linux/mm/swap.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/mm_inline.h>
  26#include <linux/buffer_head.h>  /* for try_to_release_page() */
  27#include <linux/percpu_counter.h>
  28#include <linux/percpu.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/backing-dev.h>
  32#include <linux/memcontrol.h>
  33#include <linux/gfp.h>
  34
  35#include "internal.h"
  36
  37/* How many pages do we try to swap or page in/out together? */
  38int page_cluster;
  39
  40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
  41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  42
  43/*
  44 * This path almost never happens for VM activity - pages are normally
  45 * freed via pagevecs.  But it gets used by networking.
  46 */
  47static void __page_cache_release(struct page *page)
  48{
  49        if (PageLRU(page)) {
  50                unsigned long flags;
  51                struct zone *zone = page_zone(page);
  52
  53                spin_lock_irqsave(&zone->lru_lock, flags);
  54                VM_BUG_ON(!PageLRU(page));
  55                __ClearPageLRU(page);
  56                del_page_from_lru(zone, page);
  57                spin_unlock_irqrestore(&zone->lru_lock, flags);
  58        }
  59}
  60
  61static void __put_single_page(struct page *page)
  62{
  63        __page_cache_release(page);
  64        free_hot_cold_page(page, 0);
  65}
  66
  67static void __put_compound_page(struct page *page)
  68{
  69        compound_page_dtor *dtor;
  70
  71        __page_cache_release(page);
  72        dtor = get_compound_page_dtor(page);
  73        (*dtor)(page);
  74}
  75
  76static void put_compound_page(struct page *page)
  77{
  78        if (unlikely(PageTail(page))) {
  79                /* __split_huge_page_refcount can run under us */
  80                struct page *page_head = page->first_page;
  81                smp_rmb();
  82                /*
  83                 * If PageTail is still set after smp_rmb() we can be sure
  84                 * that the page->first_page we read wasn't a dangling pointer.
  85                 * See __split_huge_page_refcount() smp_wmb().
  86                 */
  87                if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
  88                        unsigned long flags;
  89                        /*
  90                         * Verify that our page_head wasn't converted
  91                         * to a a regular page before we got a
  92                         * reference on it.
  93                         */
  94                        if (unlikely(!PageHead(page_head))) {
  95                                /* PageHead is cleared after PageTail */
  96                                smp_rmb();
  97                                VM_BUG_ON(PageTail(page));
  98                                goto out_put_head;
  99                        }
 100                        /*
 101                         * Only run compound_lock on a valid PageHead,
 102                         * after having it pinned with
 103                         * get_page_unless_zero() above.
 104                         */
 105                        smp_mb();
 106                        /* page_head wasn't a dangling pointer */
 107                        flags = compound_lock_irqsave(page_head);
 108                        if (unlikely(!PageTail(page))) {
 109                                /* __split_huge_page_refcount run before us */
 110                                compound_unlock_irqrestore(page_head, flags);
 111                                VM_BUG_ON(PageHead(page_head));
 112                        out_put_head:
 113                                if (put_page_testzero(page_head))
 114                                        __put_single_page(page_head);
 115                        out_put_single:
 116                                if (put_page_testzero(page))
 117                                        __put_single_page(page);
 118                                return;
 119                        }
 120                        VM_BUG_ON(page_head != page->first_page);
 121                        /*
 122                         * We can release the refcount taken by
 123                         * get_page_unless_zero now that
 124                         * split_huge_page_refcount is blocked on the
 125                         * compound_lock.
