linux/net/ipv4/udp.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              The User Datagram Protocol (UDP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *              Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *              Alan Cox        :       verify_area() calls
  16 *              Alan Cox        :       stopped close while in use off icmp
  17 *                                      messages. Not a fix but a botch that
  18 *                                      for udp at least is 'valid'.
  19 *              Alan Cox        :       Fixed icmp handling properly
  20 *              Alan Cox        :       Correct error for oversized datagrams
  21 *              Alan Cox        :       Tidied select() semantics.
  22 *              Alan Cox        :       udp_err() fixed properly, also now
  23 *                                      select and read wake correctly on errors
  24 *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
  25 *              Alan Cox        :       UDP can count its memory
  26 *              Alan Cox        :       send to an unknown connection causes
  27 *                                      an ECONNREFUSED off the icmp, but
  28 *                                      does NOT close.
  29 *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
  30 *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
  31 *                                      bug no longer crashes it.
  32 *              Fred Van Kempen :       Net2e support for sk->broadcast.
  33 *              Alan Cox        :       Uses skb_free_datagram
  34 *              Alan Cox        :       Added get/set sockopt support.
  35 *              Alan Cox        :       Broadcasting without option set returns EACCES.
  36 *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
  37 *              Alan Cox        :       Use ip_tos and ip_ttl
  38 *              Alan Cox        :       SNMP Mibs
  39 *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
  40 *              Matt Dillon     :       UDP length checks.
  41 *              Alan Cox        :       Smarter af_inet used properly.
  42 *              Alan Cox        :       Use new kernel side addressing.
  43 *              Alan Cox        :       Incorrect return on truncated datagram receive.
  44 *      Arnt Gulbrandsen        :       New udp_send and stuff
  45 *              Alan Cox        :       Cache last socket
  46 *              Alan Cox        :       Route cache
  47 *              Jon Peatfield   :       Minor efficiency fix to sendto().
  48 *              Mike Shaver     :       RFC1122 checks.
  49 *              Alan Cox        :       Nonblocking error fix.
  50 *      Willy Konynenberg       :       Transparent proxying support.
  51 *              Mike McLagan    :       Routing by source
  52 *              David S. Miller :       New socket lookup architecture.
  53 *                                      Last socket cache retained as it
  54 *                                      does have a high hit rate.
  55 *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
  56 *              Andi Kleen      :       Some cleanups, cache destination entry
  57 *                                      for connect.
  58 *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
  59 *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
  60 *                                      return ENOTCONN for unconnected sockets (POSIX)
  61 *              Janos Farkas    :       don't deliver multi/broadcasts to a different
  62 *                                      bound-to-device socket
  63 *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
  64 *                                      datagrams.
  65 *      Hirokazu Takahashi      :       sendfile() on UDP works now.
  66 *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
  67 *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
  68 *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
  69 *                                      a single port at the same time.
  70 *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *      James Chapman           :       Add L2TP encapsulation type.
  72 *
  73 *
  74 *              This program is free software; you can redistribute it and/or
  75 *              modify it under the terms of the GNU General Public License
  76 *              as published by the Free Software Foundation; either version
  77 *              2 of the License, or (at your option) any later version.
