linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <asm/atomic.h>
  30#include <asm/uaccess.h>
  31#include <asm/tlbflush.h>
  32#include <asm/shmparam.h>
  33
  34/*** Page table manipulation functions ***/
  35
  36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  37{
  38        pte_t *pte;
  39
  40        pte = pte_offset_kernel(pmd, addr);
  41        do {
  42                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  43                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  44        } while (pte++, addr += PAGE_SIZE, addr != end);
  45}
  46
  47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  48{
  49        pmd_t *pmd;
  50        unsigned long next;
  51
  52        pmd = pmd_offset(pud, addr);
  53        do {
  54                next = pmd_addr_end(addr, end);
  55                if (pmd_none_or_clear_bad(pmd))
  56                        continue;
  57                vunmap_pte_range(pmd, addr, next);
  58        } while (pmd++, addr = next, addr != end);
  59}
  60
  61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  62{
  63        pud_t *pud;
  64        unsigned long next;
  65
  66        pud = pud_offset(pgd, addr);
  67        do {
  68                next = pud_addr_end(addr, end);
  69                if (pud_none_or_clear_bad(pud))
  70                        continue;
  71                vunmap_pmd_range(pud, addr, next);
  72        } while (pud++, addr = next, addr != end);
  73}
  74
  75static void vunmap_page_range(unsigned long addr, unsigned long end)
  76{
  77        pgd_t *pgd;
  78        unsigned long next;
  79
  80        BUG_ON(addr >= end);
  81        pgd = pgd_offset_k(addr);
  82        do {
  83                next = pgd_addr_end(addr, end);
  84                if (pgd_none_or_clear_bad(pgd))
  85                        continue;
  86                vunmap_pud_range(pgd, addr, next);
  87        } while (pgd++, addr = next, addr != end);
  88}
  89
  90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  91                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  92{
  93        pte_t *pte;
  94
  95        /*
  96         * nr is a running index into the array which helps higher level
  97         * callers keep track of where we're up to.
  98         */
  99
 100        pte = pte_alloc_kernel(pmd, addr);
 101        if (!pte)
 102                return -ENOMEM;
 103        do {
 104                struct page *page = pages[*nr];
 105
 106                if (WARN_ON(!pte_none(*pte)))
 107                        return -EBUSY;
 108                if (WARN_ON(!page))
 109                        return -ENOMEM;
 110                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 111                (*nr)++;
 112        } while (pte++, addr += PAGE_SIZE, addr != end);
 113        return 0;
 114}
 115
 116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 117                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 118{
 119        pmd_t *pmd;
 120        unsigned long next;
 121
 122        pmd = pmd_alloc(&init_mm, pud, addr);
 123        if (!pmd)
 124                return -ENOMEM;
 125        do {
 126                next = pmd_addr_end(addr, end);
 127                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 128                        return -ENOMEM;
 129        } while (pmd++, addr = next, addr != end);
 130        return 0;
 131}
 132
 133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 134                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 135{
 136        pud_t *pud;
 137        unsigned long next;
 138
 139        pud = pud_alloc(&init_mm, pgd, addr);
 140        if (!pud)
 141                return -ENOMEM;
 142        do {
 143                next = pud_addr_end(addr, end);
 144                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 145                        return -ENOMEM;
 146        } while (pud++, addr = next, addr != end);
 147        return 0;
 148}
 149
 150/*
 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 152 * will have pfns corresponding to the "pages" array.
 153 *
 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 155 */
 156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 157                                   pgprot_t prot, struct page **pages)
 158{
 159        pgd_t *pgd;
 160        unsigned long next;
 161        unsigned long addr = start;
 162        int err = 0;
 163        int nr = 0;
 164
 165        BUG_ON(addr >= end);
 166        pgd = pgd_offset_k(addr);
 167        do {
 168                next = pgd_addr_end(addr, end);
 169                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 170                if (err)
 171                        return err;
 172        } while (pgd++, addr = next, addr != end);
 173
 174        return nr;
 175}
 176
 177static int vmap_page_range(unsigned long start, unsigned long end,
 178                           pgprot_t prot, struct page **pages)
 179{
 180        int ret;
 181
 182        ret = vmap_page_range_noflush(start, end, prot, pages);
 183        flush_cache_vmap(start, end);
 184        return ret;
 185}
 186
 187int is_vmalloc_or_module_addr(const void *x)
 188{
 189        /*
 190         * ARM, x86-64 and sparc64 put modules in a special place,
 191         * and fall back on vmalloc() if that fails. Others
 192         * just put it in the vmalloc space.
 193         */
 194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 195        unsigned long addr = (unsigned long)x;
 196        if (addr >= MODULES_VADDR && addr < MODULES_END)
 197                return 1;
 198#endif
 199        return is_vmalloc_addr(x);
 200}
 201
 202/*
 203 * Walk a vmap address to the struct page it maps.
 204 */
 205struct page *vmalloc_to_page(const void *vmalloc_addr)
 206{
 207        unsigned long addr = (unsigned long) vmalloc_addr;
 208        struct page *page = NULL;
 209        pgd_t *pgd = pgd_offset_k(addr);
 210
 211        /*
 212         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 213         * architectures that do not vmalloc module space
 214         */
 215        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 216
 217        if (!pgd_none(*pgd)) {
 218                pud_t *pud = pud_offset(pgd, addr);
 219                if (!pud_none(*pud)) {
 220                        pmd_t *pmd = pmd_offset(pud, addr);
 221                        if (!pmd_none(*pmd)) {
 222                                pte_t *ptep, pte;
 223
 224                                ptep = pte_offset_map(pmd, addr);
 225                                pte = *ptep;
 226                                if (pte_present(pte))
 227                                        page = pte_page(pte);
 228                                pte_unmap(ptep);
 229                        }
 230                }
 231        }
 232        return page;
 233}
 234EXPORT_SYMBOL(vmalloc_to_page);
 235
 236/*
 237 * Map a vmalloc()-space virtual address to the physical page frame number.
 238 */
 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 240{
 241        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 242}
 243EXPORT_SYMBOL(vmalloc_to_pfn);
 244
 245
 246/*** Global kva allocator ***/
 247
 248#define VM_LAZY_FREE    0x01
 249#define VM_LAZY_FREEING 0x02
 250#define VM_VM_AREA      0x04
 251
 252struct vmap_area {
 253        unsigned long va_start;
 254        unsigned long va_end;
 255        unsigned long flags;
 256        struct rb_node rb_node;         /* address sorted rbtree */
 257        struct list_head list;          /* address sorted list */
 258        struct list_head purge_list;    /* "lazy purge" list */
 259        void *private;
 260        struct rcu_head rcu_head;
 261};
 262
 263static DEFINE_SPINLOCK(vmap_area_lock);
 264static struct rb_root vmap_area_root = RB_ROOT;
 265static LIST_HEAD(vmap_area_list);
 266static unsigned long vmap_area_pcpu_hole;
 267
 268static struct vmap_area *__find_vmap_area(unsigned long addr)
 269{
 270        struct rb_node *n = vmap_area_root.rb_node;
 271
 272        while (n) {
 273                struct vmap_area *va;
 274
 275                va = rb_entry(n, struct vmap_area, rb_node);
 276                if (addr < va->va_start)
 277                        n = n->rb_left;
 278                else if (addr > va->va_start)
 279                        n = n->rb_right;
 280                else
 281                        return va;
 282        }
 283
 284        return NULL;
 285}
 286
 287static void __insert_vmap_area(struct vmap_area *va)
 288{
 289        struct rb_node **p = &vmap_area_root.rb_node;
 290        struct rb_node *parent = NULL;
 291        struct rb_node *tmp;
 292
 293        while (*p) {
 294                struct vmap_area *tmp_va;
 295
 296                parent = *p;
 297                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 298                if (va->va_start < tmp_va->va_end)
 299                        p = &(*p)->rb_left;
 300                else if (va->va_end > tmp_va->va_start)
 301                        p = &(*p)->rb_right;
 302                else
 303                        BUG();
 304        }
 305
 306        rb_link_node(&va->rb_node, parent, p);
 307        rb_insert_color(&va->rb_node, &vmap_area_root);
 308
 309        /* address-sort this list so it is usable like the vmlist */
 310        tmp = rb_prev(&va->rb_node);
 311        if (tmp) {
 312                struct vmap_area *prev;
 313                prev = rb_entry(tmp, struct vmap_area, rb_node);
 314                list_add_rcu(&va->list, &prev->list);
 315        } else
 316                list_add_rcu(&va->list, &vmap_area_list);
 317}
 318
 319static void purge_vmap_area_lazy(void);
 320
 321/*
 322 * Allocate a region of KVA of the specified size and alignment, within the
 323 * vstart and vend.
