linux/mm/vmstat.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *              Christoph Lameter <christoph@lameter.com>
  10 */
  11#include <linux/fs.h>
  12#include <linux/mm.h>
  13#include <linux/err.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
  16#include <linux/cpu.h>
  17#include <linux/vmstat.h>
  18#include <linux/sched.h>
  19#include <linux/math64.h>
  20#include <linux/writeback.h>
  21#include <linux/compaction.h>
  22
  23#ifdef CONFIG_VM_EVENT_COUNTERS
  24DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  25EXPORT_PER_CPU_SYMBOL(vm_event_states);
  26
  27static void sum_vm_events(unsigned long *ret)
  28{
  29        int cpu;
  30        int i;
  31
  32        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  33
  34        for_each_online_cpu(cpu) {
  35                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  36
  37                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  38                        ret[i] += this->event[i];
  39        }
  40}
  41
  42/*
  43 * Accumulate the vm event counters across all CPUs.
  44 * The result is unavoidably approximate - it can change
  45 * during and after execution of this function.
  46*/
  47void all_vm_events(unsigned long *ret)
  48{
  49        get_online_cpus();
  50        sum_vm_events(ret);
  51        put_online_cpus();
  52}
  53EXPORT_SYMBOL_GPL(all_vm_events);
  54
  55#ifdef CONFIG_HOTPLUG
  56/*
  57 * Fold the foreign cpu events into our own.
  58 *
  59 * This is adding to the events on one processor
  60 * but keeps the global counts constant.
  61 */
  62void vm_events_fold_cpu(int cpu)
  63{
  64        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  65        int i;
  66
  67        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  68                count_vm_events(i, fold_state->event[i]);
  69                fold_state->event[i] = 0;
  70        }
  71}
  72#endif /* CONFIG_HOTPLUG */
  73
  74#endif /* CONFIG_VM_EVENT_COUNTERS */
  75
  76/*
  77 * Manage combined zone based / global counters
  78 *
  79 * vm_stat contains the global counters
  80 */
  81atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  82EXPORT_SYMBOL(vm_stat);
  83
  84#ifdef CONFIG_SMP
  85
  86int calculate_pressure_threshold(struct zone *zone)
  87{
  88        int threshold;
  89        int watermark_distance;
  90
  91        /*
  92         * As vmstats are not up to date, there is drift between the estimated
  93         * and real values. For high thresholds and a high number of CPUs, it
  94         * is possible for the min watermark to be breached while the estimated
  95         * value looks fine. The pressure threshold is a reduced value such
  96         * that even the maximum amount of drift will not accidentally breach
  97         * the min watermark
  98         */
  99        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 100        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 101
 102        /*
 103         * Maximum threshold is 125
 104         */
 105        threshold = min(125, threshold);
 106
 107        return threshold;
 108}
 109
 110int calculate_normal_threshold(struct zone *zone)
 111{
 112        int threshold;
 113        int mem;        /* memory in 128 MB units */
 114
 115        /*
 116         * The threshold scales with the number of processors and the amount
 117         * of memory per zone. More memory means that we can defer updates for
 118         * longer, more processors could lead to more contention.
 119         * fls() is used to have a cheap way of logarithmic scaling.
 120         *
 121         * Some sample thresholds:
 122         *
 123         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 124         * ------------------------------------------------------------------
 125         * 8            1               1       0.9-1 GB        4
 126         * 16           2               2       0.9-1 GB        4
 127         * 20           2               2       1-2 GB          5
 128         * 24           2               2       2-4 GB          6
 129         * 28           2               2       4-8 GB          7
 130         * 32           2               2       8-16 GB         8
 131         * 4            2               2       <128M           1
 132         * 30           4               3       2-4 GB          5
 133         * 48           4               3       8-16 GB         8
 134         * 32           8               4       1-2 GB          4
 135         * 32           8               4       0.9-1GB         4
 136         * 10           16              5       <128M           1
 137         * 40           16              5       900M            4
 138         * 70           64              7       2-4 GB          5
 139         * 84           64              7       4-8 GB          6
 140         * 108          512             9       4-8 GB          6
 141         * 125          1024            10      8-16 GB         8
 142         * 125          1024            10      16-32 GB        9
 143         */
 144
 145        mem = zone->present_pages >> (27 - PAGE_SHIFT);
 146
 147        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 148
 149        /*
 150         * Maximum threshold is 125
 151         */
 152        threshold = min(125, threshold);
 153
 154        return threshold;
 155}
 156
 157/*
 158 * Refresh the thresholds for each zone.
