linux/mm/swap_state.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap_state.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 *
   7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/gfp.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/init.h>
  16#include <linux/pagemap.h>
  17#include <linux/buffer_head.h>
  18#include <linux/backing-dev.h>
  19#include <linux/pagevec.h>
  20#include <linux/migrate.h>
  21#include <linux/page_cgroup.h>
  22
  23#include <asm/pgtable.h>
  24
  25/*
  26 * swapper_space is a fiction, retained to simplify the path through
  27 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
  28 * future use of radix_tree tags in the swap cache.
  29 */
  30static const struct address_space_operations swap_aops = {
  31        .writepage      = swap_writepage,
  32        .sync_page      = block_sync_page,
  33        .set_page_dirty = __set_page_dirty_nobuffers,
  34        .migratepage    = migrate_page,
  35};
  36
  37static struct backing_dev_info swap_backing_dev_info = {
  38        .name           = "swap",
  39        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  40        .unplug_io_fn   = swap_unplug_io_fn,
  41};
  42
  43struct address_space swapper_space = {
  44        .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  45        .tree_lock      = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
  46        .a_ops          = &swap_aops,
  47        .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
  48        .backing_dev_info = &swap_backing_dev_info,
  49};
  50
  51#define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
  52
  53static struct {
  54        unsigned long add_total;
  55        unsigned long del_total;
  56        unsigned long find_success;
  57        unsigned long find_total;
  58} swap_cache_info;
  59
  60void show_swap_cache_info(void)
  61{
  62        printk("%lu pages in swap cache\n", total_swapcache_pages);
  63        printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  64                swap_cache_info.add_total, swap_cache_info.del_total,
  65                swap_cache_info.find_success, swap_cache_info.find_total);
  66        printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
  67        printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  68}
  69
  70/*
  71 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  72 * but sets SwapCache flag and private instead of mapping and index.
  73 */
  74static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  75{
  76        int error;
  77
  78        VM_BUG_ON(!PageLocked(page));
  79        VM_BUG_ON(PageSwapCache(page));
  80        VM_BUG_ON(!PageSwapBacked(page));
  81
  82        page_cache_get(page);
  83        SetPageSwapCache(page);
  84        set_page_private(page, entry.val);
  85
  86        spin_lock_irq(&swapper_space.tree_lock);
  87        error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
  88        if (likely(!error)) {
  89                total_swapcache_pages++;
  90                __inc_zone_page_state(page, NR_FILE_PAGES);
  91                INC_CACHE_INFO(add_total);
  92        }
  93        spin_unlock_irq(&swapper_space.tree_lock);
  94
  95        if (unlikely(error)) {
  96                /*
  97                 * Only the context which have set SWAP_HAS_CACHE flag
  98                 * would call add_to_swap_cache().
  99                 * So add_to_swap_cache() doesn't returns -EEXIST.
 100                 */
 101                VM_BUG_ON(error == -EEXIST);
 102                set_page_private(page, 0UL);
 103                ClearPageSwapCache(page);
 104                page_cache_release(page);
 105        }
 106
 107        return error;
 108}
 109
 110
 111int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
 112{
 113        int error;
 114
 115        error = radix_tree_preload(gfp_mask);
 116        if (!error) {
 117                error = __add_to_swap_cache(page, entry);
 118                radix_tree_preload_end();
 119        }
 120        return error;
 121}
 122
 123/*
 124 * This must be called only on pages that have
 125 * been verified to be in the swap cache.
 126 */
 127void __delete_from_swap_cache(struct page *page)
 128{
 129        VM_BUG_ON(!PageLocked(page));
 130        VM_BUG_ON(!PageSwapCache(page));
 131        VM_BUG_ON(PageWriteback(page));
 132
 133        radix_tree_delete(&swapper_space.page_tree, page_private(page));
 134        set_page_private(page, 0);
 135        ClearPageSwapCache(page);
 136        total_swapcache_pages--;
 137        __dec_zone_page_state(page, NR_FILE_PAGES);
 138        INC_CACHE_INFO(del_total);
 139}
 140
 141/**
 142 * add_to_swap - allocate swap space for a page
 143 * @page: page we want to move to swap
 144 *
 145 * Allocate swap space for the page and add the page to the
 146 * swap cache.  Caller needs to hold the page lock. 
