linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   inode->i_alloc_sem (vmtruncate_range)
  25 *   mm->mmap_sem
  26 *     page->flags PG_locked (lock_page)
  27 *       mapping->i_mmap_lock
  28 *         anon_vma->lock
  29 *           mm->page_table_lock or pte_lock
  30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *             swap_lock (in swap_duplicate, swap_info_get)
  32 *               mmlist_lock (in mmput, drain_mmlist and others)
  33 *               mapping->private_lock (in __set_page_dirty_buffers)
  34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within inode_lock in __sync_single_inode)
  39 *
  40 * (code doesn't rely on that order so it could be switched around)
  41 * ->tasklist_lock
  42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
  43 *     pte map lock
  44 */
  45
  46#include <linux/mm.h>
  47#include <linux/pagemap.h>
  48#include <linux/swap.h>
  49#include <linux/swapops.h>
  50#include <linux/slab.h>
  51#include <linux/init.h>
  52#include <linux/ksm.h>
  53#include <linux/rmap.h>
  54#include <linux/rcupdate.h>
  55#include <linux/module.h>
  56#include <linux/memcontrol.h>
  57#include <linux/mmu_notifier.h>
  58#include <linux/migrate.h>
  59#include <linux/hugetlb.h>
  60
  61#include <asm/tlbflush.h>
  62
  63#include "internal.h"
  64
  65static struct kmem_cache *anon_vma_cachep;
  66static struct kmem_cache *anon_vma_chain_cachep;
  67
  68static inline struct anon_vma *anon_vma_alloc(void)
  69{
  70        return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  71}
  72
  73void anon_vma_free(struct anon_vma *anon_vma)
  74{
  75        kmem_cache_free(anon_vma_cachep, anon_vma);
  76}
  77
  78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  79{
  80        return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  81}
  82
  83static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  84{
  85        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  86}
  87
  88/**
  89 * anon_vma_prepare - attach an anon_vma to a memory region
  90 * @vma: the memory region in question
  91 *
  92 * This makes sure the memory mapping described by 'vma' has
  93 * an 'anon_vma' attached to it, so that we can associate the
  94 * anonymous pages mapped into it with that anon_vma.
  95 *
  96 * The common case will be that we already have one, but if
  97 * not we either need to find an adjacent mapping that we
  98 * can re-use the anon_vma from (very common when the only
  99 * reason for splitting a vma has been mprotect()), or we
 100 * allocate a new one.
 101 *
 102 * Anon-vma allocations are very subtle, because we may have
 103 * optimistically looked up an anon_vma in page_lock_anon_vma()
 104 * and that may actually touch the spinlock even in the newly
 105 * allocated vma (it depends on RCU to make sure that the
 106 * anon_vma isn't actually destroyed).
 107 *
 108 * As a result, we need to do proper anon_vma locking even
 109 * for the new allocation. At the same time, we do not want
 110 * to do any locking for the common case of already having
 111 * an anon_vma.
 112 *
 113 * This must be called with the mmap_sem held for reading.
 114 */
 115int anon_vma_prepare(struct vm_area_struct *vma)
 116{
 117        struct anon_vma *anon_vma = vma->anon_vma;
 118        struct anon_vma_chain *avc;
 119
 120        might_sleep();
 121        if (unlikely(!anon_vma)) {
 122                struct mm_struct *mm = vma->vm_mm;
 123                struct anon_vma *allocated;
 124
 125                avc = anon_vma_chain_alloc();
 126                if (!avc)
 127                        goto out_enomem;
 128
 129                anon_vma = find_mergeable_anon_vma(vma);
 130                allocated = NULL;
 131                if (!anon_vma) {
 132                        anon_vma = anon_vma_alloc();
 133                        if (unlikely(!anon_vma))
 134                                goto out_enomem_free_avc;
 135                        allocated = anon_vma;
 136                        /*
 137                         * This VMA had no anon_vma yet.  This anon_vma is
 138                         * the root of any anon_vma tree that might form.
 139                         */
 140                        anon_vma->root = anon_vma;
 141                }
 142
 143                anon_vma_lock(anon_vma);
 144                /* page_table_lock to protect against threads */
 145                spin_lock(&mm->page_table_lock);
 146                if (likely(!vma->anon_vma)) {
 147                        vma->anon_vma = anon_vma;
 148                        avc->anon_vma = anon_vma;
 149                        avc->vma = vma;
 150                        list_add(&avc->same_vma, &vma->anon_vma_chain);
 151                        list_add_tail(&avc->same_anon_vma, &anon_vma->head);
 152                        allocated = NULL;
 153                        avc = NULL;
 154                }
 155                spin_unlock(&mm->page_table_lock);
 156                anon_vma_unlock(anon_vma);
 157
 158                if (unlikely(allocated))
 159                        anon_vma_free(allocated);
 160                if (unlikely(avc))
 161                        anon_vma_chain_free(avc);
 162        }
 163        return 0;
 164
 165 out_enomem_free_avc:
 166        anon_vma_chain_free(avc);
 167 out_enomem:
 168        return -ENOMEM;
 169}
 170
 171static void anon_vma_chain_link(struct vm_area_struct *vma,
 172                                struct anon_vma_chain *avc,
 173                                struct anon_vma *anon_vma)
 174{
 175        avc->vma = vma;
 176        avc->anon_vma = anon_vma;
 177        list_add(&avc->same_vma, &vma->anon_vma_chain);
 178
 179        anon_vma_lock(anon_vma);
 180        /*
 181         * It's critical to add new vmas to the tail of the anon_vma,
 182         * see comment in huge_memory.c:__split_huge_page().
 183         */
 184        list_add_tail(&avc->same_anon_vma, &anon_vma->head);
 185        anon_vma_unlock(anon_vma);
 186}
 187
 188/*
 189 * Attach the anon_vmas from src to dst.
 190 * Returns 0 on success, -ENOMEM on failure.
 191 */
 192int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 193{
 194        struct anon_vma_chain *avc, *pavc;
 195
 196        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 197                avc = anon_vma_chain_alloc();
 198                if (!avc)
 199                        goto enomem_failure;
 200                anon_vma_chain_link(dst, avc, pavc->anon_vma);
 201        }
 202        return 0;
 203
 204 enomem_failure:
 205        unlink_anon_vmas(dst);
 206        return -ENOMEM;
 207}
 208
 209/*
 210 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 211 * the corresponding VMA in the parent process is attached to.
 212 * Returns 0 on success, non-zero on failure.
 213 */
 214int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 215{
 216        struct anon_vma_chain *avc;
 217        struct anon_vma *anon_vma;
 218
 219        /* Don't bother if the parent process has no anon_vma here. */
 220        if (!pvma->anon_vma)
 221                return 0;
 222
 223        /*
 224         * First, attach the new VMA to the parent VMA's anon_vmas,
 225         * so rmap can find non-COWed pages in child processes.
