linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/gfp.h>
  13#include <linux/mm.h>
  14#include <linux/swap.h>
  15#include <linux/module.h>
  16#include <linux/pagemap.h>
  17#include <linux/highmem.h>
  18#include <linux/pagevec.h>
  19#include <linux/task_io_accounting_ops.h>
  20#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  21                                   do_invalidatepage */
  22#include "internal.h"
  23
  24
  25/**
  26 * do_invalidatepage - invalidate part or all of a page
  27 * @page: the page which is affected
  28 * @offset: the index of the truncation point
  29 *
  30 * do_invalidatepage() is called when all or part of the page has become
  31 * invalidated by a truncate operation.
  32 *
  33 * do_invalidatepage() does not have to release all buffers, but it must
  34 * ensure that no dirty buffer is left outside @offset and that no I/O
  35 * is underway against any of the blocks which are outside the truncation
  36 * point.  Because the caller is about to free (and possibly reuse) those
  37 * blocks on-disk.
  38 */
  39void do_invalidatepage(struct page *page, unsigned long offset)
  40{
  41        void (*invalidatepage)(struct page *, unsigned long);
  42        invalidatepage = page->mapping->a_ops->invalidatepage;
  43#ifdef CONFIG_BLOCK
  44        if (!invalidatepage)
  45                invalidatepage = block_invalidatepage;
  46#endif
  47        if (invalidatepage)
  48                (*invalidatepage)(page, offset);
  49}
  50
  51static inline void truncate_partial_page(struct page *page, unsigned partial)
  52{
  53        zero_user_segment(page, partial, PAGE_CACHE_SIZE);
  54        if (page_has_private(page))
  55                do_invalidatepage(page, partial);
  56}
  57
  58/*
  59 * This cancels just the dirty bit on the kernel page itself, it
  60 * does NOT actually remove dirty bits on any mmap's that may be
  61 * around. It also leaves the page tagged dirty, so any sync
  62 * activity will still find it on the dirty lists, and in particular,
  63 * clear_page_dirty_for_io() will still look at the dirty bits in
  64 * the VM.
  65 *
  66 * Doing this should *normally* only ever be done when a page
  67 * is truncated, and is not actually mapped anywhere at all. However,
  68 * fs/buffer.c does this when it notices that somebody has cleaned
  69 * out all the buffers on a page without actually doing it through
  70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
  71 */
  72void cancel_dirty_page(struct page *page, unsigned int account_size)
  73{
  74        if (TestClearPageDirty(page)) {
  75                struct address_space *mapping = page->mapping;
  76                if (mapping && mapping_cap_account_dirty(mapping)) {
  77                        dec_zone_page_state(page, NR_FILE_DIRTY);
  78                        dec_bdi_stat(mapping->backing_dev_info,
  79                                        BDI_RECLAIMABLE);
  80                        if (account_size)
  81                                task_io_account_cancelled_write(account_size);
  82                }
  83        }
  84}
  85EXPORT_SYMBOL(cancel_dirty_page);
  86
  87/*
  88 * If truncate cannot remove the fs-private metadata from the page, the page
  89 * becomes orphaned.  It will be left on the LRU and may even be mapped into
  90 * user pagetables if we're racing with filemap_fault().
  91 *
  92 * We need to bale out if page->mapping is no longer equal to the original
  93 * mapping.  This happens a) when the VM reclaimed the page while we waited on
  94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
  95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
  96 */
  97static int
  98truncate_complete_page(struct address_space *mapping, struct page *page)
  99{
 100        if (page->mapping != mapping)
 101                return -EIO;
 102
 103        if (page_has_private(page))
 104                do_invalidatepage(page, 0);
 105
 106        cancel_dirty_page(page, PAGE_CACHE_SIZE);
 107
 108        clear_page_mlock(page);
 109        remove_from_page_cache(page);
 110        ClearPageMappedToDisk(page);
 111        page_cache_release(page);       /* pagecache ref */
 112        return 0;
 113}
 114
 115/*
 116 * This is for invalidate_mapping_pages().  That function can be called at
 117 * any time, and is not supposed to throw away dirty pages.  But pages can
 118 * be marked dirty at any time too, so use remove_mapping which safely
 119 * discards clean, unused pages.
