linux/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/swap.h>
  20#include <linux/file.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/tracehook.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/mount.h>
  29#include <linux/personality.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/audit.h>
  33
  34#include <asm/uaccess.h>
  35#include <asm/tlb.h>
  36#include <asm/tlbflush.h>
  37#include <asm/mmu_context.h>
  38#include "internal.h"
  39
  40#if 0
  41#define kenter(FMT, ...) \
  42        printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  43#define kleave(FMT, ...) \
  44        printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  45#define kdebug(FMT, ...) \
  46        printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
  47#else
  48#define kenter(FMT, ...) \
  49        no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  50#define kleave(FMT, ...) \
  51        no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  52#define kdebug(FMT, ...) \
  53        no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
  54#endif
  55
  56void *high_memory;
  57struct page *mem_map;
  58unsigned long max_mapnr;
  59unsigned long num_physpages;
  60unsigned long highest_memmap_pfn;
  61struct percpu_counter vm_committed_as;
  62int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
  63int sysctl_overcommit_ratio = 50; /* default is 50% */
  64int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
  65int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  66int heap_stack_gap = 0;
  67
  68atomic_long_t mmap_pages_allocated;
  69
  70EXPORT_SYMBOL(mem_map);
  71EXPORT_SYMBOL(num_physpages);
  72
  73/* list of mapped, potentially shareable regions */
  74static struct kmem_cache *vm_region_jar;
  75struct rb_root nommu_region_tree = RB_ROOT;
  76DECLARE_RWSEM(nommu_region_sem);
  77
  78const struct vm_operations_struct generic_file_vm_ops = {
  79};
  80
  81/*
  82 * Return the total memory allocated for this pointer, not
  83 * just what the caller asked for.
  84 *
  85 * Doesn't have to be accurate, i.e. may have races.
  86 */
  87unsigned int kobjsize(const void *objp)
  88{
  89        struct page *page;
  90
  91        /*
  92         * If the object we have should not have ksize performed on it,
  93         * return size of 0
  94         */
  95        if (!objp || !virt_addr_valid(objp))
  96                return 0;
  97
  98        page = virt_to_head_page(objp);
  99
 100        /*
 101         * If the allocator sets PageSlab, we know the pointer came from
 102         * kmalloc().
 103         */
 104        if (PageSlab(page))
 105                return ksize(objp);
 106
 107        /*
 108         * If it's not a compound page, see if we have a matching VMA
 109         * region. This test is intentionally done in reverse order,
 110         * so if there's no VMA, we still fall through and hand back
 111         * PAGE_SIZE for 0-order pages.
 112         */
 113        if (!PageCompound(page)) {
 114                struct vm_area_struct *vma;
 115
 116                vma = find_vma(current->mm, (unsigned long)objp);
 117                if (vma)
 118                        return vma->vm_end - vma->vm_start;
 119        }
 120
 121        /*
 122         * The ksize() function is only guaranteed to work for pointers
 123         * returned by kmalloc(). So handle arbitrary pointers here.
 124         */
 125        return PAGE_SIZE << compound_order(page);
 126}
 127
 128int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 129                     unsigned long start, int nr_pages, unsigned int foll_flags,
 130                     struct page **pages, struct vm_area_struct **vmas,
 131                     int *retry)
 132{
 133        struct vm_area_struct *vma;
 134        unsigned long vm_flags;
 135        int i;
 136
 137        /* calculate required read or write permissions.
 138         * If FOLL_FORCE is set, we only require the "MAY" flags.
 139         */
 140        vm_flags  = (foll_flags & FOLL_WRITE) ?
 141                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 142        vm_flags &= (foll_flags & FOLL_FORCE) ?
 143                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 144
 145        for (i = 0; i < nr_pages; i++) {
 146                vma = find_vma(mm, start);
 147                if (!vma)
 148                        goto finish_or_fault;
 149
 150                /* protect what we can, including chardevs */
 151                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 152                    !(vm_flags & vma->vm_flags))
 153                        goto finish_or_fault;
 154
 155                if (pages) {
 156                        pages[i] = virt_to_page(start);
 157                        if (pages[i])
 158                                page_cache_get(pages[i]);
 159                }
 160                if (vmas)
 161                        vmas[i] = vma;
 162                start = (start + PAGE_SIZE) & PAGE_MASK;
 163        }
 164
 165        return i;
 166
 167finish_or_fault:
 168        return i ? : -EFAULT;
 169}
 170
 171/*
 172 * get a list of pages in an address range belonging to the specified process
 173 * and indicate the VMA that covers each page
 174 * - this is potentially dodgy as we may end incrementing the page count of a
 175 *   slab page or a secondary page from a compound page
 176 * - don't permit access to VMAs that don't support it, such as I/O mappings
 177 */
 178int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 179        unsigned long start, int nr_pages, int write, int force,
 180        struct page **pages, struct vm_area_struct **vmas)
 181{
 182        int flags = 0;
 183
 184        if (write)
 185                flags |= FOLL_WRITE;
 186        if (force)
 187                flags |= FOLL_FORCE;
 188
 189        return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
 190                                NULL);
 191}
 192EXPORT_SYMBOL(get_user_pages);
 193
 194/**
 195 * follow_pfn - look up PFN at a user virtual address
 196 * @vma: memory mapping
 197 * @address: user virtual address
 198 * @pfn: location to store found PFN
 199 *
 200 * Only IO mappings and raw PFN mappings are allowed.
 201 *
 202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 203 */
 204int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 205        unsigned long *pfn)
 206{
 207        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 208                return -EINVAL;
 209
 210        *pfn = address >> PAGE_SHIFT;
 211        return 0;
 212}
 213EXPORT_SYMBOL(follow_pfn);
 214
 215DEFINE_RWLOCK(vmlist_lock);
 216struct vm_struct *vmlist;
 217
 218void vfree(const void *addr)
 219{
 220        kfree(addr);
 221}
 222EXPORT_SYMBOL(vfree);
 223
 224void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 225{
 226        /*
 227         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 228         * returns only a logical address.
 229         */
 230        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 231}
 232EXPORT_SYMBOL(__vmalloc);
 233
 234void *vmalloc_user(unsigned long size)
 235{
 236        void *ret;
 237
 238        ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 239                        PAGE_KERNEL);
 240        if (ret) {
 241                struct vm_area_struct *vma;
 242
 243                down_write(&current->mm->mmap_sem);
 244                vma = find_vma(current->mm, (unsigned long)ret);
 245                if (vma)
 246                        vma->vm_flags |= VM_USERMAP;
 247                up_write(&current->mm->mmap_sem);
 248        }
 249
 250        return ret;
 251}
 252EXPORT_SYMBOL(vmalloc_user);
 253
 254struct page *vmalloc_to_page(const void *addr)
 255{
 256        return virt_to_page(addr);
 257}
 258EXPORT_SYMBOL(vmalloc_to_page);
 259
 260unsigned long vmalloc_to_pfn(const void *addr)
 261{
 262        return page_to_pfn(virt_to_page(addr));
 263}
 264EXPORT_SYMBOL(vmalloc_to_pfn);
 265
 266long vread(char *buf, char *addr, unsigned long count)
 267{
 268        memcpy(buf, addr, count);
 269        return count;
 270}
 271
 272long vwrite(char *buf, char *addr, unsigned long count)
 273{
 274        /* Don't allow overflow */
 275        if ((unsigned long) addr + count < count)
 276                count = -(unsigned long) addr;
 277
 278        memcpy(addr, buf, count);
 279        return(count);
 280}
 281
 282/*
 283 *      vmalloc  -  allocate virtually continguos memory
 284 *
 285 *      @size:          allocation size
 286 *
 287 *      Allocate enough pages to cover @size from the page level
 288 *      allocator and map them into continguos kernel virtual space.