 226         */
 227        if (anon_vma_clone(vma, pvma))
 228                return -ENOMEM;
 229
 230        /* Then add our own anon_vma. */
 231        anon_vma = anon_vma_alloc();
 232        if (!anon_vma)
 233                goto out_error;
 234        avc = anon_vma_chain_alloc();
 235        if (!avc)
 236                goto out_error_free_anon_vma;
 237
 238        /*
 239         * The root anon_vma's spinlock is the lock actually used when we
 240         * lock any of the anon_vmas in this anon_vma tree.
 241         */
 242        anon_vma->root = pvma->anon_vma->root;
 243        /*
 244         * With KSM refcounts, an anon_vma can stay around longer than the
 245         * process it belongs to.  The root anon_vma needs to be pinned
 246         * until this anon_vma is freed, because the lock lives in the root.
 247         */
 248        get_anon_vma(anon_vma->root);
 249        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 250        vma->anon_vma = anon_vma;
 251        anon_vma_chain_link(vma, avc, anon_vma);
 252
 253        return 0;
 254
 255 out_error_free_anon_vma:
 256        anon_vma_free(anon_vma);
 257 out_error:
 258        unlink_anon_vmas(vma);
 259        return -ENOMEM;
 260}
 261
 262static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
 263{
 264        struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
 265        int empty;
 266
 267        /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
 268        if (!anon_vma)
 269                return;
 270
 271        anon_vma_lock(anon_vma);
 272        list_del(&anon_vma_chain->same_anon_vma);
 273
 274        /* We must garbage collect the anon_vma if it's empty */
 275        empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
 276        anon_vma_unlock(anon_vma);
 277
 278        if (empty) {
 279                /* We no longer need the root anon_vma */
 280                if (anon_vma->root != anon_vma)
 281                        drop_anon_vma(anon_vma->root);
 282                anon_vma_free(anon_vma);
 283        }
 284}
 285
 286void unlink_anon_vmas(struct vm_area_struct *vma)
 287{
 288        struct anon_vma_chain *avc, *next;
 289
 290        /*
 291         * Unlink each anon_vma chained to the VMA.  This list is ordered
 292         * from newest to oldest, ensuring the root anon_vma gets freed last.
 293         */
 294        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 295                anon_vma_unlink(avc);
 296                list_del(&avc->same_vma);
 297                anon_vma_chain_free(avc);
 298        }
 299}
 300
 301static void anon_vma_ctor(void *data)
 302{
 303        struct anon_vma *anon_vma = data;
 304
 305        spin_lock_init(&anon_vma->lock);
 306        anonvma_external_refcount_init(anon_vma);
 307        INIT_LIST_HEAD(&anon_vma->head);
 308}
 309
 310void __init anon_vma_init(void)
 311{
 312        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 313                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 314        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 315}
 316
 317/*
 318 * Getting a lock on a stable anon_vma from a page off the LRU is
 319 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
 320 */
 321struct anon_vma *__page_lock_anon_vma(struct page *page)
 322{
 323        struct anon_vma *anon_vma, *root_anon_vma;
 324        unsigned long anon_mapping;
 325
 326        rcu_read_lock();
 327        anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 328        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 329                goto out;
 330        if (!page_mapped(page))
 331                goto out;
 332
 333        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 334        root_anon_vma = ACCESS_ONCE(anon_vma->root);
 335        spin_lock(&root_anon_vma->lock);
 336
 337        /*
 338         * If this page is still mapped, then its anon_vma cannot have been
 339         * freed.  But if it has been unmapped, we have no security against
 340         * the anon_vma structure being freed and reused (for another anon_vma:
 341         * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
 342         * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
 343         * anon_vma->root before page_unlock_anon_vma() is called to unlock.
 344         */
 345        if (page_mapped(page))
 346                return anon_vma;
 347
 348        spin_unlock(&root_anon_vma->lock);
 349out:
 350        rcu_read_unlock();
 351        return NULL;
 352}
 353
 354void page_unlock_anon_vma(struct anon_vma *anon_vma)
 355        __releases(&anon_vma->root->lock)
 356        __releases(RCU)
 357{
 358        anon_vma_unlock(anon_vma);
 359        rcu_read_unlock();
 360}
 361
 362/*
 363 * At what user virtual address is page expected in @vma?
 364 * Returns virtual address or -EFAULT if page's index/offset is not
 365 * within the range mapped the @vma.
 366 */
 367inline unsigned long
 368vma_address(struct page *page, struct vm_area_struct *vma)
 369{
 370        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 371        unsigned long address;
 372
 373        if (unlikely(is_vm_hugetlb_page(vma)))
 374                pgoff = page->index << huge_page_order(page_hstate(page));
 375        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 376        if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
 377                /* page should be within @vma mapping range */
 378                return -EFAULT;
 379        }
 380        return address;
 381}
 382
 383/*
 384 * At what user virtual address is page expected in vma?
 385 * Caller should check the page is actually part of the vma.
 386 */
 387unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 388{
 389        if (PageAnon(page)) {
 390                struct anon_vma *page__anon_vma = page_anon_vma(page);
 391                /*
 392                 * Note: swapoff's unuse_vma() is more efficient with this
 393                 * check, and needs it to match anon_vma when KSM is active.
 394                 */
 395                if (!vma->anon_vma || !page__anon_vma ||
 396                    vma->anon_vma->root != page__anon_vma->root)
 397                        return -EFAULT;
 398        } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 399                if (!vma->vm_file ||
 400                    vma->vm_file->f_mapping != page->mapping)
 401                        return -EFAULT;
 402        } else
 403                return -EFAULT;
 404        return vma_address(page, vma);
 405}
 406
 407/*
 408 * Check that @page is mapped at @address into @mm.
 409 *
 410 * If @sync is false, page_check_address may perform a racy check to avoid
 411 * the page table lock when the pte is not present (helpful when reclaiming
 412 * highly shared pages).
 413 *
 414 * On success returns with pte mapped and locked.
 415 */
 416pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 417                          unsigned long address, spinlock_t **ptlp, int sync)
 418{
 419        pgd_t *pgd;
 420        pud_t *pud;
 421        pmd_t *pmd;
 422        pte_t *pte;
 423        spinlock_t *ptl;
 424
 425        if (unlikely(PageHuge(page))) {
 426                pte = huge_pte_offset(mm, address);
 427                ptl = &mm->page_table_lock;
 428                goto check;
 429        }
 430
 431        pgd = pgd_offset(mm, address);
 432        if (!pgd_present(*pgd))
 433                return NULL;
 434
 435        pud = pud_offset(pgd, address);
 436        if (!pud_present(*pud))
 437                return NULL;
 438
 439        pmd = pmd_offset(pud, address);
 440        if (!pmd_present(*pmd))
 441                return NULL;
 442        if (pmd_trans_huge(*pmd))
 443                return NULL;
 444
 445        pte = pte_offset_map(pmd, address);
 446        /* Make a quick check before getting the lock */
 447        if (!sync && !pte_present(*pte)) {
 448                pte_unmap(pte);
 449                return NULL;
 450        }
 451
 452        ptl = pte_lockptr(mm, pmd);
 453check:
 454        spin_lock(ptl);
 455        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 456                *ptlp = ptl;
 457                return pte;
 458        }
 459        pte_unmap_unlock(pte, ptl);
 460        return NULL;
 461}
 462
 463/**
 464 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 465 * @page: the page to test
 466 * @vma: the VMA to test
 467 *
 468 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 469 * if the page is not mapped into the page tables of this VMA.  Only
 470 * valid for normal file or anonymous VMAs.
