 * @address: user virtual address
3515 * @pfn: location to store found PFN
3516 *
3517 * Only IO mappings and raw PFN mappings are allowed.
3518 *
3519 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3520 */
3521int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3522        unsigned long *pfn)
3523{
3524        int ret = -EINVAL;
3525        spinlock_t *ptl;
3526        pte_t *ptep;
3527
3528        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3529                return ret;
3530
3531        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3532        if (ret)
3533                return ret;
3534        *pfn = pte_pfn(*ptep);
3535        pte_unmap_unlock(ptep, ptl);
3536        return 0;
3537}
3538EXPORT_SYMBOL(follow_pfn);
3539
3540#ifdef CONFIG_HAVE_IOREMAP_PROT
3541int follow_phys(struct vm_area_struct *vma,
3542                unsigned long address, unsigned int flags,
3543                unsigned long *prot, resource_size_t *phys)
3544{
3545        int ret = -EINVAL;
3546        pte_t *ptep, pte;
3547        spinlock_t *ptl;
3548
3549        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3550                goto out;
3551
3552        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3553                goto out;
3554        pte = *ptep;
3555
3556        if ((flags & FOLL_WRITE) && !pte_write(pte))
3557                goto unlock;
3558
3559        *prot = pgprot_val(pte_pgprot(pte));
3560        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3561
3562        ret = 0;
3563unlock:
3564        pte_unmap_unlock(ptep, ptl);
3565out:
3566        return ret;
3567}
3568
3569int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3570                        void *buf, int len, int write)
3571{
3572        resource_size_t phys_addr;
3573        unsigned long prot = 0;
3574        void __iomem *maddr;
3575        int offset = addr & (PAGE_SIZE-1);
3576
3577        if (follow_phys(vma, addr, write, &prot, &phys_addr))
3578                return -EINVAL;
3579
3580        maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3581        if (write)
3582                memcpy_toio(maddr + offset, buf, len);
3583        else
3584                memcpy_fromio(buf, maddr + offset, len);
3585        iounmap(maddr);
3586
3587        return len;
3588}
3589#endif
3590
3591/*
3592 * Access another process' address space.
3593 * Source/target buffer must be kernel space,
3594 * Do not walk the page table directly, use get_user_pages
3595 */
3596int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3597{
3598        struct mm_struct *mm;
3599        struct vm_area_struct *vma;
3600        void *old_buf = buf;
3601
3602        mm = get_task_mm(tsk);
3603        if (!mm)
3604                return 0;
3605
3606        down_read(&mm->mmap_sem);
3607        /* ignore errors, just check how much was successfully transferred */
3608        while (len) {
3609                int bytes, ret, offset;
3610                void *maddr;
3611                struct page *page = NULL;
3612
3613                ret = get_user_pages(tsk, mm, addr, 1,
3614                                write, 1, &page, &vma);
3615                if (ret <= 0) {
3616                        /*
3617                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
3618                         * we can access using slightly different code.
3619                         */
3620#ifdef CONFIG_HAVE_IOREMAP_PROT
3621                        vma = find_vma(mm, addr);
3622                        if (!vma)
3623                                break;
3624                        if (vma->vm_ops && vma->vm_ops->access)
3625                                ret = vma->vm_ops->access(vma, addr, buf,
3626                                                          len, write);
3627                        if (ret <= 0)
3628#endif
3629                                break;
3630                        bytes = ret;
3631                } else {
3632                        bytes = len;
3633                        offset = addr & (PAGE_SIZE-1);
3634                        if (bytes > PAGE_SIZE-offset)
3635                                bytes = PAGE_SIZE-offset;
3636
3637                        maddr = kmap(page);
3638                        if (write) {
3639                                copy_to_user_page(vma, page, addr,
3640                                                  maddr + offset, buf, bytes);
3641                                set_page_dirty_lock(page);
3642                        } else {
3643                                copy_from_user_page(vma, page, addr,
3644                                                    buf, maddr + offset, bytes);
3645                        }
3646                        kunmap(page);
3647                        page_cache_release(page);
3648                }
3649                len -= bytes;
3650                buf += bytes;
3651                addr += bytes;
3652        }
3653        up_read(&mm->mmap_sem);
3654        mmput(mm);
3655
3656        return buf - old_buf;
3657}
3658
3659/*
3660 * Print the name of a VMA.