 324 */
 325static struct vmap_area *alloc_vmap_area(unsigned long size,
 326                                unsigned long align,
 327                                unsigned long vstart, unsigned long vend,
 328                                int node, gfp_t gfp_mask)
 329{
 330        struct vmap_area *va;
 331        struct rb_node *n;
 332        unsigned long addr;
 333        int purged = 0;
 334
 335        BUG_ON(!size);
 336        BUG_ON(size & ~PAGE_MASK);
 337
 338        va = kmalloc_node(sizeof(struct vmap_area),
 339                        gfp_mask & GFP_RECLAIM_MASK, node);
 340        if (unlikely(!va))
 341                return ERR_PTR(-ENOMEM);
 342
 343retry:
 344        addr = ALIGN(vstart, align);
 345
 346        spin_lock(&vmap_area_lock);
 347        if (addr + size - 1 < addr)
 348                goto overflow;
 349
 350        /* XXX: could have a last_hole cache */
 351        n = vmap_area_root.rb_node;
 352        if (n) {
 353                struct vmap_area *first = NULL;
 354
 355                do {
 356                        struct vmap_area *tmp;
 357                        tmp = rb_entry(n, struct vmap_area, rb_node);
 358                        if (tmp->va_end >= addr) {
 359                                if (!first && tmp->va_start < addr + size)
 360                                        first = tmp;
 361                                n = n->rb_left;
 362                        } else {
 363                                first = tmp;
 364                                n = n->rb_right;
 365                        }
 366                } while (n);
 367
 368                if (!first)
 369                        goto found;
 370
 371                if (first->va_end < addr) {
 372                        n = rb_next(&first->rb_node);
 373                        if (n)
 374                                first = rb_entry(n, struct vmap_area, rb_node);
 375                        else
 376                                goto found;
 377                }
 378
 379                while (addr + size > first->va_start && addr + size <= vend) {
 380                        addr = ALIGN(first->va_end + PAGE_SIZE, align);
 381                        if (addr + size - 1 < addr)
 382                                goto overflow;
 383
 384                        n = rb_next(&first->rb_node);
 385                        if (n)
 386                                first = rb_entry(n, struct vmap_area, rb_node);
 387                        else
 388                                goto found;
 389                }
 390        }
 391found:
 392        if (addr + size > vend) {
 393overflow:
 394                spin_unlock(&vmap_area_lock);
 395                if (!purged) {
 396                        purge_vmap_area_lazy();
 397                        purged = 1;
 398                        goto retry;
 399                }
 400                if (printk_ratelimit())
 401                        printk(KERN_WARNING
 402                                "vmap allocation for size %lu failed: "
 403                                "use vmalloc=<size> to increase size.\n", size);
 404                kfree(va);
 405                return ERR_PTR(-EBUSY);
 406        }
 407
 408        BUG_ON(addr & (align-1));
 409
 410        va->va_start = addr;
 411        va->va_end = addr + size;
 412        va->flags = 0;
 413        __insert_vmap_area(va);
 414        spin_unlock(&vmap_area_lock);
 415
 416        return va;
 417}
 418
 419static void rcu_free_va(struct rcu_head *head)
 420{
 421        struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
 422
 423        kfree(va);
 424}
 425
 426static void __free_vmap_area(struct vmap_area *va)
 427{
 428        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 429        rb_erase(&va->rb_node, &vmap_area_root);
 430        RB_CLEAR_NODE(&va->rb_node);
 431        list_del_rcu(&va->list);
 432
 433        /*
 434         * Track the highest possible candidate for pcpu area
 435         * allocation.  Areas outside of vmalloc area can be returned
 436         * here too, consider only end addresses which fall inside
 437         * vmalloc area proper.
 438         */
 439        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 440                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 441
 442        call_rcu(&va->rcu_head, rcu_free_va);
 443}
 444
 445/*
 446 * Free a region of KVA allocated by alloc_vmap_area
 447 */
 448static void free_vmap_area(struct vmap_area *va)
 449{
 450        spin_lock(&vmap_area_lock);
 451        __free_vmap_area(va);
 452        spin_unlock(&vmap_area_lock);
 453}
 454
 455/*
 456 * Clear the pagetable entries of a given vmap_area
 457 */
 458static void unmap_vmap_area(struct vmap_area *va)
 459{
 460        vunmap_page_range(va->va_start, va->va_end);
 461}
 462
 463static void vmap_debug_free_range(unsigned long start, unsigned long end)
 464{
 465        /*
 466         * Unmap page tables and force a TLB flush immediately if
 467         * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 468         * bugs similarly to those in linear kernel virtual address
 469         * space after a page has been freed.
 470         *
 471         * All the lazy freeing logic is still retained, in order to
 472         * minimise intrusiveness of this debugging feature.
 473         *
 474         * This is going to be *slow* (linear kernel virtual address
 475         * debugging doesn't do a broadcast TLB flush so it is a lot
 476         * faster).
 477         */
 478#ifdef CONFIG_DEBUG_PAGEALLOC
 479        vunmap_page_range(start, end);
 480        flush_tlb_kernel_range(start, end);
 481#endif
 482}
 483
 484/*
 485 * lazy_max_pages is the maximum amount of virtual address space we gather up
 486 * before attempting to purge with a TLB flush.
 487 *
 488 * There is a tradeoff here: a larger number will cover more kernel page tables
 489 * and take slightly longer to purge, but it will linearly reduce the number of
 490 * global TLB flushes that must be performed. It would seem natural to scale
 491 * this number up linearly with the number of CPUs (because vmapping activity
 492 * could also scale linearly with the number of CPUs), however it is likely
 493 * that in practice, workloads might be constrained in other ways that mean
 494 * vmap activity will not scale linearly with CPUs. Also, I want to be
 495 * conservative and not introduce a big latency on huge systems, so go with
 496 * a less aggressive log scale. It will still be an improvement over the old
 497 * code, and it will be simple to change the scale factor if we find that it
 498 * becomes a problem on bigger systems.
 499 */
 500static unsigned long lazy_max_pages(void)
 501{
 502        unsigned int log;
 503
 504        log = fls(num_online_cpus());
 505
 506        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 507}
 508
 509static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 510
 511/* for per-CPU blocks */
 512static void purge_fragmented_blocks_allcpus(void);
 513
 514/*
 515 * called before a call to iounmap() if the caller wants vm_area_struct's
 516 * immediately freed.
 517 */
 518void set_iounmap_nonlazy(void)
 519{
 520        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 521}
 522
 523/*
 524 * Purges all lazily-freed vmap areas.
 525 *
 526 * If sync is 0 then don't purge if there is already a purge in progress.
 527 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 528 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 529 * their own TLB flushing).
 530 * Returns with *start = min(*start, lowest purged address)
 531 *              *end = max(*end, highest purged address)
 532 */
 533static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 534                                        int sync, int force_flush)
 535{
 536        static DEFINE_SPINLOCK(purge_lock);
 537        LIST_HEAD(valist);
 538        struct vmap_area *va;
 539        struct vmap_area *n_va;
 540        int nr = 0;
 541
 542        /*
 543         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 544         * should not expect such behaviour. This just simplifies locking for
 545         * the case that isn't actually used at the moment anyway.
 546         */
 547        if (!sync && !force_flush) {
 548                if (!spin_trylock(&purge_lock))
 549                        return;
 550        } else
 551                spin_lock(&purge_lock);
 552
 553        if (sync)
 554                purge_fragmented_blocks_allcpus();
 555
 556        rcu_read_lock();
 557        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 558                if (va->flags & VM_LAZY_FREE) {
 559                        if (va->va_start < *start)
 560                                *start = va->va_start;
 561                        if (va->va_end > *end)
 562                                *end = va->va_end;
 563                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 564                        list_add_tail(&va->purge_list, &valist);
 565                        va->flags |= VM_LAZY_FREEING;
 566                        va->flags &= ~VM_LAZY_FREE;
 567                }
 568        }
 569        rcu_read_unlock();
 570
 571        if (nr)
 572                atomic_sub(nr, &vmap_lazy_nr);
 573
 574        if (nr || force_flush)
 575                flush_tlb_kernel_range(*start, *end);
 576
 577        if (nr) {
 578                spin_lock(&vmap_area_lock);
 579                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 580                        __free_vmap_area(va);
 581                spin_unlock(&vmap_area_lock);
 582        }
 583        spin_unlock(&purge_lock);
 584}
 585
 586/*
 587 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 588 * is already purging.
 589 */
 590static void try_purge_vmap_area_lazy(void)
 591{
 592        unsigned long start = ULONG_MAX, end = 0;
 593
 594        __purge_vmap_area_lazy(&start, &end, 0, 0);
 595}
 596
 597/*
 598 * Kick off a purge of the outstanding lazy areas.
 599 */
 600static void purge_vmap_area_lazy(void)
 601{
 602        unsigned long start = ULONG_MAX, end = 0;
 603
 604        __purge_vmap_area_lazy(&start, &end, 1, 0);
 605}
 606
 607/*
 608 * Free a vmap area, caller ensuring that the area has been unmapped
 609 * and flush_cache_vunmap had been called for the correct range
 610 * previously.
 611 */
 612static void free_vmap_area_noflush(struct vmap_area *va)
 613{
 614        va->flags |= VM_LAZY_FREE;
 615        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 616        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 617                try_purge_vmap_area_lazy();
 618}
 619
 620/*
 621 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 622 * called for the correct range previously.