 471 */
 472int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 473{
 474        unsigned long address;
 475        pte_t *pte;
 476        spinlock_t *ptl;
 477
 478        address = vma_address(page, vma);
 479        if (address == -EFAULT)         /* out of vma range */
 480                return 0;
 481        pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 482        if (!pte)                       /* the page is not in this mm */
 483                return 0;
 484        pte_unmap_unlock(pte, ptl);
 485
 486        return 1;
 487}
 488
 489/*
 490 * Subfunctions of page_referenced: page_referenced_one called
 491 * repeatedly from either page_referenced_anon or page_referenced_file.
 492 */
 493int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 494                        unsigned long address, unsigned int *mapcount,
 495                        unsigned long *vm_flags)
 496{
 497        struct mm_struct *mm = vma->vm_mm;
 498        int referenced = 0;
 499
 500        if (unlikely(PageTransHuge(page))) {
 501                pmd_t *pmd;
 502
 503                spin_lock(&mm->page_table_lock);
 504                /*
 505                 * rmap might return false positives; we must filter
 506                 * these out using page_check_address_pmd().
 507                 */
 508                pmd = page_check_address_pmd(page, mm, address,
 509                                             PAGE_CHECK_ADDRESS_PMD_FLAG);
 510                if (!pmd) {
 511                        spin_unlock(&mm->page_table_lock);
 512                        goto out;
 513                }
 514
 515                if (vma->vm_flags & VM_LOCKED) {
 516                        spin_unlock(&mm->page_table_lock);
 517                        *mapcount = 0;  /* break early from loop */
 518                        *vm_flags |= VM_LOCKED;
 519                        goto out;
 520                }
 521
 522                /* go ahead even if the pmd is pmd_trans_splitting() */
 523                if (pmdp_clear_flush_young_notify(vma, address, pmd))
 524                        referenced++;
 525                spin_unlock(&mm->page_table_lock);
 526        } else {
 527                pte_t *pte;
 528                spinlock_t *ptl;
 529
 530                /*
 531                 * rmap might return false positives; we must filter
 532                 * these out using page_check_address().
 533                 */
 534                pte = page_check_address(page, mm, address, &ptl, 0);
 535                if (!pte)
 536                        goto out;
 537
 538                if (vma->vm_flags & VM_LOCKED) {
 539                        pte_unmap_unlock(pte, ptl);
 540                        *mapcount = 0;  /* break early from loop */
 541                        *vm_flags |= VM_LOCKED;
 542                        goto out;
 543                }
 544
 545                if (ptep_clear_flush_young_notify(vma, address, pte)) {
 546                        /*
 547                         * Don't treat a reference through a sequentially read
 548                         * mapping as such.  If the page has been used in
 549                         * another mapping, we will catch it; if this other
 550                         * mapping is already gone, the unmap path will have
 551                         * set PG_referenced or activated the page.
 552                         */
 553                        if (likely(!VM_SequentialReadHint(vma)))
 554                                referenced++;
 555                }
 556                pte_unmap_unlock(pte, ptl);
 557        }
 558
 559        /* Pretend the page is referenced if the task has the
 560           swap token and is in the middle of a page fault. */
 561        if (mm != current->mm && has_swap_token(mm) &&
 562                        rwsem_is_locked(&mm->mmap_sem))
 563                referenced++;
 564
 565        (*mapcount)--;
 566
 567        if (referenced)
 568                *vm_flags |= vma->vm_flags;
 569out:
 570        return referenced;
 571}
 572
 573static int page_referenced_anon(struct page *page,
 574                                struct mem_cgroup *mem_cont,
 575                                unsigned long *vm_flags)
 576{
 577        unsigned int mapcount;
 578        struct anon_vma *anon_vma;
 579        struct anon_vma_chain *avc;
 580        int referenced = 0;
 581
 582        anon_vma = page_lock_anon_vma(page);
 583        if (!anon_vma)
 584                return referenced;
 585
 586        mapcount = page_mapcount(page);
 587        list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
 588                struct vm_area_struct *vma = avc->vma;
 589                unsigned long address = vma_address(page, vma);
 590                if (address == -EFAULT)
 591                        continue;
 592                /*
 593                 * If we are reclaiming on behalf of a cgroup, skip
 594                 * counting on behalf of references from different
 595                 * cgroups
 596                 */
 597                if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 598                        continue;
 599                referenced += page_referenced_one(page, vma, address,
 600                                                  &mapcount, vm_flags);
 601                if (!mapcount)
 602                        break;
 603        }
 604
 605        page_unlock_anon_vma(anon_vma);
 606        return referenced;
 607}
 608
 609/**
 610 * page_referenced_file - referenced check for object-based rmap
 611 * @page: the page we're checking references on.
 612 * @mem_cont: target memory controller
 613 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 614 *
 615 * For an object-based mapped page, find all the places it is mapped and
 616 * check/clear the referenced flag.  This is done by following the page->mapping
 617 * pointer, then walking the chain of vmas it holds.  It returns the number
 618 * of references it found.
 619 *
 620 * This function is only called from page_referenced for object-based pages.
 621 */
 622static int page_referenced_file(struct page *page,
 623                                struct mem_cgroup *mem_cont,
 624                                unsigned long *vm_flags)
 625{
 626        unsigned int mapcount;
 627        struct address_space *mapping = page->mapping;
 628        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 629        struct vm_area_struct *vma;
 630        struct prio_tree_iter iter;
 631        int referenced = 0;
 632
 633        /*
 634         * The caller's checks on page->mapping and !PageAnon have made
 635         * sure that this is a file page: the check for page->mapping
 636         * excludes the case just before it gets set on an anon page.
 637         */
 638        BUG_ON(PageAnon(page));
 639
 640        /*
 641         * The page lock not only makes sure that page->mapping cannot
 642         * suddenly be NULLified by truncation, it makes sure that the
 643         * structure at mapping cannot be freed and reused yet,
 644         * so we can safely take mapping->i_mmap_lock.
 645         */
 646        BUG_ON(!PageLocked(page));
 647
 648        spin_lock(&mapping->i_mmap_lock);
 649
 650        /*
 651         * i_mmap_lock does not stabilize mapcount at all, but mapcount
 652         * is more likely to be accurate if we note it after spinning.