  78 */
  79
  80#include <asm/system.h>
  81#include <asm/uaccess.h>
  82#include <asm/ioctls.h>
  83#include <linux/bootmem.h>
  84#include <linux/highmem.h>
  85#include <linux/swap.h>
  86#include <linux/types.h>
  87#include <linux/fcntl.h>
  88#include <linux/module.h>
  89#include <linux/socket.h>
  90#include <linux/sockios.h>
  91#include <linux/igmp.h>
  92#include <linux/in.h>
  93#include <linux/errno.h>
  94#include <linux/timer.h>
  95#include <linux/mm.h>
  96#include <linux/inet.h>
  97#include <linux/netdevice.h>
  98#include <linux/slab.h>
  99#include <net/tcp_states.h>
 100#include <linux/skbuff.h>
 101#include <linux/proc_fs.h>
 102#include <linux/seq_file.h>
 103#include <net/net_namespace.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/checksum.h>
 107#include <net/xfrm.h>
 108#include "udp_impl.h"
 109
 110struct udp_table udp_table __read_mostly;
 111EXPORT_SYMBOL(udp_table);
 112
 113long sysctl_udp_mem[3] __read_mostly;
 114EXPORT_SYMBOL(sysctl_udp_mem);
 115
 116int sysctl_udp_rmem_min __read_mostly;
 117EXPORT_SYMBOL(sysctl_udp_rmem_min);
 118
 119int sysctl_udp_wmem_min __read_mostly;
 120EXPORT_SYMBOL(sysctl_udp_wmem_min);
 121
 122atomic_long_t udp_memory_allocated;
 123EXPORT_SYMBOL(udp_memory_allocated);
 124
 125#define MAX_UDP_PORTS 65536
 126#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 127
 128static int udp_lib_lport_inuse(struct net *net, __u16 num,
 129                               const struct udp_hslot *hslot,
 130                               unsigned long *bitmap,
 131                               struct sock *sk,
 132                               int (*saddr_comp)(const struct sock *sk1,
 133                                                 const struct sock *sk2),
 134                               unsigned int log)
 135{
 136        struct sock *sk2;
 137        struct hlist_nulls_node *node;
 138
 139        sk_nulls_for_each(sk2, node, &hslot->head)
 140                if (net_eq(sock_net(sk2), net) &&
 141                    sk2 != sk &&
 142                    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 143                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 144                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 145                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 146                    (*saddr_comp)(sk, sk2)) {
 147                        if (bitmap)
 148                                __set_bit(udp_sk(sk2)->udp_port_hash >> log,
 149                                          bitmap);
 150                        else
 151                                return 1;
 152                }
 153        return 0;
 154}
 155
 156/*
 157 * Note: we still hold spinlock of primary hash chain, so no other writer
 158 * can insert/delete a socket with local_port == num
 159 */
 160static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 161                               struct udp_hslot *hslot2,
 162                               struct sock *sk,
 163                               int (*saddr_comp)(const struct sock *sk1,
 164                                                 const struct sock *sk2))
 165{
 166        struct sock *sk2;
 167        struct hlist_nulls_node *node;
 168        int res = 0;
 169
 170        spin_lock(&hslot2->lock);
 171        udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
 172                if (net_eq(sock_net(sk2), net) &&
 173                    sk2 != sk &&
 174                    (udp_sk(sk2)->udp_port_hash == num) &&
 175                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 176                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 177                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 178                    (*saddr_comp)(sk, sk2)) {
 179                        res = 1;
 180                        break;
 181                }
 182        spin_unlock(&hslot2->lock);
 183        return res;
 184}
 185
 186/**
 187 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 188 *
 189 *  @sk:          socket struct in question
 190 *  @snum:        port number to look up
 191 *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
 192 *  @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
 193 *                   with NULL address
 194 */
 195int udp_lib_get_port(struct sock *sk, unsigned short snum,
 196                       int (*saddr_comp)(const struct sock *sk1,
 197                                         const struct sock *sk2),
 198                     unsigned int hash2_nulladdr)
 199{
 200        struct udp_hslot *hslot, *hslot2;
 201        struct udp_table *udptable = sk->sk_prot->h.udp_table;
 202        int    error = 1;
 203        struct net *net = sock_net(sk);
 204
 205        if (!snum) {
 206                int low, high, remaining;
 207                unsigned rand;
 208                unsigned short first, last;
 209                DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 210
 211                inet_get_local_port_range(&low, &high);
 212                remaining = (high - low) + 1;
 213
 214                rand = net_random();
 215                first = (((u64)rand * remaining) >> 32) + low;
 216                /*
 217                 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 218                 */
 219                rand = (rand | 1) * (udptable->mask + 1);
 220                last = first + udptable->mask + 1;
 221                do {
 222                        hslot = udp_hashslot(udptable, net, first);
 223                        bitmap_zero(bitmap, PORTS_PER_CHAIN);
 224                        spin_lock_bh(&hslot->lock);
 225                        udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 226                                            saddr_comp, udptable->log);
 227
 228                        snum = first;
 229                        /*
 230                         * Iterate on all possible values of snum for this hash.
 231                         * Using steps of an odd multiple of UDP_HTABLE_SIZE
 232                         * give us randomization and full range coverage.