 289 *
 290 *      For tight control over page level allocator and protection flags
 291 *      use __vmalloc() instead.
 292 */
 293void *vmalloc(unsigned long size)
 294{
 295       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 296}
 297EXPORT_SYMBOL(vmalloc);
 298
 299/*
 300 *      vzalloc - allocate virtually continguos memory with zero fill
 301 *
 302 *      @size:          allocation size
 303 *
 304 *      Allocate enough pages to cover @size from the page level
 305 *      allocator and map them into continguos kernel virtual space.
 306 *      The memory allocated is set to zero.
 307 *
 308 *      For tight control over page level allocator and protection flags
 309 *      use __vmalloc() instead.
 310 */
 311void *vzalloc(unsigned long size)
 312{
 313        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 314                        PAGE_KERNEL);
 315}
 316EXPORT_SYMBOL(vzalloc);
 317
 318/**
 319 * vmalloc_node - allocate memory on a specific node
 320 * @size:       allocation size
 321 * @node:       numa node
 322 *
 323 * Allocate enough pages to cover @size from the page level
 324 * allocator and map them into contiguous kernel virtual space.
 325 *
 326 * For tight control over page level allocator and protection flags
 327 * use __vmalloc() instead.
 328 */
 329void *vmalloc_node(unsigned long size, int node)
 330{
 331        return vmalloc(size);
 332}
 333EXPORT_SYMBOL(vmalloc_node);
 334
 335/**
 336 * vzalloc_node - allocate memory on a specific node with zero fill
 337 * @size:       allocation size
 338 * @node:       numa node
 339 *
 340 * Allocate enough pages to cover @size from the page level
 341 * allocator and map them into contiguous kernel virtual space.
 342 * The memory allocated is set to zero.
 343 *
 344 * For tight control over page level allocator and protection flags
 345 * use __vmalloc() instead.
 346 */
 347void *vzalloc_node(unsigned long size, int node)
 348{
 349        return vzalloc(size);
 350}
 351EXPORT_SYMBOL(vzalloc_node);
 352
 353#ifndef PAGE_KERNEL_EXEC
 354# define PAGE_KERNEL_EXEC PAGE_KERNEL
 355#endif
 356
 357/**
 358 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 359 *      @size:          allocation size
 360 *
 361 *      Kernel-internal function to allocate enough pages to cover @size
 362 *      the page level allocator and map them into contiguous and
 363 *      executable kernel virtual space.
 364 *
 365 *      For tight control over page level allocator and protection flags
 366 *      use __vmalloc() instead.
 367 */
 368
 369void *vmalloc_exec(unsigned long size)
 370{
 371        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 372}
 373
 374/**
 375 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 376 *      @size:          allocation size
 377 *
 378 *      Allocate enough 32bit PA addressable pages to cover @size from the
 379 *      page level allocator and map them into continguos kernel virtual space.
 380 */
 381void *vmalloc_32(unsigned long size)
 382{
 383        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 384}
 385EXPORT_SYMBOL(vmalloc_32);
 386
 387/**
 388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 389 *      @size:          allocation size
 390 *
 391 * The resulting memory area is 32bit addressable and zeroed so it can be
 392 * mapped to userspace without leaking data.
 393 *
 394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 395 * remap_vmalloc_range() are permissible.
 396 */
 397void *vmalloc_32_user(unsigned long size)
 398{
 399        /*
 400         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 401         * but for now this can simply use vmalloc_user() directly.
 402         */
 403        return vmalloc_user(size);
 404}
 405EXPORT_SYMBOL(vmalloc_32_user);
 406
 407void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 408{
 409        BUG();
 410        return NULL;
 411}
 412EXPORT_SYMBOL(vmap);
 413
 414void vunmap(const void *addr)
 415{
 416        BUG();
 417}
 418EXPORT_SYMBOL(vunmap);
 419
 420void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 421{
 422        BUG();
 423        return NULL;
 424}
 425EXPORT_SYMBOL(vm_map_ram);
 426
 427void vm_unmap_ram(const void *mem, unsigned int count)
 428{
 429        BUG();
 430}
 431EXPORT_SYMBOL(vm_unmap_ram);
 432
 433void vm_unmap_aliases(void)
 434{
 435}
 436EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 437
 438/*
 439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 440 * have one.
 441 */
 442void  __attribute__((weak)) vmalloc_sync_all(void)
 443{
 444}
 445
 446/**
 447 *      alloc_vm_area - allocate a range of kernel address space
 448 *      @size:          size of the area
 449 *
 450 *      Returns:        NULL on failure, vm_struct on success
 451 *
 452 *      This function reserves a range of kernel address space, and
 453 *      allocates pagetables to map that range.  No actual mappings
 454 *      are created.  If the kernel address space is not shared
 455 *      between processes, it syncs the pagetable across all
 456 *      processes.
 457 */
 458struct vm_struct *alloc_vm_area(size_t size)
 459{
 460        BUG();
 461        return NULL;
 462}
 463EXPORT_SYMBOL_GPL(alloc_vm_area);
 464
 465void free_vm_area(struct vm_struct *area)
 466{
 467        BUG();
 468}
 469EXPORT_SYMBOL_GPL(free_vm_area);
 470
 471int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 472                   struct page *page)
 473{
 474        return -EINVAL;
 475}
 476EXPORT_SYMBOL(vm_insert_page);
 477
 478/*
 479 *  sys_brk() for the most part doesn't need the global kernel
 480 *  lock, except when an application is doing something nasty
 481 *  like trying to un-brk an area that has already been mapped
 482 *  to a regular file.  in this case, the unmapping will need
 483 *  to invoke file system routines that need the global lock.
 484 */
 485SYSCALL_DEFINE1(brk, unsigned long, brk)
 486{
 487        struct mm_struct *mm = current->mm;
 488
 489        if (brk < mm->start_brk || brk > mm->context.end_brk)
 490                return mm->brk;
 491
 492        if (mm->brk == brk)
 493                return mm->brk;
 494
 495        /*
 496         * Always allow shrinking brk
 497         */
 498        if (brk <= mm->brk) {
 499                mm->brk = brk;
 500                return brk;
 501        }
 502
 503        /*
 504         * Ok, looks good - let it rip.