 653         */
 654        mapcount = page_mapcount(page);
 655
 656        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 657                unsigned long address = vma_address(page, vma);
 658                if (address == -EFAULT)
 659                        continue;
 660                /*
 661                 * If we are reclaiming on behalf of a cgroup, skip
 662                 * counting on behalf of references from different
 663                 * cgroups
 664                 */
 665                if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 666                        continue;
 667                referenced += page_referenced_one(page, vma, address,
 668                                                  &mapcount, vm_flags);
 669                if (!mapcount)
 670                        break;
 671        }
 672
 673        spin_unlock(&mapping->i_mmap_lock);
 674        return referenced;
 675}
 676
 677/**
 678 * page_referenced - test if the page was referenced
 679 * @page: the page to test
 680 * @is_locked: caller holds lock on the page
 681 * @mem_cont: target memory controller
 682 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 683 *
 684 * Quick test_and_clear_referenced for all mappings to a page,
 685 * returns the number of ptes which referenced the page.
 686 */
 687int page_referenced(struct page *page,
 688                    int is_locked,
 689                    struct mem_cgroup *mem_cont,
 690                    unsigned long *vm_flags)
 691{
 692        int referenced = 0;
 693        int we_locked = 0;
 694
 695        *vm_flags = 0;
 696        if (page_mapped(page) && page_rmapping(page)) {
 697                if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 698                        we_locked = trylock_page(page);
 699                        if (!we_locked) {
 700                                referenced++;
 701                                goto out;
 702                        }
 703                }
 704                if (unlikely(PageKsm(page)))
 705                        referenced += page_referenced_ksm(page, mem_cont,
 706                                                                vm_flags);
 707                else if (PageAnon(page))
 708                        referenced += page_referenced_anon(page, mem_cont,
 709                                                                vm_flags);
 710                else if (page->mapping)
 711                        referenced += page_referenced_file(page, mem_cont,
 712                                                                vm_flags);
 713                if (we_locked)
 714                        unlock_page(page);
 715        }
 716out:
 717        if (page_test_and_clear_young(page))
 718                referenced++;
 719
 720        return referenced;
 721}
 722
 723static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 724                            unsigned long address)
 725{
 726        struct mm_struct *mm = vma->vm_mm;
 727        pte_t *pte;
 728        spinlock_t *ptl;
 729        int ret = 0;
 730
 731        pte = page_check_address(page, mm, address, &ptl, 1);
 732        if (!pte)
 733                goto out;
 734
 735        if (pte_dirty(*pte) || pte_write(*pte)) {
 736                pte_t entry;
 737
 738                flush_cache_page(vma, address, pte_pfn(*pte));
 739                entry = ptep_clear_flush_notify(vma, address, pte);
 740                entry = pte_wrprotect(entry);
 741                entry = pte_mkclean(entry);
 742                set_pte_at(mm, address, pte, entry);
 743                ret = 1;
 744        }
 745
 746        pte_unmap_unlock(pte, ptl);
 747out:
 748        return ret;
 749}
 750
 751static int page_mkclean_file(struct address_space *mapping, struct page *page)
 752{
 753        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 754        struct vm_area_struct *vma;
 755        struct prio_tree_iter iter;
 756        int ret = 0;
 757
 758        BUG_ON(PageAnon(page));
 759
 760        spin_lock(&mapping->i_mmap_lock);
 761        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 762                if (vma->vm_flags & VM_SHARED) {
 763                        unsigned long address = vma_address(page, vma);
 764                        if (address == -EFAULT)
 765                                continue;
 766                        ret += page_mkclean_one(page, vma, address);
 767                }
 768        }
 769        spin_unlock(&mapping->i_mmap_lock);
 770        return ret;
 771}
 772
 773int page_mkclean(struct page *page)
 774{
 775        int ret = 0;
 776
 777        BUG_ON(!PageLocked(page));
 778
 779        if (page_mapped(page)) {
 780                struct address_space *mapping = page_mapping(page);
 781                if (mapping) {
 782                        ret = page_mkclean_file(mapping, page);
 783                        if (page_test_dirty(page)) {
 784                                page_clear_dirty(page, 1);
 785                                ret = 1;
 786                        }
 787                }
 788        }
 789
 790        return ret;
 791}
 792EXPORT_SYMBOL_GPL(page_mkclean);
 793
 794/**
 795 * page_move_anon_rmap - move a page to our anon_vma
 796 * @page:       the page to move to our anon_vma
 797 * @vma:        the vma the page belongs to
 798 * @address:    the user virtual address mapped
 799 *
 800 * When a page belongs exclusively to one process after a COW event,
 801 * that page can be moved into the anon_vma that belongs to just that
 802 * process, so the rmap code will not search the parent or sibling
 803 * processes.
 804 */
 805void page_move_anon_rmap(struct page *page,
 806        struct vm_area_struct *vma, unsigned long address)
 807{
 808        struct anon_vma *anon_vma = vma->anon_vma;
 809
 810        VM_BUG_ON(!PageLocked(page));
 811        VM_BUG_ON(!anon_vma);
 812        VM_BUG_ON(page->index != linear_page_index(vma, address));
 813
 814        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 815        page->mapping = (struct address_space *) anon_vma;
 816}
 817
 818/**
 819 * __page_set_anon_rmap - set up new anonymous rmap
 820 * @page:       Page to add to rmap     
 821 * @vma:        VM area to add page to.
 822 * @address:    User virtual address of the mapping     
 823 * @exclusive:  the page is exclusively owned by the current process
 824 */
 825static void __page_set_anon_rmap(struct page *page,
 826        struct vm_area_struct *vma, unsigned long address, int exclusive)
 827{
 828        struct anon_vma *anon_vma = vma->anon_vma;
 829
 830        BUG_ON(!anon_vma);
 831
 832        if (PageAnon(page))
 833                return;
 834
 835        /*
 836         * If the page isn't exclusively mapped into this vma,
 837         * we must use the _oldest_ possible anon_vma for the
 838         * page mapping!
 839         */
 840        if (!exclusive)
 841                anon_vma = anon_vma->root;
 842
 843        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 844        page->mapping = (struct address_space *) anon_vma;
 845        page->index = linear_page_index(vma, address);
 846}
 847
 848/**
 849 * __page_check_anon_rmap - sanity check anonymous rmap addition
 850 * @page:       the page to add the mapping to
 851 * @vma:        the vm area in which the mapping is added
 852 * @address:    the user virtual address mapped
 853 */
 854static void __page_check_anon_rmap(struct page *page,
 855        struct vm_area_struct *vma, unsigned long address)
 856{
 857#ifdef CONFIG_DEBUG_VM
 858        /*
 859         * The page's anon-rmap details (mapping and index) are guaranteed to
 860         * be set up correctly at this point.
 861         *
 862         * We have exclusion against page_add_anon_rmap because the caller
 863         * always holds the page locked, except if called from page_dup_rmap,
 864         * in which case the page is already known to be setup.
