linux/net/ipv4/ipmr.c
<<
>>
Prefs
   1/*
   2 *      IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *        Linux Consultancy and Custom Driver Development
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 *
  12 *      Fixes:
  13 *      Michael Chastain        :       Incorrect size of copying.
  14 *      Alan Cox                :       Added the cache manager code
  15 *      Alan Cox                :       Fixed the clone/copy bug and device race.
  16 *      Mike McLagan            :       Routing by source
  17 *      Malcolm Beattie         :       Buffer handling fixes.
  18 *      Alexey Kuznetsov        :       Double buffer free and other fixes.
  19 *      SVR Anand               :       Fixed several multicast bugs and problems.
  20 *      Alexey Kuznetsov        :       Status, optimisations and more.
  21 *      Brad Parker             :       Better behaviour on mrouted upcall
  22 *                                      overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
  25 *                                      Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <linux/types.h>
  32#include <linux/capability.h>
  33#include <linux/errno.h>
  34#include <linux/timer.h>
  35#include <linux/mm.h>
  36#include <linux/kernel.h>
  37#include <linux/fcntl.h>
  38#include <linux/stat.h>
  39#include <linux/socket.h>
  40#include <linux/in.h>
  41#include <linux/inet.h>
  42#include <linux/netdevice.h>
  43#include <linux/inetdevice.h>
  44#include <linux/igmp.h>
  45#include <linux/proc_fs.h>
  46#include <linux/seq_file.h>
  47#include <linux/mroute.h>
  48#include <linux/init.h>
  49#include <linux/if_ether.h>
  50#include <linux/slab.h>
  51#include <net/net_namespace.h>
  52#include <net/ip.h>
  53#include <net/protocol.h>
  54#include <linux/skbuff.h>
  55#include <net/route.h>
  56#include <net/sock.h>
  57#include <net/icmp.h>
  58#include <net/udp.h>
  59#include <net/raw.h>
  60#include <linux/notifier.h>
  61#include <linux/if_arp.h>
  62#include <linux/netfilter_ipv4.h>
  63#include <linux/compat.h>
  64#include <net/ipip.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM 1
  71#endif
  72
  73struct mr_table {
  74        struct list_head        list;
  75#ifdef CONFIG_NET_NS
  76        struct net              *net;
  77#endif
  78        u32                     id;
  79        struct sock __rcu       *mroute_sk;
  80        struct timer_list       ipmr_expire_timer;
  81        struct list_head        mfc_unres_queue;
  82        struct list_head        mfc_cache_array[MFC_LINES];
  83        struct vif_device       vif_table[MAXVIFS];
  84        int                     maxvif;
  85        atomic_t                cache_resolve_queue_len;
  86        int                     mroute_do_assert;
  87        int                     mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89        int                     mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94        struct fib_rule         common;
  95};
  96
  97struct ipmr_result {
  98        struct mr_table         *mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *      Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 128                         struct sk_buff *skb, struct mfc_cache *cache,
 129                         int local);
 130static int ipmr_cache_report(struct mr_table *mrt,
 131                             struct sk_buff *pkt, vifi_t vifi, int assert);
 132static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 133                              struct mfc_cache *c, struct rtmsg *rtm);
 134static void ipmr_expire_process(unsigned long arg);
 135
 136#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 137#define ipmr_for_each_table(mrt, net) \
 138        list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 139
 140static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 141{
 142        struct mr_table *mrt;
 143
 144        ipmr_for_each_table(mrt, net) {
 145                if (mrt->id == id)
 146                        return mrt;
 147        }
 148        return NULL;
 149}
 150
 151static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
 152                           struct mr_table **mrt)
 153{
 154        struct ipmr_result res;
 155        struct fib_lookup_arg arg = { .result = &res, };
 156        int err;
 157
 158        err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
 159        if (err < 0)
 160                return err;
 161        *mrt = res.mrt;
 162        return 0;
 163}
 164
 165static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 166                            int flags, struct fib_lookup_arg *arg)
 167{
 168        struct ipmr_result *res = arg->result;
 169        struct mr_table *mrt;
 170
 171        switch (rule->action) {
 172        case FR_ACT_TO_TBL:
 173                break;
 174        case FR_ACT_UNREACHABLE:
 175                return -ENETUNREACH;
 176        case FR_ACT_PROHIBIT:
 177                return -EACCES;
 178        case FR_ACT_BLACKHOLE:
 179        default:
 180                return -EINVAL;
 181        }
 182
 183        mrt = ipmr_get_table(rule->fr_net, rule->table);
 184        if (mrt == NULL)
 185                return -EAGAIN;
 186        res->mrt = mrt;
 187        return 0;
 188}
 189
 190static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 191{
 192        return 1;
 193}
 194
 195static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 196        FRA_GENERIC_POLICY,
 197};
 198
 199static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 200                               struct fib_rule_hdr *frh, struct nlattr **tb)
 201{
 202        return 0;
 203}
 204
 205static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 206                             struct nlattr **tb)
 207{
 208        return 1;
 209}
 210
 211static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 212                          struct fib_rule_hdr *frh)
 213{
 214        frh->dst_len = 0;
 215        frh->src_len = 0;
 216        frh->tos     = 0;
 217        return 0;
 218}
 219
 220static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 221        .family         = RTNL_FAMILY_IPMR,
 222        .rule_size      = sizeof(struct ipmr_rule),
 223        .addr_size      = sizeof(u32),
 224        .action         = ipmr_rule_action,
 225        .match          = ipmr_rule_match,
 226        .configure      = ipmr_rule_configure,
 227        .compare        = ipmr_rule_compare,
 228        .default_pref   = fib_default_rule_pref,
 229        .fill           = ipmr_rule_fill,
 230        .nlgroup        = RTNLGRP_IPV4_RULE,
 231        .policy         = ipmr_rule_policy,
 232        .owner          = THIS_MODULE,
 233};
 234
 235static int __net_init ipmr_rules_init(struct net *net)
 236{
 237        struct fib_rules_ops *ops;
 238        struct mr_table *mrt;
 239        int err;
 240
 241        ops = fib_rules_register(&ipmr_rules_ops_template, net);
 242        if (IS_ERR(ops))
 243                return PTR_ERR(ops);
 244
 245        INIT_LIST_HEAD(&net->ipv4.mr_tables);
 246
 247        mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 248        if (mrt == NULL) {
 249                err = -ENOMEM;
 250                goto err1;
 251        }
 252
 253        err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 254        if (err < 0)
 255                goto err2;
 256
 257        net->ipv4.mr_rules_ops = ops;
 258        return 0;
 259
 260err2:
 261        kfree(mrt);
 262err1:
 263        fib_rules_unregister(ops);
 264        return err;
 265}
 266
 267static void __net_exit ipmr_rules_exit(struct net *net)
 268{
 269        struct mr_table *mrt, *next;
 270
 271        list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 272                list_del(&mrt->list);
 273                kfree(mrt);
 274        }
 275        fib_rules_unregister(net->ipv4.mr_rules_ops);
 276}
 277#else
 278#define ipmr_for_each_table(mrt, net) \
 279        for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 280
 281static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 282{
 283        return net->ipv4.mrt;
 284}
 285
 286static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
 287                           struct mr_table **mrt)
 288{
 289        *mrt = net->ipv4.mrt;
 290        return 0;
 291}
 292
 293static int __net_init ipmr_rules_init(struct net *net)
 294{
 295        net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 296        return net->ipv4.mrt ? 0 : -ENOMEM;
 297}
 298
 299static void __net_exit ipmr_rules_exit(struct net *net)
 300{
 301        kfree(net->ipv4.mrt);
 302}
 303#endif
 304
 305static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 306{
 307        struct mr_table *mrt;
 308        unsigned int i;
 309
 310        mrt = ipmr_get_table(net, id);
 311        if (mrt != NULL)
 312                return mrt;
 313
 314        mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 315        if (mrt == NULL)
 316                return NULL;
 317        write_pnet(&mrt->net, net);
 318        mrt->id = id;
 319
 320        /* Forwarding cache */
 321        for (i = 0; i < MFC_LINES; i++)
 322                INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 323
 324        INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 325
 326        setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 327                    (unsigned long)mrt);
 328
 329#ifdef CONFIG_IP_PIMSM
 330        mrt->mroute_reg_vif_num = -1;
 331#endif
 332#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 333        list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 334#endif
 335        return mrt;
 336}
 337
 338/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 339
 340static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 341{
 342        struct net *net = dev_net(dev);
 343
 344        dev_close(dev);
 345
 346        dev = __dev_get_by_name(net, "tunl0");
 347        if (dev) {
 348                const struct net_device_ops *ops = dev->netdev_ops;
 349                struct ifreq ifr;
 350                struct ip_tunnel_parm p;
 351
 352                memset(&p, 0, sizeof(p));
 353                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 354                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 355                p.iph.version = 4;
 356                p.iph.ihl = 5;