 623 */
 624static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 625{
 626        unmap_vmap_area(va);
 627        free_vmap_area_noflush(va);
 628}
 629
 630/*
 631 * Free and unmap a vmap area
 632 */
 633static void free_unmap_vmap_area(struct vmap_area *va)
 634{
 635        flush_cache_vunmap(va->va_start, va->va_end);
 636        free_unmap_vmap_area_noflush(va);
 637}
 638
 639static struct vmap_area *find_vmap_area(unsigned long addr)
 640{
 641        struct vmap_area *va;
 642
 643        spin_lock(&vmap_area_lock);
 644        va = __find_vmap_area(addr);
 645        spin_unlock(&vmap_area_lock);
 646
 647        return va;
 648}
 649
 650static void free_unmap_vmap_area_addr(unsigned long addr)
 651{
 652        struct vmap_area *va;
 653
 654        va = find_vmap_area(addr);
 655        BUG_ON(!va);
 656        free_unmap_vmap_area(va);
 657}
 658
 659
 660/*** Per cpu kva allocator ***/
 661
 662/*
 663 * vmap space is limited especially on 32 bit architectures. Ensure there is
 664 * room for at least 16 percpu vmap blocks per CPU.
 665 */
 666/*
 667 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 668 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 669 * instead (we just need a rough idea)
 670 */
 671#if BITS_PER_LONG == 32
 672#define VMALLOC_SPACE           (128UL*1024*1024)
 673#else
 674#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 675#endif
 676
 677#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 678#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 679#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 680#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 681#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 682#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 683#define VMAP_BBMAP_BITS         VMAP_MIN(VMAP_BBMAP_BITS_MAX,           \
 684                                        VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 685                                                VMALLOC_PAGES / NR_CPUS / 16))
 686
 687#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 688
 689static bool vmap_initialized __read_mostly = false;
 690
 691struct vmap_block_queue {
 692        spinlock_t lock;
 693        struct list_head free;
 694};
 695
 696struct vmap_block {
 697        spinlock_t lock;
 698        struct vmap_area *va;
 699        struct vmap_block_queue *vbq;
 700        unsigned long free, dirty;
 701        DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 702        DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 703        struct list_head free_list;
 704        struct rcu_head rcu_head;
 705        struct list_head purge;
 706};
 707
 708/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 709static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 710
 711/*
 712 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 713 * in the free path. Could get rid of this if we change the API to return a
 714 * "cookie" from alloc, to be passed to free. But no big deal yet.
 715 */
 716static DEFINE_SPINLOCK(vmap_block_tree_lock);
 717static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 718
 719/*
 720 * We should probably have a fallback mechanism to allocate virtual memory
 721 * out of partially filled vmap blocks. However vmap block sizing should be
 722 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 723 * big problem.
 724 */
 725
 726static unsigned long addr_to_vb_idx(unsigned long addr)
 727{
 728        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 729        addr /= VMAP_BLOCK_SIZE;
 730        return addr;
 731}
 732
 733static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 734{
 735        struct vmap_block_queue *vbq;
 736        struct vmap_block *vb;
 737        struct vmap_area *va;
 738        unsigned long vb_idx;
 739        int node, err;
 740
 741        node = numa_node_id();
 742
 743        vb = kmalloc_node(sizeof(struct vmap_block),
 744                        gfp_mask & GFP_RECLAIM_MASK, node);
 745        if (unlikely(!vb))
 746                return ERR_PTR(-ENOMEM);
 747
 748        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 749                                        VMALLOC_START, VMALLOC_END,
 750                                        node, gfp_mask);
 751        if (IS_ERR(va)) {
 752                kfree(vb);
 753                return ERR_CAST(va);
 754        }
 755
 756        err = radix_tree_preload(gfp_mask);
 757        if (unlikely(err)) {
 758                kfree(vb);
 759                free_vmap_area(va);
 760                return ERR_PTR(err);
 761        }
 762
 763        spin_lock_init(&vb->lock);
 764        vb->va = va;
 765        vb->free = VMAP_BBMAP_BITS;
 766        vb->dirty = 0;
 767        bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 768        bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 769        INIT_LIST_HEAD(&vb->free_list);
 770
 771        vb_idx = addr_to_vb_idx(va->va_start);
 772        spin_lock(&vmap_block_tree_lock);
 773        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 774        spin_unlock(&vmap_block_tree_lock);
 775        BUG_ON(err);
 776        radix_tree_preload_end();
 777
 778        vbq = &get_cpu_var(vmap_block_queue);
 779        vb->vbq = vbq;
 780        spin_lock(&vbq->lock);
 781        list_add_rcu(&vb->free_list, &vbq->free);
 782        spin_unlock(&vbq->lock);
 783        put_cpu_var(vmap_block_queue);
 784
 785        return vb;
 786}
 787
 788static void rcu_free_vb(struct rcu_head *head)
 789{
 790        struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
 791
 792        kfree(vb);
 793}
 794
 795static void free_vmap_block(struct vmap_block *vb)
 796{
 797        struct vmap_block *tmp;
 798        unsigned long vb_idx;
 799
 800        vb_idx = addr_to_vb_idx(vb->va->va_start);
 801        spin_lock(&vmap_block_tree_lock);
 802        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 803        spin_unlock(&vmap_block_tree_lock);
 804        BUG_ON(tmp != vb);
 805
 806        free_vmap_area_noflush(vb->va);
 807        call_rcu(&vb->rcu_head, rcu_free_vb);
 808}
 809
 810static void purge_fragmented_blocks(int cpu)
 811{
 812        LIST_HEAD(purge);
 813        struct vmap_block *vb;
 814        struct vmap_block *n_vb;
 815        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 816
 817        rcu_read_lock();
 818        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 819
 820                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 821                        continue;
 822
 823                spin_lock(&vb->lock);
 824                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 825                        vb->free = 0; /* prevent further allocs after releasing lock */
 826                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 827                        bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 828                        bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 829                        spin_lock(&vbq->lock);
 830                        list_del_rcu(&vb->free_list);
 831                        spin_unlock(&vbq->lock);
 832                        spin_unlock(&vb->lock);
 833                        list_add_tail(&vb->purge, &purge);
 834                } else
 835                        spin_unlock(&vb->lock);
 836        }
 837        rcu_read_unlock();
 838
 839        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 840                list_del(&vb->purge);
 841                free_vmap_block(vb);
 842        }
 843}
 844
 845static void purge_fragmented_blocks_thiscpu(void)
 846{
 847        purge_fragmented_blocks(smp_processor_id());
 848}
 849
 850static void purge_fragmented_blocks_allcpus(void)
 851{
 852        int cpu;
 853
 854        for_each_possible_cpu(cpu)
 855                purge_fragmented_blocks(cpu);
 856}
 857
 858static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 859{
 860        struct vmap_block_queue *vbq;
 861        struct vmap_block *vb;
 862        unsigned long addr = 0;
 863        unsigned int order;
 864        int purge = 0;
 865
 866        BUG_ON(size & ~PAGE_MASK);
 867        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 868        order = get_order(size);
 869
 870again:
 871        rcu_read_lock();
 872        vbq = &get_cpu_var(vmap_block_queue);
 873        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 874                int i;
 875
 876                spin_lock(&vb->lock);
 877                if (vb->free < 1UL << order)
 878                        goto next;
 879
 880                i = bitmap_find_free_region(vb->alloc_map,
 881                                                VMAP_BBMAP_BITS, order);
 882
 883                if (i < 0) {
 884                        if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 885                                /* fragmented and no outstanding allocations */
 886                                BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 887                                purge = 1;
 888                        }
 889                        goto next;
 890                }
 891                addr = vb->va->va_start + (i << PAGE_SHIFT);
 892                BUG_ON(addr_to_vb_idx(addr) !=
 893                                addr_to_vb_idx(vb->va->va_start));
 894                vb->free -= 1UL << order;
 895                if (vb->free == 0) {
 896                        spin_lock(&vbq->lock);
 897                        list_del_rcu(&vb->free_list);
 898                        spin_unlock(&vbq->lock);
 899                }
 900                spin_unlock(&vb->lock);
 901                break;
 902next:
 903                spin_unlock(&vb->lock);
 904        }
 905
 906        if (purge)
 907                purge_fragmented_blocks_thiscpu();
 908
 909        put_cpu_var(vmap_block_queue);
 910        rcu_read_unlock();
 911
 912        if (!addr) {
 913                vb = new_vmap_block(gfp_mask);
 914                if (IS_ERR(vb))
 915                        return vb;
 916                goto again;
 917        }
 918
 919        return (void *)addr;
 920}
 921
 922static void vb_free(const void *addr, unsigned long size)
 923{
 924        unsigned long offset;
 925        unsigned long vb_idx;
 926        unsigned int order;
 927        struct vmap_block *vb;
 928
 929        BUG_ON(size & ~PAGE_MASK);
 930        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 931
 932        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 933
 934        order = get_order(size);
 935
 936        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 937
 938        vb_idx = addr_to_vb_idx((unsigned long)addr);
 939        rcu_read_lock();
 940        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 941        rcu_read_unlock();
 942        BUG_ON(!vb);
 943
 944        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 945
 946        spin_lock(&vb->lock);
 947        BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 948
 949        vb->dirty += 1UL << order;
 950        if (vb->dirty == VMAP_BBMAP_BITS) {
 951                BUG_ON(vb->free);
 952                spin_unlock(&vb->lock);
 953                free_vmap_block(vb);
 954        } else
 955                spin_unlock(&vb->lock);
 956}
 957
 958/**
 959 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 960 *
 961 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 962 * to amortize TLB flushing overheads. What this means is that any page you
 963 * have now, may, in a former life, have been mapped into kernel virtual
 964 * address by the vmap layer and so there might be some CPUs with TLB entries
 965 * still referencing that page (additional to the regular 1:1 kernel mapping).
 966 *
 967 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 968 * be sure that none of the pages we have control over will have any aliases
 969 * from the vmap layer.