 865         *
 866         * We have exclusion against page_add_new_anon_rmap because those pages
 867         * are initially only visible via the pagetables, and the pte is locked
 868         * over the call to page_add_new_anon_rmap.
 869         */
 870        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
 871        BUG_ON(page->index != linear_page_index(vma, address));
 872#endif
 873}
 874
 875/**
 876 * page_add_anon_rmap - add pte mapping to an anonymous page
 877 * @page:       the page to add the mapping to
 878 * @vma:        the vm area in which the mapping is added
 879 * @address:    the user virtual address mapped
 880 *
 881 * The caller needs to hold the pte lock, and the page must be locked in
 882 * the anon_vma case: to serialize mapping,index checking after setting,
 883 * and to ensure that PageAnon is not being upgraded racily to PageKsm
 884 * (but PageKsm is never downgraded to PageAnon).
 885 */
 886void page_add_anon_rmap(struct page *page,
 887        struct vm_area_struct *vma, unsigned long address)
 888{
 889        do_page_add_anon_rmap(page, vma, address, 0);
 890}
 891
 892/*
 893 * Special version of the above for do_swap_page, which often runs
 894 * into pages that are exclusively owned by the current process.
 895 * Everybody else should continue to use page_add_anon_rmap above.
 896 */
 897void do_page_add_anon_rmap(struct page *page,
 898        struct vm_area_struct *vma, unsigned long address, int exclusive)
 899{
 900        int first = atomic_inc_and_test(&page->_mapcount);
 901        if (first) {
 902                if (!PageTransHuge(page))
 903                        __inc_zone_page_state(page, NR_ANON_PAGES);
 904                else
 905                        __inc_zone_page_state(page,
 906                                              NR_ANON_TRANSPARENT_HUGEPAGES);
 907        }
 908        if (unlikely(PageKsm(page)))
 909                return;
 910
 911        VM_BUG_ON(!PageLocked(page));
 912        VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 913        if (first)
 914                __page_set_anon_rmap(page, vma, address, exclusive);
 915        else
 916                __page_check_anon_rmap(page, vma, address);
 917}
 918
 919/**
 920 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
 921 * @page:       the page to add the mapping to
 922 * @vma:        the vm area in which the mapping is added
 923 * @address:    the user virtual address mapped
 924 *
 925 * Same as page_add_anon_rmap but must only be called on *new* pages.
 926 * This means the inc-and-test can be bypassed.
 927 * Page does not have to be locked.
 928 */
 929void page_add_new_anon_rmap(struct page *page,
 930        struct vm_area_struct *vma, unsigned long address)
 931{
 932        VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 933        SetPageSwapBacked(page);
 934        atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
 935        if (!PageTransHuge(page))
 936                __inc_zone_page_state(page, NR_ANON_PAGES);
 937        else
 938                __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
 939        __page_set_anon_rmap(page, vma, address, 1);
 940        if (page_evictable(page, vma))
 941                lru_cache_add_lru(page, LRU_ACTIVE_ANON);
 942        else
 943                add_page_to_unevictable_list(page);
 944}
 945
 946/**
 947 * page_add_file_rmap - add pte mapping to a file page
 948 * @page: the page to add the mapping to
 949 *
 950 * The caller needs to hold the pte lock.
 951 */
 952void page_add_file_rmap(struct page *page)
 953{
 954        if (atomic_inc_and_test(&page->_mapcount)) {
 955                __inc_zone_page_state(page, NR_FILE_MAPPED);
 956                mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
 957        }
 958}
 959
 960/**
 961 * page_remove_rmap - take down pte mapping from a page
 962 * @page: page to remove mapping from
 963 *
 964 * The caller needs to hold the pte lock.
 965 */
 966void page_remove_rmap(struct page *page)
 967{
 968        /* page still mapped by someone else? */
 969        if (!atomic_add_negative(-1, &page->_mapcount))
 970                return;
 971
 972        /*
 973         * Now that the last pte has gone, s390 must transfer dirty
 974         * flag from storage key to struct page.  We can usually skip
 975         * this if the page is anon, so about to be freed; but perhaps
 976         * not if it's in swapcache - there might be another pte slot
 977         * containing the swap entry, but page not yet written to swap.
 978         */
 979        if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
 980                page_clear_dirty(page, 1);
 981                set_page_dirty(page);
 982        }
 983        /*
 984         * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
 985         * and not charged by memcg for now.
 986         */
 987        if (unlikely(PageHuge(page)))
 988                return;
 989        if (PageAnon(page)) {
 990                mem_cgroup_uncharge_page(page);
 991                if (!PageTransHuge(page))
 992                        __dec_zone_page_state(page, NR_ANON_PAGES);
 993                else
 994                        __dec_zone_page_state(page,
 995                                              NR_ANON_TRANSPARENT_HUGEPAGES);
 996        } else {
 997                __dec_zone_page_state(page, NR_FILE_MAPPED);
 998                mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
 999        }
1000        /*
1001         * It would be tidy to reset the PageAnon mapping here,
1002         * but that might overwrite a racing page_add_anon_rmap
1003         * which increments mapcount after us but sets mapping
1004         * before us: so leave the reset to free_hot_cold_page,
1005         * and remember that it's only reliable while mapped.
1006         * Leaving it set also helps swapoff to reinstate ptes
1007         * faster for those pages still in swapcache.
1008         */
1009}
1010
1011/*
1012 * Subfunctions of try_to_unmap: try_to_unmap_one called
1013 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1014 */
1015int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1016                     unsigned long address, enum ttu_flags flags)
1017{
1018        struct mm_struct *mm = vma->vm_mm;
1019        pte_t *pte;
1020        pte_t pteval;
1021        spinlock_t *ptl;
1022        int ret = SWAP_AGAIN;
1023
1024        pte = page_check_address(page, mm, address, &ptl, 0);
1025        if (!pte)
1026                goto out;
1027
1028        /*
1029         * If the page is mlock()d, we cannot swap it out.
1030         * If it's recently referenced (perhaps page_referenced
1031         * skipped over this mm) then we should reactivate it.
1032         */
1033        if (!(flags & TTU_IGNORE_MLOCK)) {
1034                if (vma->vm_flags & VM_LOCKED)
1035                        goto out_mlock;
1036
1037                if (TTU_ACTION(flags) == TTU_MUNLOCK)
1038                        goto out_unmap;
1039        }
1040        if (!(flags & TTU_IGNORE_ACCESS)) {
1041                if (ptep_clear_flush_young_notify(vma, address, pte)) {
1042                        ret = SWAP_FAIL;
1043                        goto out_unmap;
1044                }
1045        }
1046
1047        /* Nuke the page table entry. */
1048        flush_cache_page(vma, address, page_to_pfn(page));
1049        pteval = ptep_clear_flush_notify(vma, address, pte);
1050
1051        /* Move the dirty bit to the physical page now the pte is gone. */
1052        if (pte_dirty(pteval))
1053                set_page_dirty(page);
1054
1055        /* Update high watermark before we lower rss */
1056        update_hiwater_rss(mm);
1057
1058        if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1059                if (PageAnon(page))
1060                        dec_mm_counter(mm, MM_ANONPAGES);
1061                else
1062                        dec_mm_counter(mm, MM_FILEPAGES);
1063                set_pte_at(mm, address, pte,
1064                                swp_entry_to_pte(make_hwpoison_entry(page)));
1065        } else if (PageAnon(page)) {
1066                swp_entry_t entry = { .val = page_private(page) };
1067
1068                if (PageSwapCache(page)) {
1069                        /*
1070                         * Store the swap location in the pte.