 357                p.iph.protocol = IPPROTO_IPIP;
 358                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 359                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 360
 361                if (ops->ndo_do_ioctl) {
 362                        mm_segment_t oldfs = get_fs();
 363
 364                        set_fs(KERNEL_DS);
 365                        ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 366                        set_fs(oldfs);
 367                }
 368        }
 369}
 370
 371static
 372struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 373{
 374        struct net_device  *dev;
 375
 376        dev = __dev_get_by_name(net, "tunl0");
 377
 378        if (dev) {
 379                const struct net_device_ops *ops = dev->netdev_ops;
 380                int err;
 381                struct ifreq ifr;
 382                struct ip_tunnel_parm p;
 383                struct in_device  *in_dev;
 384
 385                memset(&p, 0, sizeof(p));
 386                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 387                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 388                p.iph.version = 4;
 389                p.iph.ihl = 5;
 390                p.iph.protocol = IPPROTO_IPIP;
 391                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 392                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 393
 394                if (ops->ndo_do_ioctl) {
 395                        mm_segment_t oldfs = get_fs();
 396
 397                        set_fs(KERNEL_DS);
 398                        err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 399                        set_fs(oldfs);
 400                } else {
 401                        err = -EOPNOTSUPP;
 402                }
 403                dev = NULL;
 404
 405                if (err == 0 &&
 406                    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 407                        dev->flags |= IFF_MULTICAST;
 408
 409                        in_dev = __in_dev_get_rtnl(dev);
 410                        if (in_dev == NULL)
 411                                goto failure;
 412
 413                        ipv4_devconf_setall(in_dev);
 414                        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 415
 416                        if (dev_open(dev))
 417                                goto failure;
 418                        dev_hold(dev);
 419                }
 420        }
 421        return dev;
 422
 423failure:
 424        /* allow the register to be completed before unregistering. */
 425        rtnl_unlock();
 426        rtnl_lock();
 427
 428        unregister_netdevice(dev);
 429        return NULL;
 430}
 431
 432#ifdef CONFIG_IP_PIMSM
 433
 434static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 435{
 436        struct net *net = dev_net(dev);
 437        struct mr_table *mrt;
 438        struct flowi fl = {
 439                .oif            = dev->ifindex,
 440                .iif            = skb->skb_iif,
 441                .mark           = skb->mark,
 442        };
 443        int err;
 444
 445        err = ipmr_fib_lookup(net, &fl, &mrt);
 446        if (err < 0) {
 447                kfree_skb(skb);
 448                return err;
 449        }
 450
 451        read_lock(&mrt_lock);
 452        dev->stats.tx_bytes += skb->len;
 453        dev->stats.tx_packets++;
 454        ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 455        read_unlock(&mrt_lock);
 456        kfree_skb(skb);
 457        return NETDEV_TX_OK;
 458}
 459
 460static const struct net_device_ops reg_vif_netdev_ops = {
 461        .ndo_start_xmit = reg_vif_xmit,
 462};
 463
 464static void reg_vif_setup(struct net_device *dev)
 465{
 466        dev->type               = ARPHRD_PIMREG;
 467        dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 468        dev->flags              = IFF_NOARP;
 469        dev->netdev_ops         = &reg_vif_netdev_ops,
 470        dev->destructor         = free_netdev;
 471        dev->features           |= NETIF_F_NETNS_LOCAL;
 472}
 473
 474static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 475{
 476        struct net_device *dev;
 477        struct in_device *in_dev;
 478        char name[IFNAMSIZ];
 479
 480        if (mrt->id == RT_TABLE_DEFAULT)
 481                sprintf(name, "pimreg");
 482        else
 483                sprintf(name, "pimreg%u", mrt->id);
 484
 485        dev = alloc_netdev(0, name, reg_vif_setup);
 486
 487        if (dev == NULL)
 488                return NULL;
 489
 490        dev_net_set(dev, net);
 491
 492        if (register_netdevice(dev)) {
 493                free_netdev(dev);
 494                return NULL;
 495        }
 496        dev->iflink = 0;
 497
 498        rcu_read_lock();
 499        in_dev = __in_dev_get_rcu(dev);
 500        if (!in_dev) {
 501                rcu_read_unlock();
 502                goto failure;
 503        }
 504
 505        ipv4_devconf_setall(in_dev);
 506        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 507        rcu_read_unlock();
 508
 509        if (dev_open(dev))
 510                goto failure;
 511
 512        dev_hold(dev);
 513
 514        return dev;
 515
 516failure:
 517        /* allow the register to be completed before unregistering. */
 518        rtnl_unlock();
 519        rtnl_lock();
 520
 521        unregister_netdevice(dev);
 522        return NULL;
 523}
 524#endif
 525
 526/*
 527 *      Delete a VIF entry
 528 *      @notify: Set to 1, if the caller is a notifier_call
 529 */
 530
 531static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 532                      struct list_head *head)
 533{
 534        struct vif_device *v;
 535        struct net_device *dev;
 536        struct in_device *in_dev;
 537
 538        if (vifi < 0 || vifi >= mrt->maxvif)
 539                return -EADDRNOTAVAIL;
 540
 541        v = &mrt->vif_table[vifi];
 542
 543        write_lock_bh(&mrt_lock);
 544        dev = v->dev;
 545        v->dev = NULL;
 546
 547        if (!dev) {
 548                write_unlock_bh(&mrt_lock);
 549                return -EADDRNOTAVAIL;
 550        }
 551
 552#ifdef CONFIG_IP_PIMSM
 553        if (vifi == mrt->mroute_reg_vif_num)
 554                mrt->mroute_reg_vif_num = -1;
 555#endif
 556
 557        if (vifi + 1 == mrt->maxvif) {
 558                int tmp;
 559
 560                for (tmp = vifi - 1; tmp >= 0; tmp--) {
 561                        if (VIF_EXISTS(mrt, tmp))
 562                                break;
 563                }
 564                mrt->maxvif = tmp+1;
 565        }
 566
 567        write_unlock_bh(&mrt_lock);
 568
 569        dev_set_allmulti(dev, -1);
 570
 571        in_dev = __in_dev_get_rtnl(dev);
 572        if (in_dev) {
 573                IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 574                ip_rt_multicast_event(in_dev);
 575        }
 576
 577        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 578                unregister_netdevice_queue(dev, head);
 579
 580        dev_put(dev);
 581        return 0;
 582}
 583
 584static void ipmr_cache_free_rcu(struct rcu_head *head)
 585{
 586        struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 587
 588        kmem_cache_free(mrt_cachep, c);
 589}
 590
 591static inline void ipmr_cache_free(struct mfc_cache *c)
 592{
 593        call_rcu(&c->rcu, ipmr_cache_free_rcu);
 594}
 595
 596/* Destroy an unresolved cache entry, killing queued skbs
 597 * and reporting error to netlink readers.
 598 */
 599
 600static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 601{
 602        struct net *net = read_pnet(&mrt->net);
 603        struct sk_buff *skb;
 604        struct nlmsgerr *e;
 605
 606        atomic_dec(&mrt->cache_resolve_queue_len);
 607
 608        while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 609                if (ip_hdr(skb)->version == 0) {
 610                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 611                        nlh->nlmsg_type = NLMSG_ERROR;
 612                        nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 613                        skb_trim(skb, nlh->nlmsg_len);
 614                        e = NLMSG_DATA(nlh);
 615                        e->error = -ETIMEDOUT;
 616                        memset(&e->msg, 0, sizeof(e->msg));
 617
 618                        rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 619                } else {
 620                        kfree_skb(skb);
 621                }
 622        }
 623
 624        ipmr_cache_free(c);
 625}
 626
 627
 628/* Timer process for the unresolved queue. */
 629
 630static void ipmr_expire_process(unsigned long arg)
 631{
 632        struct mr_table *mrt = (struct mr_table *)arg;
 633        unsigned long now;
 634        unsigned long expires;
 635        struct mfc_cache *c, *next;
 636
 637        if (!spin_trylock(&mfc_unres_lock)) {
 638                mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 639                return;
 640        }
 641
 642        if (list_empty(&mrt->mfc_unres_queue))
 643                goto out;
 644
 645        now = jiffies;
 646        expires = 10*HZ;
 647
 648        list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 649                if (time_after(c->mfc_un.unres.expires, now)) {
 650                        unsigned long interval = c->mfc_un.unres.expires - now;
 651                        if (interval < expires)
 652                                expires = interval;
 653                        continue;
 654                }
 655
 656                list_del(&c->list);
 657                ipmr_destroy_unres(mrt, c);
 658        }
 659
 660        if (!list_empty(&mrt->mfc_unres_queue))
 661                mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 662
 663out:
 664        spin_unlock(&mfc_unres_lock);
 665}
 666
 667/* Fill oifs list. It is called under write locked mrt_lock. */
 668
 669static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 670                                   unsigned char *ttls)
 671{
 672        int vifi;
 673
 674        cache->mfc_un.res.minvif = MAXVIFS;
 675        cache->mfc_un.res.maxvif = 0;
 676        memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 677