 970 */
 971void vm_unmap_aliases(void)
 972{
 973        unsigned long start = ULONG_MAX, end = 0;
 974        int cpu;
 975        int flush = 0;
 976
 977        if (unlikely(!vmap_initialized))
 978                return;
 979
 980        for_each_possible_cpu(cpu) {
 981                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 982                struct vmap_block *vb;
 983
 984                rcu_read_lock();
 985                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 986                        int i;
 987
 988                        spin_lock(&vb->lock);
 989                        i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
 990                        while (i < VMAP_BBMAP_BITS) {
 991                                unsigned long s, e;
 992                                int j;
 993                                j = find_next_zero_bit(vb->dirty_map,
 994                                        VMAP_BBMAP_BITS, i);
 995
 996                                s = vb->va->va_start + (i << PAGE_SHIFT);
 997                                e = vb->va->va_start + (j << PAGE_SHIFT);
 998                                flush = 1;
 999
1000                                if (s < start)
1001                                        start = s;
1002                                if (e > end)
1003                                        end = e;
1004
1005                                i = j;
1006                                i = find_next_bit(vb->dirty_map,
1007                                                        VMAP_BBMAP_BITS, i);
1008                        }
1009                        spin_unlock(&vb->lock);
1010                }
1011                rcu_read_unlock();
1012        }
1013
1014        __purge_vmap_area_lazy(&start, &end, 1, flush);
1015}
1016EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1017
1018/**
1019 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1020 * @mem: the pointer returned by vm_map_ram
1021 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1022 */
1023void vm_unmap_ram(const void *mem, unsigned int count)
1024{
1025        unsigned long size = count << PAGE_SHIFT;
1026        unsigned long addr = (unsigned long)mem;
1027
1028        BUG_ON(!addr);
1029        BUG_ON(addr < VMALLOC_START);
1030        BUG_ON(addr > VMALLOC_END);
1031        BUG_ON(addr & (PAGE_SIZE-1));
1032
1033        debug_check_no_locks_freed(mem, size);
1034        vmap_debug_free_range(addr, addr+size);
1035
1036        if (likely(count <= VMAP_MAX_ALLOC))
1037                vb_free(mem, size);
1038        else
1039                free_unmap_vmap_area_addr(addr);
1040}
1041EXPORT_SYMBOL(vm_unmap_ram);
1042
1043/**
1044 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1045 * @pages: an array of pointers to the pages to be mapped
1046 * @count: number of pages
1047 * @node: prefer to allocate data structures on this node
1048 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1049 *
1050 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1051 */
1052void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1053{
1054        unsigned long size = count << PAGE_SHIFT;
1055        unsigned long addr;
1056        void *mem;
1057
1058        if (likely(count <= VMAP_MAX_ALLOC)) {
1059                mem = vb_alloc(size, GFP_KERNEL);
1060                if (IS_ERR(mem))
1061                        return NULL;
1062                addr = (unsigned long)mem;
1063        } else {
1064                struct vmap_area *va;
1065                va = alloc_vmap_area(size, PAGE_SIZE,
1066                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1067                if (IS_ERR(va))
1068                        return NULL;
1069
1070                addr = va->va_start;
1071                mem = (void *)addr;
1072        }
1073        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1074                vm_unmap_ram(mem, count);
1075                return NULL;
1076        }
1077        return mem;
1078}
1079EXPORT_SYMBOL(vm_map_ram);
1080
1081/**
1082 * vm_area_register_early - register vmap area early during boot
1083 * @vm: vm_struct to register
1084 * @align: requested alignment
1085 *
1086 * This function is used to register kernel vm area before
1087 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1088 * proper values on entry and other fields should be zero.  On return,
1089 * vm->addr contains the allocated address.
1090 *
1091 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1092 */
1093void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1094{
1095        static size_t vm_init_off __initdata;
1096        unsigned long addr;
1097
1098        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1099        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1100
1101        vm->addr = (void *)addr;
1102
1103        vm->next = vmlist;
1104        vmlist = vm;
1105}
1106
1107void __init vmalloc_init(void)
1108{
1109        struct vmap_area *va;
1110        struct vm_struct *tmp;
1111        int i;
1112
1113        for_each_possible_cpu(i) {
1114                struct vmap_block_queue *vbq;
1115
1116                vbq = &per_cpu(vmap_block_queue, i);
1117                spin_lock_init(&vbq->lock);
1118                INIT_LIST_HEAD(&vbq->free);
1119        }
1120
1121        /* Import existing vmlist entries. */
1122        for (tmp = vmlist; tmp; tmp = tmp->next) {
1123                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1124                va->flags = tmp->flags | VM_VM_AREA;
1125                va->va_start = (unsigned long)tmp->addr;
1126                va->va_end = va->va_start + tmp->size;
1127                __insert_vmap_area(va);
1128        }
1129
1130        vmap_area_pcpu_hole = VMALLOC_END;
1131
1132        vmap_initialized = true;
1133}
1134
1135/**
1136 * map_kernel_range_noflush - map kernel VM area with the specified pages
1137 * @addr: start of the VM area to map
1138 * @size: size of the VM area to map
1139 * @prot: page protection flags to use
1140 * @pages: pages to map
1141 *
1142 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1143 * specify should have been allocated using get_vm_area() and its
1144 * friends.
1145 *
1146 * NOTE:
1147 * This function does NOT do any cache flushing.  The caller is
1148 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1149 * before calling this function.
1150 *
1151 * RETURNS:
1152 * The number of pages mapped on success, -errno on failure.
1153 */
1154int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1155                             pgprot_t prot, struct page **pages)
1156{
1157        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1158}
1159
1160/**
1161 * unmap_kernel_range_noflush - unmap kernel VM area
1162 * @addr: start of the VM area to unmap
1163 * @size: size of the VM area to unmap
1164 *
1165 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1166 * specify should have been allocated using get_vm_area() and its
1167 * friends.
1168 *
1169 * NOTE:
1170 * This function does NOT do any cache flushing.  The caller is
1171 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1172 * before calling this function and flush_tlb_kernel_range() after.
1173 */
1174void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1175{
1176        vunmap_page_range(addr, addr + size);
1177}
1178EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1179
1180/**
1181 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1182 * @addr: start of the VM area to unmap
1183 * @size: size of the VM area to unmap
1184 *
1185 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1186 * the unmapping and tlb after.
1187 */
1188void unmap_kernel_range(unsigned long addr, unsigned long size)
1189{
1190        unsigned long end = addr + size;
1191
1192        flush_cache_vunmap(addr, end);
1193        vunmap_page_range(addr, end);
1194        flush_tlb_kernel_range(addr, end);
1195}
1196
1197int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1198{
1199        unsigned long addr = (unsigned long)area->addr;
1200        unsigned long end = addr + area->size - PAGE_SIZE;
1201        int err;
1202
1203        err = vmap_page_range(addr, end, prot, *pages);
1204        if (err > 0) {
1205                *pages += err;
1206                err = 0;
1207        }
1208
1209        return err;
1210}
1211EXPORT_SYMBOL_GPL(map_vm_area);
1212
1213/*** Old vmalloc interfaces ***/
1214DEFINE_RWLOCK(vmlist_lock);
1215struct vm_struct *vmlist;
1216
1217static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1218                              unsigned long flags, void *caller)
1219{
1220        struct vm_struct *tmp, **p;
1221
1222        vm->flags = flags;
1223        vm->addr = (void *)va->va_start;
1224        vm->size = va->va_end - va->va_start;
1225        vm->caller = caller;
1226        va->private = vm;
1227        va->flags |= VM_VM_AREA;
1228
1229        write_lock(&vmlist_lock);
1230        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1231                if (tmp->addr >= vm->addr)
1232                        break;
1233        }
1234        vm->next = *p;
1235        *p = vm;
1236        write_unlock(&vmlist_lock);
1237}
1238
1239static struct vm_struct *__get_vm_area_node(unsigned long size,
1240                unsigned long align, unsigned long flags, unsigned long start,
1241                unsigned long end, int node, gfp_t gfp_mask, void *caller)
1242{
1243        static struct vmap_area *va;
1244        struct vm_struct *area;
1245
1246        BUG_ON(in_interrupt());
1247        if (flags & VM_IOREMAP) {
1248                int bit = fls(size);
1249
1250                if (bit > IOREMAP_MAX_ORDER)
1251                        bit = IOREMAP_MAX_ORDER;
1252                else if (bit < PAGE_SHIFT)
1253                        bit = PAGE_SHIFT;
1254
1255                align = 1ul << bit;
1256        }
1257
1258        size = PAGE_ALIGN(size);
1259        if (unlikely(!size))
1260                return NULL;
1261
1262        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1263        if (unlikely(!area))
1264                return NULL;
1265
1266        /*
1267         * We always allocate a guard page.
1268         */
1269        size += PAGE_SIZE;
1270
1271        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1272        if (IS_ERR(va)) {
1273                kfree(area);
1274                return NULL;
1275        }
1276
1277        insert_vmalloc_vm(area, va, flags, caller);
1278        return area;
1279}
1280
1281struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1282                                unsigned long start, unsigned long end)
1283{
1284        return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1285                                                __builtin_return_address(0));
1286}
1287EXPORT_SYMBOL_GPL(__get_vm_area);
1288
1289struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1290                                       unsigned long start, unsigned long end,
1291                                       void *caller)
1292{
1293        return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1294                                  caller);
1295}
1296
1297/**
1298 *      get_vm_area  -  reserve a contiguous kernel virtual area
1299 *      @size:          size of the area
1300 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1301 *
1302 *      Search an area of @size in the kernel virtual mapping area,
1303 *      and reserved it for out purposes.  Returns the area descriptor
1304 *      on success or %NULL on failure.