1071                         * See handle_pte_fault() ...
1072                         */
1073                        if (swap_duplicate(entry) < 0) {
1074                                set_pte_at(mm, address, pte, pteval);
1075                                ret = SWAP_FAIL;
1076                                goto out_unmap;
1077                        }
1078                        if (list_empty(&mm->mmlist)) {
1079                                spin_lock(&mmlist_lock);
1080                                if (list_empty(&mm->mmlist))
1081                                        list_add(&mm->mmlist, &init_mm.mmlist);
1082                                spin_unlock(&mmlist_lock);
1083                        }
1084                        dec_mm_counter(mm, MM_ANONPAGES);
1085                        inc_mm_counter(mm, MM_SWAPENTS);
1086                } else if (PAGE_MIGRATION) {
1087                        /*
1088                         * Store the pfn of the page in a special migration
1089                         * pte. do_swap_page() will wait until the migration
1090                         * pte is removed and then restart fault handling.
1091                         */
1092                        BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1093                        entry = make_migration_entry(page, pte_write(pteval));
1094                }
1095                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1096                BUG_ON(pte_file(*pte));
1097        } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1098                /* Establish migration entry for a file page */
1099                swp_entry_t entry;
1100                entry = make_migration_entry(page, pte_write(pteval));
1101                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1102        } else
1103                dec_mm_counter(mm, MM_FILEPAGES);
1104
1105        page_remove_rmap(page);
1106        page_cache_release(page);
1107
1108out_unmap:
1109        pte_unmap_unlock(pte, ptl);
1110out:
1111        return ret;
1112
1113out_mlock:
1114        pte_unmap_unlock(pte, ptl);
1115
1116
1117        /*
1118         * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1119         * unstable result and race. Plus, We can't wait here because
1120         * we now hold anon_vma->lock or mapping->i_mmap_lock.
1121         * if trylock failed, the page remain in evictable lru and later
1122         * vmscan could retry to move the page to unevictable lru if the
1123         * page is actually mlocked.
1124         */
1125        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1126                if (vma->vm_flags & VM_LOCKED) {
1127                        mlock_vma_page(page);
1128                        ret = SWAP_MLOCK;
1129                }
1130                up_read(&vma->vm_mm->mmap_sem);
1131        }
1132        return ret;
1133}
1134
1135/*
1136 * objrmap doesn't work for nonlinear VMAs because the assumption that
1137 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1138 * Consequently, given a particular page and its ->index, we cannot locate the
1139 * ptes which are mapping that page without an exhaustive linear search.
1140 *
1141 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1142 * maps the file to which the target page belongs.  The ->vm_private_data field
1143 * holds the current cursor into that scan.  Successive searches will circulate
1144 * around the vma's virtual address space.
1145 *
1146 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1147 * more scanning pressure is placed against them as well.   Eventually pages
1148 * will become fully unmapped and are eligible for eviction.
1149 *
1150 * For very sparsely populated VMAs this is a little inefficient - chances are
1151 * there there won't be many ptes located within the scan cluster.  In this case
1152 * maybe we could scan further - to the end of the pte page, perhaps.
1153 *
1154 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1155 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1156 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1157 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1158 */
1159#define CLUSTER_SIZE    min(32*PAGE_SIZE, PMD_SIZE)
1160#define CLUSTER_MASK    (~(CLUSTER_SIZE - 1))
1161
1162static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1163                struct vm_area_struct *vma, struct page *check_page)
1164{
1165        struct mm_struct *mm = vma->vm_mm;
1166        pgd_t *pgd;
1167        pud_t *pud;
1168        pmd_t *pmd;
1169        pte_t *pte;
1170        pte_t pteval;
1171        spinlock_t *ptl;
1172        struct page *page;
1173        unsigned long address;
1174        unsigned long end;
1175        int ret = SWAP_AGAIN;
1176        int locked_vma = 0;
1177
1178        address = (vma->vm_start + cursor) & CLUSTER_MASK;
1179        end = address + CLUSTER_SIZE;
1180        if (address < vma->vm_start)
1181                address = vma->vm_start;
1182        if (end > vma->vm_end)
1183                end = vma->vm_end;
1184
1185        pgd = pgd_offset(mm, address);
1186        if (!pgd_present(*pgd))
1187                return ret;
1188
1189        pud = pud_offset(pgd, address);
1190        if (!pud_present(*pud))
1191                return ret;
1192
1193        pmd = pmd_offset(pud, address);
1194        if (!pmd_present(*pmd))
1195                return ret;
1196
1197        /*
1198         * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1199         * keep the sem while scanning the cluster for mlocking pages.
1200         */
1201        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1202                locked_vma = (vma->vm_flags & VM_LOCKED);
1203                if (!locked_vma)
1204                        up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1205        }
1206
1207        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1208
1209        /* Update high watermark before we lower rss */
1210        update_hiwater_rss(mm);
1211
1212        for (; address < end; pte++, address += PAGE_SIZE) {
1213                if (!pte_present(*pte))
1214                        continue;
1215                page = vm_normal_page(vma, address, *pte);
1216                BUG_ON(!page || PageAnon(page));
1217
1218                if (locked_vma) {
1219                        mlock_vma_page(page);   /* no-op if already mlocked */
1220                        if (page == check_page)
1221                                ret = SWAP_MLOCK;
1222                        continue;       /* don't unmap */
1223                }
1224
1225                if (ptep_clear_flush_young_notify(vma, address, pte))
1226                        continue;
1227
1228                /* Nuke the page table entry. */
1229                flush_cache_page(vma, address, pte_pfn(*pte));
1230                pteval = ptep_clear_flush_notify(vma, address, pte);
1231
1232                /* If nonlinear, store the file page offset in the pte. */
1233                if (page->index != linear_page_index(vma, address))
1234                        set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1235
1236                /* Move the dirty bit to the physical page now the pte is gone. */
1237                if (pte_dirty(pteval))
1238                        set_page_dirty(page);
1239
1240                page_remove_rmap(page);
1241                page_cache_release(page);
1242                dec_mm_counter(mm, MM_FILEPAGES);
1243                (*mapcount)--;
1244        }
1245        pte_unmap_unlock(pte - 1, ptl);
1246        if (locked_vma)
1247                up_read(&vma->vm_mm->mmap_sem);
1248        return ret;
1249}
1250
1251bool is_vma_temporary_stack(struct vm_area_struct *vma)
1252{
1253        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1254
1255        if (!maybe_stack)
1256                return false;
1257
1258        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1259                                                VM_STACK_INCOMPLETE_SETUP)
1260                return true;
1261
1262        return false;
1263}
1264
1265/**
1266 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1267 * rmap method
1268 * @page: the page to unmap/unlock
1269 * @flags: action and flags
1270 *
1271 * Find all the mappings of a page using the mapping pointer and the vma chains
1272 * contained in the anon_vma struct it points to.