 120 *
 121 * Returns non-zero if the page was successfully invalidated.
 122 */
 123static int
 124invalidate_complete_page(struct address_space *mapping, struct page *page)
 125{
 126        int ret;
 127
 128        if (page->mapping != mapping)
 129                return 0;
 130
 131        if (page_has_private(page) && !try_to_release_page(page, 0))
 132                return 0;
 133
 134        clear_page_mlock(page);
 135        ret = remove_mapping(mapping, page);
 136
 137        return ret;
 138}
 139
 140int truncate_inode_page(struct address_space *mapping, struct page *page)
 141{
 142        if (page_mapped(page)) {
 143                unmap_mapping_range(mapping,
 144                                   (loff_t)page->index << PAGE_CACHE_SHIFT,
 145                                   PAGE_CACHE_SIZE, 0);
 146        }
 147        return truncate_complete_page(mapping, page);
 148}
 149
 150/*
 151 * Used to get rid of pages on hardware memory corruption.
 152 */
 153int generic_error_remove_page(struct address_space *mapping, struct page *page)
 154{
 155        if (!mapping)
 156                return -EINVAL;
 157        /*
 158         * Only punch for normal data pages for now.
 159         * Handling other types like directories would need more auditing.
 160         */
 161        if (!S_ISREG(mapping->host->i_mode))
 162                return -EIO;
 163        return truncate_inode_page(mapping, page);
 164}
 165EXPORT_SYMBOL(generic_error_remove_page);
 166
 167/*
 168 * Safely invalidate one page from its pagecache mapping.
 169 * It only drops clean, unused pages. The page must be locked.
 170 *
 171 * Returns 1 if the page is successfully invalidated, otherwise 0.
 172 */
 173int invalidate_inode_page(struct page *page)
 174{
 175        struct address_space *mapping = page_mapping(page);
 176        if (!mapping)
 177                return 0;
 178        if (PageDirty(page) || PageWriteback(page))
 179                return 0;
 180        if (page_mapped(page))
 181                return 0;
 182        return invalidate_complete_page(mapping, page);
 183}
 184
 185/**
 186 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
 187 * @mapping: mapping to truncate
 188 * @lstart: offset from which to truncate
 189 * @lend: offset to which to truncate
 190 *
 191 * Truncate the page cache, removing the pages that are between
 192 * specified offsets (and zeroing out partial page
 193 * (if lstart is not page aligned)).
 194 *
 195 * Truncate takes two passes - the first pass is nonblocking.  It will not
 196 * block on page locks and it will not block on writeback.  The second pass
 197 * will wait.  This is to prevent as much IO as possible in the affected region.
 198 * The first pass will remove most pages, so the search cost of the second pass
 199 * is low.
 200 *
 201 * When looking at page->index outside the page lock we need to be careful to
 202 * copy it into a local to avoid races (it could change at any time).
 203 *
 204 * We pass down the cache-hot hint to the page freeing code.  Even if the
 205 * mapping is large, it is probably the case that the final pages are the most
 206 * recently touched, and freeing happens in ascending file offset order.