1305 */
1306struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1307{
1308        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309                                -1, GFP_KERNEL, __builtin_return_address(0));
1310}
1311
1312struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1313                                void *caller)
1314{
1315        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1316                                                -1, GFP_KERNEL, caller);
1317}
1318
1319static struct vm_struct *find_vm_area(const void *addr)
1320{
1321        struct vmap_area *va;
1322
1323        va = find_vmap_area((unsigned long)addr);
1324        if (va && va->flags & VM_VM_AREA)
1325                return va->private;
1326
1327        return NULL;
1328}
1329
1330/**
1331 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1332 *      @addr:          base address
1333 *
1334 *      Search for the kernel VM area starting at @addr, and remove it.
1335 *      This function returns the found VM area, but using it is NOT safe
1336 *      on SMP machines, except for its size or flags.
1337 */
1338struct vm_struct *remove_vm_area(const void *addr)
1339{
1340        struct vmap_area *va;
1341
1342        va = find_vmap_area((unsigned long)addr);
1343        if (va && va->flags & VM_VM_AREA) {
1344                struct vm_struct *vm = va->private;
1345                struct vm_struct *tmp, **p;
1346                /*
1347                 * remove from list and disallow access to this vm_struct
1348                 * before unmap. (address range confliction is maintained by
1349                 * vmap.)
1350                 */
1351                write_lock(&vmlist_lock);
1352                for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1353                        ;
1354                *p = tmp->next;
1355                write_unlock(&vmlist_lock);
1356
1357                vmap_debug_free_range(va->va_start, va->va_end);
1358                free_unmap_vmap_area(va);
1359                vm->size -= PAGE_SIZE;
1360
1361                return vm;
1362        }
1363        return NULL;
1364}
1365
1366static void __vunmap(const void *addr, int deallocate_pages)
1367{
1368        struct vm_struct *area;
1369
1370        if (!addr)
1371                return;
1372
1373        if ((PAGE_SIZE-1) & (unsigned long)addr) {
1374                WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1375                return;
1376        }
1377
1378        area = remove_vm_area(addr);
1379        if (unlikely(!area)) {
1380                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1381                                addr);
1382                return;
1383        }
1384
1385        debug_check_no_locks_freed(addr, area->size);
1386        debug_check_no_obj_freed(addr, area->size);
1387
1388        if (deallocate_pages) {
1389                int i;
1390
1391                for (i = 0; i < area->nr_pages; i++) {
1392                        struct page *page = area->pages[i];
1393
1394                        BUG_ON(!page);
1395                        __free_page(page);
1396                }
1397
1398                if (area->flags & VM_VPAGES)
1399                        vfree(area->pages);
1400                else
1401                        kfree(area->pages);
1402        }
1403
1404        kfree(area);
1405        return;
1406}
1407
1408/**
1409 *      vfree  -  release memory allocated by vmalloc()
1410 *      @addr:          memory base address
1411 *
1412 *      Free the virtually continuous memory area starting at @addr, as
1413 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1414 *      NULL, no operation is performed.
1415 *
1416 *      Must not be called in interrupt context.
1417 */
1418void vfree(const void *addr)
1419{
1420        BUG_ON(in_interrupt());
1421
1422        kmemleak_free(addr);
1423
1424        __vunmap(addr, 1);
1425}
1426EXPORT_SYMBOL(vfree);
1427
1428/**
1429 *      vunmap  -  release virtual mapping obtained by vmap()
1430 *      @addr:          memory base address
1431 *
1432 *      Free the virtually contiguous memory area starting at @addr,
1433 *      which was created from the page array passed to vmap().
1434 *
1435 *      Must not be called in interrupt context.
1436 */
1437void vunmap(const void *addr)
1438{
1439        BUG_ON(in_interrupt());
1440        might_sleep();
1441        __vunmap(addr, 0);
1442}
1443EXPORT_SYMBOL(vunmap);
1444
1445/**
1446 *      vmap  -  map an array of pages into virtually contiguous space
1447 *      @pages:         array of page pointers
1448 *      @count:         number of pages to map
1449 *      @flags:         vm_area->flags
1450 *      @prot:          page protection for the mapping
1451 *
1452 *      Maps @count pages from @pages into contiguous kernel virtual
1453 *      space.
1454 */
1455void *vmap(struct page **pages, unsigned int count,
1456                unsigned long flags, pgprot_t prot)
1457{
1458        struct vm_struct *area;
1459
1460        might_sleep();
1461
1462        if (count > totalram_pages)
1463                return NULL;
1464
1465        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1466                                        __builtin_return_address(0));
1467        if (!area)
1468                return NULL;
1469
1470        if (map_vm_area(area, prot, &pages)) {
1471                vunmap(area->addr);
1472                return NULL;
1473        }
1474
1475        return area->addr;
1476}
1477EXPORT_SYMBOL(vmap);
1478
1479static void *__vmalloc_node(unsigned long size, unsigned long align,
1480                            gfp_t gfp_mask, pgprot_t prot,
1481                            int node, void *caller);
1482static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1483                                 pgprot_t prot, int node, void *caller)
1484{
1485        struct page **pages;
1486        unsigned int nr_pages, array_size, i;
1487        gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1488
1489        nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1490        array_size = (nr_pages * sizeof(struct page *));
1491
1492        area->nr_pages = nr_pages;
1493        /* Please note that the recursion is strictly bounded. */
1494        if (array_size > PAGE_SIZE) {
1495                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1496                                PAGE_KERNEL, node, caller);
1497                area->flags |= VM_VPAGES;
1498        } else {
1499                pages = kmalloc_node(array_size, nested_gfp, node);
1500        }
1501        area->pages = pages;
1502        area->caller = caller;
1503        if (!area->pages) {
1504                remove_vm_area(area->addr);
1505                kfree(area);
1506                return NULL;
1507        }
1508
1509        for (i = 0; i < area->nr_pages; i++) {
1510                struct page *page;
1511
1512                if (node < 0)
1513                        page = alloc_page(gfp_mask);
1514                else
1515                        page = alloc_pages_node(node, gfp_mask, 0);
1516
1517                if (unlikely(!page)) {
1518                        /* Successfully allocated i pages, free them in __vunmap() */
1519                        area->nr_pages = i;
1520                        goto fail;
1521                }
1522                area->pages[i] = page;
1523        }
1524
1525        if (map_vm_area(area, prot, &pages))
1526                goto fail;
1527        return area->addr;
1528
1529fail:
1530        vfree(area->addr);
1531        return NULL;
1532}
1533
1534/**
1535 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1536 *      @size:          allocation size
1537 *      @align:         desired alignment
1538 *      @start:         vm area range start
1539 *      @end:           vm area range end
1540 *      @gfp_mask:      flags for the page level allocator
1541 *      @prot:          protection mask for the allocated pages
1542 *      @node:          node to use for allocation or -1
1543 *      @caller:        caller's return address
1544 *
1545 *      Allocate enough pages to cover @size from the page level
1546 *      allocator with @gfp_mask flags.  Map them into contiguous
1547 *      kernel virtual space, using a pagetable protection of @prot.
1548 */
1549void *__vmalloc_node_range(unsigned long size, unsigned long align,
1550                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1551                        pgprot_t prot, int node, void *caller)
1552{
1553        struct vm_struct *area;
1554        void *addr;
1555        unsigned long real_size = size;
1556
1557        size = PAGE_ALIGN(size);
1558        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1559                return NULL;
1560
1561        area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1562                                  gfp_mask, caller);
1563
1564        if (!area)
1565                return NULL;
1566
1567        addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1568
1569        /*
1570         * A ref_count = 3 is needed because the vm_struct and vmap_area
1571         * structures allocated in the __get_vm_area_node() function contain
1572         * references to the virtual address of the vmalloc'ed block.
1573         */
1574        kmemleak_alloc(addr, real_size, 3, gfp_mask);
1575
1576        return addr;
1577}
1578
1579/**
1580 *      __vmalloc_node  -  allocate virtually contiguous memory
1581 *      @size:          allocation size
1582 *      @align:         desired alignment
1583 *      @gfp_mask:      flags for the page level allocator
1584 *      @prot:          protection mask for the allocated pages
1585 *      @node:          node to use for allocation or -1
1586 *      @caller:        caller's return address
1587 *
1588 *      Allocate enough pages to cover @size from the page level
1589 *      allocator with @gfp_mask flags.  Map them into contiguous
1590 *      kernel virtual space, using a pagetable protection of @prot.
1591 */
1592static void *__vmalloc_node(unsigned long size, unsigned long align,
1593                            gfp_t gfp_mask, pgprot_t prot,
1594                            int node, void *caller)
1595{
1596        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1597                                gfp_mask, prot, node, caller);
1598}
1599
1600void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1601{
1602        return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1603                                __builtin_return_address(0));
1604}
1605EXPORT_SYMBOL(__vmalloc);
1606
1607static inline void *__vmalloc_node_flags(unsigned long size,
1608                                        int node, gfp_t flags)
1609{
1610        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1611                                        node, __builtin_return_address(0));
1612}
1613
1614/**
1615 *      vmalloc  -  allocate virtually contiguous memory
1616 *      @size:          allocation size
1617 *      Allocate enough pages to cover @size from the page level
1618 *      allocator and map them into contiguous kernel virtual space.