 159 */
 160static void refresh_zone_stat_thresholds(void)
 161{
 162        struct zone *zone;
 163        int cpu;
 164        int threshold;
 165
 166        for_each_populated_zone(zone) {
 167                unsigned long max_drift, tolerate_drift;
 168
 169                threshold = calculate_normal_threshold(zone);
 170
 171                for_each_online_cpu(cpu)
 172                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 173                                                        = threshold;
 174
 175                /*
 176                 * Only set percpu_drift_mark if there is a danger that
 177                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 178                 * the min watermark could be breached by an allocation
 179                 */
 180                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 181                max_drift = num_online_cpus() * threshold;
 182                if (max_drift > tolerate_drift)
 183                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 184                                        max_drift;
 185        }
 186}
 187
 188void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 189                                int (*calculate_pressure)(struct zone *))
 190{
 191        struct zone *zone;
 192        int cpu;
 193        int threshold;
 194        int i;
 195
 196        for (i = 0; i < pgdat->nr_zones; i++) {
 197                zone = &pgdat->node_zones[i];
 198                if (!zone->percpu_drift_mark)
 199                        continue;
 200
 201                threshold = (*calculate_pressure)(zone);
 202                for_each_possible_cpu(cpu)
 203                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 204                                                        = threshold;
 205        }
 206}
 207
 208/*
 209 * For use when we know that interrupts are disabled.
 210 */
 211void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 212                                int delta)
 213{
 214        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 215        s8 __percpu *p = pcp->vm_stat_diff + item;
 216        long x;
 217        long t;
 218
 219        x = delta + __this_cpu_read(*p);
 220
 221        t = __this_cpu_read(pcp->stat_threshold);
 222
 223        if (unlikely(x > t || x < -t)) {
 224                zone_page_state_add(x, zone, item);
 225                x = 0;
 226        }
 227        __this_cpu_write(*p, x);
 228}
 229EXPORT_SYMBOL(__mod_zone_page_state);
 230
 231/*
 232 * Optimized increment and decrement functions.
 233 *
 234 * These are only for a single page and therefore can take a struct page *
 235 * argument instead of struct zone *. This allows the inclusion of the code
 236 * generated for page_zone(page) into the optimized functions.
 237 *
 238 * No overflow check is necessary and therefore the differential can be
 239 * incremented or decremented in place which may allow the compilers to
 240 * generate better code.
 241 * The increment or decrement is known and therefore one boundary check can
 242 * be omitted.
 243 *
 244 * NOTE: These functions are very performance sensitive. Change only
 245 * with care.
 246 *
 247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 248 * However, the code must first determine the differential location in a zone
 249 * based on the processor number and then inc/dec the counter. There is no
 250 * guarantee without disabling preemption that the processor will not change
 251 * in between and therefore the atomicity vs. interrupt cannot be exploited
 252 * in a useful way here.
 253 */
 254void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 255{
 256        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 257        s8 __percpu *p = pcp->vm_stat_diff + item;
 258        s8 v, t;
 259
 260        v = __this_cpu_inc_return(*p);
 261        t = __this_cpu_read(pcp->stat_threshold);
 262        if (unlikely(v > t)) {
 263                s8 overstep = t >> 1;
 264
 265                zone_page_state_add(v + overstep, zone, item);
 266                __this_cpu_write(*p, -overstep);
 267        }
 268}
 269
 270void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 271{
 272        __inc_zone_state(page_zone(page), item);
 273}
 274EXPORT_SYMBOL(__inc_zone_page_state);
 275
 276void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 277{
 278        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 279        s8 __percpu *p = pcp->vm_stat_diff + item;
 280        s8 v, t;
 281
 282        v = __this_cpu_dec_return(*p);
 283        t = __this_cpu_read(pcp->stat_threshold);
 284        if (unlikely(v < - t)) {
 285                s8 overstep = t >> 1;
 286
 287                zone_page_state_add(v - overstep, zone, item);
 288                __this_cpu_write(*p, overstep);
 289        }
 290}
 291
 292void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 293{
 294        __dec_zone_state(page_zone(page), item);
 295}
 296EXPORT_SYMBOL(__dec_zone_page_state);
 297
 298#ifdef CONFIG_CMPXCHG_LOCAL
 299/*
 300 * If we have cmpxchg_local support then we do not need to incur the overhead
 301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 302 *
 303 * mod_state() modifies the zone counter state through atomic per cpu
 304 * operations.
 305 *
 306 * Overstep mode specifies how overstep should handled:
 307 *     0       No overstepping
 308 *     1       Overstepping half of threshold
 309 *     -1      Overstepping minus half of threshold
 310*/
 311static inline void mod_state(struct zone *zone,
 312       enum zone_stat_item item, int delta, int overstep_mode)
 313{
 314        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 315        s8 __percpu *p = pcp->vm_stat_diff + item;
 316        long o, n, t, z;
 317
 318        do {
 319                z = 0;  /* overflow to zone counters */
 320
 321                /*
 322                 * The fetching of the stat_threshold is racy. We may apply
 323                 * a counter threshold to the wrong the cpu if we get
 324                 * rescheduled while executing here. However, the following
 325                 * will apply the threshold again and therefore bring the
 326                 * counter under the threshold.