 207 */
 208void truncate_inode_pages_range(struct address_space *mapping,
 209                                loff_t lstart, loff_t lend)
 210{
 211        const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 212        pgoff_t end;
 213        const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 214        struct pagevec pvec;
 215        pgoff_t next;
 216        int i;
 217
 218        if (mapping->nrpages == 0)
 219                return;
 220
 221        BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 222        end = (lend >> PAGE_CACHE_SHIFT);
 223
 224        pagevec_init(&pvec, 0);
 225        next = start;
 226        while (next <= end &&
 227               pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 228                mem_cgroup_uncharge_start();
 229                for (i = 0; i < pagevec_count(&pvec); i++) {
 230                        struct page *page = pvec.pages[i];
 231                        pgoff_t page_index = page->index;
 232
 233                        if (page_index > end) {
 234                                next = page_index;
 235                                break;
 236                        }
 237
 238                        if (page_index > next)
 239                                next = page_index;
 240                        next++;
 241                        if (!trylock_page(page))
 242                                continue;
 243                        if (PageWriteback(page)) {
 244                                unlock_page(page);
 245                                continue;
 246                        }
 247                        truncate_inode_page(mapping, page);
 248                        unlock_page(page);
 249                }
 250                pagevec_release(&pvec);
 251                mem_cgroup_uncharge_end();
 252                cond_resched();
 253        }
 254
 255        if (partial) {
 256                struct page *page = find_lock_page(mapping, start - 1);
 257                if (page) {
 258                        wait_on_page_writeback(page);
 259                        truncate_partial_page(page, partial);
 260                        unlock_page(page);
 261                        page_cache_release(page);
 262                }
 263        }
 264
 265        next = start;
 266        for ( ; ; ) {
 267                cond_resched();
 268                if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 269                        if (next == start)
 270                                break;
 271                        next = start;
 272                        continue;
 273                }
 274                if (pvec.pages[0]->index > end) {
 275                        pagevec_release(&pvec);
 276                        break;
 277                }
 278                mem_cgroup_uncharge_start();
 279                for (i = 0; i < pagevec_count(&pvec); i++) {
 280                        struct page *page = pvec.pages[i];
 281
 282                        if (page->index > end)
 283                                break;
 284                        lock_page(page);
 285                        wait_on_page_writeback(page);
 286                        truncate_inode_page(mapping, page);
 287                        if (page->index > next)
 288                                next = page->index;
 289                        next++;
 290                        unlock_page(page);
 291                }
 292                pagevec_release(&pvec);
 293                mem_cgroup_uncharge_end();
 294        }
 295}
 296EXPORT_SYMBOL(truncate_inode_pages_range);
 297
 298/**
 299 * truncate_inode_pages - truncate *all* the pages from an offset
 300 * @mapping: mapping to truncate
 301 * @lstart: offset from which to truncate
 302 *
 303 * Called under (and serialised by) inode->i_mutex.
 304 */
 305void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 306{
 307        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 308}
 309EXPORT_SYMBOL(truncate_inode_pages);
 310
 311/**
 312 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 313 * @mapping: the address_space which holds the pages to invalidate
 314 * @start: the offset 'from' which to invalidate
 315 * @end: the offset 'to' which to invalidate (inclusive)
 316 *
 317 * This function only removes the unlocked pages, if you want to
 318 * remove all the pages of one inode, you must call truncate_inode_pages.
 319 *
 320 * invalidate_mapping_pages() will not block on IO activity. It will not
 321 * invalidate pages which are dirty, locked, under writeback or mapped into
 322 * pagetables.
 323 */
 324unsigned long invalidate_mapping_pages(struct address_space *mapping,
 325                                       pgoff_t start, pgoff_t end)
 326{
 327        struct pagevec pvec;
 328        pgoff_t next = start;
 329        unsigned long ret = 0;
 330        int i;
 331
 332        pagevec_init(&pvec, 0);
 333        while (next <= end &&
 334                        pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 335                mem_cgroup_uncharge_start();
 336                for (i = 0; i < pagevec_count(&pvec); i++) {
 337                        struct page *page = pvec.pages[i];
 338                        pgoff_t index;
 339                        int lock_failed;
 340
 341                        lock_failed = !trylock_page(page);
 342
 343                        /*
 344                         * We really shouldn't be looking at the ->index of an
 345                         * unlocked page.  But we're not allowed to lock these
 346                         * pages.  So we rely upon nobody altering the ->index
 347                         * of this (pinned-by-us) page.