 126                         */
 127                        if (put_page_testzero(page_head))
 128                                VM_BUG_ON(1);
 129                        /* __split_huge_page_refcount will wait now */
 130                        VM_BUG_ON(atomic_read(&page->_count) <= 0);
 131                        atomic_dec(&page->_count);
 132                        VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
 133                        compound_unlock_irqrestore(page_head, flags);
 134                        if (put_page_testzero(page_head)) {
 135                                if (PageHead(page_head))
 136                                        __put_compound_page(page_head);
 137                                else
 138                                        __put_single_page(page_head);
 139                        }
 140                } else {
 141                        /* page_head is a dangling pointer */
 142                        VM_BUG_ON(PageTail(page));
 143                        goto out_put_single;
 144                }
 145        } else if (put_page_testzero(page)) {
 146                if (PageHead(page))
 147                        __put_compound_page(page);
 148                else
 149                        __put_single_page(page);
 150        }
 151}
 152
 153void put_page(struct page *page)
 154{
 155        if (unlikely(PageCompound(page)))
 156                put_compound_page(page);
 157        else if (put_page_testzero(page))
 158                __put_single_page(page);
 159}
 160EXPORT_SYMBOL(put_page);
 161
 162/**
 163 * put_pages_list() - release a list of pages
 164 * @pages: list of pages threaded on page->lru
 165 *
 166 * Release a list of pages which are strung together on page.lru.  Currently
 167 * used by read_cache_pages() and related error recovery code.
 168 */
 169void put_pages_list(struct list_head *pages)
 170{
 171        while (!list_empty(pages)) {
 172                struct page *victim;
 173
 174                victim = list_entry(pages->prev, struct page, lru);
 175                list_del(&victim->lru);
 176                page_cache_release(victim);
 177        }
 178}
 179EXPORT_SYMBOL(put_pages_list);
 180
 181/*
 182 * pagevec_move_tail() must be called with IRQ disabled.
 183 * Otherwise this may cause nasty races.
 184 */
 185static void pagevec_move_tail(struct pagevec *pvec)
 186{
 187        int i;
 188        int pgmoved = 0;
 189        struct zone *zone = NULL;
 190
 191        for (i = 0; i < pagevec_count(pvec); i++) {
 192                struct page *page = pvec->pages[i];
 193                struct zone *pagezone = page_zone(page);
 194
 195                if (pagezone != zone) {
 196                        if (zone)
 197                                spin_unlock(&zone->lru_lock);
 198                        zone = pagezone;
 199                        spin_lock(&zone->lru_lock);
 200                }
 201                if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 202                        int lru = page_lru_base_type(page);
 203                        list_move_tail(&page->lru, &zone->lru[lru].list);
 204                        pgmoved++;
 205                }
 206        }
 207        if (zone)
 208                spin_unlock(&zone->lru_lock);
 209        __count_vm_events(PGROTATED, pgmoved);
 210        release_pages(pvec->pages, pvec->nr, pvec->cold);
 211        pagevec_reinit(pvec);
 212}
 213
 214/*
 215 * Writeback is about to end against a page which has been marked for immediate
 216 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 217 * inactive list.
 218 */
 219void  rotate_reclaimable_page(struct page *page)
 220{
 221        if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 222            !PageUnevictable(page) && PageLRU(page)) {
 223                struct pagevec *pvec;
 224                unsigned long flags;
 225
 226                page_cache_get(page);
 227                local_irq_save(flags);
 228                pvec = &__get_cpu_var(lru_rotate_pvecs);
 229                if (!pagevec_add(pvec, page))
 230                        pagevec_move_tail(pvec);
 231                local_irq_restore(flags);
 232        }
 233}
 234
 235static void update_page_reclaim_stat(struct zone *zone, struct page *page,
 236                                     int file, int rotated)
 237{
 238        struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
 239        struct zone_reclaim_stat *memcg_reclaim_stat;
 240
 241        memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
 242
 243        reclaim_stat->recent_scanned[file]++;
 244        if (rotated)
 245                reclaim_stat->recent_rotated[file]++;
 246
 247        if (!memcg_reclaim_stat)
 248                return;
 249
 250        memcg_reclaim_stat->recent_scanned[file]++;
 251        if (rotated)
 252                memcg_reclaim_stat->recent_rotated[file]++;
 253}
 254
 255/*
 256 * FIXME: speed this up?