 327                 */
 328                t = this_cpu_read(pcp->stat_threshold);
 329
 330                o = this_cpu_read(*p);
 331                n = delta + o;
 332
 333                if (n > t || n < -t) {
 334                        int os = overstep_mode * (t >> 1) ;
 335
 336                        /* Overflow must be added to zone counters */
 337                        z = n + os;
 338                        n = -os;
 339                }
 340        } while (this_cpu_cmpxchg(*p, o, n) != o);
 341
 342        if (z)
 343                zone_page_state_add(z, zone, item);
 344}
 345
 346void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 347                                        int delta)
 348{
 349        mod_state(zone, item, delta, 0);
 350}
 351EXPORT_SYMBOL(mod_zone_page_state);
 352
 353void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 354{
 355        mod_state(zone, item, 1, 1);
 356}
 357
 358void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 359{
 360        mod_state(page_zone(page), item, 1, 1);
 361}
 362EXPORT_SYMBOL(inc_zone_page_state);
 363
 364void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 365{
 366        mod_state(page_zone(page), item, -1, -1);
 367}
 368EXPORT_SYMBOL(dec_zone_page_state);
 369#else
 370/*
 371 * Use interrupt disable to serialize counter updates
 372 */
 373void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 374                                        int delta)
 375{
 376        unsigned long flags;
 377
 378        local_irq_save(flags);
 379        __mod_zone_page_state(zone, item, delta);
 380        local_irq_restore(flags);
 381}
 382EXPORT_SYMBOL(mod_zone_page_state);
 383
 384void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 385{
 386        unsigned long flags;
 387
 388        local_irq_save(flags);
 389        __inc_zone_state(zone, item);
 390        local_irq_restore(flags);
 391}
 392
 393void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 394{
 395        unsigned long flags;
 396        struct zone *zone;
 397
 398        zone = page_zone(page);
 399        local_irq_save(flags);
 400        __inc_zone_state(zone, item);
 401        local_irq_restore(flags);
 402}
 403EXPORT_SYMBOL(inc_zone_page_state);
 404
 405void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 406{
 407        unsigned long flags;
 408
 409        local_irq_save(flags);
 410        __dec_zone_page_state(page, item);
 411        local_irq_restore(flags);
 412}
 413EXPORT_SYMBOL(dec_zone_page_state);
 414#endif
 415
 416/*
 417 * Update the zone counters for one cpu.
 418 *
 419 * The cpu specified must be either the current cpu or a processor that
 420 * is not online. If it is the current cpu then the execution thread must
 421 * be pinned to the current cpu.
 422 *
 423 * Note that refresh_cpu_vm_stats strives to only access
 424 * node local memory. The per cpu pagesets on remote zones are placed
 425 * in the memory local to the processor using that pageset. So the
 426 * loop over all zones will access a series of cachelines local to
 427 * the processor.
 428 *
 429 * The call to zone_page_state_add updates the cachelines with the
 430 * statistics in the remote zone struct as well as the global cachelines
 431 * with the global counters. These could cause remote node cache line
 432 * bouncing and will have to be only done when necessary.
 433 */
 434void refresh_cpu_vm_stats(int cpu)
 435{
 436        struct zone *zone;
 437        int i;
 438        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 439
 440        for_each_populated_zone(zone) {
 441                struct per_cpu_pageset *p;
 442
 443                p = per_cpu_ptr(zone->pageset, cpu);
 444
 445                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 446                        if (p->vm_stat_diff[i]) {
 447                                unsigned long flags;
 448                                int v;
 449
 450                                local_irq_save(flags);
 451                                v = p->vm_stat_diff[i];
 452                                p->vm_stat_diff[i] = 0;
 453                                local_irq_restore(flags);
 454                                atomic_long_add(v, &zone->vm_stat[i]);
 455                                global_diff[i] += v;
 456#ifdef CONFIG_NUMA
 457                                /* 3 seconds idle till flush */
 458                                p->expire = 3;
 459#endif
 460                        }
 461                cond_resched();
 462#ifdef CONFIG_NUMA
 463                /*
 464                 * Deal with draining the remote pageset of this
 465                 * processor
 466                 *
 467                 * Check if there are pages remaining in this pageset
 468                 * if not then there is nothing to expire.
 469                 */
 470                if (!p->expire || !p->pcp.count)
 471                        continue;
 472
 473                /*
 474                 * We never drain zones local to this processor.
 475                 */
 476                if (zone_to_nid(zone) == numa_node_id()) {
 477                        p->expire = 0;
 478                        continue;
 479                }
 480
 481                p->expire--;
 482                if (p->expire)
 483                        continue;
 484
 485                if (p->pcp.count)
 486                        drain_zone_pages(zone, &p->pcp);
 487#endif
 488        }
 489
 490        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 491                if (global_diff[i])
 492                        atomic_long_add(global_diff[i], &vm_stat[i]);
 493}
 494
 495#endif
 496
 497#ifdef CONFIG_NUMA
 498/*
 499 * zonelist = the list of zones passed to the allocator
 500 * z        = the zone from which the allocation occurred.
 501 *
 502 * Must be called with interrupts disabled.