 505         */
 506        flush_icache_range(mm->brk, brk);
 507        return mm->brk = brk;
 508}
 509
 510/*
 511 * initialise the VMA and region record slabs
 512 */
 513void __init mmap_init(void)
 514{
 515        int ret;
 516
 517        ret = percpu_counter_init(&vm_committed_as, 0);
 518        VM_BUG_ON(ret);
 519        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
 520}
 521
 522/*
 523 * validate the region tree
 524 * - the caller must hold the region lock
 525 */
 526#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 527static noinline void validate_nommu_regions(void)
 528{
 529        struct vm_region *region, *last;
 530        struct rb_node *p, *lastp;
 531
 532        lastp = rb_first(&nommu_region_tree);
 533        if (!lastp)
 534                return;
 535
 536        last = rb_entry(lastp, struct vm_region, vm_rb);
 537        BUG_ON(unlikely(last->vm_end <= last->vm_start));
 538        BUG_ON(unlikely(last->vm_top < last->vm_end));
 539
 540        while ((p = rb_next(lastp))) {
 541                region = rb_entry(p, struct vm_region, vm_rb);
 542                last = rb_entry(lastp, struct vm_region, vm_rb);
 543
 544                BUG_ON(unlikely(region->vm_end <= region->vm_start));
 545                BUG_ON(unlikely(region->vm_top < region->vm_end));
 546                BUG_ON(unlikely(region->vm_start < last->vm_top));
 547
 548                lastp = p;
 549        }
 550}
 551#else
 552static void validate_nommu_regions(void)
 553{
 554}
 555#endif
 556
 557/*
 558 * add a region into the global tree
 559 */
 560static void add_nommu_region(struct vm_region *region)
 561{
 562        struct vm_region *pregion;
 563        struct rb_node **p, *parent;
 564
 565        validate_nommu_regions();
 566
 567        parent = NULL;
 568        p = &nommu_region_tree.rb_node;
 569        while (*p) {
 570                parent = *p;
 571                pregion = rb_entry(parent, struct vm_region, vm_rb);
 572                if (region->vm_start < pregion->vm_start)
 573                        p = &(*p)->rb_left;
 574                else if (region->vm_start > pregion->vm_start)
 575                        p = &(*p)->rb_right;
 576                else if (pregion == region)
 577                        return;
 578                else
 579                        BUG();
 580        }
 581
 582        rb_link_node(&region->vm_rb, parent, p);
 583        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 584
 585        validate_nommu_regions();
 586}
 587
 588/*
 589 * delete a region from the global tree
 590 */
 591static void delete_nommu_region(struct vm_region *region)
 592{
 593        BUG_ON(!nommu_region_tree.rb_node);
 594
 595        validate_nommu_regions();
 596        rb_erase(&region->vm_rb, &nommu_region_tree);
 597        validate_nommu_regions();
 598}
 599
 600/*
 601 * free a contiguous series of pages
 602 */
 603static void free_page_series(unsigned long from, unsigned long to)
 604{
 605        for (; from < to; from += PAGE_SIZE) {
 606                struct page *page = virt_to_page(from);
 607
 608                kdebug("- free %lx", from);
 609                atomic_long_dec(&mmap_pages_allocated);
 610                if (page_count(page) != 1)
 611                        kdebug("free page %p: refcount not one: %d",
 612                               page, page_count(page));
 613                put_page(page);
 614        }
 615}
 616
 617/*
 618 * release a reference to a region
 619 * - the caller must hold the region semaphore for writing, which this releases
 620 * - the region may not have been added to the tree yet, in which case vm_top
 621 *   will equal vm_start
 622 */
 623static void __put_nommu_region(struct vm_region *region)
 624        __releases(nommu_region_sem)
 625{
 626        kenter("%p{%d}", region, region->vm_usage);
 627
 628        BUG_ON(!nommu_region_tree.rb_node);
 629
 630        if (--region->vm_usage == 0) {
 631                if (region->vm_top > region->vm_start)
 632                        delete_nommu_region(region);
 633                up_write(&nommu_region_sem);
 634
 635                if (region->vm_file)
 636                        fput(region->vm_file);
 637
 638                /* IO memory and memory shared directly out of the pagecache
 639                 * from ramfs/tmpfs mustn't be released here */
 640                if (region->vm_flags & VM_MAPPED_COPY) {
 641                        kdebug("free series");
 642                        free_page_series(region->vm_start, region->vm_top);
 643                }
 644                kmem_cache_free(vm_region_jar, region);
 645        } else {
 646                up_write(&nommu_region_sem);
 647        }
 648}
 649
 650/*
 651 * release a reference to a region
 652 */
 653static void put_nommu_region(struct vm_region *region)
 654{
 655        down_write(&nommu_region_sem);
 656        __put_nommu_region(region);
 657}
 658
 659/*
 660 * update protection on a vma
 661 */
 662static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 663{
 664#ifdef CONFIG_MPU
 665        struct mm_struct *mm = vma->vm_mm;
 666        long start = vma->vm_start & PAGE_MASK;
 667        while (start < vma->vm_end) {
 668                protect_page(mm, start, flags);
 669                start += PAGE_SIZE;
 670        }
 671        update_protections(mm);
 672#endif
 673}
 674
 675/*
 676 * add a VMA into a process's mm_struct in the appropriate place in the list
 677 * and tree and add to the address space's page tree also if not an anonymous
 678 * page
 679 * - should be called with mm->mmap_sem held writelocked
 680 */
 681static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 682{
 683        struct vm_area_struct *pvma, **pp, *next;
 684        struct address_space *mapping;
 685        struct rb_node **p, *parent;
 686
 687        kenter(",%p", vma);
 688
 689        BUG_ON(!vma->vm_region);
 690
 691        mm->map_count++;
 692        vma->vm_mm = mm;
 693
 694        protect_vma(vma, vma->vm_flags);
 695
 696        /* add the VMA to the mapping */
 697        if (vma->vm_file) {
 698                mapping = vma->vm_file->f_mapping;
 699
 700                flush_dcache_mmap_lock(mapping);
 701                vma_prio_tree_insert(vma, &mapping->i_mmap);
 702                flush_dcache_mmap_unlock(mapping);
 703        }
 704
 705        /* add the VMA to the tree */
 706        parent = NULL;
 707        p = &mm->mm_rb.rb_node;
 708        while (*p) {
 709                parent = *p;
 710                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 711
 712                /* sort by: start addr, end addr, VMA struct addr in that order
 713                 * (the latter is necessary as we may get identical VMAs) */
 714                if (vma->vm_start < pvma->vm_start)
 715                        p = &(*p)->rb_left;
 716                else if (vma->vm_start > pvma->vm_start)
 717                        p = &(*p)->rb_right;
 718                else if (vma->vm_end < pvma->vm_end)
 719                        p = &(*p)->rb_left;
 720                else if (vma->vm_end > pvma->vm_end)
 721                        p = &(*p)->rb_right;
 722                else if (vma < pvma)
 723                        p = &(*p)->rb_left;
 724                else if (vma > pvma)
 725                        p = &(*p)->rb_right;
 726                else
 727                        BUG();
 728        }
 729
 730        rb_link_node(&vma->vm_rb, parent, p);
 731        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 732
 733        /* add VMA to the VMA list also */
 734        for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
 735                if (pvma->vm_start > vma->vm_start)
 736                        break;
 737                if (pvma->vm_start < vma->vm_start)
 738                        continue;
 739                if (pvma->vm_end < vma->vm_end)
 740                        break;
 741        }
 742
 743        next = *pp;
 744        *pp = vma;
 745        vma->vm_next = next;
 746        if (next)
 747                next->vm_prev = vma;
 748}
 749
 750/*
 751 * delete a VMA from its owning mm_struct and address space
 752 */
 753static void delete_vma_from_mm(struct vm_area_struct *vma)
 754{
 755        struct vm_area_struct **pp;
 756        struct address_space *mapping;
 757        struct mm_struct *mm = vma->vm_mm;
 758
 759        kenter("%p", vma);
 760
 761        protect_vma(vma, 0);
 762
 763        mm->map_count--;
 764        if (mm->mmap_cache == vma)
 765                mm->mmap_cache = NULL;
 766
 767        /* remove the VMA from the mapping */
 768        if (vma->vm_file) {
 769                mapping = vma->vm_file->f_mapping;
 770
 771                flush_dcache_mmap_lock(mapping);
 772                vma_prio_tree_remove(vma, &mapping->i_mmap);
 773                flush_dcache_mmap_unlock(mapping);
 774        }
 775
 776        /* remove from the MM's tree and list */
 777        rb_erase(&vma->vm_rb, &mm->mm_rb);
 778        for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
 779                if (*pp == vma) {
 780                        *pp = vma->vm_next;
 781                        break;
 782                }
 783        }
 784
 785        vma->vm_mm = NULL;
 786}
 787
 788/*
 789 * destroy a VMA record
 790 */
 791static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 792{
 793        kenter("%p", vma);
 794        if (vma->vm_ops && vma->vm_ops->close)
 795                vma->vm_ops->close(vma);
 796        if (vma->vm_file) {
 797                fput(vma->vm_file);
 798                if (vma->vm_flags & VM_EXECUTABLE)
 799                        removed_exe_file_vma(mm);
 800        }
 801        put_nommu_region(vma->vm_region);
 802        kmem_cache_free(vm_area_cachep, vma);
 803}