 257 */
 258void activate_page(struct page *page)
 259{
 260        struct zone *zone = page_zone(page);
 261
 262        spin_lock_irq(&zone->lru_lock);
 263        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 264                int file = page_is_file_cache(page);
 265                int lru = page_lru_base_type(page);
 266                del_page_from_lru_list(zone, page, lru);
 267
 268                SetPageActive(page);
 269                lru += LRU_ACTIVE;
 270                add_page_to_lru_list(zone, page, lru);
 271                __count_vm_event(PGACTIVATE);
 272
 273                update_page_reclaim_stat(zone, page, file, 1);
 274        }
 275        spin_unlock_irq(&zone->lru_lock);
 276}
 277
 278/*
 279 * Mark a page as having seen activity.
 280 *
 281 * inactive,unreferenced        ->      inactive,referenced
 282 * inactive,referenced          ->      active,unreferenced
 283 * active,unreferenced          ->      active,referenced
 284 */
 285void mark_page_accessed(struct page *page)
 286{
 287        if (!PageActive(page) && !PageUnevictable(page) &&
 288                        PageReferenced(page) && PageLRU(page)) {
 289                activate_page(page);
 290                ClearPageReferenced(page);
 291        } else if (!PageReferenced(page)) {
 292                SetPageReferenced(page);
 293        }
 294}
 295
 296EXPORT_SYMBOL(mark_page_accessed);
 297
 298void __lru_cache_add(struct page *page, enum lru_list lru)
 299{
 300        struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
 301
 302        page_cache_get(page);
 303        if (!pagevec_add(pvec, page))
 304                ____pagevec_lru_add(pvec, lru);
 305        put_cpu_var(lru_add_pvecs);
 306}
 307EXPORT_SYMBOL(__lru_cache_add);
 308
 309/**
 310 * lru_cache_add_lru - add a page to a page list
 311 * @page: the page to be added to the LRU.
 312 * @lru: the LRU list to which the page is added.
 313 */
 314void lru_cache_add_lru(struct page *page, enum lru_list lru)
 315{
 316        if (PageActive(page)) {
 317                VM_BUG_ON(PageUnevictable(page));
 318                ClearPageActive(page);
 319        } else if (PageUnevictable(page)) {
 320                VM_BUG_ON(PageActive(page));
 321                ClearPageUnevictable(page);
 322        }
 323
 324        VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
 325        __lru_cache_add(page, lru);
 326}
 327
 328/**
 329 * add_page_to_unevictable_list - add a page to the unevictable list
 330 * @page:  the page to be added to the unevictable list
 331 *
 332 * Add page directly to its zone's unevictable list.  To avoid races with
 333 * tasks that might be making the page evictable, through eg. munlock,
 334 * munmap or exit, while it's not on the lru, we want to add the page
 335 * while it's locked or otherwise "invisible" to other tasks.  This is
 336 * difficult to do when using the pagevec cache, so bypass that.
 337 */
 338void add_page_to_unevictable_list(struct page *page)
 339{
 340        struct zone *zone = page_zone(page);
 341
 342        spin_lock_irq(&zone->lru_lock);
 343        SetPageUnevictable(page);
 344        SetPageLRU(page);
 345        add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
 346        spin_unlock_irq(&zone->lru_lock);
 347}
 348
 349/*
 350 * Drain pages out of the cpu's pagevecs.
 351 * Either "cpu" is the current CPU, and preemption has already been
 352 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 353 */
 354static void drain_cpu_pagevecs(int cpu)
 355{
 356        struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
 357        struct pagevec *pvec;
 358        int lru;
 359
 360        for_each_lru(lru) {
 361                pvec = &pvecs[lru - LRU_BASE];
 362                if (pagevec_count(pvec))
 363                        ____pagevec_lru_add(pvec, lru);
 364        }
 365
 366        pvec = &per_cpu(lru_rotate_pvecs, cpu);
 367        if (pagevec_count(pvec)) {
 368                unsigned long flags;
 369
 370                /* No harm done if a racing interrupt already did this */
 371                local_irq_save(flags);
 372                pagevec_move_tail(pvec);
 373                local_irq_restore(flags);
 374        }
 375}
 376
 377void lru_add_drain(void)
 378{
 379        drain_cpu_pagevecs(get_cpu());
 380        put_cpu();
 381}
 382
 383static void lru_add_drain_per_cpu(struct work_struct *dummy)
 384{
 385        lru_add_drain();
 386}
 387
 388/*
 389 * Returns 0 for success
 390 */
 391int lru_add_drain_all(void)
 392{
 393        return schedule_on_each_cpu(lru_add_drain_per_cpu);
 394}
 395
 396/*
 397 * Batched page_cache_release().  Decrement the reference count on all the
 398 * passed pages.  If it fell to zero then remove the page from the LRU and
 399 * free it.