 503 */
 504void zone_statistics(struct zone *preferred_zone, struct zone *z)
 505{
 506        if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 507                __inc_zone_state(z, NUMA_HIT);
 508        } else {
 509                __inc_zone_state(z, NUMA_MISS);
 510                __inc_zone_state(preferred_zone, NUMA_FOREIGN);
 511        }
 512        if (z->node == numa_node_id())
 513                __inc_zone_state(z, NUMA_LOCAL);
 514        else
 515                __inc_zone_state(z, NUMA_OTHER);
 516}
 517#endif
 518
 519#ifdef CONFIG_COMPACTION
 520
 521struct contig_page_info {
 522        unsigned long free_pages;
 523        unsigned long free_blocks_total;
 524        unsigned long free_blocks_suitable;
 525};
 526
 527/*
 528 * Calculate the number of free pages in a zone, how many contiguous
 529 * pages are free and how many are large enough to satisfy an allocation of
 530 * the target size. Note that this function makes no attempt to estimate
 531 * how many suitable free blocks there *might* be if MOVABLE pages were
 532 * migrated. Calculating that is possible, but expensive and can be
 533 * figured out from userspace
 534 */
 535static void fill_contig_page_info(struct zone *zone,
 536                                unsigned int suitable_order,
 537                                struct contig_page_info *info)
 538{
 539        unsigned int order;
 540
 541        info->free_pages = 0;
 542        info->free_blocks_total = 0;
 543        info->free_blocks_suitable = 0;
 544
 545        for (order = 0; order < MAX_ORDER; order++) {
 546                unsigned long blocks;
 547
 548                /* Count number of free blocks */
 549                blocks = zone->free_area[order].nr_free;
 550                info->free_blocks_total += blocks;
 551
 552                /* Count free base pages */
 553                info->free_pages += blocks << order;
 554
 555                /* Count the suitable free blocks */
 556                if (order >= suitable_order)
 557                        info->free_blocks_suitable += blocks <<
 558                                                (order - suitable_order);
 559        }
 560}
 561
 562/*
 563 * A fragmentation index only makes sense if an allocation of a requested
 564 * size would fail. If that is true, the fragmentation index indicates
 565 * whether external fragmentation or a lack of memory was the problem.
 566 * The value can be used to determine if page reclaim or compaction
 567 * should be used
 568 */
 569static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 570{
 571        unsigned long requested = 1UL << order;
 572
 573        if (!info->free_blocks_total)
 574                return 0;
 575
 576        /* Fragmentation index only makes sense when a request would fail */
 577        if (info->free_blocks_suitable)
 578                return -1000;
 579
 580        /*
 581         * Index is between 0 and 1 so return within 3 decimal places
 582         *
 583         * 0 => allocation would fail due to lack of memory
 584         * 1 => allocation would fail due to fragmentation
 585         */
 586        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 587}
 588
 589/* Same as __fragmentation index but allocs contig_page_info on stack */
 590int fragmentation_index(struct zone *zone, unsigned int order)
 591{
 592        struct contig_page_info info;
 593
 594        fill_contig_page_info(zone, order, &info);
 595        return __fragmentation_index(order, &info);
 596}
 597#endif
 598
 599#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
 600#include <linux/proc_fs.h>
 601#include <linux/seq_file.h>
 602
 603static char * const migratetype_names[MIGRATE_TYPES] = {
 604        "Unmovable",
 605        "Reclaimable",
 606        "Movable",
 607        "Reserve",
 608        "Isolate",
 609};
 610
 611static void *frag_start(struct seq_file *m, loff_t *pos)
 612{
 613        pg_data_t *pgdat;
 614        loff_t node = *pos;
 615        for (pgdat = first_online_pgdat();
 616             pgdat && node;
 617             pgdat = next_online_pgdat(pgdat))
 618                --node;
 619
 620        return pgdat;
 621}
 622
 623static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 624{
 625        pg_data_t *pgdat = (pg_data_t *)arg;
 626
 627        (*pos)++;
 628        return next_online_pgdat(pgdat);
 629}
 630
 631static void frag_stop(struct seq_file *m, void *arg)
 632{
 633}
 634
 635/* Walk all the zones in a node and print using a callback */
 636static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 637                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 638{
 639        struct zone *zone;
 640        struct zone *node_zones = pgdat->node_zones;
 641        unsigned long flags;
 642
 643        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 644                if (!populated_zone(zone))
 645                        continue;
 646
 647                spin_lock_irqsave(&zone->lock, flags);
 648                print(m, pgdat, zone);
 649                spin_unlock_irqrestore(&zone->lock, flags);
 650        }
 651}
 652#endif
 653
 654#ifdef CONFIG_PROC_FS
 655static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 656                                                struct zone *zone)
 657{
 658        int order;
 659
 660        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 661        for (order = 0; order < MAX_ORDER; ++order)
 662                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 663        seq_putc(m, '\n');
 664}
 665
 666/*
 667 * This walks the free areas for each zone.