 678        for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 679                if (VIF_EXISTS(mrt, vifi) &&
 680                    ttls[vifi] && ttls[vifi] < 255) {
 681                        cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 682                        if (cache->mfc_un.res.minvif > vifi)
 683                                cache->mfc_un.res.minvif = vifi;
 684                        if (cache->mfc_un.res.maxvif <= vifi)
 685                                cache->mfc_un.res.maxvif = vifi + 1;
 686                }
 687        }
 688}
 689
 690static int vif_add(struct net *net, struct mr_table *mrt,
 691                   struct vifctl *vifc, int mrtsock)
 692{
 693        int vifi = vifc->vifc_vifi;
 694        struct vif_device *v = &mrt->vif_table[vifi];
 695        struct net_device *dev;
 696        struct in_device *in_dev;
 697        int err;
 698
 699        /* Is vif busy ? */
 700        if (VIF_EXISTS(mrt, vifi))
 701                return -EADDRINUSE;
 702
 703        switch (vifc->vifc_flags) {
 704#ifdef CONFIG_IP_PIMSM
 705        case VIFF_REGISTER:
 706                /*
 707                 * Special Purpose VIF in PIM
 708                 * All the packets will be sent to the daemon
 709                 */
 710                if (mrt->mroute_reg_vif_num >= 0)
 711                        return -EADDRINUSE;
 712                dev = ipmr_reg_vif(net, mrt);
 713                if (!dev)
 714                        return -ENOBUFS;
 715                err = dev_set_allmulti(dev, 1);
 716                if (err) {
 717                        unregister_netdevice(dev);
 718                        dev_put(dev);
 719                        return err;
 720                }
 721                break;
 722#endif
 723        case VIFF_TUNNEL:
 724                dev = ipmr_new_tunnel(net, vifc);
 725                if (!dev)
 726                        return -ENOBUFS;
 727                err = dev_set_allmulti(dev, 1);
 728                if (err) {
 729                        ipmr_del_tunnel(dev, vifc);
 730                        dev_put(dev);
 731                        return err;
 732                }
 733                break;
 734
 735        case VIFF_USE_IFINDEX:
 736        case 0:
 737                if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 738                        dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 739                        if (dev && __in_dev_get_rtnl(dev) == NULL) {
 740                                dev_put(dev);
 741                                return -EADDRNOTAVAIL;
 742                        }
 743                } else {
 744                        dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 745                }
 746                if (!dev)
 747                        return -EADDRNOTAVAIL;
 748                err = dev_set_allmulti(dev, 1);
 749                if (err) {
 750                        dev_put(dev);
 751                        return err;
 752                }
 753                break;
 754        default:
 755                return -EINVAL;
 756        }
 757
 758        in_dev = __in_dev_get_rtnl(dev);
 759        if (!in_dev) {
 760                dev_put(dev);
 761                return -EADDRNOTAVAIL;
 762        }
 763        IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 764        ip_rt_multicast_event(in_dev);
 765
 766        /* Fill in the VIF structures */
 767
 768        v->rate_limit = vifc->vifc_rate_limit;
 769        v->local = vifc->vifc_lcl_addr.s_addr;
 770        v->remote = vifc->vifc_rmt_addr.s_addr;
 771        v->flags = vifc->vifc_flags;
 772        if (!mrtsock)
 773                v->flags |= VIFF_STATIC;
 774        v->threshold = vifc->vifc_threshold;
 775        v->bytes_in = 0;
 776        v->bytes_out = 0;
 777        v->pkt_in = 0;
 778        v->pkt_out = 0;
 779        v->link = dev->ifindex;
 780        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 781                v->link = dev->iflink;
 782
 783        /* And finish update writing critical data */
 784        write_lock_bh(&mrt_lock);
 785        v->dev = dev;
 786#ifdef CONFIG_IP_PIMSM
 787        if (v->flags & VIFF_REGISTER)
 788                mrt->mroute_reg_vif_num = vifi;
 789#endif
 790        if (vifi+1 > mrt->maxvif)
 791                mrt->maxvif = vifi+1;
 792        write_unlock_bh(&mrt_lock);
 793        return 0;
 794}
 795
 796/* called with rcu_read_lock() */
 797static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 798                                         __be32 origin,
 799                                         __be32 mcastgrp)
 800{
 801        int line = MFC_HASH(mcastgrp, origin);
 802        struct mfc_cache *c;
 803
 804        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 805                if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 806                        return c;
 807        }
 808        return NULL;
 809}
 810
 811/*
 812 *      Allocate a multicast cache entry
 813 */
 814static struct mfc_cache *ipmr_cache_alloc(void)
 815{
 816        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 817
 818        if (c)
 819                c->mfc_un.res.minvif = MAXVIFS;
 820        return c;
 821}
 822
 823static struct mfc_cache *ipmr_cache_alloc_unres(void)
 824{
 825        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 826
 827        if (c) {
 828                skb_queue_head_init(&c->mfc_un.unres.unresolved);
 829                c->mfc_un.unres.expires = jiffies + 10*HZ;
 830        }
 831        return c;
 832}
 833
 834/*
 835 *      A cache entry has gone into a resolved state from queued
 836 */
 837
 838static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 839                               struct mfc_cache *uc, struct mfc_cache *c)
 840{
 841        struct sk_buff *skb;
 842        struct nlmsgerr *e;
 843
 844        /* Play the pending entries through our router */
 845
 846        while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 847                if (ip_hdr(skb)->version == 0) {
 848                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 849
 850                        if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 851                                nlh->nlmsg_len = skb_tail_pointer(skb) -
 852                                                 (u8 *)nlh;
 853                        } else {
 854                                nlh->nlmsg_type = NLMSG_ERROR;
 855                                nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 856                                skb_trim(skb, nlh->nlmsg_len);
 857                                e = NLMSG_DATA(nlh);
 858                                e->error = -EMSGSIZE;
 859                                memset(&e->msg, 0, sizeof(e->msg));
 860                        }
 861
 862                        rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 863                } else {
 864                        ip_mr_forward(net, mrt, skb, c, 0);
 865                }
 866        }
 867}
 868
 869/*
 870 *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 871 *      expects the following bizarre scheme.
 872 *
 873 *      Called under mrt_lock.
 874 */
 875
 876static int ipmr_cache_report(struct mr_table *mrt,
 877                             struct sk_buff *pkt, vifi_t vifi, int assert)
 878{
 879        struct sk_buff *skb;
 880        const int ihl = ip_hdrlen(pkt);
 881        struct igmphdr *igmp;
 882        struct igmpmsg *msg;
 883        struct sock *mroute_sk;
 884        int ret;
 885
 886#ifdef CONFIG_IP_PIMSM
 887        if (assert == IGMPMSG_WHOLEPKT)
 888                skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 889        else
 890#endif
 891                skb = alloc_skb(128, GFP_ATOMIC);
 892
 893        if (!skb)
 894                return -ENOBUFS;
 895
 896#ifdef CONFIG_IP_PIMSM
 897        if (assert == IGMPMSG_WHOLEPKT) {
 898                /* Ugly, but we have no choice with this interface.
 899                 * Duplicate old header, fix ihl, length etc.
 900                 * And all this only to mangle msg->im_msgtype and
 901                 * to set msg->im_mbz to "mbz" :-)
 902                 */
 903                skb_push(skb, sizeof(struct iphdr));
 904                skb_reset_network_header(skb);
 905                skb_reset_transport_header(skb);
 906                msg = (struct igmpmsg *)skb_network_header(skb);
 907                memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 908                msg->im_msgtype = IGMPMSG_WHOLEPKT;
 909                msg->im_mbz = 0;
 910                msg->im_vif = mrt->mroute_reg_vif_num;
 911                ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 912                ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 913                                             sizeof(struct iphdr));
 914        } else
 915#endif
 916        {
 917
 918        /* Copy the IP header */
 919
 920        skb->network_header = skb->tail;
 921        skb_put(skb, ihl);
 922        skb_copy_to_linear_data(skb, pkt->data, ihl);
 923        ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
 924        msg = (struct igmpmsg *)skb_network_header(skb);
 925        msg->im_vif = vifi;
 926        skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 927
 928        /* Add our header */
 929
 930        igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 931        igmp->type      =
 932        msg->im_msgtype = assert;
 933        igmp->code      = 0;
 934        ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
 935        skb->transport_header = skb->network_header;
 936        }
 937
 938        rcu_read_lock();
 939        mroute_sk = rcu_dereference(mrt->mroute_sk);
 940        if (mroute_sk == NULL) {
 941                rcu_read_unlock();
 942                kfree_skb(skb);
 943                return -EINVAL;
 944        }
 945
 946        /* Deliver to mrouted */
 947
 948        ret = sock_queue_rcv_skb(mroute_sk, skb);
 949        rcu_read_unlock();
 950        if (ret < 0) {
 951                if (net_ratelimit())
 952                        printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
 953                kfree_skb(skb);
 954        }
 955
 956        return ret;
 957}
 958
 959/*
 960 *      Queue a packet for resolution. It gets locked cache entry!