 804
 805/*
 806 * look up the first VMA in which addr resides, NULL if none
 807 * - should be called with mm->mmap_sem at least held readlocked
 808 */
 809struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 810{
 811        struct vm_area_struct *vma;
 812        struct rb_node *n = mm->mm_rb.rb_node;
 813
 814        /* check the cache first */
 815        vma = mm->mmap_cache;
 816        if (vma && vma->vm_start <= addr && vma->vm_end > addr)
 817                return vma;
 818
 819        /* trawl the tree (there may be multiple mappings in which addr
 820         * resides) */
 821        for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
 822                vma = rb_entry(n, struct vm_area_struct, vm_rb);
 823                if (vma->vm_start > addr)
 824                        return NULL;
 825                if (vma->vm_end > addr) {
 826                        mm->mmap_cache = vma;
 827                        return vma;
 828                }
 829        }
 830
 831        return NULL;
 832}
 833EXPORT_SYMBOL(find_vma);
 834
 835/*
 836 * find a VMA
 837 * - we don't extend stack VMAs under NOMMU conditions
 838 */
 839struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 840{
 841        return find_vma(mm, addr);
 842}
 843
 844/*
 845 * expand a stack to a given address
 846 * - not supported under NOMMU conditions
 847 */
 848int expand_stack(struct vm_area_struct *vma, unsigned long address)
 849{
 850        return -ENOMEM;
 851}
 852
 853/*
 854 * look up the first VMA exactly that exactly matches addr
 855 * - should be called with mm->mmap_sem at least held readlocked
 856 */
 857static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 858                                             unsigned long addr,
 859                                             unsigned long len)
 860{
 861        struct vm_area_struct *vma;
 862        struct rb_node *n = mm->mm_rb.rb_node;
 863        unsigned long end = addr + len;
 864
 865        /* check the cache first */
 866        vma = mm->mmap_cache;
 867        if (vma && vma->vm_start == addr && vma->vm_end == end)
 868                return vma;
 869
 870        /* trawl the tree (there may be multiple mappings in which addr
 871         * resides) */
 872        for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
 873                vma = rb_entry(n, struct vm_area_struct, vm_rb);
 874                if (vma->vm_start < addr)
 875                        continue;
 876                if (vma->vm_start > addr)
 877                        return NULL;
 878                if (vma->vm_end == end) {
 879                        mm->mmap_cache = vma;
 880                        return vma;
 881                }
 882        }
 883
 884        return NULL;
 885}
 886
 887/*
 888 * determine whether a mapping should be permitted and, if so, what sort of
 889 * mapping we're capable of supporting
 890 */
 891static int validate_mmap_request(struct file *file,
 892                                 unsigned long addr,
 893                                 unsigned long len,
 894                                 unsigned long prot,
 895                                 unsigned long flags,
 896                                 unsigned long pgoff,
 897                                 unsigned long *_capabilities)
 898{
 899        unsigned long capabilities, rlen;
 900        unsigned long reqprot = prot;
 901        int ret;
 902
 903        /* do the simple checks first */
 904        if (flags & MAP_FIXED) {
 905                printk(KERN_DEBUG
 906                       "%d: Can't do fixed-address/overlay mmap of RAM\n",
 907                       current->pid);
 908                return -EINVAL;
 909        }
 910
 911        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 912            (flags & MAP_TYPE) != MAP_SHARED)
 913                return -EINVAL;
 914
 915        if (!len)
 916                return -EINVAL;
 917
 918        /* Careful about overflows.. */
 919        rlen = PAGE_ALIGN(len);
 920        if (!rlen || rlen > TASK_SIZE)
 921                return -ENOMEM;
 922
 923        /* offset overflow? */
 924        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 925                return -EOVERFLOW;
 926
 927        if (file) {
 928                /* validate file mapping requests */
 929                struct address_space *mapping;
 930
 931                /* files must support mmap */
 932                if (!file->f_op || !file->f_op->mmap)
 933                        return -ENODEV;
 934
 935                /* work out if what we've got could possibly be shared
 936                 * - we support chardevs that provide their own "memory"
 937                 * - we support files/blockdevs that are memory backed
 938                 */
 939                mapping = file->f_mapping;
 940                if (!mapping)
 941                        mapping = file->f_path.dentry->d_inode->i_mapping;
 942
 943                capabilities = 0;
 944                if (mapping && mapping->backing_dev_info)
 945                        capabilities = mapping->backing_dev_info->capabilities;
 946
 947                if (!capabilities) {
 948                        /* no explicit capabilities set, so assume some
 949                         * defaults */
 950                        switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
 951                        case S_IFREG:
 952                        case S_IFBLK:
 953                                capabilities = BDI_CAP_MAP_COPY;
 954                                break;
 955
 956                        case S_IFCHR:
 957                                capabilities =
 958                                        BDI_CAP_MAP_DIRECT |
 959                                        BDI_CAP_READ_MAP |
 960                                        BDI_CAP_WRITE_MAP;
 961                                break;
 962
 963                        default:
 964                                return -EINVAL;
 965                        }
 966                }
 967
 968                /* eliminate any capabilities that we can't support on this
 969                 * device */
 970                if (!file->f_op->get_unmapped_area)
 971                        capabilities &= ~BDI_CAP_MAP_DIRECT;
 972                if (!file->f_op->read)
 973                        capabilities &= ~BDI_CAP_MAP_COPY;
 974
 975                /* The file shall have been opened with read permission. */
 976                if (!(file->f_mode & FMODE_READ))
 977                        return -EACCES;
 978
 979                if (flags & MAP_SHARED) {
 980                        /* do checks for writing, appending and locking */
 981                        if ((prot & PROT_WRITE) &&
 982                            !(file->f_mode & FMODE_WRITE))
 983                                return -EACCES;
 984
 985                        if (IS_APPEND(file->f_path.dentry->d_inode) &&
 986                            (file->f_mode & FMODE_WRITE))
 987                                return -EACCES;
 988
 989                        if (locks_verify_locked(file->f_path.dentry->d_inode))
 990                                return -EAGAIN;
 991
 992                        if (!(capabilities & BDI_CAP_MAP_DIRECT))
 993                                return -ENODEV;
 994
 995                        /* we mustn't privatise shared mappings */
 996                        capabilities &= ~BDI_CAP_MAP_COPY;
 997                }
 998                else {
 999                        /* we're going to read the file into private memory we
1000                         * allocate */
1001                        if (!(capabilities & BDI_CAP_MAP_COPY))
1002                                return -ENODEV;
1003
1004                        /* we don't permit a private writable mapping to be
1005                         * shared with the backing device */
1006                        if (prot & PROT_WRITE)
1007                                capabilities &= ~BDI_CAP_MAP_DIRECT;
1008                }
1009
1010                if (capabilities & BDI_CAP_MAP_DIRECT) {
1011                        if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1012                            ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1013                            ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1014                            ) {
1015                                capabilities &= ~BDI_CAP_MAP_DIRECT;
1016                                if (flags & MAP_SHARED) {
1017                                        printk(KERN_WARNING
1018                                               "MAP_SHARED not completely supported on !MMU\n");
1019                                        return -EINVAL;
1020                                }
1021                        }
1022                }
1023
1024                /* handle executable mappings and implied executable
1025                 * mappings */
1026                if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1027                        if (prot & PROT_EXEC)
1028                                return -EPERM;
1029                }
1030                else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1031                        /* handle implication of PROT_EXEC by PROT_READ */
1032                        if (current->personality & READ_IMPLIES_EXEC) {
1033                                if (capabilities & BDI_CAP_EXEC_MAP)
1034                                        prot |= PROT_EXEC;
1035                        }
1036                }
1037                else if ((prot & PROT_READ) &&
1038                         (prot & PROT_EXEC) &&
1039                         !(capabilities & BDI_CAP_EXEC_MAP)
1040                         ) {