1273 *
1274 * This function is only called from try_to_unmap/try_to_munlock for
1275 * anonymous pages.
1276 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1277 * where the page was found will be held for write.  So, we won't recheck
1278 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1279 * 'LOCKED.
1280 */
1281static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1282{
1283        struct anon_vma *anon_vma;
1284        struct anon_vma_chain *avc;
1285        int ret = SWAP_AGAIN;
1286
1287        anon_vma = page_lock_anon_vma(page);
1288        if (!anon_vma)
1289                return ret;
1290
1291        list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1292                struct vm_area_struct *vma = avc->vma;
1293                unsigned long address;
1294
1295                /*
1296                 * During exec, a temporary VMA is setup and later moved.
1297                 * The VMA is moved under the anon_vma lock but not the
1298                 * page tables leading to a race where migration cannot
1299                 * find the migration ptes. Rather than increasing the
1300                 * locking requirements of exec(), migration skips
1301                 * temporary VMAs until after exec() completes.
1302                 */
1303                if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1304                                is_vma_temporary_stack(vma))
1305                        continue;
1306
1307                address = vma_address(page, vma);
1308                if (address == -EFAULT)
1309                        continue;
1310                ret = try_to_unmap_one(page, vma, address, flags);
1311                if (ret != SWAP_AGAIN || !page_mapped(page))
1312                        break;
1313        }
1314
1315        page_unlock_anon_vma(anon_vma);
1316        return ret;
1317}
1318
1319/**
1320 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1321 * @page: the page to unmap/unlock
1322 * @flags: action and flags
1323 *
1324 * Find all the mappings of a page using the mapping pointer and the vma chains
1325 * contained in the address_space struct it points to.
1326 *
1327 * This function is only called from try_to_unmap/try_to_munlock for
1328 * object-based pages.
1329 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1330 * where the page was found will be held for write.  So, we won't recheck
1331 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1332 * 'LOCKED.
1333 */
1334static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1335{
1336        struct address_space *mapping = page->mapping;
1337        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1338        struct vm_area_struct *vma;
1339        struct prio_tree_iter iter;
1340        int ret = SWAP_AGAIN;
1341        unsigned long cursor;
1342        unsigned long max_nl_cursor = 0;
1343        unsigned long max_nl_size = 0;
1344        unsigned int mapcount;
1345
1346        spin_lock(&mapping->i_mmap_lock);
1347        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1348                unsigned long address = vma_address(page, vma);
1349                if (address == -EFAULT)
1350                        continue;
1351                ret = try_to_unmap_one(page, vma, address, flags);
1352                if (ret != SWAP_AGAIN || !page_mapped(page))
1353                        goto out;
1354        }
1355
1356        if (list_empty(&mapping->i_mmap_nonlinear))
1357                goto out;
1358
1359        /*
1360         * We don't bother to try to find the munlocked page in nonlinears.
1361         * It's costly. Instead, later, page reclaim logic may call
1362         * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1363         */
1364        if (TTU_ACTION(flags) == TTU_MUNLOCK)
1365                goto out;
1366
1367        list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368                                                shared.vm_set.list) {
1369                cursor = (unsigned long) vma->vm_private_data;
1370                if (cursor > max_nl_cursor)
1371                        max_nl_cursor = cursor;
1372                cursor = vma->vm_end - vma->vm_start;
1373                if (cursor > max_nl_size)
1374                        max_nl_size = cursor;
1375        }
1376
1377        if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1378                ret = SWAP_FAIL;
1379                goto out;
1380        }
1381
1382        /*
1383         * We don't try to search for this page in the nonlinear vmas,
1384         * and page_referenced wouldn't have found it anyway.  Instead
1385         * just walk the nonlinear vmas trying to age and unmap some.
1386         * The mapcount of the page we came in with is irrelevant,
1387         * but even so use it as a guide to how hard we should try?
1388         */
1389        mapcount = page_mapcount(page);
1390        if (!mapcount)
1391                goto out;
1392        cond_resched_lock(&mapping->i_mmap_lock);
1393
1394        max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1395        if (max_nl_cursor == 0)
1396                max_nl_cursor = CLUSTER_SIZE;
1397
1398        do {
1399                list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1400                                                shared.vm_set.list) {
1401                        cursor = (unsigned long) vma->vm_private_data;
1402                        while ( cursor < max_nl_cursor &&
1403                                cursor < vma->vm_end - vma->vm_start) {
1404                                if (try_to_unmap_cluster(cursor, &mapcount,
1405                                                vma, page) == SWAP_MLOCK)
1406                                        ret = SWAP_MLOCK;
1407                                cursor += CLUSTER_SIZE;
1408                                vma->vm_private_data = (void *) cursor;
1409                                if ((int)mapcount <= 0)
1410                                        goto out;
1411                        }
1412                        vma->vm_private_data = (void *) max_nl_cursor;
1413                }
1414                cond_resched_lock(&mapping->i_mmap_lock);
1415                max_nl_cursor += CLUSTER_SIZE;
1416        } while (max_nl_cursor <= max_nl_size);
1417
1418        /*
1419         * Don't loop forever (perhaps all the remaining pages are
1420         * in locked vmas).  Reset cursor on all unreserved nonlinear
1421         * vmas, now forgetting on which ones it had fallen behind.
1422         */
1423        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1424                vma->vm_private_data = NULL;
1425out:
1426        spin_unlock(&mapping->i_mmap_lock);
1427        return ret;
1428}
1429
1430/**
1431 * try_to_unmap - try to remove all page table mappings to a page
1432 * @page: the page to get unmapped
1433 * @flags: action and flags
1434 *
1435 * Tries to remove all the page table entries which are mapping this
1436 * page, used in the pageout path.  Caller must hold the page lock.
1437 * Return values are:
1438 *
1439 * SWAP_SUCCESS - we succeeded in removing all mappings
1440 * SWAP_AGAIN   - we missed a mapping, try again later
1441 * SWAP_FAIL    - the page is unswappable
1442 * SWAP_MLOCK   - page is mlocked.