 961 */
 962
 963static int
 964ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 965{
 966        bool found = false;
 967        int err;
 968        struct mfc_cache *c;
 969        const struct iphdr *iph = ip_hdr(skb);
 970
 971        spin_lock_bh(&mfc_unres_lock);
 972        list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 973                if (c->mfc_mcastgrp == iph->daddr &&
 974                    c->mfc_origin == iph->saddr) {
 975                        found = true;
 976                        break;
 977                }
 978        }
 979
 980        if (!found) {
 981                /* Create a new entry if allowable */
 982
 983                if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 984                    (c = ipmr_cache_alloc_unres()) == NULL) {
 985                        spin_unlock_bh(&mfc_unres_lock);
 986
 987                        kfree_skb(skb);
 988                        return -ENOBUFS;
 989                }
 990
 991                /* Fill in the new cache entry */
 992
 993                c->mfc_parent   = -1;
 994                c->mfc_origin   = iph->saddr;
 995                c->mfc_mcastgrp = iph->daddr;
 996
 997                /* Reflect first query at mrouted. */
 998
 999                err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000                if (err < 0) {
1001                        /* If the report failed throw the cache entry
1002                           out - Brad Parker
1003                         */
1004                        spin_unlock_bh(&mfc_unres_lock);
1005
1006                        ipmr_cache_free(c);
1007                        kfree_skb(skb);
1008                        return err;
1009                }
1010
1011                atomic_inc(&mrt->cache_resolve_queue_len);
1012                list_add(&c->list, &mrt->mfc_unres_queue);
1013
1014                if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015                        mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1016        }
1017
1018        /* See if we can append the packet */
1019
1020        if (c->mfc_un.unres.unresolved.qlen > 3) {
1021                kfree_skb(skb);
1022                err = -ENOBUFS;
1023        } else {
1024                skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025                err = 0;
1026        }
1027
1028        spin_unlock_bh(&mfc_unres_lock);
1029        return err;
1030}
1031
1032/*
1033 *      MFC cache manipulation by user space mroute daemon
1034 */
1035
1036static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1037{
1038        int line;
1039        struct mfc_cache *c, *next;
1040
1041        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1042
1043        list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046                        list_del_rcu(&c->list);
1047
1048                        ipmr_cache_free(c);
1049                        return 0;
1050                }
1051        }
1052        return -ENOENT;
1053}
1054
1055static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056                        struct mfcctl *mfc, int mrtsock)
1057{
1058        bool found = false;
1059        int line;
1060        struct mfc_cache *uc, *c;
1061
1062        if (mfc->mfcc_parent >= MAXVIFS)
1063                return -ENFILE;
1064
1065        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1066
1067        list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070                        found = true;
1071                        break;
1072                }
1073        }
1074
1075        if (found) {
1076                write_lock_bh(&mrt_lock);
1077                c->mfc_parent = mfc->mfcc_parent;
1078                ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079                if (!mrtsock)
1080                        c->mfc_flags |= MFC_STATIC;
1081                write_unlock_bh(&mrt_lock);
1082                return 0;
1083        }
1084
1085        if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086                return -EINVAL;
1087
1088        c = ipmr_cache_alloc();
1089        if (c == NULL)
1090                return -ENOMEM;
1091
1092        c->mfc_origin = mfc->mfcc_origin.s_addr;
1093        c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094        c->mfc_parent = mfc->mfcc_parent;
1095        ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096        if (!mrtsock)
1097                c->mfc_flags |= MFC_STATIC;
1098
1099        list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1100
1101        /*
1102         *      Check to see if we resolved a queued list. If so we
1103         *      need to send on the frames and tidy up.
1104         */
1105        found = false;
1106        spin_lock_bh(&mfc_unres_lock);
1107        list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108                if (uc->mfc_origin == c->mfc_origin &&
1109                    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110                        list_del(&uc->list);
1111                        atomic_dec(&mrt->cache_resolve_queue_len);
1112                        found = true;
1113                        break;
1114                }
1115        }
1116        if (list_empty(&mrt->mfc_unres_queue))
1117                del_timer(&mrt->ipmr_expire_timer);
1118        spin_unlock_bh(&mfc_unres_lock);
1119
1120        if (found) {
1121                ipmr_cache_resolve(net, mrt, uc, c);
1122                ipmr_cache_free(uc);
1123        }
1124        return 0;
1125}
1126
1127/*
1128 *      Close the multicast socket, and clear the vif tables etc
1129 */
1130
1131static void mroute_clean_tables(struct mr_table *mrt)
1132{
1133        int i;
1134        LIST_HEAD(list);
1135        struct mfc_cache *c, *next;
1136
1137        /* Shut down all active vif entries */
1138
1139        for (i = 0; i < mrt->maxvif; i++) {
1140                if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141                        vif_delete(mrt, i, 0, &list);
1142        }
1143        unregister_netdevice_many(&list);
1144
1145        /* Wipe the cache */
1146
1147        for (i = 0; i < MFC_LINES; i++) {
1148                list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149                        if (c->mfc_flags & MFC_STATIC)
1150                                continue;
1151                        list_del_rcu(&c->list);
1152                        ipmr_cache_free(c);
1153                }
1154        }
1155
1156        if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157                spin_lock_bh(&mfc_unres_lock);
1158                list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159                        list_del(&c->list);
1160                        ipmr_destroy_unres(mrt, c);
1161                }
1162                spin_unlock_bh(&mfc_unres_lock);
1163        }
1164}
1165
1166/* called from ip_ra_control(), before an RCU grace period,
1167 * we dont need to call synchronize_rcu() here
1168 */
1169static void mrtsock_destruct(struct sock *sk)
1170{
1171        struct net *net = sock_net(sk);
1172        struct mr_table *mrt;
1173
1174        rtnl_lock();
1175        ipmr_for_each_table(mrt, net) {
1176                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178                        rcu_assign_pointer(mrt->mroute_sk, NULL);
1179                        mroute_clean_tables(mrt);
1180                }
1181        }
1182        rtnl_unlock();
1183}
1184
1185/*
1186 *      Socket options and virtual interface manipulation. The whole
1187 *      virtual interface system is a complete heap, but unfortunately
1188 *      that's how BSD mrouted happens to think. Maybe one day with a proper
1189 *      MOSPF/PIM router set up we can clean this up.
1190 */
1191
1192int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1193{
1194        int ret;
1195        struct vifctl vif;
1196        struct mfcctl mfc;
1197        struct net *net = sock_net(sk);
1198        struct mr_table *mrt;
1199
1200        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201        if (mrt == NULL)
1202                return -ENOENT;
1203
1204        if (optname != MRT_INIT) {
1205                if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1206                    !capable(CAP_NET_ADMIN))
1207                        return -EACCES;
1208        }
1209
1210        switch (optname) {
1211        case MRT_INIT:
1212                if (sk->sk_type != SOCK_RAW ||
1213                    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214                        return -EOPNOTSUPP;
1215                if (optlen != sizeof(int))
1216                        return -ENOPROTOOPT;
1217
1218                rtnl_lock();
1219                if (rtnl_dereference(mrt->mroute_sk)) {
1220                        rtnl_unlock();
1221                        return -EADDRINUSE;
1222                }
1223
1224                ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225                if (ret == 0) {
1226                        rcu_assign_pointer(mrt->mroute_sk, sk);
1227                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228                }
1229                rtnl_unlock();
1230                return ret;
1231        case MRT_DONE:
1232                if (sk != rcu_dereference_raw(mrt->mroute_sk))
1233                        return -EACCES;
1234                return ip_ra_control(sk, 0, NULL);
1235        case MRT_ADD_VIF:
1236        case MRT_DEL_VIF:
1237                if (optlen != sizeof(vif))
1238                        return -EINVAL;
1239                if (copy_from_user(&vif, optval, sizeof(vif)))
1240                        return -EFAULT;
1241                if (vif.vifc_vifi >= MAXVIFS)
1242                        return -ENFILE;
1243                rtnl_lock();
1244                if (optname == MRT_ADD_VIF) {
1245                        ret = vif_add(net, mrt, &vif,
1246                                      sk == rtnl_dereference(mrt->mroute_sk));
1247                } else {
1248                        ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1249                }
1250                rtnl_unlock();
1251                return ret;
1252
1253                /*
1254                 *      Manipulate the forwarding caches. These live
1255                 *      in a sort of kernel/user symbiosis.
1256                 */
1257        case MRT_ADD_MFC:
1258        case MRT_DEL_MFC:
1259                if (optlen != sizeof(mfc))
1260                        return -EINVAL;
1261                if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262                        return -EFAULT;
1263                rtnl_lock();
1264                if (optname == MRT_DEL_MFC)
1265                        ret = ipmr_mfc_delete(mrt, &mfc);
1266                else
1267                        ret = ipmr_mfc_add(net, mrt, &mfc,
1268                                           sk == rtnl_dereference(mrt->mroute_sk));
1269                rtnl_unlock();
1270                return ret;
1271                /*
1272                 *      Control PIM assert.
1273                 */
1274        case MRT_ASSERT:
1275        {
1276                int v;
1277                if (get_user(v, (int __user *)optval))
1278                        return -EFAULT;
1279                mrt->mroute_do_assert = (v) ? 1 : 0;
1280                return 0;
1281        }
1282#ifdef CONFIG_IP_PIMSM
1283        case MRT_PIM:
1284        {
1285                int v;
1286
1287                if (get_user(v, (int __user *)optval))
1288                        return -EFAULT;
1289                v = (v) ? 1 : 0;
1290
1291                rtnl_lock();
1292                ret = 0;
1293                if (v != mrt->mroute_do_pim) {
1294                        mrt->mroute_do_pim = v;
1295                        mrt->mroute_do_assert = v;
1296                }
1297                rtnl_unlock();
1298                return ret;
1299        }
1300#endif
1301#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302        case MRT_TABLE:
1303        {
1304                u32 v;
1305
1306                if (optlen != sizeof(u32))
1307                        return -EINVAL;
1308                if (get_user(v, (u32 __user *)optval))
1309                        return -EFAULT;
1310
1311                rtnl_lock();
1312                ret = 0;
1313                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314                        ret = -EBUSY;
1315                } else {
1316                        if (!ipmr_new_table(net, v))
1317                                ret = -ENOMEM;
1318                        raw_sk(sk)->ipmr_table = v;
1319                }
1320                rtnl_unlock();
1321                return ret;
1322        }
1323#endif
1324        /*
1325         *      Spurious command, or MRT_VERSION which you cannot
1326         *      set.
1327         */
1328        default:
1329                return -ENOPROTOOPT;
1330        }
1331}
1332
1333/*
1334 *      Getsock opt support for the multicast routing system.