1041                        /* backing file is not executable, try to copy */
1042                        capabilities &= ~BDI_CAP_MAP_DIRECT;
1043                }
1044        }
1045        else {
1046                /* anonymous mappings are always memory backed and can be
1047                 * privately mapped
1048                 */
1049                capabilities = BDI_CAP_MAP_COPY;
1050
1051                /* handle PROT_EXEC implication by PROT_READ */
1052                if ((prot & PROT_READ) &&
1053                    (current->personality & READ_IMPLIES_EXEC))
1054                        prot |= PROT_EXEC;
1055        }
1056
1057        /* allow the security API to have its say */
1058        ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1059        if (ret < 0)
1060                return ret;
1061
1062        /* looks okay */
1063        *_capabilities = capabilities;
1064        return 0;
1065}
1066
1067/*
1068 * we've determined that we can make the mapping, now translate what we
1069 * now know into VMA flags
1070 */
1071static unsigned long determine_vm_flags(struct file *file,
1072                                        unsigned long prot,
1073                                        unsigned long flags,
1074                                        unsigned long capabilities)
1075{
1076        unsigned long vm_flags;
1077
1078        vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1079        /* vm_flags |= mm->def_flags; */
1080
1081        if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1082                /* attempt to share read-only copies of mapped file chunks */
1083                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1084                if (file && !(prot & PROT_WRITE))
1085                        vm_flags |= VM_MAYSHARE;
1086        } else {
1087                /* overlay a shareable mapping on the backing device or inode
1088                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1089                 * romfs/cramfs */
1090                vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1091                if (flags & MAP_SHARED)
1092                        vm_flags |= VM_SHARED;
1093        }
1094
1095        /* refuse to let anyone share private mappings with this process if
1096         * it's being traced - otherwise breakpoints set in it may interfere
1097         * with another untraced process
1098         */
1099        if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1100                vm_flags &= ~VM_MAYSHARE;
1101
1102        return vm_flags;
1103}
1104
1105/*
1106 * set up a shared mapping on a file (the driver or filesystem provides and
1107 * pins the storage)
1108 */
1109static int do_mmap_shared_file(struct vm_area_struct *vma)
1110{
1111        int ret;
1112
1113        ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1114        if (ret == 0) {
1115                vma->vm_region->vm_top = vma->vm_region->vm_end;
1116                return 0;
1117        }
1118        if (ret != -ENOSYS)
1119                return ret;
1120
1121        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1122         * opposed to tried but failed) so we can only give a suitable error as
1123         * it's not possible to make a private copy if MAP_SHARED was given */
1124        return -ENODEV;
1125}
1126
1127/*
1128 * set up a private mapping or an anonymous shared mapping
1129 */
1130static int do_mmap_private(struct vm_area_struct *vma,
1131                           struct vm_region *region,
1132                           unsigned long len,
1133                           unsigned long capabilities)
1134{
1135        struct page *pages;
1136        unsigned long total, point, n, rlen;
1137        void *base;
1138        int ret, order;
1139
1140        /* invoke the file's mapping function so that it can keep track of
1141         * shared mappings on devices or memory
1142         * - VM_MAYSHARE will be set if it may attempt to share
1143         */
1144        if (capabilities & BDI_CAP_MAP_DIRECT) {
1145                ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1146                if (ret == 0) {
1147                        /* shouldn't return success if we're not sharing */
1148                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1149                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1150                        return 0;
1151                }
1152                if (ret != -ENOSYS)
1153                        return ret;
1154
1155                /* getting an ENOSYS error indicates that direct mmap isn't
1156                 * possible (as opposed to tried but failed) so we'll try to
1157                 * make a private copy of the data and map that instead */
1158        }
1159
1160        rlen = PAGE_ALIGN(len);
1161
1162        /* allocate some memory to hold the mapping
1163         * - note that this may not return a page-aligned address if the object
1164         *   we're allocating is smaller than a page
1165         */
1166        order = get_order(rlen);
1167        kdebug("alloc order %d for %lx", order, len);
1168
1169        pages = alloc_pages(GFP_KERNEL, order);
1170        if (!pages)
1171                goto enomem;
1172
1173        total = 1 << order;
1174        atomic_long_add(total, &mmap_pages_allocated);
1175
1176        point = rlen >> PAGE_SHIFT;
1177
1178        /* we allocated a power-of-2 sized page set, so we may want to trim off
1179         * the excess */
1180        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1181                while (total > point) {
1182                        order = ilog2(total - point);
1183                        n = 1 << order;
1184                        kdebug("shave %lu/%lu @%lu", n, total - point, total);
1185                        atomic_long_sub(n, &mmap_pages_allocated);
1186                        total -= n;
1187                        set_page_refcounted(pages + total);
1188                        __free_pages(pages + total, order);
1189                }
1190        }
1191
1192        for (point = 1; point < total; point++)
1193                set_page_refcounted(&pages[point]);
1194
1195        base = page_address(pages);
1196        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1197        region->vm_start = (unsigned long) base;
1198        region->vm_end   = region->vm_start + rlen;
1199        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1200
1201        vma->vm_start = region->vm_start;
1202        vma->vm_end   = region->vm_start + len;
1203
1204        if (vma->vm_file) {
1205                /* read the contents of a file into the copy */
1206                mm_segment_t old_fs;
1207                loff_t fpos;
1208
1209                fpos = vma->vm_pgoff;
1210                fpos <<= PAGE_SHIFT;
1211
1212                old_fs = get_fs();
1213                set_fs(KERNEL_DS);
1214                ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1215                set_fs(old_fs);
1216
1217                if (ret < 0)
1218                        goto error_free;
1219
1220                /* clear the last little bit */
1221                if (ret < rlen)
1222                        memset(base + ret, 0, rlen - ret);
1223
1224        }
1225
1226        return 0;
1227
1228error_free:
1229        free_page_series(region->vm_start, region->vm_end);
1230        region->vm_start = vma->vm_start = 0;
1231        region->vm_end   = vma->vm_end = 0;
1232        region->vm_top   = 0;
1233        return ret;
1234
1235enomem:
1236        printk("Allocation of length %lu from process %d (%s) failed\n",
1237               len, current->pid, current->comm);
1238        show_free_areas();
1239        return -ENOMEM;
1240}
1241
1242/*
1243 * handle mapping creation for uClinux
1244 */
1245unsigned long do_mmap_pgoff(struct file *file,
1246                            unsigned long addr,
1247                            unsigned long len,
1248                            unsigned long prot,
1249                            unsigned long flags,
1250                            unsigned long pgoff)
1251{
1252        struct vm_area_struct *vma;
1253        struct vm_region *region;
1254        struct rb_node *rb;
1255        unsigned long capabilities, vm_flags, result;
1256        int ret;
1257
1258        kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1259
1260        /* decide whether we should attempt the mapping, and if so what sort of
1261         * mapping */
1262        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1263                                    &capabilities);
1264        if (ret < 0) {
1265                kleave(" = %d [val]", ret);
1266                return ret;
1267        }
1268
1269        /* we ignore the address hint */
1270        addr = 0;
1271
1272        /* we've determined that we can make the mapping, now translate what we
1273         * now know into VMA flags */
1274        vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1275
1276        /* we're going to need to record the mapping */
1277        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1278        if (!region)
1279                goto error_getting_region;
1280
1281        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1282        if (!vma)
1283                goto error_getting_vma;
1284
1285        region->vm_usage = 1;
1286        region->vm_flags = vm_flags;
1287        region->vm_pgoff = pgoff;
1288
1289        INIT_LIST_HEAD(&vma->anon_vma_chain);
1290        vma->vm_flags = vm_flags;
1291        vma->vm_pgoff = pgoff;
1292
1293        if (file) {
1294                region->vm_file = file;
1295                get_file(file);
1296                vma->vm_file = file;
1297                get_file(file);
1298                if (vm_flags & VM_EXECUTABLE) {
1299                        added_exe_file_vma(current->mm);