 668 */
 669static int frag_show(struct seq_file *m, void *arg)
 670{
 671        pg_data_t *pgdat = (pg_data_t *)arg;
 672        walk_zones_in_node(m, pgdat, frag_show_print);
 673        return 0;
 674}
 675
 676static void pagetypeinfo_showfree_print(struct seq_file *m,
 677                                        pg_data_t *pgdat, struct zone *zone)
 678{
 679        int order, mtype;
 680
 681        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 682                seq_printf(m, "Node %4d, zone %8s, type %12s ",
 683                                        pgdat->node_id,
 684                                        zone->name,
 685                                        migratetype_names[mtype]);
 686                for (order = 0; order < MAX_ORDER; ++order) {
 687                        unsigned long freecount = 0;
 688                        struct free_area *area;
 689                        struct list_head *curr;
 690
 691                        area = &(zone->free_area[order]);
 692
 693                        list_for_each(curr, &area->free_list[mtype])
 694                                freecount++;
 695                        seq_printf(m, "%6lu ", freecount);
 696                }
 697                seq_putc(m, '\n');
 698        }
 699}
 700
 701/* Print out the free pages at each order for each migatetype */
 702static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 703{
 704        int order;
 705        pg_data_t *pgdat = (pg_data_t *)arg;
 706
 707        /* Print header */
 708        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 709        for (order = 0; order < MAX_ORDER; ++order)
 710                seq_printf(m, "%6d ", order);
 711        seq_putc(m, '\n');
 712
 713        walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 714
 715        return 0;
 716}
 717
 718static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 719                                        pg_data_t *pgdat, struct zone *zone)
 720{
 721        int mtype;
 722        unsigned long pfn;
 723        unsigned long start_pfn = zone->zone_start_pfn;
 724        unsigned long end_pfn = start_pfn + zone->spanned_pages;
 725        unsigned long count[MIGRATE_TYPES] = { 0, };
 726
 727        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 728                struct page *page;
 729
 730                if (!pfn_valid(pfn))
 731                        continue;
 732
 733                page = pfn_to_page(pfn);
 734
 735                /* Watch for unexpected holes punched in the memmap */
 736                if (!memmap_valid_within(pfn, page, zone))
 737                        continue;
 738
 739                mtype = get_pageblock_migratetype(page);
 740
 741                if (mtype < MIGRATE_TYPES)
 742                        count[mtype]++;
 743        }
 744
 745        /* Print counts */
 746        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 747        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
 748                seq_printf(m, "%12lu ", count[mtype]);
 749        seq_putc(m, '\n');
 750}
 751
 752/* Print out the free pages at each order for each migratetype */
 753static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
 754{
 755        int mtype;
 756        pg_data_t *pgdat = (pg_data_t *)arg;
 757
 758        seq_printf(m, "\n%-23s", "Number of blocks type ");
 759        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
 760                seq_printf(m, "%12s ", migratetype_names[mtype]);
 761        seq_putc(m, '\n');
 762        walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
 763
 764        return 0;
 765}
 766
 767/*
 768 * This prints out statistics in relation to grouping pages by mobility.
 769 * It is expensive to collect so do not constantly read the file.
 770 */
 771static int pagetypeinfo_show(struct seq_file *m, void *arg)
 772{
 773        pg_data_t *pgdat = (pg_data_t *)arg;
 774
 775        /* check memoryless node */
 776        if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
 777                return 0;
 778
 779        seq_printf(m, "Page block order: %d\n", pageblock_order);
 780        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
 781        seq_putc(m, '\n');
 782        pagetypeinfo_showfree(m, pgdat);
 783        pagetypeinfo_showblockcount(m, pgdat);
 784
 785        return 0;
 786}
 787
 788static const struct seq_operations fragmentation_op = {
 789        .start  = frag_start,
 790        .next   = frag_next,
 791        .stop   = frag_stop,
 792        .show   = frag_show,
 793};
 794
 795static int fragmentation_open(struct inode *inode, struct file *file)
 796{
 797        return seq_open(file, &fragmentation_op);
 798}
 799
 800static const struct file_operations fragmentation_file_operations = {
 801        .open           = fragmentation_open,
 802        .read           = seq_read,
 803        .llseek         = seq_lseek,
 804        .release        = seq_release,
 805};
 806
 807static const struct seq_operations pagetypeinfo_op = {
 808        .start  = frag_start,
 809        .next   = frag_next,
 810        .stop   = frag_stop,
 811        .show   = pagetypeinfo_show,
 812};
 813
 814static int pagetypeinfo_open(struct inode *inode, struct file *file)
 815{
 816        return seq_open(file, &pagetypeinfo_op);
 817}
 818
 819static const struct file_operations pagetypeinfo_file_ops = {
 820        .open           = pagetypeinfo_open,
 821        .read           = seq_read,
 822        .llseek         = seq_lseek,
 823        .release        = seq_release,
 824};
 825
 826#ifdef CONFIG_ZONE_DMA
 827#define TEXT_FOR_DMA(xx) xx "_dma",
 828#else
 829#define TEXT_FOR_DMA(xx)
 830#endif
 831
 832#ifdef CONFIG_ZONE_DMA32
 833#define TEXT_FOR_DMA32(xx) xx "_dma32",