 400 *
 401 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
 402 * for the remainder of the operation.
 403 *
 404 * The locking in this function is against shrink_inactive_list(): we recheck
 405 * the page count inside the lock to see whether shrink_inactive_list()
 406 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
 407 * will free it.
 408 */
 409void release_pages(struct page **pages, int nr, int cold)
 410{
 411        int i;
 412        struct pagevec pages_to_free;
 413        struct zone *zone = NULL;
 414        unsigned long uninitialized_var(flags);
 415
 416        pagevec_init(&pages_to_free, cold);
 417        for (i = 0; i < nr; i++) {
 418                struct page *page = pages[i];
 419
 420                if (unlikely(PageCompound(page))) {
 421                        if (zone) {
 422                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 423                                zone = NULL;
 424                        }
 425                        put_compound_page(page);
 426                        continue;
 427                }
 428
 429                if (!put_page_testzero(page))
 430                        continue;
 431
 432                if (PageLRU(page)) {
 433                        struct zone *pagezone = page_zone(page);
 434
 435                        if (pagezone != zone) {
 436                                if (zone)
 437                                        spin_unlock_irqrestore(&zone->lru_lock,
 438                                                                        flags);
 439                                zone = pagezone;
 440                                spin_lock_irqsave(&zone->lru_lock, flags);
 441                        }
 442                        VM_BUG_ON(!PageLRU(page));
 443                        __ClearPageLRU(page);
 444                        del_page_from_lru(zone, page);
 445                }
 446
 447                if (!pagevec_add(&pages_to_free, page)) {
 448                        if (zone) {
 449                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 450                                zone = NULL;
 451                        }
 452                        __pagevec_free(&pages_to_free);
 453                        pagevec_reinit(&pages_to_free);
 454                }
 455        }
 456        if (zone)
 457                spin_unlock_irqrestore(&zone->lru_lock, flags);
 458
 459        pagevec_free(&pages_to_free);
 460}
 461EXPORT_SYMBOL(release_pages);
 462
 463/*
 464 * The pages which we're about to release may be in the deferred lru-addition
 465 * queues.  That would prevent them from really being freed right now.  That's
 466 * OK from a correctness point of view but is inefficient - those pages may be
 467 * cache-warm and we want to give them back to the page allocator ASAP.
 468 *
 469 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 470 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 471 * mutual recursion.
 472 */
 473void __pagevec_release(struct pagevec *pvec)
 474{
 475        lru_add_drain();
 476        release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 477        pagevec_reinit(pvec);
 478}
 479
 480EXPORT_SYMBOL(__pagevec_release);
 481
 482/* used by __split_huge_page_refcount() */
 483void lru_add_page_tail(struct zone* zone,
 484                       struct page *page, struct page *page_tail)
 485{
 486        int active;
 487        enum lru_list lru;
 488        const int file = 0;
 489        struct list_head *head;
 490
 491        VM_BUG_ON(!PageHead(page));
 492        VM_BUG_ON(PageCompound(page_tail));
 493        VM_BUG_ON(PageLRU(page_tail));
 494        VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
 495
 496        SetPageLRU(page_tail);
 497
 498        if (page_evictable(page_tail, NULL)) {
 499                if (PageActive(page)) {
 500                        SetPageActive(page_tail);
 501                        active = 1;
 502                        lru = LRU_ACTIVE_ANON;
 503                } else {
 504                        active = 0;
 505                        lru = LRU_INACTIVE_ANON;
 506                }
 507                update_page_reclaim_stat(zone, page_tail, file, active);
 508                if (likely(PageLRU(page)))
 509                        head = page->lru.prev;
 510                else
 511                        head = &zone->lru[lru].list;
 512                __add_page_to_lru_list(zone, page_tail, lru, head);
 513        } else {
 514                SetPageUnevictable(page_tail);
 515                add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
 516        }
 517}
 518
 519/*
 520 * Add the passed pages to the LRU, then drop the caller's refcount
 521 * on them.  Reinitialises the caller's pagevec.