1300                        vma->vm_mm = current->mm;
1301                }
1302        }
1303
1304        down_write(&nommu_region_sem);
1305
1306        /* if we want to share, we need to check for regions created by other
1307         * mmap() calls that overlap with our proposed mapping
1308         * - we can only share with a superset match on most regular files
1309         * - shared mappings on character devices and memory backed files are
1310         *   permitted to overlap inexactly as far as we are concerned for in
1311         *   these cases, sharing is handled in the driver or filesystem rather
1312         *   than here
1313         */
1314        if (vm_flags & VM_MAYSHARE) {
1315                struct vm_region *pregion;
1316                unsigned long pglen, rpglen, pgend, rpgend, start;
1317
1318                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319                pgend = pgoff + pglen;
1320
1321                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1322                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1323
1324                        if (!(pregion->vm_flags & VM_MAYSHARE))
1325                                continue;
1326
1327                        /* search for overlapping mappings on the same file */
1328                        if (pregion->vm_file->f_path.dentry->d_inode !=
1329                            file->f_path.dentry->d_inode)
1330                                continue;
1331
1332                        if (pregion->vm_pgoff >= pgend)
1333                                continue;
1334
1335                        rpglen = pregion->vm_end - pregion->vm_start;
1336                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1337                        rpgend = pregion->vm_pgoff + rpglen;
1338                        if (pgoff >= rpgend)
1339                                continue;
1340
1341                        /* handle inexactly overlapping matches between
1342                         * mappings */
1343                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1344                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1345                                /* new mapping is not a subset of the region */
1346                                if (!(capabilities & BDI_CAP_MAP_DIRECT))
1347                                        goto sharing_violation;
1348                                continue;
1349                        }
1350
1351                        /* we've found a region we can share */
1352                        pregion->vm_usage++;
1353                        vma->vm_region = pregion;
1354                        start = pregion->vm_start;
1355                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1356                        vma->vm_start = start;
1357                        vma->vm_end = start + len;
1358
1359                        if (pregion->vm_flags & VM_MAPPED_COPY) {
1360                                kdebug("share copy");
1361                                vma->vm_flags |= VM_MAPPED_COPY;
1362                        } else {
1363                                kdebug("share mmap");
1364                                ret = do_mmap_shared_file(vma);
1365                                if (ret < 0) {
1366                                        vma->vm_region = NULL;
1367                                        vma->vm_start = 0;
1368                                        vma->vm_end = 0;
1369                                        pregion->vm_usage--;
1370                                        pregion = NULL;
1371                                        goto error_just_free;
1372                                }
1373                        }
1374                        fput(region->vm_file);
1375                        kmem_cache_free(vm_region_jar, region);
1376                        region = pregion;
1377                        result = start;
1378                        goto share;
1379                }
1380
1381                /* obtain the address at which to make a shared mapping
1382                 * - this is the hook for quasi-memory character devices to
1383                 *   tell us the location of a shared mapping
1384                 */
1385                if (capabilities & BDI_CAP_MAP_DIRECT) {
1386                        addr = file->f_op->get_unmapped_area(file, addr, len,
1387                                                             pgoff, flags);
1388                        if (IS_ERR((void *) addr)) {
1389                                ret = addr;
1390                                if (ret != (unsigned long) -ENOSYS)
1391                                        goto error_just_free;
1392
1393                                /* the driver refused to tell us where to site
1394                                 * the mapping so we'll have to attempt to copy
1395                                 * it */
1396                                ret = (unsigned long) -ENODEV;
1397                                if (!(capabilities & BDI_CAP_MAP_COPY))
1398                                        goto error_just_free;
1399
1400                                capabilities &= ~BDI_CAP_MAP_DIRECT;
1401                        } else {
1402                                vma->vm_start = region->vm_start = addr;
1403                                vma->vm_end = region->vm_end = addr + len;
1404                        }
1405                }
1406        }
1407
1408        vma->vm_region = region;
1409
1410        /* set up the mapping
1411         * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1412         */
1413        if (file && vma->vm_flags & VM_SHARED)
1414                ret = do_mmap_shared_file(vma);
1415        else
1416                ret = do_mmap_private(vma, region, len, capabilities);
1417        if (ret < 0)
1418                goto error_just_free;
1419        add_nommu_region(region);
1420
1421        /* clear anonymous mappings that don't ask for uninitialized data */
1422        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1423                memset((void *)region->vm_start, 0,
1424                       region->vm_end - region->vm_start);
1425
1426        /* okay... we have a mapping; now we have to register it */
1427        result = vma->vm_start;
1428
1429        current->mm->total_vm += len >> PAGE_SHIFT;
1430
1431share:
1432        add_vma_to_mm(current->mm, vma);
1433
1434        /* we flush the region from the icache only when the first executable
1435         * mapping of it is made  */
1436        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1437                flush_icache_range(region->vm_start, region->vm_end);
1438                region->vm_icache_flushed = true;
1439        }
1440
1441        up_write(&nommu_region_sem);
1442
1443        kleave(" = %lx", result);
1444        return result;
1445
1446error_just_free:
1447        up_write(&nommu_region_sem);
1448error:
1449        if (region->vm_file)
1450                fput(region->vm_file);
1451        kmem_cache_free(vm_region_jar, region);
1452        if (vma->vm_file)
1453                fput(vma->vm_file);
1454        if (vma->vm_flags & VM_EXECUTABLE)
1455                removed_exe_file_vma(vma->vm_mm);
1456        kmem_cache_free(vm_area_cachep, vma);
1457        kleave(" = %d", ret);
1458        return ret;
1459
1460sharing_violation:
1461        up_write(&nommu_region_sem);
1462        printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1463        ret = -EINVAL;
1464        goto error;
1465
1466error_getting_vma:
1467        kmem_cache_free(vm_region_jar, region);
1468        printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1469               " from process %d failed\n",
1470               len, current->pid);
1471        show_free_areas();
1472        return -ENOMEM;
1473
1474error_getting_region:
1475        printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1476               " from process %d failed\n",
1477               len, current->pid);
1478        show_free_areas();
1479        return -ENOMEM;
1480}
1481EXPORT_SYMBOL(do_mmap_pgoff);
1482
1483SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1484                unsigned long, prot, unsigned long, flags,
1485                unsigned long, fd, unsigned long, pgoff)
1486{
1487        struct file *file = NULL;
1488        unsigned long retval = -EBADF;
1489
1490        audit_mmap_fd(fd, flags);
1491        if (!(flags & MAP_ANONYMOUS)) {
1492                file = fget(fd);
1493                if (!file)
1494                        goto out;
1495        }
1496
1497        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1498
1499        down_write(&current->mm->mmap_sem);
1500        retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501        up_write(&current->mm->mmap_sem);
1502
1503        if (file)
1504                fput(file);
1505out:
1506        return retval;
1507}
1508
1509#ifdef __ARCH_WANT_SYS_OLD_MMAP
1510struct mmap_arg_struct {
1511        unsigned long addr;
1512        unsigned long len;
1513        unsigned long prot;
1514        unsigned long flags;
1515        unsigned long fd;
1516        unsigned long offset;
1517};
1518
1519SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1520{
1521        struct mmap_arg_struct a;
1522
1523        if (copy_from_user(&a, arg, sizeof(a)))
1524                return -EFAULT;
1525        if (a.offset & ~PAGE_MASK)
1526                return -EINVAL;
1527
1528        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529                              a.offset >> PAGE_SHIFT);
1530}
1531#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1532
1533/*
1534 * split a vma into two pieces at address 'addr', a new vma is allocated either
1535 * for the first part or the tail.