1335 */
1336
1337int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1338{
1339        int olr;
1340        int val;
1341        struct net *net = sock_net(sk);
1342        struct mr_table *mrt;
1343
1344        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345        if (mrt == NULL)
1346                return -ENOENT;
1347
1348        if (optname != MRT_VERSION &&
1349#ifdef CONFIG_IP_PIMSM
1350           optname != MRT_PIM &&
1351#endif
1352           optname != MRT_ASSERT)
1353                return -ENOPROTOOPT;
1354
1355        if (get_user(olr, optlen))
1356                return -EFAULT;
1357
1358        olr = min_t(unsigned int, olr, sizeof(int));
1359        if (olr < 0)
1360                return -EINVAL;
1361
1362        if (put_user(olr, optlen))
1363                return -EFAULT;
1364        if (optname == MRT_VERSION)
1365                val = 0x0305;
1366#ifdef CONFIG_IP_PIMSM
1367        else if (optname == MRT_PIM)
1368                val = mrt->mroute_do_pim;
1369#endif
1370        else
1371                val = mrt->mroute_do_assert;
1372        if (copy_to_user(optval, &val, olr))
1373                return -EFAULT;
1374        return 0;
1375}
1376
1377/*
1378 *      The IP multicast ioctl support routines.
1379 */
1380
1381int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1382{
1383        struct sioc_sg_req sr;
1384        struct sioc_vif_req vr;
1385        struct vif_device *vif;
1386        struct mfc_cache *c;
1387        struct net *net = sock_net(sk);
1388        struct mr_table *mrt;
1389
1390        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391        if (mrt == NULL)
1392                return -ENOENT;
1393
1394        switch (cmd) {
1395        case SIOCGETVIFCNT:
1396                if (copy_from_user(&vr, arg, sizeof(vr)))
1397                        return -EFAULT;
1398                if (vr.vifi >= mrt->maxvif)
1399                        return -EINVAL;
1400                read_lock(&mrt_lock);
1401                vif = &mrt->vif_table[vr.vifi];
1402                if (VIF_EXISTS(mrt, vr.vifi)) {
1403                        vr.icount = vif->pkt_in;
1404                        vr.ocount = vif->pkt_out;
1405                        vr.ibytes = vif->bytes_in;
1406                        vr.obytes = vif->bytes_out;
1407                        read_unlock(&mrt_lock);
1408
1409                        if (copy_to_user(arg, &vr, sizeof(vr)))
1410                                return -EFAULT;
1411                        return 0;
1412                }
1413                read_unlock(&mrt_lock);
1414                return -EADDRNOTAVAIL;
1415        case SIOCGETSGCNT:
1416                if (copy_from_user(&sr, arg, sizeof(sr)))
1417                        return -EFAULT;
1418
1419                rcu_read_lock();
1420                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421                if (c) {
1422                        sr.pktcnt = c->mfc_un.res.pkt;
1423                        sr.bytecnt = c->mfc_un.res.bytes;
1424                        sr.wrong_if = c->mfc_un.res.wrong_if;
1425                        rcu_read_unlock();
1426
1427                        if (copy_to_user(arg, &sr, sizeof(sr)))
1428                                return -EFAULT;
1429                        return 0;
1430                }
1431                rcu_read_unlock();
1432                return -EADDRNOTAVAIL;
1433        default:
1434                return -ENOIOCTLCMD;
1435        }
1436}
1437
1438#ifdef CONFIG_COMPAT
1439struct compat_sioc_sg_req {
1440        struct in_addr src;
1441        struct in_addr grp;
1442        compat_ulong_t pktcnt;
1443        compat_ulong_t bytecnt;
1444        compat_ulong_t wrong_if;
1445};
1446
1447struct compat_sioc_vif_req {
1448        vifi_t  vifi;           /* Which iface */
1449        compat_ulong_t icount;
1450        compat_ulong_t ocount;
1451        compat_ulong_t ibytes;
1452        compat_ulong_t obytes;
1453};
1454
1455int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1456{
1457        struct compat_sioc_sg_req sr;
1458        struct compat_sioc_vif_req vr;
1459        struct vif_device *vif;
1460        struct mfc_cache *c;
1461        struct net *net = sock_net(sk);
1462        struct mr_table *mrt;
1463
1464        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1465        if (mrt == NULL)
1466                return -ENOENT;
1467
1468        switch (cmd) {
1469        case SIOCGETVIFCNT:
1470                if (copy_from_user(&vr, arg, sizeof(vr)))
1471                        return -EFAULT;
1472                if (vr.vifi >= mrt->maxvif)
1473                        return -EINVAL;
1474                read_lock(&mrt_lock);
1475                vif = &mrt->vif_table[vr.vifi];
1476                if (VIF_EXISTS(mrt, vr.vifi)) {
1477                        vr.icount = vif->pkt_in;
1478                        vr.ocount = vif->pkt_out;
1479                        vr.ibytes = vif->bytes_in;
1480                        vr.obytes = vif->bytes_out;
1481                        read_unlock(&mrt_lock);
1482
1483                        if (copy_to_user(arg, &vr, sizeof(vr)))
1484                                return -EFAULT;
1485                        return 0;
1486                }
1487                read_unlock(&mrt_lock);
1488                return -EADDRNOTAVAIL;
1489        case SIOCGETSGCNT:
1490                if (copy_from_user(&sr, arg, sizeof(sr)))
1491                        return -EFAULT;
1492
1493                rcu_read_lock();
1494                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1495                if (c) {
1496                        sr.pktcnt = c->mfc_un.res.pkt;
1497                        sr.bytecnt = c->mfc_un.res.bytes;
1498                        sr.wrong_if = c->mfc_un.res.wrong_if;
1499                        rcu_read_unlock();
1500
1501                        if (copy_to_user(arg, &sr, sizeof(sr)))
1502                                return -EFAULT;
1503                        return 0;
1504                }
1505                rcu_read_unlock();
1506                return -EADDRNOTAVAIL;
1507        default:
1508                return -ENOIOCTLCMD;
1509        }
1510}
1511#endif
1512
1513
1514static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1515{
1516        struct net_device *dev = ptr;
1517        struct net *net = dev_net(dev);
1518        struct mr_table *mrt;
1519        struct vif_device *v;
1520        int ct;
1521        LIST_HEAD(list);
1522
1523        if (event != NETDEV_UNREGISTER)
1524                return NOTIFY_DONE;
1525
1526        ipmr_for_each_table(mrt, net) {
1527                v = &mrt->vif_table[0];
1528                for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1529                        if (v->dev == dev)
1530                                vif_delete(mrt, ct, 1, &list);
1531                }
1532        }
1533        unregister_netdevice_many(&list);
1534        return NOTIFY_DONE;
1535}
1536
1537
1538static struct notifier_block ip_mr_notifier = {
1539        .notifier_call = ipmr_device_event,
1540};
1541
1542/*
1543 *      Encapsulate a packet by attaching a valid IPIP header to it.
1544 *      This avoids tunnel drivers and other mess and gives us the speed so
1545 *      important for multicast video.
1546 */
1547
1548static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1549{
1550        struct iphdr *iph;
1551        struct iphdr *old_iph = ip_hdr(skb);
1552
1553        skb_push(skb, sizeof(struct iphdr));
1554        skb->transport_header = skb->network_header;
1555        skb_reset_network_header(skb);
1556        iph = ip_hdr(skb);
1557
1558        iph->version    =       4;
1559        iph->tos        =       old_iph->tos;
1560        iph->ttl        =       old_iph->ttl;
1561        iph->frag_off   =       0;
1562        iph->daddr      =       daddr;
1563        iph->saddr      =       saddr;
1564        iph->protocol   =       IPPROTO_IPIP;
1565        iph->ihl        =       5;
1566        iph->tot_len    =       htons(skb->len);
1567        ip_select_ident(iph, skb_dst(skb), NULL);
1568        ip_send_check(iph);
1569
1570        memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1571        nf_reset(skb);
1572}
1573
1574static inline int ipmr_forward_finish(struct sk_buff *skb)
1575{
1576        struct ip_options *opt = &(IPCB(skb)->opt);
1577
1578        IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1579
1580        if (unlikely(opt->optlen))
1581                ip_forward_options(skb);
1582
1583        return dst_output(skb);
1584}
1585
1586/*
1587 *      Processing handlers for ipmr_forward
1588 */
1589
1590static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1591                            struct sk_buff *skb, struct mfc_cache *c, int vifi)
1592{
1593        const struct iphdr *iph = ip_hdr(skb);
1594        struct vif_device *vif = &mrt->vif_table[vifi];
1595        struct net_device *dev;
1596        struct rtable *rt;
1597        int    encap = 0;
1598
1599        if (vif->dev == NULL)
1600                goto out_free;
1601
1602#ifdef CONFIG_IP_PIMSM
1603        if (vif->flags & VIFF_REGISTER) {
1604                vif->pkt_out++;
1605                vif->bytes_out += skb->len;
1606                vif->dev->stats.tx_bytes += skb->len;
1607                vif->dev->stats.tx_packets++;
1608                ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1609                goto out_free;
1610        }
1611#endif
1612
1613        if (vif->flags & VIFF_TUNNEL) {
1614                struct flowi fl = {
1615                        .oif = vif->link,
1616                        .fl4_dst = vif->remote,
1617                        .fl4_src = vif->local,
1618                        .fl4_tos = RT_TOS(iph->tos),
1619                        .proto = IPPROTO_IPIP
1620                };
1621
1622                if (ip_route_output_key(net, &rt, &fl))
1623                        goto out_free;
1624                encap = sizeof(struct iphdr);
1625        } else {
1626                struct flowi fl = {
1627                        .oif = vif->link,
1628                        .fl4_dst = iph->daddr,
1629                        .fl4_tos = RT_TOS(iph->tos),
1630                        .proto = IPPROTO_IPIP
1631                };
1632
1633                if (ip_route_output_key(net, &rt, &fl))
1634                        goto out_free;
1635        }
1636
1637        dev = rt->dst.dev;
1638
1639        if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1640                /* Do not fragment multicasts. Alas, IPv4 does not
1641                 * allow to send ICMP, so that packets will disappear
1642                 * to blackhole.