 147 */
 148int add_to_swap(struct page *page)
 149{
 150        swp_entry_t entry;
 151        int err;
 152
 153        VM_BUG_ON(!PageLocked(page));
 154        VM_BUG_ON(!PageUptodate(page));
 155
 156        entry = get_swap_page();
 157        if (!entry.val)
 158                return 0;
 159
 160        if (unlikely(PageTransHuge(page)))
 161                if (unlikely(split_huge_page(page))) {
 162                        swapcache_free(entry, NULL);
 163                        return 0;
 164                }
 165
 166        /*
 167         * Radix-tree node allocations from PF_MEMALLOC contexts could
 168         * completely exhaust the page allocator. __GFP_NOMEMALLOC
 169         * stops emergency reserves from being allocated.
 170         *
 171         * TODO: this could cause a theoretical memory reclaim
 172         * deadlock in the swap out path.
 173         */
 174        /*
 175         * Add it to the swap cache and mark it dirty
 176         */
 177        err = add_to_swap_cache(page, entry,
 178                        __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
 179
 180        if (!err) {     /* Success */
 181                SetPageDirty(page);
 182                return 1;
 183        } else {        /* -ENOMEM radix-tree allocation failure */
 184                /*
 185                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 186                 * clear SWAP_HAS_CACHE flag.
 187                 */
 188                swapcache_free(entry, NULL);
 189                return 0;
 190        }
 191}
 192
 193/*
 194 * This must be called only on pages that have
 195 * been verified to be in the swap cache and locked.
 196 * It will never put the page into the free list,
 197 * the caller has a reference on the page.
 198 */
 199void delete_from_swap_cache(struct page *page)
 200{
 201        swp_entry_t entry;
 202
 203        entry.val = page_private(page);
 204
 205        spin_lock_irq(&swapper_space.tree_lock);
 206        __delete_from_swap_cache(page);
 207        spin_unlock_irq(&swapper_space.tree_lock);
 208
 209        swapcache_free(entry, page);
 210        page_cache_release(page);
 211}
 212
 213/* 
 214 * If we are the only user, then try to free up the swap cache. 
 215 * 
 216 * Its ok to check for PageSwapCache without the page lock
 217 * here because we are going to recheck again inside
 218 * try_to_free_swap() _with_ the lock.
 219 *                                      - Marcelo
 220 */
 221static inline void free_swap_cache(struct page *page)
 222{
 223        if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
 224                try_to_free_swap(page);
 225                unlock_page(page);
 226        }
 227}
 228
 229/* 
 230 * Perform a free_page(), also freeing any swap cache associated with
 231 * this page if it is the last user of the page.
 232 */
 233void free_page_and_swap_cache(struct page *page)
 234{
 235        free_swap_cache(page);
 236        page_cache_release(page);
 237}
 238
 239/*
 240 * Passed an array of pages, drop them all from swapcache and then release
 241 * them.  They are removed from the LRU and freed if this is their last use.
 242 */
 243void free_pages_and_swap_cache(struct page **pages, int nr)
 244{
 245        struct page **pagep = pages;
 246
 247        lru_add_drain();
 248        while (nr) {
 249                int todo = min(nr, PAGEVEC_SIZE);
 250                int i;
 251
 252                for (i = 0; i < todo; i++)
 253                        free_swap_cache(pagep[i]);
 254                release_pages(pagep, todo, 0);
 255                pagep += todo;
 256                nr -= todo;
 257        }
 258}
 259
 260/*
 261 * Lookup a swap entry in the swap cache. A found page will be returned
 262 * unlocked and with its refcount incremented - we rely on the kernel
 263 * lock getting page table operations atomic even if we drop the page
 264 * lock before returning.
 265 */
 266struct page * lookup_swap_cache(swp_entry_t entry)
 267{
 268        struct page *page;
 269
 270        page = find_get_page(&swapper_space, entry.val);
 271
 272        if (page)
 273                INC_CACHE_INFO(find_success);
 274
 275        INC_CACHE_INFO(find_total);
 276        return page;
 277}
 278
 279/* 
 280 * Locate a page of swap in physical memory, reserving swap cache space
 281 * and reading the disk if it is not already cached.