1536 */
1537int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538              unsigned long addr, int new_below)
1539{
1540        struct vm_area_struct *new;
1541        struct vm_region *region;
1542        unsigned long npages;
1543
1544        kenter("");
1545
1546        /* we're only permitted to split anonymous regions (these should have
1547         * only a single usage on the region) */
1548        if (vma->vm_file)
1549                return -ENOMEM;
1550
1551        if (mm->map_count >= sysctl_max_map_count)
1552                return -ENOMEM;
1553
1554        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555        if (!region)
1556                return -ENOMEM;
1557
1558        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559        if (!new) {
1560                kmem_cache_free(vm_region_jar, region);
1561                return -ENOMEM;
1562        }
1563
1564        /* most fields are the same, copy all, and then fixup */
1565        *new = *vma;
1566        *region = *vma->vm_region;
1567        new->vm_region = region;
1568
1569        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1570
1571        if (new_below) {
1572                region->vm_top = region->vm_end = new->vm_end = addr;
1573        } else {
1574                region->vm_start = new->vm_start = addr;
1575                region->vm_pgoff = new->vm_pgoff += npages;
1576        }
1577
1578        if (new->vm_ops && new->vm_ops->open)
1579                new->vm_ops->open(new);
1580
1581        delete_vma_from_mm(vma);
1582        down_write(&nommu_region_sem);
1583        delete_nommu_region(vma->vm_region);
1584        if (new_below) {
1585                vma->vm_region->vm_start = vma->vm_start = addr;
1586                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587        } else {
1588                vma->vm_region->vm_end = vma->vm_end = addr;
1589                vma->vm_region->vm_top = addr;
1590        }
1591        add_nommu_region(vma->vm_region);
1592        add_nommu_region(new->vm_region);
1593        up_write(&nommu_region_sem);
1594        add_vma_to_mm(mm, vma);
1595        add_vma_to_mm(mm, new);
1596        return 0;
1597}
1598
1599/*
1600 * shrink a VMA by removing the specified chunk from either the beginning or
1601 * the end
1602 */
1603static int shrink_vma(struct mm_struct *mm,
1604                      struct vm_area_struct *vma,
1605                      unsigned long from, unsigned long to)
1606{
1607        struct vm_region *region;
1608
1609        kenter("");
1610
1611        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1612         * and list */
1613        delete_vma_from_mm(vma);
1614        if (from > vma->vm_start)
1615                vma->vm_end = from;
1616        else
1617                vma->vm_start = to;
1618        add_vma_to_mm(mm, vma);
1619
1620        /* cut the backing region down to size */
1621        region = vma->vm_region;
1622        BUG_ON(region->vm_usage != 1);
1623
1624        down_write(&nommu_region_sem);
1625        delete_nommu_region(region);
1626        if (from > region->vm_start) {
1627                to = region->vm_top;
1628                region->vm_top = region->vm_end = from;
1629        } else {
1630                region->vm_start = to;
1631        }
1632        add_nommu_region(region);
1633        up_write(&nommu_region_sem);
1634
1635        free_page_series(from, to);
1636        return 0;
1637}
1638
1639/*
1640 * release a mapping
1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642 *   VMA, though it need not cover the whole VMA
1643 */
1644int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1645{
1646        struct vm_area_struct *vma;
1647        struct rb_node *rb;
1648        unsigned long end = start + len;
1649        int ret;
1650
1651        kenter(",%lx,%zx", start, len);
1652
1653        if (len == 0)
1654                return -EINVAL;
1655
1656        /* find the first potentially overlapping VMA */
1657        vma = find_vma(mm, start);
1658        if (!vma) {
1659                static int limit = 0;
1660                if (limit < 5) {
1661                        printk(KERN_WARNING
1662                               "munmap of memory not mmapped by process %d"
1663                               " (%s): 0x%lx-0x%lx\n",
1664                               current->pid, current->comm,
1665                               start, start + len - 1);
1666                        limit++;
1667                }
1668                return -EINVAL;
1669        }
1670
1671        /* we're allowed to split an anonymous VMA but not a file-backed one */
1672        if (vma->vm_file) {
1673                do {
1674                        if (start > vma->vm_start) {
1675                                kleave(" = -EINVAL [miss]");
1676                                return -EINVAL;
1677                        }
1678                        if (end == vma->vm_end)
1679                                goto erase_whole_vma;
1680                        rb = rb_next(&vma->vm_rb);
1681                        vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1682                } while (rb);
1683                kleave(" = -EINVAL [split file]");
1684                return -EINVAL;
1685        } else {
1686                /* the chunk must be a subset of the VMA found */
1687                if (start == vma->vm_start && end == vma->vm_end)
1688                        goto erase_whole_vma;
1689                if (start < vma->vm_start || end > vma->vm_end) {
1690                        kleave(" = -EINVAL [superset]");
1691                        return -EINVAL;
1692                }
1693                if (start & ~PAGE_MASK) {
1694                        kleave(" = -EINVAL [unaligned start]");
1695                        return -EINVAL;
1696                }
1697                if (end != vma->vm_end && end & ~PAGE_MASK) {
1698                        kleave(" = -EINVAL [unaligned split]");
1699                        return -EINVAL;
1700                }
1701                if (start != vma->vm_start && end != vma->vm_end) {
1702                        ret = split_vma(mm, vma, start, 1);
1703                        if (ret < 0) {
1704                                kleave(" = %d [split]", ret);
1705                                return ret;
1706                        }
1707                }
1708                return shrink_vma(mm, vma, start, end);
1709        }
1710
1711erase_whole_vma:
1712        delete_vma_from_mm(vma);
1713        delete_vma(mm, vma);
1714        kleave(" = 0");
1715        return 0;
1716}
1717EXPORT_SYMBOL(do_munmap);
1718
1719SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1720{
1721        int ret;
1722        struct mm_struct *mm = current->mm;
1723
1724        down_write(&mm->mmap_sem);
1725        ret = do_munmap(mm, addr, len);
1726        up_write(&mm->mmap_sem);
1727        return ret;
1728}
1729
1730/*
1731 * release all the mappings made in a process's VM space
1732 */
1733void exit_mmap(struct mm_struct *mm)
1734{
1735        struct vm_area_struct *vma;
1736
1737        if (!mm)
1738                return;
1739
1740        kenter("");
1741
1742        mm->total_vm = 0;
1743
1744        while ((vma = mm->mmap)) {
1745                mm->mmap = vma->vm_next;
1746                delete_vma_from_mm(vma);
1747                delete_vma(mm, vma);
1748                cond_resched();
1749        }
1750
1751        kleave("");
1752}
1753
1754unsigned long do_brk(unsigned long addr, unsigned long len)
1755{
1756        return -ENOMEM;
1757}
1758
1759/*
1760 * expand (or shrink) an existing mapping, potentially moving it at the same
1761 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1762 *
1763 * under NOMMU conditions, we only permit changing a mapping's size, and only
1764 * as long as it stays within the region allocated by do_mmap_private() and the
1765 * block is not shareable
1766 *
1767 * MREMAP_FIXED is not supported under NOMMU conditions
1768 */
1769unsigned long do_mremap(unsigned long addr,
1770                        unsigned long old_len, unsigned long new_len,
1771                        unsigned long flags, unsigned long new_addr)
1772{
1773        struct vm_area_struct *vma;
1774
1775        /* insanity checks first */
1776        if (old_len == 0 || new_len == 0)
1777                return (unsigned long) -EINVAL;
1778
1779        if (addr & ~PAGE_MASK)
1780                return -EINVAL;
1781
1782        if (flags & MREMAP_FIXED && new_addr != addr)
1783                return (unsigned long) -EINVAL;
1784
1785        vma = find_vma_exact(current->mm, addr, old_len);
1786        if (!vma)
1787                return (unsigned long) -EINVAL;
1788
1789        if (vma->vm_end != vma->vm_start + old_len)
1790                return (unsigned long) -EFAULT;
1791
1792        if (vma->vm_flags & VM_MAYSHARE)
1793                return (unsigned long) -EPERM;
1794
1795        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1796                return (unsigned long) -ENOMEM;
1797
1798        /* all checks complete - do it */
1799        vma->vm_end = vma->vm_start + new_len;
1800        return vma->vm_start;
1801}
1802EXPORT_SYMBOL(do_mremap);
1803
1804SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1805                unsigned long, new_len, unsigned long, flags,
1806                unsigned long, new_addr)
1807{
1808        unsigned long ret;
1809
1810        down_write(&current->mm->mmap_sem);
1811        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1812        up_write(&current->mm->mmap_sem);
1813        return ret;
1814}
1815
1816struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1817                        unsigned int foll_flags)
1818{
1819        return NULL;
1820}
1821
1822int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1823                unsigned long to, unsigned long size, pgprot_t prot)
1824{
1825        vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1826        return 0;
1827}
1828EXPORT_SYMBOL(remap_pfn_range);
1829
1830int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1831                        unsigned long pgoff)
1832{
1833        unsigned int size = vma->vm_end - vma->vm_start;
1834
1835        if (!(vma->vm_flags & VM_USERMAP))
1836                return -EINVAL;
1837
1838        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1839        vma->vm_end = vma->vm_start + size;
1840
1841        return 0;
1842}
1843EXPORT_SYMBOL(remap_vmalloc_range);
1844
1845void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1846{
1847}
1848
1849unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1850        unsigned long len, unsigned long pgoff, unsigned long flags)
1851{
1852        return -ENOMEM;
1853}
1854
1855void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1856{
1857}
1858
1859void unmap_mapping_range(struct address_space *mapping,
1860                         loff_t const holebegin, loff_t const holelen,
1861                         int even_cows)
1862{
1863}
1864EXPORT_SYMBOL(unmap_mapping_range);
1865
1866/*
1867 * Check that a process has enough memory to allocate a new virtual
1868 * mapping. 0 means there is enough memory for the allocation to
1869 * succeed and -ENOMEM implies there is not.