1443 */
1444int try_to_unmap(struct page *page, enum ttu_flags flags)
1445{
1446        int ret;
1447
1448        BUG_ON(!PageLocked(page));
1449        VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1450
1451        if (unlikely(PageKsm(page)))
1452                ret = try_to_unmap_ksm(page, flags);
1453        else if (PageAnon(page))
1454                ret = try_to_unmap_anon(page, flags);
1455        else
1456                ret = try_to_unmap_file(page, flags);
1457        if (ret != SWAP_MLOCK && !page_mapped(page))
1458                ret = SWAP_SUCCESS;
1459        return ret;
1460}
1461
1462/**
1463 * try_to_munlock - try to munlock a page
1464 * @page: the page to be munlocked
1465 *
1466 * Called from munlock code.  Checks all of the VMAs mapping the page
1467 * to make sure nobody else has this page mlocked. The page will be
1468 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1469 *
1470 * Return values are:
1471 *
1472 * SWAP_AGAIN   - no vma is holding page mlocked, or,
1473 * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
1474 * SWAP_FAIL    - page cannot be located at present
1475 * SWAP_MLOCK   - page is now mlocked.
1476 */
1477int try_to_munlock(struct page *page)
1478{
1479        VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1480
1481        if (unlikely(PageKsm(page)))
1482                return try_to_unmap_ksm(page, TTU_MUNLOCK);
1483        else if (PageAnon(page))
1484                return try_to_unmap_anon(page, TTU_MUNLOCK);
1485        else
1486                return try_to_unmap_file(page, TTU_MUNLOCK);
1487}
1488
1489#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1490/*
1491 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1492 * if necessary.  Be careful to do all the tests under the lock.  Once
1493 * we know we are the last user, nobody else can get a reference and we
1494 * can do the freeing without the lock.
1495 */
1496void drop_anon_vma(struct anon_vma *anon_vma)
1497{
1498        BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1499        if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1500                struct anon_vma *root = anon_vma->root;
1501                int empty = list_empty(&anon_vma->head);
1502                int last_root_user = 0;
1503                int root_empty = 0;
1504
1505                /*
1506                 * The refcount on a non-root anon_vma got dropped.  Drop
1507                 * the refcount on the root and check if we need to free it.
1508                 */
1509                if (empty && anon_vma != root) {
1510                        BUG_ON(atomic_read(&root->external_refcount) <= 0);
1511                        last_root_user = atomic_dec_and_test(&root->external_refcount);
1512                        root_empty = list_empty(&root->head);
1513                }
1514                anon_vma_unlock(anon_vma);
1515
1516                if (empty) {
1517                        anon_vma_free(anon_vma);
1518                        if (root_empty && last_root_user)
1519                                anon_vma_free(root);
1520                }
1521        }
1522}
1523#endif
1524
1525#ifdef CONFIG_MIGRATION
1526/*
1527 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1528 * Called by migrate.c to remove migration ptes, but might be used more later.
1529 */
1530static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1531                struct vm_area_struct *, unsigned long, void *), void *arg)
1532{
1533        struct anon_vma *anon_vma;
1534        struct anon_vma_chain *avc;
1535        int ret = SWAP_AGAIN;
1536
1537        /*
1538         * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1539         * because that depends on page_mapped(); but not all its usages
1540         * are holding mmap_sem. Users without mmap_sem are required to
1541         * take a reference count to prevent the anon_vma disappearing
1542         */
1543        anon_vma = page_anon_vma(page);
1544        if (!anon_vma)
1545                return ret;
1546        anon_vma_lock(anon_vma);
1547        list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1548                struct vm_area_struct *vma = avc->vma;
1549                unsigned long address = vma_address(page, vma);
1550                if (address == -EFAULT)
1551                        continue;
1552                ret = rmap_one(page, vma, address, arg);
1553                if (ret != SWAP_AGAIN)
1554                        break;
1555        }
1556        anon_vma_unlock(anon_vma);
1557        return ret;
1558}
1559
1560static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1561                struct vm_area_struct *, unsigned long, void *), void *arg)
1562{
1563        struct address_space *mapping = page->mapping;
1564        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1565        struct vm_area_struct *vma;
1566        struct prio_tree_iter iter;
1567        int ret = SWAP_AGAIN;
1568
1569        if (!mapping)
1570                return ret;
1571        spin_lock(&mapping->i_mmap_lock);
1572        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1573                unsigned long address = vma_address(page, vma);
1574                if (address == -EFAULT)
1575                        continue;
1576                ret = rmap_one(page, vma, address, arg);
1577                if (ret != SWAP_AGAIN)
1578                        break;
1579        }
1580        /*
1581         * No nonlinear handling: being always shared, nonlinear vmas
1582         * never contain migration ptes.  Decide what to do about this
1583         * limitation to linear when we need rmap_walk() on nonlinear.
1584         */
1585        spin_unlock(&mapping->i_mmap_lock);
1586        return ret;
1587}
1588
1589int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1590                struct vm_area_struct *, unsigned long, void *), void *arg)
1591{
1592        VM_BUG_ON(!PageLocked(page));
1593
1594        if (unlikely(PageKsm(page)))
1595                return rmap_walk_ksm(page, rmap_one, arg);
1596        else if (PageAnon(page))
1597                return rmap_walk_anon(page, rmap_one, arg);
1598        else
1599                return rmap_walk_file(page, rmap_one, arg);
1600}
1601#endif /* CONFIG_MIGRATION */
1602
1603#ifdef CONFIG_HUGETLB_PAGE
1604/*
1605 * The following three functions are for anonymous (private mapped) hugepages.
1606 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1607 * and no lru code, because we handle hugepages differently from common pages.
1608 */
1609static void __hugepage_set_anon_rmap(struct page *page,
1610        struct vm_area_struct *vma, unsigned long address, int exclusive)
1611{
1612        struct anon_vma *anon_vma = vma->anon_vma;
1613
1614        BUG_ON(!anon_vma);
1615
1616        if (PageAnon(page))
1617                return;
1618        if (!exclusive)
1619                anon_vma = anon_vma->root;
1620
1621        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1622        page->mapping = (struct address_space *) anon_vma;
1623        page->index = linear_page_index(vma, address);
1624}
1625
1626void hugepage_add_anon_rmap(struct page *page,
1627                            struct vm_area_struct *vma, unsigned long address)
1628{
1629        struct anon_vma *anon_vma = vma->anon_vma;
1630        int first;
1631
1632        BUG_ON(!PageLocked(page));
1633        BUG_ON(!anon_vma);
1634        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1635        first = atomic_inc_and_test(&page->_mapcount);
1636        if (first)
1637                __hugepage_set_anon_rmap(page, vma, address, 0);
1638}
1639
1640void hugepage_add_new_anon_rmap(struct page *page,
1641                        struct vm_area_struct *vma, unsigned long address)
1642{
1643        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1644        atomic_set(&page->_mapcount, 0);
1645        __hugepage_set_anon_rmap(page, vma, address, 1);
1646}
1647#endif /* CONFIG_HUGETLB_PAGE */
1648