1643                 */
1644
1645                IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1646                ip_rt_put(rt);
1647                goto out_free;
1648        }
1649
1650        encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1651
1652        if (skb_cow(skb, encap)) {
1653                ip_rt_put(rt);
1654                goto out_free;
1655        }
1656
1657        vif->pkt_out++;
1658        vif->bytes_out += skb->len;
1659
1660        skb_dst_drop(skb);
1661        skb_dst_set(skb, &rt->dst);
1662        ip_decrease_ttl(ip_hdr(skb));
1663
1664        /* FIXME: forward and output firewalls used to be called here.
1665         * What do we do with netfilter? -- RR
1666         */
1667        if (vif->flags & VIFF_TUNNEL) {
1668                ip_encap(skb, vif->local, vif->remote);
1669                /* FIXME: extra output firewall step used to be here. --RR */
1670                vif->dev->stats.tx_packets++;
1671                vif->dev->stats.tx_bytes += skb->len;
1672        }
1673
1674        IPCB(skb)->flags |= IPSKB_FORWARDED;
1675
1676        /*
1677         * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1678         * not only before forwarding, but after forwarding on all output
1679         * interfaces. It is clear, if mrouter runs a multicasting
1680         * program, it should receive packets not depending to what interface
1681         * program is joined.
1682         * If we will not make it, the program will have to join on all
1683         * interfaces. On the other hand, multihoming host (or router, but
1684         * not mrouter) cannot join to more than one interface - it will
1685         * result in receiving multiple packets.
1686         */
1687        NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1688                ipmr_forward_finish);
1689        return;
1690
1691out_free:
1692        kfree_skb(skb);
1693}
1694
1695static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1696{
1697        int ct;
1698
1699        for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1700                if (mrt->vif_table[ct].dev == dev)
1701                        break;
1702        }
1703        return ct;
1704}
1705
1706/* "local" means that we should preserve one skb (for local delivery) */
1707
1708static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1709                         struct sk_buff *skb, struct mfc_cache *cache,
1710                         int local)
1711{
1712        int psend = -1;
1713        int vif, ct;
1714
1715        vif = cache->mfc_parent;
1716        cache->mfc_un.res.pkt++;
1717        cache->mfc_un.res.bytes += skb->len;
1718
1719        /*
1720         * Wrong interface: drop packet and (maybe) send PIM assert.
1721         */
1722        if (mrt->vif_table[vif].dev != skb->dev) {
1723                int true_vifi;
1724
1725                if (rt_is_output_route(skb_rtable(skb))) {
1726                        /* It is our own packet, looped back.
1727                         * Very complicated situation...
1728                         *
1729                         * The best workaround until routing daemons will be
1730                         * fixed is not to redistribute packet, if it was
1731                         * send through wrong interface. It means, that
1732                         * multicast applications WILL NOT work for
1733                         * (S,G), which have default multicast route pointing
1734                         * to wrong oif. In any case, it is not a good
1735                         * idea to use multicasting applications on router.
1736                         */
1737                        goto dont_forward;
1738                }
1739
1740                cache->mfc_un.res.wrong_if++;
1741                true_vifi = ipmr_find_vif(mrt, skb->dev);
1742
1743                if (true_vifi >= 0 && mrt->mroute_do_assert &&
1744                    /* pimsm uses asserts, when switching from RPT to SPT,
1745                     * so that we cannot check that packet arrived on an oif.
1746                     * It is bad, but otherwise we would need to move pretty
1747                     * large chunk of pimd to kernel. Ough... --ANK
1748                     */
1749                    (mrt->mroute_do_pim ||
1750                     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1751                    time_after(jiffies,
1752                               cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1753                        cache->mfc_un.res.last_assert = jiffies;
1754                        ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1755                }
1756                goto dont_forward;
1757        }
1758
1759        mrt->vif_table[vif].pkt_in++;
1760        mrt->vif_table[vif].bytes_in += skb->len;
1761
1762        /*
1763         *      Forward the frame
1764         */
1765        for (ct = cache->mfc_un.res.maxvif - 1;
1766             ct >= cache->mfc_un.res.minvif; ct--) {
1767                if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1768                        if (psend != -1) {
1769                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1770
1771                                if (skb2)
1772                                        ipmr_queue_xmit(net, mrt, skb2, cache,
1773                                                        psend);
1774                        }
1775                        psend = ct;
1776                }
1777        }
1778        if (psend != -1) {
1779                if (local) {
1780                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1781
1782                        if (skb2)
1783                                ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1784                } else {
1785                        ipmr_queue_xmit(net, mrt, skb, cache, psend);
1786                        return 0;
1787                }
1788        }
1789
1790dont_forward:
1791        if (!local)
1792                kfree_skb(skb);
1793        return 0;
1794}
1795
1796
1797/*
1798 *      Multicast packets for forwarding arrive here
1799 *      Called with rcu_read_lock();
1800 */
1801
1802int ip_mr_input(struct sk_buff *skb)
1803{
1804        struct mfc_cache *cache;
1805        struct net *net = dev_net(skb->dev);
1806        int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1807        struct mr_table *mrt;
1808        int err;
1809
1810        /* Packet is looped back after forward, it should not be
1811         * forwarded second time, but still can be delivered locally.
1812         */
1813        if (IPCB(skb)->flags & IPSKB_FORWARDED)
1814                goto dont_forward;
1815
1816        err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt);
1817        if (err < 0) {
1818                kfree_skb(skb);
1819                return err;
1820        }
1821
1822        if (!local) {
1823                if (IPCB(skb)->opt.router_alert) {
1824                        if (ip_call_ra_chain(skb))
1825                                return 0;
1826                } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1827                        /* IGMPv1 (and broken IGMPv2 implementations sort of
1828                         * Cisco IOS <= 11.2(8)) do not put router alert
1829                         * option to IGMP packets destined to routable
1830                         * groups. It is very bad, because it means
1831                         * that we can forward NO IGMP messages.