1870 *
1871 * We currently support three overcommit policies, which are set via the
1872 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1873 *
1874 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1875 * Additional code 2002 Jul 20 by Robert Love.
1876 *
1877 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1878 *
1879 * Note this is a helper function intended to be used by LSMs which
1880 * wish to use this logic.
1881 */
1882int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1883{
1884        unsigned long free, allowed;
1885
1886        vm_acct_memory(pages);
1887
1888        /*
1889         * Sometimes we want to use more memory than we have
1890         */
1891        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1892                return 0;
1893
1894        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1895                unsigned long n;
1896
1897                free = global_page_state(NR_FILE_PAGES);
1898                free += nr_swap_pages;
1899
1900                /*
1901                 * Any slabs which are created with the
1902                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1903                 * which are reclaimable, under pressure.  The dentry
1904                 * cache and most inode caches should fall into this
1905                 */
1906                free += global_page_state(NR_SLAB_RECLAIMABLE);
1907
1908                /*
1909                 * Leave the last 3% for root
1910                 */
1911                if (!cap_sys_admin)
1912                        free -= free / 32;
1913
1914                if (free > pages)
1915                        return 0;
1916
1917                /*
1918                 * nr_free_pages() is very expensive on large systems,
1919                 * only call if we're about to fail.
1920                 */
1921                n = nr_free_pages();
1922
1923                /*
1924                 * Leave reserved pages. The pages are not for anonymous pages.
1925                 */
1926                if (n <= totalreserve_pages)
1927                        goto error;
1928                else
1929                        n -= totalreserve_pages;
1930
1931                /*
1932                 * Leave the last 3% for root
1933                 */
1934                if (!cap_sys_admin)
1935                        n -= n / 32;
1936                free += n;
1937
1938                if (free > pages)
1939                        return 0;
1940
1941                goto error;
1942        }
1943
1944        allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1945        /*
1946         * Leave the last 3% for root
1947         */
1948        if (!cap_sys_admin)
1949                allowed -= allowed / 32;
1950        allowed += total_swap_pages;
1951
1952        /* Don't let a single process grow too big:
1953           leave 3% of the size of this process for other processes */
1954        if (mm)
1955                allowed -= mm->total_vm / 32;
1956
1957        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1958                return 0;
1959
1960error:
1961        vm_unacct_memory(pages);
1962
1963        return -ENOMEM;
1964}
1965
1966int in_gate_area_no_task(unsigned long addr)
1967{
1968        return 0;
1969}
1970
1971int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1972{
1973        BUG();
1974        return 0;
1975}
1976EXPORT_SYMBOL(filemap_fault);
1977
1978/*
1979 * Access another process' address space.
1980 * - source/target buffer must be kernel space
1981 */
1982int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1983{
1984        struct vm_area_struct *vma;
1985        struct mm_struct *mm;
1986
1987        if (addr + len < addr)
1988                return 0;
1989
1990        mm = get_task_mm(tsk);
1991        if (!mm)
1992                return 0;
1993
1994        down_read(&mm->mmap_sem);
1995
1996        /* the access must start within one of the target process's mappings */
1997        vma = find_vma(mm, addr);
1998        if (vma) {
1999                /* don't overrun this mapping */
2000                if (addr + len >= vma->vm_end)
2001                        len = vma->vm_end - addr;
2002
2003                /* only read or write mappings where it is permitted */
2004                if (write && vma->vm_flags & VM_MAYWRITE)
2005                        copy_to_user_page(vma, NULL, addr,
2006                                         (void *) addr, buf, len);
2007                else if (!write && vma->vm_flags & VM_MAYREAD)
2008                        copy_from_user_page(vma, NULL, addr,
2009                                            buf, (void *) addr, len);
2010                else
2011                        len = 0;
2012        } else {
2013                len = 0;
2014        }
2015
2016        up_read(&mm->mmap_sem);
2017        mmput(mm);
2018        return len;
2019}
2020
2021/**
2022 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2023 * @inode: The inode to check
2024 * @size: The current filesize of the inode
2025 * @newsize: The proposed filesize of the inode
2026 *
2027 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2028 * make sure that that any outstanding VMAs aren't broken and then shrink the
2029 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2030 * automatically grant mappings that are too large.
2031 */
2032int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2033                                size_t newsize)
2034{
2035        struct vm_area_struct *vma;
2036        struct prio_tree_iter iter;
2037        struct vm_region *region;
2038        pgoff_t low, high;
2039        size_t r_size, r_top;
2040
2041        low = newsize >> PAGE_SHIFT;
2042        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2043
2044        down_write(&nommu_region_sem);
2045
2046        /* search for VMAs that fall within the dead zone */
2047        vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2048                              low, high) {
2049                /* found one - only interested if it's shared out of the page
2050                 * cache */
2051                if (vma->vm_flags & VM_SHARED) {
2052                        up_write(&nommu_region_sem);
2053                        return -ETXTBSY; /* not quite true, but near enough */
2054                }
2055        }
2056
2057        /* reduce any regions that overlap the dead zone - if in existence,
2058         * these will be pointed to by VMAs that don't overlap the dead zone
2059         *
2060         * we don't check for any regions that start beyond the EOF as there
2061         * shouldn't be any
2062         */
2063        vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2064                              0, ULONG_MAX) {
2065                if (!(vma->vm_flags & VM_SHARED))
2066                        continue;
2067
2068                region = vma->vm_region;
2069                r_size = region->vm_top - region->vm_start;
2070                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2071
2072                if (r_top > newsize) {
2073                        region->vm_top -= r_top - newsize;
2074                        if (region->vm_end > region->vm_top)
2075                                region->vm_end = region->vm_top;
2076                }
2077        }
2078
2079        up_write(&nommu_region_sem);
2080        return 0;
2081}
2082