 348                         */
 349                        index = page->index;
 350                        if (index > next)
 351                                next = index;
 352                        next++;
 353                        if (lock_failed)
 354                                continue;
 355
 356                        ret += invalidate_inode_page(page);
 357
 358                        unlock_page(page);
 359                        if (next > end)
 360                                break;
 361                }
 362                pagevec_release(&pvec);
 363                mem_cgroup_uncharge_end();
 364                cond_resched();
 365        }
 366        return ret;
 367}
 368EXPORT_SYMBOL(invalidate_mapping_pages);
 369
 370/*
 371 * This is like invalidate_complete_page(), except it ignores the page's
 372 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 373 * invalidation guarantees, and cannot afford to leave pages behind because
 374 * shrink_page_list() has a temp ref on them, or because they're transiently
 375 * sitting in the lru_cache_add() pagevecs.
 376 */
 377static int
 378invalidate_complete_page2(struct address_space *mapping, struct page *page)
 379{
 380        if (page->mapping != mapping)
 381                return 0;
 382
 383        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 384                return 0;
 385
 386        spin_lock_irq(&mapping->tree_lock);
 387        if (PageDirty(page))
 388                goto failed;
 389
 390        clear_page_mlock(page);
 391        BUG_ON(page_has_private(page));
 392        __remove_from_page_cache(page);
 393        spin_unlock_irq(&mapping->tree_lock);
 394        mem_cgroup_uncharge_cache_page(page);
 395
 396        if (mapping->a_ops->freepage)
 397                mapping->a_ops->freepage(page);
 398
 399        page_cache_release(page);       /* pagecache ref */
 400        return 1;
 401failed:
 402        spin_unlock_irq(&mapping->tree_lock);
 403        return 0;
 404}
 405
 406static int do_launder_page(struct address_space *mapping, struct page *page)
 407{
 408        if (!PageDirty(page))
 409                return 0;
 410        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 411                return 0;
 412        return mapping->a_ops->launder_page(page);
 413}
 414
 415/**
 416 * invalidate_inode_pages2_range - remove range of pages from an address_space
 417 * @mapping: the address_space
 418 * @start: the page offset 'from' which to invalidate
 419 * @end: the page offset 'to' which to invalidate (inclusive)
 420 *
 421 * Any pages which are found to be mapped into pagetables are unmapped prior to
 422 * invalidation.
 423 *
 424 * Returns -EBUSY if any pages could not be invalidated.
 425 */
 426int invalidate_inode_pages2_range(struct address_space *mapping,
 427                                  pgoff_t start, pgoff_t end)
 428{
 429        struct pagevec pvec;
 430        pgoff_t next;
 431        int i;
 432        int ret = 0;
 433        int ret2 = 0;
 434        int did_range_unmap = 0;
 435        int wrapped = 0;
 436
 437        pagevec_init(&pvec, 0);
 438        next = start;
 439        while (next <= end && !wrapped &&
 440                pagevec_lookup(&pvec, mapping, next,
 441                        min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 442                mem_cgroup_uncharge_start();
 443                for (i = 0; i < pagevec_count(&pvec); i++) {
 444                        struct page *page = pvec.pages[i];
 445                        pgoff_t page_index;
 446
 447                        lock_page(page);
 448                        if (page->mapping != mapping) {
 449                                unlock_page(page);
 450                                continue;
 451                        }
 452                        page_index = page->index;
 453                        next = page_index + 1;
 454                        if (next == 0)
 455                                wrapped = 1;
 456                        if (page_index > end) {
 457                                unlock_page(page);
 458                                break;
 459                        }
 460                        wait_on_page_writeback(page);
 461                        if (page_mapped(page)) {
 462                                if (!did_range_unmap) {
 463                                        /*
 464                                         * Zap the rest of the file in one hit.