1832                         */
1833                        struct sock *mroute_sk;
1834
1835                        mroute_sk = rcu_dereference(mrt->mroute_sk);
1836                        if (mroute_sk) {
1837                                nf_reset(skb);
1838                                raw_rcv(mroute_sk, skb);
1839                                return 0;
1840                        }
1841                    }
1842        }
1843
1844        /* already under rcu_read_lock() */
1845        cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1846
1847        /*
1848         *      No usable cache entry
1849         */
1850        if (cache == NULL) {
1851                int vif;
1852
1853                if (local) {
1854                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1855                        ip_local_deliver(skb);
1856                        if (skb2 == NULL)
1857                                return -ENOBUFS;
1858                        skb = skb2;
1859                }
1860
1861                read_lock(&mrt_lock);
1862                vif = ipmr_find_vif(mrt, skb->dev);
1863                if (vif >= 0) {
1864                        int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1865                        read_unlock(&mrt_lock);
1866
1867                        return err2;
1868                }
1869                read_unlock(&mrt_lock);
1870                kfree_skb(skb);
1871                return -ENODEV;
1872        }
1873
1874        read_lock(&mrt_lock);
1875        ip_mr_forward(net, mrt, skb, cache, local);
1876        read_unlock(&mrt_lock);
1877
1878        if (local)
1879                return ip_local_deliver(skb);
1880
1881        return 0;
1882
1883dont_forward:
1884        if (local)
1885                return ip_local_deliver(skb);
1886        kfree_skb(skb);
1887        return 0;
1888}
1889
1890#ifdef CONFIG_IP_PIMSM
1891/* called with rcu_read_lock() */
1892static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1893                     unsigned int pimlen)
1894{
1895        struct net_device *reg_dev = NULL;
1896        struct iphdr *encap;
1897
1898        encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1899        /*
1900         * Check that:
1901         * a. packet is really sent to a multicast group
1902         * b. packet is not a NULL-REGISTER
1903         * c. packet is not truncated
1904         */
1905        if (!ipv4_is_multicast(encap->daddr) ||
1906            encap->tot_len == 0 ||
1907            ntohs(encap->tot_len) + pimlen > skb->len)
1908                return 1;
1909
1910        read_lock(&mrt_lock);
1911        if (mrt->mroute_reg_vif_num >= 0)
1912                reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1913        read_unlock(&mrt_lock);
1914
1915        if (reg_dev == NULL)
1916                return 1;
1917
1918        skb->mac_header = skb->network_header;
1919        skb_pull(skb, (u8 *)encap - skb->data);
1920        skb_reset_network_header(skb);
1921        skb->protocol = htons(ETH_P_IP);
1922        skb->ip_summed = CHECKSUM_NONE;
1923        skb->pkt_type = PACKET_HOST;
1924
1925        skb_tunnel_rx(skb, reg_dev);
1926
1927        netif_rx(skb);
1928
1929        return NET_RX_SUCCESS;
1930}
1931#endif
1932
1933#ifdef CONFIG_IP_PIMSM_V1
1934/*
1935 * Handle IGMP messages of PIMv1
1936 */
1937
1938int pim_rcv_v1(struct sk_buff *skb)
1939{
1940        struct igmphdr *pim;
1941        struct net *net = dev_net(skb->dev);
1942        struct mr_table *mrt;
1943
1944        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1945                goto drop;
1946
1947        pim = igmp_hdr(skb);
1948
1949        if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1950                goto drop;
1951
1952        if (!mrt->mroute_do_pim ||
1953            pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1954                goto drop;
1955
1956        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1957drop:
1958                kfree_skb(skb);
1959        }
1960        return 0;
1961}
1962#endif
1963
1964#ifdef CONFIG_IP_PIMSM_V2
1965static int pim_rcv(struct sk_buff *skb)
1966{
1967        struct pimreghdr *pim;
1968        struct net *net = dev_net(skb->dev);
1969        struct mr_table *mrt;
1970
1971        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1972                goto drop;
1973
1974        pim = (struct pimreghdr *)skb_transport_header(skb);
1975        if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1976            (pim->flags & PIM_NULL_REGISTER) ||
1977            (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1978             csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1979                goto drop;
1980
1981        if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1982                goto drop;
1983
1984        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1985drop:
1986                kfree_skb(skb);
1987        }
1988        return 0;
1989}
1990#endif
1991
1992static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
1993                              struct mfc_cache *c, struct rtmsg *rtm)
1994{
1995        int ct;
1996        struct rtnexthop *nhp;
1997        u8 *b = skb_tail_pointer(skb);
1998        struct rtattr *mp_head;
1999
2000        /* If cache is unresolved, don't try to parse IIF and OIF */
2001        if (c->mfc_parent >= MAXVIFS)
2002                return -ENOENT;
2003
2004        if (VIF_EXISTS(mrt, c->mfc_parent))
2005                RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2006
2007        mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2008
2009        for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2010                if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2011                        if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2012                                goto rtattr_failure;
2013                        nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2014                        nhp->rtnh_flags = 0;
2015                        nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2016                        nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2017                        nhp->rtnh_len = sizeof(*nhp);
2018                }
2019        }
2020        mp_head->rta_type = RTA_MULTIPATH;
2021        mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2022        rtm->rtm_type = RTN_MULTICAST;
2023        return 1;
2024
2025rtattr_failure:
2026        nlmsg_trim(skb, b);
2027        return -EMSGSIZE;
2028}
2029
2030int ipmr_get_route(struct net *net,
2031                   struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2032{
2033        int err;
2034        struct mr_table *mrt;
2035        struct mfc_cache *cache;
2036        struct rtable *rt = skb_rtable(skb);
2037
2038        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2039        if (mrt == NULL)
2040                return -ENOENT;
2041
2042        rcu_read_lock();
2043        cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
2044
2045        if (cache == NULL) {
2046                struct sk_buff *skb2;
2047                struct iphdr *iph;
2048                struct net_device *dev;
2049                int vif = -1;
2050
2051                if (nowait) {
2052                        rcu_read_unlock();
2053                        return -EAGAIN;
2054                }
2055
2056                dev = skb->dev;
2057                read_lock(&mrt_lock);
2058                if (dev)
2059                        vif = ipmr_find_vif(mrt, dev);
2060                if (vif < 0) {
2061                        read_unlock(&mrt_lock);
2062                        rcu_read_unlock();
2063                        return -ENODEV;
2064                }
2065                skb2 = skb_clone(skb, GFP_ATOMIC);
2066                if (!skb2) {
2067                        read_unlock(&mrt_lock);
2068                        rcu_read_unlock();
2069                        return -ENOMEM;
2070                }
2071
2072                skb_push(skb2, sizeof(struct iphdr));
2073                skb_reset_network_header(skb2);
2074                iph = ip_hdr(skb2);
2075                iph->ihl = sizeof(struct iphdr) >> 2;
2076                iph->saddr = rt->rt_src;
2077                iph->daddr = rt->rt_dst;
2078                iph->version = 0;
2079                err = ipmr_cache_unresolved(mrt, vif, skb2);
2080                read_unlock(&mrt_lock);
2081                rcu_read_unlock();
2082                return err;
2083        }
2084
2085        read_lock(&mrt_lock);
2086        if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2087                cache->mfc_flags |= MFC_NOTIFY;
2088        err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2089        read_unlock(&mrt_lock);
2090        rcu_read_unlock();
2091        return err;
2092}
2093
2094static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2095                            u32 pid, u32 seq, struct mfc_cache *c)
2096{
2097        struct nlmsghdr *nlh;
2098        struct rtmsg *rtm;
2099
2100        nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2101        if (nlh == NULL)
2102                return -EMSGSIZE;
2103
2104        rtm = nlmsg_data(nlh);
2105        rtm->rtm_family   = RTNL_FAMILY_IPMR;
2106        rtm->rtm_dst_len  = 32;
2107        rtm->rtm_src_len  = 32;
2108        rtm->rtm_tos      = 0;
2109        rtm->rtm_table    = mrt->id;
2110        NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2111        rtm->rtm_type     = RTN_MULTICAST;
2112        rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2113        rtm->rtm_protocol = RTPROT_UNSPEC;
2114        rtm->rtm_flags    = 0;
2115
2116        NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2117        NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2118
2119        if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2120                goto nla_put_failure;
2121
2122        return nlmsg_end(skb, nlh);
2123
2124nla_put_failure:
2125        nlmsg_cancel(skb, nlh);
2126        return -EMSGSIZE;
2127}
2128
2129static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2130{
2131        struct net *net = sock_net(skb->sk);
2132        struct mr_table *mrt;
2133        struct mfc_cache *mfc;
2134        unsigned int t = 0, s_t;
2135        unsigned int h = 0, s_h;
2136        unsigned int e = 0, s_e;
2137
2138        s_t = cb->args[0];
2139        s_h = cb->args[1];
2140        s_e = cb->args[2];
2141
2142        rcu_read_lock();
2143        ipmr_for_each_table(mrt, net) {
2144                if (t < s_t)
2145                        goto next_table;
2146                if (t > s_t)
2147                        s_h = 0;
2148                for (h = s_h; h < MFC_LINES; h++) {
2149                        list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2150                                if (e < s_e)
2151                                        goto next_entry;
2152                                if (ipmr_fill_mroute(mrt, skb,
2153                                                     NETLINK_CB(cb->skb).pid,
2154                                                     cb->nlh->nlmsg_seq,
2155                                                     mfc) < 0)
2156                                        goto done;
2157next_entry:
2158                                e++;
2159                        }
2160                        e = s_e = 0;
2161                }
2162                s_h = 0;
2163next_table:
2164                t++;
2165        }
2166done:
2167        rcu_read_unlock();
2168
2169        cb->args[2] = e;
2170        cb->args[1] = h;
2171        cb->args[0] = t;
2172
2173        return skb->len;
2174}
2175
2176#ifdef CONFIG_PROC_FS
2177/*
2178 *      The /proc interfaces to multicast routing :
2179 *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2180 */
2181struct ipmr_vif_iter {
2182        struct seq_net_private p;
2183        struct mr_table *mrt;
2184        int ct;
2185};
2186