 834#else
 835#define TEXT_FOR_DMA32(xx)
 836#endif
 837
 838#ifdef CONFIG_HIGHMEM
 839#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 840#else
 841#define TEXT_FOR_HIGHMEM(xx)
 842#endif
 843
 844#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 845                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
 846
 847static const char * const vmstat_text[] = {
 848        /* Zoned VM counters */
 849        "nr_free_pages",
 850        "nr_inactive_anon",
 851        "nr_active_anon",
 852        "nr_inactive_file",
 853        "nr_active_file",
 854        "nr_unevictable",
 855        "nr_mlock",
 856        "nr_anon_pages",
 857        "nr_mapped",
 858        "nr_file_pages",
 859        "nr_dirty",
 860        "nr_writeback",
 861        "nr_slab_reclaimable",
 862        "nr_slab_unreclaimable",
 863        "nr_page_table_pages",
 864        "nr_kernel_stack",
 865        "nr_unstable",
 866        "nr_bounce",
 867        "nr_vmscan_write",
 868        "nr_writeback_temp",
 869        "nr_isolated_anon",
 870        "nr_isolated_file",
 871        "nr_shmem",
 872        "nr_dirtied",
 873        "nr_written",
 874
 875#ifdef CONFIG_NUMA
 876        "numa_hit",
 877        "numa_miss",
 878        "numa_foreign",
 879        "numa_interleave",
 880        "numa_local",
 881        "numa_other",
 882#endif
 883        "nr_anon_transparent_hugepages",
 884        "nr_dirty_threshold",
 885        "nr_dirty_background_threshold",
 886
 887#ifdef CONFIG_VM_EVENT_COUNTERS
 888        "pgpgin",
 889        "pgpgout",
 890        "pswpin",
 891        "pswpout",
 892
 893        TEXTS_FOR_ZONES("pgalloc")
 894
 895        "pgfree",
 896        "pgactivate",
 897        "pgdeactivate",
 898
 899        "pgfault",
 900        "pgmajfault",
 901
 902        TEXTS_FOR_ZONES("pgrefill")
 903        TEXTS_FOR_ZONES("pgsteal")
 904        TEXTS_FOR_ZONES("pgscan_kswapd")
 905        TEXTS_FOR_ZONES("pgscan_direct")
 906
 907#ifdef CONFIG_NUMA
 908        "zone_reclaim_failed",
 909#endif
 910        "pginodesteal",
 911        "slabs_scanned",
 912        "kswapd_steal",
 913        "kswapd_inodesteal",
 914        "kswapd_low_wmark_hit_quickly",
 915        "kswapd_high_wmark_hit_quickly",
 916        "kswapd_skip_congestion_wait",
 917        "pageoutrun",
 918        "allocstall",
 919
 920        "pgrotated",
 921
 922#ifdef CONFIG_COMPACTION
 923        "compact_blocks_moved",
 924        "compact_pages_moved",
 925        "compact_pagemigrate_failed",
 926        "compact_stall",
 927        "compact_fail",
 928        "compact_success",
 929#endif
 930
 931#ifdef CONFIG_HUGETLB_PAGE
 932        "htlb_buddy_alloc_success",
 933        "htlb_buddy_alloc_fail",
 934#endif
 935        "unevictable_pgs_culled",
 936        "unevictable_pgs_scanned",
 937        "unevictable_pgs_rescued",
 938        "unevictable_pgs_mlocked",
 939        "unevictable_pgs_munlocked",
 940        "unevictable_pgs_cleared",
 941        "unevictable_pgs_stranded",
 942        "unevictable_pgs_mlockfreed",
 943#endif
 944};
 945
 946static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
 947                                                        struct zone *zone)
 948{
 949        int i;
 950        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
 951        seq_printf(m,
 952                   "\n  pages free     %lu"
 953                   "\n        min      %lu"
 954                   "\n        low      %lu"
 955                   "\n        high     %lu"
 956                   "\n        scanned  %lu"
 957                   "\n        spanned  %lu"
 958                   "\n        present  %lu",
 959                   zone_page_state(zone, NR_FREE_PAGES),
 960                   min_wmark_pages(zone),
 961                   low_wmark_pages(zone),
 962                   high_wmark_pages(zone),
 963                   zone->pages_scanned,
 964                   zone->spanned_pages,
 965                   zone->present_pages);
 966
 967        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 968                seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
 969                                zone_page_state(zone, i));
 970
 971        seq_printf(m,
 972                   "\n        protection: (%lu",
 973                   zone->lowmem_reserve[0]);
 974        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
 975                seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
 976        seq_printf(m,
 977                   ")"
 978                   "\n  pagesets");
 979        for_each_online_cpu(i) {
 980                struct per_cpu_pageset *pageset;
 981
 982                pageset = per_cpu_ptr(zone->pageset, i);
 983                seq_printf(m,
 984                           "\n    cpu: %i"
 985                           "\n              count: %i"
 986                           "\n              high:  %i"
 987                           "\n              batch: %i",
 988                           i,
 989                           pageset->pcp.count,
 990                           pageset->pcp.high,
 991                           pageset->pcp.batch);
 992#ifdef CONFIG_SMP
 993                seq_printf(m, "\n  vm stats threshold: %d",
 994                                pageset->stat_threshold);
 995#endif
 996        }
 997        seq_printf(m,
 998                   "\n  all_unreclaimable: %u"
 999                   "\n  start_pfn:         %lu"
1000                   "\n  inactive_ratio:    %u",
1001                   zone->all_unreclaimable,
1002                   zone->zone_start_pfn,
1003                   zone->inactive_ratio);
1004        seq_putc(m, '\n');
1005}
1006
1007/*
1008 * Output information about zones in @pgdat.