3661 */
3662void print_vma_addr(char *prefix, unsigned long ip)
3663{
3664        struct mm_struct *mm = current->mm;
3665        struct vm_area_struct *vma;
3666
3667        /*
3668         * Do not print if we are in atomic
3669         * contexts (in exception stacks, etc.):
3670         */
3671        if (preempt_count())
3672                return;
3673
3674        down_read(&mm->mmap_sem);
3675        vma = find_vma(mm, ip);
3676        if (vma && vma->vm_file) {
3677                struct file *f = vma->vm_file;
3678                char *buf = (char *)__get_free_page(GFP_KERNEL);
3679                if (buf) {
3680                        char *p, *s;
3681
3682                        p = d_path(&f->f_path, buf, PAGE_SIZE);
3683                        if (IS_ERR(p))
3684                                p = "?";
3685                        s = strrchr(p, '/');
3686                        if (s)
3687                                p = s+1;
3688                        printk("%s%s[%lx+%lx]", prefix, p,
3689                                        vma->vm_start,
3690                                        vma->vm_end - vma->vm_start);
3691                        free_page((unsigned long)buf);
3692                }
3693        }
3694        up_read(&current->mm->mmap_sem);
3695}
3696
3697#ifdef CONFIG_PROVE_LOCKING
3698void might_fault(void)
3699{
3700        /*
3701         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3702         * holding the mmap_sem, this is safe because kernel memory doesn't
3703         * get paged out, therefore we'll never actually fault, and the
3704         * below annotations will generate false positives.
3705         */
3706        if (segment_eq(get_fs(), KERNEL_DS))
3707                return;
3708
3709        might_sleep();
3710        /*
3711         * it would be nicer only to annotate paths which are not under
3712         * pagefault_disable, however that requires a larger audit and
3713         * providing helpers like get_user_atomic.
3714         */
3715        if (!in_atomic() && current->mm)
3716                might_lock_read(&current->mm->mmap_sem);
3717}
3718EXPORT_SYMBOL(might_fault);
3719#endif
3720
3721#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3722static void clear_gigantic_page(struct page *page,
3723                                unsigned long addr,
3724                                unsigned int pages_per_huge_page)
3725{
3726        int i;
3727        struct page *p = page;
3728
3729        might_sleep();
3730        for (i = 0; i < pages_per_huge_page;
3731             i++, p = mem_map_next(p, page, i)) {
3732                cond_resched();
3733                clear_user_highpage(p, addr + i * PAGE_SIZE);
3734        }
3735}
3736void clear_huge_page(struct page *page,
3737                     unsigned long addr, unsigned int pages_per_huge_page)
3738{
3739        int i;
3740
3741        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3742                clear_gigantic_page(page, addr, pages_per_huge_page);
3743                return;
3744        }
3745
3746        might_sleep();
3747        for (i = 0; i < pages_per_huge_page; i++) {
3748                cond_resched();
3749                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3750        }
3751}
3752
3753static void copy_user_gigantic_page(struct page *dst, struct page *src,
3754                                    unsigned long addr,
3755                                    struct vm_area_struct *vma,
3756                                    unsigned int pages_per_huge_page)
3757{
3758        int i;
3759        struct page *dst_base = dst;
3760        struct page *src_base = src;
3761
3762        for (i = 0; i < pages_per_huge_page; ) {
3763                cond_resched();
3764                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3765
3766                i++;
3767                dst = mem_map_next(dst, dst_base, i);
3768                src = mem_map_next(src, src_base, i);
3769        }
3770}
3771
3772void copy_user_huge_page(struct page *dst, struct page *src,
3773                         unsigned long addr, struct vm_area_struct *vma,
3774                         unsigned int pages_per_huge_page)
3775{
3776        int i;
3777
3778        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3779                copy_user_gigantic_page(dst, src, addr, vma,
3780                                        pages_per_huge_page);
3781                return;
3782        }
3783
3784        might_sleep();
3785        for (i = 0; i < pages_per_huge_page; i++) {
3786                cond_resched();
3787                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3788        }
3789}
3790#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3791