 522 */
 523void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
 524{
 525        int i;
 526        struct zone *zone = NULL;
 527
 528        VM_BUG_ON(is_unevictable_lru(lru));
 529
 530        for (i = 0; i < pagevec_count(pvec); i++) {
 531                struct page *page = pvec->pages[i];
 532                struct zone *pagezone = page_zone(page);
 533                int file;
 534                int active;
 535
 536                if (pagezone != zone) {
 537                        if (zone)
 538                                spin_unlock_irq(&zone->lru_lock);
 539                        zone = pagezone;
 540                        spin_lock_irq(&zone->lru_lock);
 541                }
 542                VM_BUG_ON(PageActive(page));
 543                VM_BUG_ON(PageUnevictable(page));
 544                VM_BUG_ON(PageLRU(page));
 545                SetPageLRU(page);
 546                active = is_active_lru(lru);
 547                file = is_file_lru(lru);
 548                if (active)
 549                        SetPageActive(page);
 550                update_page_reclaim_stat(zone, page, file, active);
 551                add_page_to_lru_list(zone, page, lru);
 552        }
 553        if (zone)
 554                spin_unlock_irq(&zone->lru_lock);
 555        release_pages(pvec->pages, pvec->nr, pvec->cold);
 556        pagevec_reinit(pvec);
 557}
 558
 559EXPORT_SYMBOL(____pagevec_lru_add);
 560
 561/*
 562 * Try to drop buffers from the pages in a pagevec
 563 */
 564void pagevec_strip(struct pagevec *pvec)
 565{
 566        int i;
 567
 568        for (i = 0; i < pagevec_count(pvec); i++) {
 569                struct page *page = pvec->pages[i];
 570
 571                if (page_has_private(page) && trylock_page(page)) {
 572                        if (page_has_private(page))
 573                                try_to_release_page(page, 0);
 574                        unlock_page(page);
 575                }
 576        }
 577}
 578
 579/**
 580 * pagevec_lookup - gang pagecache lookup
 581 * @pvec:       Where the resulting pages are placed
 582 * @mapping:    The address_space to search
 583 * @start:      The starting page index
 584 * @nr_pages:   The maximum number of pages
 585 *
 586 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
 587 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
 588 * reference against the pages in @pvec.
 589 *
 590 * The search returns a group of mapping-contiguous pages with ascending
 591 * indexes.  There may be holes in the indices due to not-present pages.
 592 *
 593 * pagevec_lookup() returns the number of pages which were found.
 594 */
 595unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
 596                pgoff_t start, unsigned nr_pages)
 597{
 598        pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
 599        return pagevec_count(pvec);
 600}
 601
 602EXPORT_SYMBOL(pagevec_lookup);
 603
 604unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
 605                pgoff_t *index, int tag, unsigned nr_pages)
 606{
 607        pvec->nr = find_get_pages_tag(mapping, index, tag,
 608                                        nr_pages, pvec->pages);
 609        return pagevec_count(pvec);
 610}
 611
 612EXPORT_SYMBOL(pagevec_lookup_tag);
 613
 614/*
 615 * Perform any setup for the swap system
 616 */
 617void __init swap_setup(void)
 618{
 619        unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
 620
 621#ifdef CONFIG_SWAP
 622        bdi_init(swapper_space.backing_dev_info);
 623#endif
 624
 625        /* Use a smaller cluster for small-memory machines */
 626        if (megs < 16)
 627                page_cluster = 2;
 628        else
 629                page_cluster = 3;
 630        /*
 631         * Right now other parts of the system means that we
 632         * _really_ don't want to cluster much more
 633         */
 634}
 635