 465                                         */
 466                                        unmap_mapping_range(mapping,
 467                                           (loff_t)page_index<<PAGE_CACHE_SHIFT,
 468                                           (loff_t)(end - page_index + 1)
 469                                                        << PAGE_CACHE_SHIFT,
 470                                            0);
 471                                        did_range_unmap = 1;
 472                                } else {
 473                                        /*
 474                                         * Just zap this page
 475                                         */
 476                                        unmap_mapping_range(mapping,
 477                                          (loff_t)page_index<<PAGE_CACHE_SHIFT,
 478                                          PAGE_CACHE_SIZE, 0);
 479                                }
 480                        }
 481                        BUG_ON(page_mapped(page));
 482                        ret2 = do_launder_page(mapping, page);
 483                        if (ret2 == 0) {
 484                                if (!invalidate_complete_page2(mapping, page))
 485                                        ret2 = -EBUSY;
 486                        }
 487                        if (ret2 < 0)
 488                                ret = ret2;
 489                        unlock_page(page);
 490                }
 491                pagevec_release(&pvec);
 492                mem_cgroup_uncharge_end();
 493                cond_resched();
 494        }
 495        return ret;
 496}
 497EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 498
 499/**
 500 * invalidate_inode_pages2 - remove all pages from an address_space
 501 * @mapping: the address_space
 502 *
 503 * Any pages which are found to be mapped into pagetables are unmapped prior to
 504 * invalidation.
 505 *
 506 * Returns -EBUSY if any pages could not be invalidated.
 507 */
 508int invalidate_inode_pages2(struct address_space *mapping)
 509{
 510        return invalidate_inode_pages2_range(mapping, 0, -1);
 511}
 512EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 513
 514/**
 515 * truncate_pagecache - unmap and remove pagecache that has been truncated
 516 * @inode: inode
 517 * @old: old file offset
 518 * @new: new file offset
 519 *
 520 * inode's new i_size must already be written before truncate_pagecache
 521 * is called.
 522 *
 523 * This function should typically be called before the filesystem
 524 * releases resources associated with the freed range (eg. deallocates
 525 * blocks). This way, pagecache will always stay logically coherent
 526 * with on-disk format, and the filesystem would not have to deal with
 527 * situations such as writepage being called for a page that has already
 528 * had its underlying blocks deallocated.
 529 */
 530void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
 531{
 532        struct address_space *mapping = inode->i_mapping;
 533
 534        /*
 535         * unmap_mapping_range is called twice, first simply for
 536         * efficiency so that truncate_inode_pages does fewer
 537         * single-page unmaps.  However after this first call, and
 538         * before truncate_inode_pages finishes, it is possible for
 539         * private pages to be COWed, which remain after
 540         * truncate_inode_pages finishes, hence the second
 541         * unmap_mapping_range call must be made for correctness.
 542         */
 543        unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 544        truncate_inode_pages(mapping, new);
 545        unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 546}
 547EXPORT_SYMBOL(truncate_pagecache);
 548
 549/**
 550 * truncate_setsize - update inode and pagecache for a new file size
 551 * @inode: inode
 552 * @newsize: new file size
 553 *
 554 * truncate_setsize updates i_size and performs pagecache truncation (if
 555 * necessary) to @newsize. It will be typically be called from the filesystem's
 556 * setattr function when ATTR_SIZE is passed in.
 557 *
 558 * Must be called with inode_mutex held and before all filesystem specific
 559 * block truncation has been performed.
 560 */
 561void truncate_setsize(struct inode *inode, loff_t newsize)
 562{
 563        loff_t oldsize;
 564
 565        oldsize = inode->i_size;
 566        i_size_write(inode, newsize);
 567
 568        truncate_pagecache(inode, oldsize, newsize);
 569}
 570EXPORT_SYMBOL(truncate_setsize);
 571
 572/**
 573 * vmtruncate - unmap mappings "freed" by truncate() syscall
 574 * @inode: inode of the file used
 575 * @offset: file offset to start truncating
 576 *
 577 * This function is deprecated and truncate_setsize or truncate_pagecache
 578 * should be used instead, together with filesystem specific block truncation.
 579 */
 580int vmtruncate(struct inode *inode, loff_t offset)
 581{
 582        int error;
 583
 584        error = inode_newsize_ok(inode, offset);
 585        if (error)
 586                return error;
 587
 588        truncate_setsize(inode, offset);
 589        if (inode->i_op->truncate)
 590                inode->i_op->truncate(inode);
 591        return 0;
 592}
 593EXPORT_SYMBOL(vmtruncate);
 594