1009 */
1010static int zoneinfo_show(struct seq_file *m, void *arg)
1011{
1012        pg_data_t *pgdat = (pg_data_t *)arg;
1013        walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1014        return 0;
1015}
1016
1017static const struct seq_operations zoneinfo_op = {
1018        .start  = frag_start, /* iterate over all zones. The same as in
1019                               * fragmentation. */
1020        .next   = frag_next,
1021        .stop   = frag_stop,
1022        .show   = zoneinfo_show,
1023};
1024
1025static int zoneinfo_open(struct inode *inode, struct file *file)
1026{
1027        return seq_open(file, &zoneinfo_op);
1028}
1029
1030static const struct file_operations proc_zoneinfo_file_operations = {
1031        .open           = zoneinfo_open,
1032        .read           = seq_read,
1033        .llseek         = seq_lseek,
1034        .release        = seq_release,
1035};
1036
1037enum writeback_stat_item {
1038        NR_DIRTY_THRESHOLD,
1039        NR_DIRTY_BG_THRESHOLD,
1040        NR_VM_WRITEBACK_STAT_ITEMS,
1041};
1042
1043static void *vmstat_start(struct seq_file *m, loff_t *pos)
1044{
1045        unsigned long *v;
1046        int i, stat_items_size;
1047
1048        if (*pos >= ARRAY_SIZE(vmstat_text))
1049                return NULL;
1050        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1051                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1052
1053#ifdef CONFIG_VM_EVENT_COUNTERS
1054        stat_items_size += sizeof(struct vm_event_state);
1055#endif
1056
1057        v = kmalloc(stat_items_size, GFP_KERNEL);
1058        m->private = v;
1059        if (!v)
1060                return ERR_PTR(-ENOMEM);
1061        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1062                v[i] = global_page_state(i);
1063        v += NR_VM_ZONE_STAT_ITEMS;
1064
1065        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1066                            v + NR_DIRTY_THRESHOLD);
1067        v += NR_VM_WRITEBACK_STAT_ITEMS;
1068
1069#ifdef CONFIG_VM_EVENT_COUNTERS
1070        all_vm_events(v);
1071        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1072        v[PGPGOUT] /= 2;
1073#endif
1074        return (unsigned long *)m->private + *pos;
1075}
1076
1077static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1078{
1079        (*pos)++;
1080        if (*pos >= ARRAY_SIZE(vmstat_text))
1081                return NULL;
1082        return (unsigned long *)m->private + *pos;
1083}
1084
1085static int vmstat_show(struct seq_file *m, void *arg)
1086{
1087        unsigned long *l = arg;
1088        unsigned long off = l - (unsigned long *)m->private;
1089
1090        seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1091        return 0;
1092}
1093
1094static void vmstat_stop(struct seq_file *m, void *arg)
1095{
1096        kfree(m->private);
1097        m->private = NULL;
1098}
1099
1100static const struct seq_operations vmstat_op = {
1101        .start  = vmstat_start,
1102        .next   = vmstat_next,
1103        .stop   = vmstat_stop,
1104        .show   = vmstat_show,
1105};
1106
1107static int vmstat_open(struct inode *inode, struct file *file)
1108{
1109        return seq_open(file, &vmstat_op);
1110}
1111
1112static const struct file_operations proc_vmstat_file_operations = {
1113        .open           = vmstat_open,
1114        .read           = seq_read,
1115        .llseek         = seq_lseek,
1116        .release        = seq_release,
1117};
1118#endif /* CONFIG_PROC_FS */
1119
1120#ifdef CONFIG_SMP
1121static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1122int sysctl_stat_interval __read_mostly = HZ;
1123
1124static void vmstat_update(struct work_struct *w)
1125{
1126        refresh_cpu_vm_stats(smp_processor_id());
1127        schedule_delayed_work(&__get_cpu_var(vmstat_work),
1128                round_jiffies_relative(sysctl_stat_interval));
1129}
1130
1131static void __cpuinit start_cpu_timer(int cpu)
1132{
1133        struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1134
1135        INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1136        schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1137}
1138
1139/*
1140 * Use the cpu notifier to insure that the thresholds are recalculated
1141 * when necessary.
1142 */
1143static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1144                unsigned long action,
1145                void *hcpu)
1146{
1147        long cpu = (long)hcpu;
1148
1149        switch (action) {
1150        case CPU_ONLINE:
1151        case CPU_ONLINE_FROZEN:
1152                refresh_zone_stat_thresholds();
1153                start_cpu_timer(cpu);
1154                node_set_state(cpu_to_node(cpu), N_CPU);
1155                break;
1156        case CPU_DOWN_PREPARE:
1157        case CPU_DOWN_PREPARE_FROZEN:
1158                cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1159                per_cpu(vmstat_work, cpu).work.func = NULL;
1160                break;
1161        case CPU_DOWN_FAILED:
1162        case CPU_DOWN_FAILED_FROZEN:
1163                start_cpu_timer(cpu);
1164                break;
1165        case CPU_DEAD:
1166        case CPU_DEAD_FROZEN:
1167                refresh_zone_stat_thresholds();
1168                break;
1169        default:
1170                break;
1171        }
1172        return NOTIFY_OK;
1173}
1174
1175static struct notifier_block __cpuinitdata vmstat_notifier =
1176        { &vmstat_cpuup_callback, NULL, 0 };
1177#endif
1178
1179static int __init setup_vmstat(void)
1180{
1181#ifdef CONFIG_SMP
1182        int cpu;
1183
1184        refresh_zone_stat_thresholds();
1185        register_cpu_notifier(&vmstat_notifier);
1186
1187        for_each_online_cpu(cpu)
1188                start_cpu_timer(cpu);
1189#endif
1190#ifdef CONFIG_PROC_FS
1191        proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1192        proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1193        proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1194        proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1195#endif
1196        return 0;
1197}
1198module_init(setup_vmstat)
1199
1200#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1201#include <linux/debugfs.h>
1202
1203static struct dentry *extfrag_debug_root;
1204
1205/*
1206 * Return an index indicating how much of the available free memory is
1207 * unusable for an allocation of the requested size.