2187static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2188                                           struct ipmr_vif_iter *iter,
2189                                           loff_t pos)
2190{
2191        struct mr_table *mrt = iter->mrt;
2192
2193        for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2194                if (!VIF_EXISTS(mrt, iter->ct))
2195                        continue;
2196                if (pos-- == 0)
2197                        return &mrt->vif_table[iter->ct];
2198        }
2199        return NULL;
2200}
2201
2202static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2203        __acquires(mrt_lock)
2204{
2205        struct ipmr_vif_iter *iter = seq->private;
2206        struct net *net = seq_file_net(seq);
2207        struct mr_table *mrt;
2208
2209        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2210        if (mrt == NULL)
2211                return ERR_PTR(-ENOENT);
2212
2213        iter->mrt = mrt;
2214
2215        read_lock(&mrt_lock);
2216        return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2217                : SEQ_START_TOKEN;
2218}
2219
2220static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2221{
2222        struct ipmr_vif_iter *iter = seq->private;
2223        struct net *net = seq_file_net(seq);
2224        struct mr_table *mrt = iter->mrt;
2225
2226        ++*pos;
2227        if (v == SEQ_START_TOKEN)
2228                return ipmr_vif_seq_idx(net, iter, 0);
2229
2230        while (++iter->ct < mrt->maxvif) {
2231                if (!VIF_EXISTS(mrt, iter->ct))
2232                        continue;
2233                return &mrt->vif_table[iter->ct];
2234        }
2235        return NULL;
2236}
2237
2238static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2239        __releases(mrt_lock)
2240{
2241        read_unlock(&mrt_lock);
2242}
2243
2244static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2245{
2246        struct ipmr_vif_iter *iter = seq->private;
2247        struct mr_table *mrt = iter->mrt;
2248
2249        if (v == SEQ_START_TOKEN) {
2250                seq_puts(seq,
2251                         "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2252        } else {
2253                const struct vif_device *vif = v;
2254                const char *name =  vif->dev ? vif->dev->name : "none";
2255
2256                seq_printf(seq,
2257                           "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2258                           vif - mrt->vif_table,
2259                           name, vif->bytes_in, vif->pkt_in,
2260                           vif->bytes_out, vif->pkt_out,
2261                           vif->flags, vif->local, vif->remote);
2262        }
2263        return 0;
2264}
2265
2266static const struct seq_operations ipmr_vif_seq_ops = {
2267        .start = ipmr_vif_seq_start,
2268        .next  = ipmr_vif_seq_next,
2269        .stop  = ipmr_vif_seq_stop,
2270        .show  = ipmr_vif_seq_show,
2271};
2272
2273static int ipmr_vif_open(struct inode *inode, struct file *file)
2274{
2275        return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2276                            sizeof(struct ipmr_vif_iter));
2277}
2278
2279static const struct file_operations ipmr_vif_fops = {
2280        .owner   = THIS_MODULE,
2281        .open    = ipmr_vif_open,
2282        .read    = seq_read,
2283        .llseek  = seq_lseek,
2284        .release = seq_release_net,
2285};
2286
2287struct ipmr_mfc_iter {
2288        struct seq_net_private p;
2289        struct mr_table *mrt;
2290        struct list_head *cache;
2291        int ct;
2292};
2293
2294
2295static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2296                                          struct ipmr_mfc_iter *it, loff_t pos)
2297{
2298        struct mr_table *mrt = it->mrt;
2299        struct mfc_cache *mfc;
2300
2301        rcu_read_lock();
2302        for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2303                it->cache = &mrt->mfc_cache_array[it->ct];
2304                list_for_each_entry_rcu(mfc, it->cache, list)
2305                        if (pos-- == 0)
2306                                return mfc;
2307        }
2308        rcu_read_unlock();
2309
2310        spin_lock_bh(&mfc_unres_lock);
2311        it->cache = &mrt->mfc_unres_queue;
2312        list_for_each_entry(mfc, it->cache, list)
2313                if (pos-- == 0)
2314                        return mfc;
2315        spin_unlock_bh(&mfc_unres_lock);
2316
2317        it->cache = NULL;
2318        return NULL;
2319}
2320
2321
2322static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2323{
2324        struct ipmr_mfc_iter *it = seq->private;
2325        struct net *net = seq_file_net(seq);
2326        struct mr_table *mrt;
2327
2328        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2329        if (mrt == NULL)
2330                return ERR_PTR(-ENOENT);
2331
2332        it->mrt = mrt;
2333        it->cache = NULL;
2334        it->ct = 0;
2335        return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2336                : SEQ_START_TOKEN;
2337}
2338
2339static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2340{
2341        struct mfc_cache *mfc = v;
2342        struct ipmr_mfc_iter *it = seq->private;
2343        struct net *net = seq_file_net(seq);
2344        struct mr_table *mrt = it->mrt;
2345
2346        ++*pos;
2347
2348        if (v == SEQ_START_TOKEN)
2349                return ipmr_mfc_seq_idx(net, seq->private, 0);
2350
2351        if (mfc->list.next != it->cache)
2352                return list_entry(mfc->list.next, struct mfc_cache, list);
2353
2354        if (it->cache == &mrt->mfc_unres_queue)
2355                goto end_of_list;
2356
2357        BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2358
2359        while (++it->ct < MFC_LINES) {
2360                it->cache = &mrt->mfc_cache_array[it->ct];
2361                if (list_empty(it->cache))
2362                        continue;
2363                return list_first_entry(it->cache, struct mfc_cache, list);
2364        }
2365
2366        /* exhausted cache_array, show unresolved */
2367        rcu_read_unlock();
2368        it->cache = &mrt->mfc_unres_queue;
2369        it->ct = 0;
2370
2371        spin_lock_bh(&mfc_unres_lock);
2372        if (!list_empty(it->cache))
2373                return list_first_entry(it->cache, struct mfc_cache, list);
2374
2375end_of_list:
2376        spin_unlock_bh(&mfc_unres_lock);
2377        it->cache = NULL;
2378
2379        return NULL;
2380}
2381
2382static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2383{
2384        struct ipmr_mfc_iter *it = seq->private;
2385        struct mr_table *mrt = it->mrt;
2386
2387        if (it->cache == &mrt->mfc_unres_queue)
2388                spin_unlock_bh(&mfc_unres_lock);
2389        else if (it->cache == &mrt->mfc_cache_array[it->ct])
2390                rcu_read_unlock();
2391}
2392
2393static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2394{
2395        int n;
2396
2397        if (v == SEQ_START_TOKEN) {
2398                seq_puts(seq,
2399                 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2400        } else {
2401                const struct mfc_cache *mfc = v;
2402                const struct ipmr_mfc_iter *it = seq->private;
2403                const struct mr_table *mrt = it->mrt;
2404
2405                seq_printf(seq, "%08X %08X %-3hd",
2406                           (__force u32) mfc->mfc_mcastgrp,
2407                           (__force u32) mfc->mfc_origin,
2408                           mfc->mfc_parent);
2409
2410                if (it->cache != &mrt->mfc_unres_queue) {
2411                        seq_printf(seq, " %8lu %8lu %8lu",
2412                                   mfc->mfc_un.res.pkt,
2413                                   mfc->mfc_un.res.bytes,
2414                                   mfc->mfc_un.res.wrong_if);
2415                        for (n = mfc->mfc_un.res.minvif;
2416                             n < mfc->mfc_un.res.maxvif; n++) {
2417                                if (VIF_EXISTS(mrt, n) &&
2418                                    mfc->mfc_un.res.ttls[n] < 255)
2419                                        seq_printf(seq,
2420                                           " %2d:%-3d",
2421                                           n, mfc->mfc_un.res.ttls[n]);
2422                        }
2423                } else {
2424                        /* unresolved mfc_caches don't contain
2425                         * pkt, bytes and wrong_if values
2426                         */
2427                        seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2428                }
2429                seq_putc(seq, '\n');
2430        }
2431        return 0;
2432}
2433
2434static const struct seq_operations ipmr_mfc_seq_ops = {
2435        .start = ipmr_mfc_seq_start,
2436        .next  = ipmr_mfc_seq_next,
2437        .stop  = ipmr_mfc_seq_stop,
2438        .show  = ipmr_mfc_seq_show,
2439};
2440
2441static int ipmr_mfc_open(struct inode *inode, struct file *file)
2442{
2443        return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2444                            sizeof(struct ipmr_mfc_iter));
2445}
2446
2447static const struct file_operations ipmr_mfc_fops = {
2448        .owner   = THIS_MODULE,
2449        .open    = ipmr_mfc_open,
2450        .read    = seq_read,
2451        .llseek  = seq_lseek,
2452        .release = seq_release_net,
2453};
2454#endif
2455
2456#ifdef CONFIG_IP_PIMSM_V2
2457static const struct net_protocol pim_protocol = {
2458        .handler        =       pim_rcv,
2459        .netns_ok       =       1,
2460};
2461#endif
2462
2463
2464/*
2465 *      Setup for IP multicast routing
2466 */
2467static int __net_init ipmr_net_init(struct net *net)
2468{
2469        int err;
2470
2471        err = ipmr_rules_init(net);
2472        if (err < 0)
2473                goto fail;
2474
2475#ifdef CONFIG_PROC_FS
2476        err = -ENOMEM;
2477        if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2478                goto proc_vif_fail;
2479        if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2480                goto proc_cache_fail;
2481#endif
2482        return 0;
2483
2484#ifdef CONFIG_PROC_FS
2485proc_cache_fail:
2486        proc_net_remove(net, "ip_mr_vif");
2487proc_vif_fail:
2488        ipmr_rules_exit(net);
2489#endif
2490fail:
2491        return err;
2492}
2493
2494static void __net_exit ipmr_net_exit(struct net *net)
2495{
2496#ifdef CONFIG_PROC_FS
2497        proc_net_remove(net, "ip_mr_cache");
2498        proc_net_remove(net, "ip_mr_vif");
2499#endif
2500        ipmr_rules_exit(net);
2501}
2502
2503static struct pernet_operations ipmr_net_ops = {
2504        .init = ipmr_net_init,
2505        .exit = ipmr_net_exit,
2506};
2507
2508int __init ip_mr_init(void)
2509{
2510        int err;
2511
2512        mrt_cachep = kmem_cache_create("ip_mrt_cache",
2513                                       sizeof(struct mfc_cache),
2514                                       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2515                                       NULL);
2516        if (!mrt_cachep)
2517                return -ENOMEM;
2518
2519        err = register_pernet_subsys(&ipmr_net_ops);
2520        if (err)
2521                goto reg_pernet_fail;
2522
2523        err = register_netdevice_notifier(&ip_mr_notifier);
2524        if (err)
2525                goto reg_notif_fail;
2526#ifdef CONFIG_IP_PIMSM_V2
2527        if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2528                printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2529                err = -EAGAIN;
2530                goto add_proto_fail;
2531        }
2532#endif
2533        rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
2534        return 0;
2535
2536#ifdef CONFIG_IP_PIMSM_V2
2537add_proto_fail:
2538        unregister_netdevice_notifier(&ip_mr_notifier);
2539#endif
2540reg_notif_fail:
2541        unregister_pernet_subsys(&ipmr_net_ops);
2542reg_pernet_fail:
2543        kmem_cache_destroy(mrt_cachep);
2544        return err;
2545}
2546