1619 *
1620 *      For tight control over page level allocator and protection flags
1621 *      use __vmalloc() instead.
1622 */
1623void *vmalloc(unsigned long size)
1624{
1625        return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1626}
1627EXPORT_SYMBOL(vmalloc);
1628
1629/**
1630 *      vzalloc - allocate virtually contiguous memory with zero fill
1631 *      @size:  allocation size
1632 *      Allocate enough pages to cover @size from the page level
1633 *      allocator and map them into contiguous kernel virtual space.
1634 *      The memory allocated is set to zero.
1635 *
1636 *      For tight control over page level allocator and protection flags
1637 *      use __vmalloc() instead.
1638 */
1639void *vzalloc(unsigned long size)
1640{
1641        return __vmalloc_node_flags(size, -1,
1642                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1643}
1644EXPORT_SYMBOL(vzalloc);
1645
1646/**
1647 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1648 * @size: allocation size
1649 *
1650 * The resulting memory area is zeroed so it can be mapped to userspace
1651 * without leaking data.
1652 */
1653void *vmalloc_user(unsigned long size)
1654{
1655        struct vm_struct *area;
1656        void *ret;
1657
1658        ret = __vmalloc_node(size, SHMLBA,
1659                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1660                             PAGE_KERNEL, -1, __builtin_return_address(0));
1661        if (ret) {
1662                area = find_vm_area(ret);
1663                area->flags |= VM_USERMAP;
1664        }
1665        return ret;
1666}
1667EXPORT_SYMBOL(vmalloc_user);
1668
1669/**
1670 *      vmalloc_node  -  allocate memory on a specific node
1671 *      @size:          allocation size
1672 *      @node:          numa node
1673 *
1674 *      Allocate enough pages to cover @size from the page level
1675 *      allocator and map them into contiguous kernel virtual space.
1676 *
1677 *      For tight control over page level allocator and protection flags
1678 *      use __vmalloc() instead.
1679 */
1680void *vmalloc_node(unsigned long size, int node)
1681{
1682        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1683                                        node, __builtin_return_address(0));
1684}
1685EXPORT_SYMBOL(vmalloc_node);
1686
1687/**
1688 * vzalloc_node - allocate memory on a specific node with zero fill
1689 * @size:       allocation size
1690 * @node:       numa node
1691 *
1692 * Allocate enough pages to cover @size from the page level
1693 * allocator and map them into contiguous kernel virtual space.
1694 * The memory allocated is set to zero.
1695 *
1696 * For tight control over page level allocator and protection flags
1697 * use __vmalloc_node() instead.
1698 */
1699void *vzalloc_node(unsigned long size, int node)
1700{
1701        return __vmalloc_node_flags(size, node,
1702                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1703}
1704EXPORT_SYMBOL(vzalloc_node);
1705
1706#ifndef PAGE_KERNEL_EXEC
1707# define PAGE_KERNEL_EXEC PAGE_KERNEL
1708#endif
1709
1710/**
1711 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1712 *      @size:          allocation size
1713 *
1714 *      Kernel-internal function to allocate enough pages to cover @size
1715 *      the page level allocator and map them into contiguous and
1716 *      executable kernel virtual space.
1717 *
1718 *      For tight control over page level allocator and protection flags
1719 *      use __vmalloc() instead.
1720 */
1721
1722void *vmalloc_exec(unsigned long size)
1723{
1724        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1725                              -1, __builtin_return_address(0));
1726}
1727
1728#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1729#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1730#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1731#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1732#else
1733#define GFP_VMALLOC32 GFP_KERNEL
1734#endif
1735
1736/**
1737 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1738 *      @size:          allocation size
1739 *
1740 *      Allocate enough 32bit PA addressable pages to cover @size from the
1741 *      page level allocator and map them into contiguous kernel virtual space.
1742 */
1743void *vmalloc_32(unsigned long size)
1744{
1745        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1746                              -1, __builtin_return_address(0));
1747}
1748EXPORT_SYMBOL(vmalloc_32);
1749
1750/**
1751 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1752 *      @size:          allocation size
1753 *
1754 * The resulting memory area is 32bit addressable and zeroed so it can be
1755 * mapped to userspace without leaking data.
1756 */
1757void *vmalloc_32_user(unsigned long size)
1758{
1759        struct vm_struct *area;
1760        void *ret;
1761
1762        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1763                             -1, __builtin_return_address(0));
1764        if (ret) {
1765                area = find_vm_area(ret);
1766                area->flags |= VM_USERMAP;
1767        }
1768        return ret;
1769}
1770EXPORT_SYMBOL(vmalloc_32_user);
1771
1772/*
1773 * small helper routine , copy contents to buf from addr.
1774 * If the page is not present, fill zero.
1775 */
1776
1777static int aligned_vread(char *buf, char *addr, unsigned long count)
1778{
1779        struct page *p;
1780        int copied = 0;
1781
1782        while (count) {
1783                unsigned long offset, length;
1784
1785                offset = (unsigned long)addr & ~PAGE_MASK;
1786                length = PAGE_SIZE - offset;
1787                if (length > count)
1788                        length = count;
1789                p = vmalloc_to_page(addr);
1790                /*
1791                 * To do safe access to this _mapped_ area, we need
1792                 * lock. But adding lock here means that we need to add
1793                 * overhead of vmalloc()/vfree() calles for this _debug_
1794                 * interface, rarely used. Instead of that, we'll use
1795                 * kmap() and get small overhead in this access function.
1796                 */
1797                if (p) {
1798                        /*
1799                         * we can expect USER0 is not used (see vread/vwrite's
1800                         * function description)
1801                         */
1802                        void *map = kmap_atomic(p, KM_USER0);
1803                        memcpy(buf, map + offset, length);
1804                        kunmap_atomic(map, KM_USER0);
1805                } else
1806                        memset(buf, 0, length);
1807
1808                addr += length;
1809                buf += length;
1810                copied += length;
1811                count -= length;
1812        }
1813        return copied;
1814}
1815
1816static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1817{
1818        struct page *p;
1819        int copied = 0;
1820
1821        while (count) {
1822                unsigned long offset, length;
1823
1824                offset = (unsigned long)addr & ~PAGE_MASK;
1825                length = PAGE_SIZE - offset;
1826                if (length > count)
1827                        length = count;
1828                p = vmalloc_to_page(addr);
1829                /*
1830                 * To do safe access to this _mapped_ area, we need
1831                 * lock. But adding lock here means that we need to add
1832                 * overhead of vmalloc()/vfree() calles for this _debug_
1833                 * interface, rarely used. Instead of that, we'll use
1834                 * kmap() and get small overhead in this access function.
1835                 */
1836                if (p) {
1837                        /*
1838                         * we can expect USER0 is not used (see vread/vwrite's
1839                         * function description)
1840                         */
1841                        void *map = kmap_atomic(p, KM_USER0);
1842                        memcpy(map + offset, buf, length);
1843                        kunmap_atomic(map, KM_USER0);
1844                }
1845                addr += length;
1846                buf += length;
1847                copied += length;
1848                count -= length;
1849        }
1850        return copied;
1851}
1852
1853/**
1854 *      vread() -  read vmalloc area in a safe way.
1855 *      @buf:           buffer for reading data
1856 *      @addr:          vm address.
1857 *      @count:         number of bytes to be read.
1858 *
1859 *      Returns # of bytes which addr and buf should be increased.
1860 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
1861 *      includes any intersect with alive vmalloc area.
1862 *
1863 *      This function checks that addr is a valid vmalloc'ed area, and
1864 *      copy data from that area to a given buffer. If the given memory range
1865 *      of [addr...addr+count) includes some valid address, data is copied to
1866 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
1867 *      IOREMAP area is treated as memory hole and no copy is done.
1868 *
1869 *      If [addr...addr+count) doesn't includes any intersects with alive
1870 *      vm_struct area, returns 0.
1871 *      @buf should be kernel's buffer. Because this function uses KM_USER0,
1872 *      the caller should guarantee KM_USER0 is not used.
1873 *
1874 *      Note: In usual ops, vread() is never necessary because the caller
1875 *      should know vmalloc() area is valid and can use memcpy().
1876 *      This is for routines which have to access vmalloc area without
1877 *      any informaion, as /dev/kmem.
1878 *
1879 */
1880
1881long vread(char *buf, char *addr, unsigned long count)
1882{
1883        struct vm_struct *tmp;
1884        char *vaddr, *buf_start = buf;
1885        unsigned long buflen = count;
1886        unsigned long n;
1887
1888        /* Don't allow overflow */
1889        if ((unsigned long) addr + count < count)
1890                count = -(unsigned long) addr;
1891
1892        read_lock(&vmlist_lock);
1893        for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1894                vaddr = (char *) tmp->addr;
1895                if (addr >= vaddr + tmp->size - PAGE_SIZE)
1896                        continue;
1897                while (addr < vaddr) {
1898                        if (count == 0)
1899                                goto finished;
1900                        *buf = '\0';
1901                        buf++;
1902                        addr++;
1903                        count--;
1904                }
1905                n = vaddr + tmp->size - PAGE_SIZE - addr;
1906                if (n > count)
1907                        n = count;
1908                if (!(tmp->flags & VM_IOREMAP))
1909                        aligned_vread(buf, addr, n);
1910                else /* IOREMAP area is treated as memory hole */
1911                        memset(buf, 0, n);
1912                buf += n;
1913                addr += n;
1914                count -= n;
1915        }
1916finished:
1917        read_unlock(&vmlist_lock);
1918
1919        if (buf == buf_start)
1920                return 0;
1921        /* zero-fill memory holes */
1922        if (buf != buf_start + buflen)
1923                memset(buf, 0, buflen - (buf - buf_start));
1924
1925        return buflen;
1926}
1927
1928/**
1929 *      vwrite() -  write vmalloc area in a safe way.