 282 * A failure return means that either the page allocation failed or that
 283 * the swap entry is no longer in use.
 284 */
 285struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 286                        struct vm_area_struct *vma, unsigned long addr)
 287{
 288        struct page *found_page, *new_page = NULL;
 289        int err;
 290
 291        do {
 292                /*
 293                 * First check the swap cache.  Since this is normally
 294                 * called after lookup_swap_cache() failed, re-calling
 295                 * that would confuse statistics.
 296                 */
 297                found_page = find_get_page(&swapper_space, entry.val);
 298                if (found_page)
 299                        break;
 300
 301                /*
 302                 * Get a new page to read into from swap.
 303                 */
 304                if (!new_page) {
 305                        new_page = alloc_page_vma(gfp_mask, vma, addr);
 306                        if (!new_page)
 307                                break;          /* Out of memory */
 308                }
 309
 310                /*
 311                 * call radix_tree_preload() while we can wait.
 312                 */
 313                err = radix_tree_preload(gfp_mask & GFP_KERNEL);
 314                if (err)
 315                        break;
 316
 317                /*
 318                 * Swap entry may have been freed since our caller observed it.
 319                 */
 320                err = swapcache_prepare(entry);
 321                if (err == -EEXIST) {   /* seems racy */
 322                        radix_tree_preload_end();
 323                        continue;
 324                }
 325                if (err) {              /* swp entry is obsolete ? */
 326                        radix_tree_preload_end();
 327                        break;
 328                }
 329
 330                /* May fail (-ENOMEM) if radix-tree node allocation failed. */
 331                __set_page_locked(new_page);
 332                SetPageSwapBacked(new_page);
 333                err = __add_to_swap_cache(new_page, entry);
 334                if (likely(!err)) {
 335                        radix_tree_preload_end();
 336                        /*
 337                         * Initiate read into locked page and return.
 338                         */
 339                        lru_cache_add_anon(new_page);
 340                        swap_readpage(new_page);
 341                        return new_page;
 342                }
 343                radix_tree_preload_end();
 344                ClearPageSwapBacked(new_page);
 345                __clear_page_locked(new_page);
 346                /*
 347                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 348                 * clear SWAP_HAS_CACHE flag.
 349                 */
 350                swapcache_free(entry, NULL);
 351        } while (err != -ENOMEM);
 352
 353        if (new_page)
 354                page_cache_release(new_page);
 355        return found_page;
 356}
 357
 358/**
 359 * swapin_readahead - swap in pages in hope we need them soon
 360 * @entry: swap entry of this memory
 361 * @gfp_mask: memory allocation flags
 362 * @vma: user vma this address belongs to
 363 * @addr: target address for mempolicy
 364 *
 365 * Returns the struct page for entry and addr, after queueing swapin.
 366 *
 367 * Primitive swap readahead code. We simply read an aligned block of
 368 * (1 << page_cluster) entries in the swap area. This method is chosen
 369 * because it doesn't cost us any seek time.  We also make sure to queue
 370 * the 'original' request together with the readahead ones...
 371 *
 372 * This has been extended to use the NUMA policies from the mm triggering
 373 * the readahead.
 374 *
 375 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 376 */
 377struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
 378                        struct vm_area_struct *vma, unsigned long addr)
 379{
 380        int nr_pages;
 381        struct page *page;
 382        unsigned long offset;
 383        unsigned long end_offset;
 384
 385        /*
 386         * Get starting offset for readaround, and number of pages to read.
 387         * Adjust starting address by readbehind (for NUMA interleave case)?
 388         * No, it's very unlikely that swap layout would follow vma layout,
 389         * more likely that neighbouring swap pages came from the same node:
 390         * so use the same "addr" to choose the same node for each swap read.
 391         */
 392        nr_pages = valid_swaphandles(entry, &offset);
 393        for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
 394                /* Ok, do the async read-ahead now */
 395                page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
 396                                                gfp_mask, vma, addr);
 397                if (!page)
 398                        break;
 399                page_cache_release(page);
 400        }
 401        lru_add_drain();        /* Push any new pages onto the LRU now */
 402        return read_swap_cache_async(entry, gfp_mask, vma, addr);
 403}
 404