1208 */
1209static int unusable_free_index(unsigned int order,
1210                                struct contig_page_info *info)
1211{
1212        /* No free memory is interpreted as all free memory is unusable */
1213        if (info->free_pages == 0)
1214                return 1000;
1215
1216        /*
1217         * Index should be a value between 0 and 1. Return a value to 3
1218         * decimal places.
1219         *
1220         * 0 => no fragmentation
1221         * 1 => high fragmentation
1222         */
1223        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1224
1225}
1226
1227static void unusable_show_print(struct seq_file *m,
1228                                        pg_data_t *pgdat, struct zone *zone)
1229{
1230        unsigned int order;
1231        int index;
1232        struct contig_page_info info;
1233
1234        seq_printf(m, "Node %d, zone %8s ",
1235                                pgdat->node_id,
1236                                zone->name);
1237        for (order = 0; order < MAX_ORDER; ++order) {
1238                fill_contig_page_info(zone, order, &info);
1239                index = unusable_free_index(order, &info);
1240                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1241        }
1242
1243        seq_putc(m, '\n');
1244}
1245
1246/*
1247 * Display unusable free space index
1248 *
1249 * The unusable free space index measures how much of the available free
1250 * memory cannot be used to satisfy an allocation of a given size and is a
1251 * value between 0 and 1. The higher the value, the more of free memory is
1252 * unusable and by implication, the worse the external fragmentation is. This
1253 * can be expressed as a percentage by multiplying by 100.
1254 */
1255static int unusable_show(struct seq_file *m, void *arg)
1256{
1257        pg_data_t *pgdat = (pg_data_t *)arg;
1258
1259        /* check memoryless node */
1260        if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1261                return 0;
1262
1263        walk_zones_in_node(m, pgdat, unusable_show_print);
1264
1265        return 0;
1266}
1267
1268static const struct seq_operations unusable_op = {
1269        .start  = frag_start,
1270        .next   = frag_next,
1271        .stop   = frag_stop,
1272        .show   = unusable_show,
1273};
1274
1275static int unusable_open(struct inode *inode, struct file *file)
1276{
1277        return seq_open(file, &unusable_op);
1278}
1279
1280static const struct file_operations unusable_file_ops = {
1281        .open           = unusable_open,
1282        .read           = seq_read,
1283        .llseek         = seq_lseek,
1284        .release        = seq_release,
1285};
1286
1287static void extfrag_show_print(struct seq_file *m,
1288                                        pg_data_t *pgdat, struct zone *zone)
1289{
1290        unsigned int order;
1291        int index;
1292
1293        /* Alloc on stack as interrupts are disabled for zone walk */
1294        struct contig_page_info info;
1295
1296        seq_printf(m, "Node %d, zone %8s ",
1297                                pgdat->node_id,
1298                                zone->name);
1299        for (order = 0; order < MAX_ORDER; ++order) {
1300                fill_contig_page_info(zone, order, &info);
1301                index = __fragmentation_index(order, &info);
1302                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1303        }
1304
1305        seq_putc(m, '\n');
1306}
1307
1308/*
1309 * Display fragmentation index for orders that allocations would fail for
1310 */
1311static int extfrag_show(struct seq_file *m, void *arg)
1312{
1313        pg_data_t *pgdat = (pg_data_t *)arg;
1314
1315        walk_zones_in_node(m, pgdat, extfrag_show_print);
1316
1317        return 0;
1318}
1319
1320static const struct seq_operations extfrag_op = {
1321        .start  = frag_start,
1322        .next   = frag_next,
1323        .stop   = frag_stop,
1324        .show   = extfrag_show,
1325};
1326
1327static int extfrag_open(struct inode *inode, struct file *file)
1328{
1329        return seq_open(file, &extfrag_op);
1330}
1331
1332static const struct file_operations extfrag_file_ops = {
1333        .open           = extfrag_open,
1334        .read           = seq_read,
1335        .llseek         = seq_lseek,
1336        .release        = seq_release,
1337};
1338
1339static int __init extfrag_debug_init(void)
1340{
1341        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1342        if (!extfrag_debug_root)
1343                return -ENOMEM;
1344
1345        if (!debugfs_create_file("unusable_index", 0444,
1346                        extfrag_debug_root, NULL, &unusable_file_ops))
1347                return -ENOMEM;
1348
1349        if (!debugfs_create_file("extfrag_index", 0444,
1350                        extfrag_debug_root, NULL, &extfrag_file_ops))
1351                return -ENOMEM;
1352
1353        return 0;
1354}
1355
1356module_init(extfrag_debug_init);
1357#endif
1358