1930 *      @buf:           buffer for source data
1931 *      @addr:          vm address.
1932 *      @count:         number of bytes to be read.
1933 *
1934 *      Returns # of bytes which addr and buf should be incresed.
1935 *      (same number to @count).
1936 *      If [addr...addr+count) doesn't includes any intersect with valid
1937 *      vmalloc area, returns 0.
1938 *
1939 *      This function checks that addr is a valid vmalloc'ed area, and
1940 *      copy data from a buffer to the given addr. If specified range of
1941 *      [addr...addr+count) includes some valid address, data is copied from
1942 *      proper area of @buf. If there are memory holes, no copy to hole.
1943 *      IOREMAP area is treated as memory hole and no copy is done.
1944 *
1945 *      If [addr...addr+count) doesn't includes any intersects with alive
1946 *      vm_struct area, returns 0.
1947 *      @buf should be kernel's buffer. Because this function uses KM_USER0,
1948 *      the caller should guarantee KM_USER0 is not used.
1949 *
1950 *      Note: In usual ops, vwrite() is never necessary because the caller
1951 *      should know vmalloc() area is valid and can use memcpy().
1952 *      This is for routines which have to access vmalloc area without
1953 *      any informaion, as /dev/kmem.
1954 *
1955 *      The caller should guarantee KM_USER1 is not used.
1956 */
1957
1958long vwrite(char *buf, char *addr, unsigned long count)
1959{
1960        struct vm_struct *tmp;
1961        char *vaddr;
1962        unsigned long n, buflen;
1963        int copied = 0;
1964
1965        /* Don't allow overflow */
1966        if ((unsigned long) addr + count < count)
1967                count = -(unsigned long) addr;
1968        buflen = count;
1969
1970        read_lock(&vmlist_lock);
1971        for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1972                vaddr = (char *) tmp->addr;
1973                if (addr >= vaddr + tmp->size - PAGE_SIZE)
1974                        continue;
1975                while (addr < vaddr) {
1976                        if (count == 0)
1977                                goto finished;
1978                        buf++;
1979                        addr++;
1980                        count--;
1981                }
1982                n = vaddr + tmp->size - PAGE_SIZE - addr;
1983                if (n > count)
1984                        n = count;
1985                if (!(tmp->flags & VM_IOREMAP)) {
1986                        aligned_vwrite(buf, addr, n);
1987                        copied++;
1988                }
1989                buf += n;
1990                addr += n;
1991                count -= n;
1992        }
1993finished:
1994        read_unlock(&vmlist_lock);
1995        if (!copied)
1996                return 0;
1997        return buflen;
1998}
1999
2000/**
2001 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2002 *      @vma:           vma to cover (map full range of vma)
2003 *      @addr:          vmalloc memory
2004 *      @pgoff:         number of pages into addr before first page to map
2005 *
2006 *      Returns:        0 for success, -Exxx on failure
2007 *
2008 *      This function checks that addr is a valid vmalloc'ed area, and
2009 *      that it is big enough to cover the vma. Will return failure if
2010 *      that criteria isn't met.
2011 *
2012 *      Similar to remap_pfn_range() (see mm/memory.c)
2013 */
2014int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2015                                                unsigned long pgoff)
2016{
2017        struct vm_struct *area;
2018        unsigned long uaddr = vma->vm_start;
2019        unsigned long usize = vma->vm_end - vma->vm_start;
2020
2021        if ((PAGE_SIZE-1) & (unsigned long)addr)
2022                return -EINVAL;
2023
2024        area = find_vm_area(addr);
2025        if (!area)
2026                return -EINVAL;
2027
2028        if (!(area->flags & VM_USERMAP))
2029                return -EINVAL;
2030
2031        if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2032                return -EINVAL;
2033
2034        addr += pgoff << PAGE_SHIFT;
2035        do {
2036                struct page *page = vmalloc_to_page(addr);
2037                int ret;
2038
2039                ret = vm_insert_page(vma, uaddr, page);
2040                if (ret)
2041                        return ret;
2042
2043                uaddr += PAGE_SIZE;
2044                addr += PAGE_SIZE;
2045                usize -= PAGE_SIZE;
2046        } while (usize > 0);
2047
2048        /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2049        vma->vm_flags |= VM_RESERVED;
2050
2051        return 0;
2052}
2053EXPORT_SYMBOL(remap_vmalloc_range);
2054
2055/*
2056 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2057 * have one.
2058 */
2059void  __attribute__((weak)) vmalloc_sync_all(void)
2060{
2061}
2062
2063
2064static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2065{
2066        /* apply_to_page_range() does all the hard work. */
2067        return 0;
2068}
2069
2070/**
2071 *      alloc_vm_area - allocate a range of kernel address space
2072 *      @size:          size of the area
2073 *
2074 *      Returns:        NULL on failure, vm_struct on success
2075 *
2076 *      This function reserves a range of kernel address space, and
2077 *      allocates pagetables to map that range.  No actual mappings
2078 *      are created.  If the kernel address space is not shared
2079 *      between processes, it syncs the pagetable across all
2080 *      processes.
2081 */
2082struct vm_struct *alloc_vm_area(size_t size)
2083{
2084        struct vm_struct *area;
2085
2086        area = get_vm_area_caller(size, VM_IOREMAP,
2087                                __builtin_return_address(0));
2088        if (area == NULL)
2089                return NULL;
2090
2091        /*
2092         * This ensures that page tables are constructed for this region
2093         * of kernel virtual address space and mapped into init_mm.
2094         */
2095        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2096                                area->size, f, NULL)) {
2097                free_vm_area(area);
2098                return NULL;
2099        }
2100
2101        /* Make sure the pagetables are constructed in process kernel
2102           mappings */
2103        vmalloc_sync_all();
2104
2105        return area;
2106}
2107EXPORT_SYMBOL_GPL(alloc_vm_area);
2108
2109void free_vm_area(struct vm_struct *area)
2110{
2111        struct vm_struct *ret;
2112        ret = remove_vm_area(area->addr);
2113        BUG_ON(ret != area);
2114        kfree(area);
2115}
2116EXPORT_SYMBOL_GPL(free_vm_area);
2117
2118#ifdef CONFIG_SMP
2119static struct vmap_area *node_to_va(struct rb_node *n)
2120{
2121        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2122}
2123
2124/**
2125 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2126 * @end: target address
2127 * @pnext: out arg for the next vmap_area
2128 * @pprev: out arg for the previous vmap_area
2129 *
2130 * Returns: %true if either or both of next and prev are found,
2131 *          %false if no vmap_area exists
2132 *
2133 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2134 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2135 */
2136static bool pvm_find_next_prev(unsigned long end,
2137                               struct vmap_area **pnext,
2138                               struct vmap_area **pprev)
2139{
2140        struct rb_node *n = vmap_area_root.rb_node;
2141        struct vmap_area *va = NULL;
2142
2143        while (n) {
2144                va = rb_entry(n, struct vmap_area, rb_node);
2145                if (end < va->va_end)
2146                        n = n->rb_left;
2147                else if (end > va->va_end)
2148                        n = n->rb_right;
2149                else
2150                        break;
2151        }
2152
2153        if (!va)
2154                return false;
2155
2156        if (va->va_end > end) {
2157                *pnext = va;
2158                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2159        } else {
2160                *pprev = va;
2161                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2162        }
2163        return true;
2164}
2165
2166/**
2167 * pvm_determine_end - find the highest aligned address between two vmap_areas
2168 * @pnext: in/out arg for the next vmap_area
2169 * @pprev: in/out arg for the previous vmap_area
2170 * @align: alignment
2171 *
2172 * Returns: determined end address
2173 *
2174 * Find the highest aligned address between *@pnext and *@pprev below
2175 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2176 * down address is between the end addresses of the two vmap_areas.
2177 *
2178 * Please note that the address returned by this function may fall
2179 * inside *@pnext vmap_area.  The caller is responsible for checking
2180 * that.
2181 */
2182static unsigned long pvm_determine_end(struct vmap_area **pnext,
2183                                       struct vmap_area **pprev,
2184                                       unsigned long align)
2185{
2186        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2187        unsigned long addr;
2188
2189        if (*pnext)
2190                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2191        else
2192                addr = vmalloc_end;
2193
2194        while (*pprev && (*pprev)->va_end > addr) {
2195                *pnext = *pprev;
2196                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2197        }
2198
2199        return addr;
2200}
2201
2202/**
2203 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2204 * @offsets: array containing offset of each area
2205 * @sizes: array containing size of each area
2206 * @nr_vms: the number of areas to allocate
2207 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2208 *
2209 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2210 *          vm_structs on success, %NULL on failure
2211 *
2212 * Percpu allocator wants to use congruent vm areas so that it can
2213 * maintain the offsets among percpu areas.  This function allocates
2214 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2215 * be scattered pretty far, distance between two areas easily going up
2216 * to gigabytes.  To avoid interacting with regular vmallocs, these
2217 * areas are allocated from top.
2218 *
2219 * Despite its complicated look, this allocator is rather simple.  It
2220 * does everything top-down and scans areas from the end looking for
2221 * matching slot.  While scanning, if any of the areas overlaps with
2222 * existing vmap_area, the base address is pulled down to fit the
2223 * area.  Scanning is repeated till all the areas fit and then all
2224 * necessary data structres are inserted and the result is returned.
2225 */
2226struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2227                                     const size_t *sizes, int nr_vms,
2228                                     size_t align)
2229{
2230        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2231        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2232        struct vmap_area **vas, *prev, *next;
2233        struct vm_struct **vms;
2234        int area, area2, last_area, term_area;
2235        unsigned long base, start, end, last_end;
2236        bool purged = false;
2237
2238        /* verify parameters and allocate data structures */
2239        BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2240        for (last_area = 0, area = 0; area < nr_vms; area++) {
2241                start = offsets[area];
2242                end = start + sizes[area];
2243
2244                /* is everything aligned properly? */
2245                BUG_ON(!IS_ALIGNED(offsets[area], align));
2246                BUG_ON(!IS_ALIGNED(sizes[area], align));
2247
2248                /* detect the area with the highest address */
2249                if (start > offsets[last_area])
2250                        last_area = area;
2251
2252                for (area2 = 0; area2 < nr_vms; area2++) {
2253                        unsigned long start2 = offsets[area2];
2254                        unsigned long end2 = start2 + sizes[area2];
2255
2256                        if (area2 == area)
2257                                continue;
2258
2259                        BUG_ON(start2 >= start && start2 < end);
2260                        BUG_ON(end2 <= end && end2 > start);
2261                }
2262        }
2263        last_end = offsets[last_area] + sizes[last_area];
2264
2265        if (vmalloc_end - vmalloc_start < last_end) {
2266                WARN_ON(true);
2267                return NULL;
2268        }
2269
2270        vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2271        vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2272        if (!vas || !vms)
2273                goto err_free;
2274
2275        for (area = 0; area < nr_vms; area++) {
2276                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2277                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2278                if (!vas[area] || !vms[area])
2279                        goto err_free;
2280        }
2281retry:
2282        spin_lock(&vmap_area_lock);
2283
2284        /* start scanning - we scan from the top, begin with the last area */
2285        area = term_area = last_area;
2286        start = offsets[area];
2287        end = start + sizes[area];
2288
2289        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2290                base = vmalloc_end - last_end;
2291                goto found;
2292        }
2293        base = pvm_determine_end(&next, &prev, align) - end;
2294
2295        while (true) {
2296                BUG_ON(next && next->va_end <= base + end);
2297                BUG_ON(prev && prev->va_end > base + end);
2298
2299                /*
2300                 * base might have underflowed, add last_end before
2301                 * comparing.
2302                 */
2303                if (base + last_end < vmalloc_start + last_end) {
2304                        spin_unlock(&vmap_area_lock);
2305                        if (!purged) {
2306                                purge_vmap_area_lazy();
2307                                purged = true;
2308                                goto retry;
2309                        }
2310                        goto err_free;
2311                }
2312
2313                /*
2314                 * If next overlaps, move base downwards so that it's
2315                 * right below next and then recheck.
2316                 */
2317                if (next && next->va_start < base + end) {
2318                        base = pvm_determine_end(&next, &prev, align) - end;
2319                        term_area = area;
2320                        continue;
2321                }
2322
2323                /*
2324                 * If prev overlaps, shift down next and prev and move
2325                 * base so that it's right below new next and then
2326                 * recheck.
2327                 */
2328                if (prev && prev->va_end > base + start)  {
2329                        next = prev;
2330                        prev = node_to_va(rb_prev(&next->rb_node));
2331                        base = pvm_determine_end(&next, &prev, align) - end;
2332                        term_area = area;
2333                        continue;
2334                }
2335
2336                /*
2337                 * This area fits, move on to the previous one.  If
2338                 * the previous one is the terminal one, we're done.
2339                 */
2340                area = (area + nr_vms - 1) % nr_vms;
2341                if (area == term_area)
2342                        break;
2343                start = offsets[area];
2344                end = start + sizes[area];
2345                pvm_find_next_prev(base + end, &next, &prev);
2346        }
2347found:
2348        /* we've found a fitting base, insert all va's */
2349        for (area = 0; area < nr_vms; area++) {
2350                struct vmap_area *va = vas[area];
2351
2352                va->va_start = base + offsets[area];
2353                va->va_end = va->va_start + sizes[area];
2354                __insert_vmap_area(va);
2355        }
2356
2357        vmap_area_pcpu_hole = base + offsets[last_area];
2358
2359        spin_unlock(&vmap_area_lock);
2360
2361        /* insert all vm's */
2362        for (area = 0; area < nr_vms; area++)
2363                insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2364                                  pcpu_get_vm_areas);
2365
2366        kfree(vas);
2367        return vms;
2368
2369err_free:
2370        for (area = 0; area < nr_vms; area++) {
2371                if (vas)
2372                        kfree(vas[area]);
2373                if (vms)
2374                        kfree(vms[area]);
2375        }
2376        kfree(vas);
2377        kfree(vms);
2378        return NULL;
2379}
2380
2381/**
2382 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2383 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2384 * @nr_vms: the number of allocated areas
2385 *
2386 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2387 */
2388void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2389{
2390        int i;
2391
2392        for (i = 0; i < nr_vms; i++)
2393                free_vm_area(vms[i]);
2394        kfree(vms);
2395}
2396#endif  /* CONFIG_SMP */
2397
2398#ifdef CONFIG_PROC_FS
2399static void *s_start(struct seq_file *m, loff_t *pos)
2400        __acquires(&vmlist_lock)
2401{
2402        loff_t n = *pos;
2403        struct vm_struct *v;
2404
2405        read_lock(&vmlist_lock);
2406        v = vmlist;
2407        while (n > 0 && v) {
2408                n--;
2409                v = v->next;
2410        }
2411        if (!n)
2412                return v;
2413
2414        return NULL;
2415
2416}
2417
2418static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2419{
2420        struct vm_struct *v = p;
2421
2422        ++*pos;
2423        return v->next;
2424}
2425
2426static void s_stop(struct seq_file *m, void *p)
2427        __releases(&vmlist_lock)
2428{
2429        read_unlock(&vmlist_lock);
2430}
2431
2432static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2433{
2434        if (NUMA_BUILD) {
2435                unsigned int nr, *counters = m->private;
2436
2437                if (!counters)
2438                        return;
2439
2440                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2441
2442                for (nr = 0; nr < v->nr_pages; nr++)
2443                        counters[page_to_nid(v->pages[nr])]++;
2444
2445                for_each_node_state(nr, N_HIGH_MEMORY)
2446                        if (counters[nr])
2447                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2448        }
2449}
2450
2451static int s_show(struct seq_file *m, void *p)
2452{
2453        struct vm_struct *v = p;
2454
2455        seq_printf(m, "0x%p-0x%p %7ld",
2456                v->addr, v->addr + v->size, v->size);
2457
2458        if (v->caller)
2459                seq_printf(m, " %pS", v->caller);
2460
2461        if (v->nr_pages)
2462                seq_printf(m, " pages=%d", v->nr_pages);
2463
2464        if (v->phys_addr)
2465                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2466
2467        if (v->flags & VM_IOREMAP)
2468                seq_printf(m, " ioremap");
2469
2470        if (v->flags & VM_ALLOC)
2471                seq_printf(m, " vmalloc");
2472
2473        if (v->flags & VM_MAP)
2474                seq_printf(m, " vmap");
2475
2476        if (v->flags & VM_USERMAP)
2477                seq_printf(m, " user");
2478
2479        if (v->flags & VM_VPAGES)
2480                seq_printf(m, " vpages");
2481
2482        show_numa_info(m, v);
2483        seq_putc(m, '\n');
2484        return 0;
2485}
2486
2487static const struct seq_operations vmalloc_op = {
2488        .start = s_start,
2489        .next = s_next,
2490        .stop = s_stop,
2491        .show = s_show,
2492};
2493
2494static int vmalloc_open(struct inode *inode, struct file *file)
2495{
2496        unsigned int *ptr = NULL;
2497        int ret;
2498
2499        if (NUMA_BUILD) {
2500                ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2501                if (ptr == NULL)
2502                        return -ENOMEM;
2503        }
2504        ret = seq_open(file, &vmalloc_op);
2505        if (!ret) {
2506                struct seq_file *m = file->private_data;
2507                m->private = ptr;
2508        } else
2509                kfree(ptr);
2510        return ret;
2511}
2512
2513static const struct file_operations proc_vmalloc_operations = {
2514        .open           = vmalloc_open,
2515        .read           = seq_read,
2516        .llseek         = seq_lseek,
2517        .release        = seq_release_private,
2518};
2519
2520static int __init proc_vmalloc_init(void)
2521{
2522        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2523        return 0;
2524}
2525module_init(proc_vmalloc_init);
2526#endif
2527
2528