 233                         */
 234                        do {
 235                                if (low <= snum && snum <= high &&
 236                                    !test_bit(snum >> udptable->log, bitmap) &&
 237                                    !inet_is_reserved_local_port(snum))
 238                                        goto found;
 239                                snum += rand;
 240                        } while (snum != first);
 241                        spin_unlock_bh(&hslot->lock);
 242                } while (++first != last);
 243                goto fail;
 244        } else {
 245                hslot = udp_hashslot(udptable, net, snum);
 246                spin_lock_bh(&hslot->lock);
 247                if (hslot->count > 10) {
 248                        int exist;
 249                        unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 250
 251                        slot2          &= udptable->mask;
 252                        hash2_nulladdr &= udptable->mask;
 253
 254                        hslot2 = udp_hashslot2(udptable, slot2);
 255                        if (hslot->count < hslot2->count)
 256                                goto scan_primary_hash;
 257
 258                        exist = udp_lib_lport_inuse2(net, snum, hslot2,
 259                                                     sk, saddr_comp);
 260                        if (!exist && (hash2_nulladdr != slot2)) {
 261                                hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 262                                exist = udp_lib_lport_inuse2(net, snum, hslot2,
 263                                                             sk, saddr_comp);
 264                        }
 265                        if (exist)
 266                                goto fail_unlock;
 267                        else
 268                                goto found;
 269                }
 270scan_primary_hash:
 271                if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
 272                                        saddr_comp, 0))
 273                        goto fail_unlock;
 274        }
 275found:
 276        inet_sk(sk)->inet_num = snum;
 277        udp_sk(sk)->udp_port_hash = snum;
 278        udp_sk(sk)->udp_portaddr_hash ^= snum;
 279        if (sk_unhashed(sk)) {
 280                sk_nulls_add_node_rcu(sk, &hslot->head);
 281                hslot->count++;
 282                sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 283
 284                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 285                spin_lock(&hslot2->lock);
 286                hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 287                                         &hslot2->head);
 288                hslot2->count++;
 289                spin_unlock(&hslot2->lock);
 290        }
 291        error = 0;
 292fail_unlock:
 293        spin_unlock_bh(&hslot->lock);
 294fail:
 295        return error;
 296}
 297EXPORT_SYMBOL(udp_lib_get_port);
 298
 299static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
 300{
 301        struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
 302
 303        return  (!ipv6_only_sock(sk2)  &&
 304                 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
 305                   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
 306}
 307
 308static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
 309                                       unsigned int port)
 310{
 311        return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
 312}
 313
 314int udp_v4_get_port(struct sock *sk, unsigned short snum)
 315{
 316        unsigned int hash2_nulladdr =
 317                udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 318        unsigned int hash2_partial =
 319                udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 320
 321        /* precompute partial secondary hash */
 322        udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 323        return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
 324}
 325
 326static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
 327                         unsigned short hnum,
 328                         __be16 sport, __be32 daddr, __be16 dport, int dif)
 329{
 330        int score = -1;
 331
 332        if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
 333                        !ipv6_only_sock(sk)) {
 334                struct inet_sock *inet = inet_sk(sk);
 335
 336                score = (sk->sk_family == PF_INET ? 1 : 0);
 337                if (inet->inet_rcv_saddr) {
 338                        if (inet->inet_rcv_saddr != daddr)
 339                                return -1;
 340                        score += 2;
 341                }
 342                if (inet->inet_daddr) {
 343                        if (inet->inet_daddr != saddr)
 344                                return -1;
 345                        score += 2;
 346                }
 347                if (inet->inet_dport) {
 348                        if (inet->inet_dport != sport)
 349                                return -1;
 350                        score += 2;
 351                }
 352                if (sk->sk_bound_dev_if) {
 353                        if (sk->sk_bound_dev_if != dif)
 354                                return -1;
 355                        score += 2;
 356                }
 357        }
 358        return score;
 359}
 360
 361/*
 362 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
 363 */
 364#define SCORE2_MAX (1 + 2 + 2 + 2)
 365static inline int compute_score2(struct sock *sk, struct net *net,
 366                                 __be32 saddr, __be16 sport,
 367                                 __be32 daddr, unsigned int hnum, int dif)
 368{
 369        int score = -1;
 370
 371        if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
 372                struct inet_sock *inet = inet_sk(sk);
 373
 374                if (inet->inet_rcv_saddr != daddr)
 375                        return -1;
 376                if (inet->inet_num != hnum)
 377                        return -1;
 378
 379                score = (sk->sk_family == PF_INET ? 1 : 0);
 380                if (inet->inet_daddr) {
 381                        if (inet->inet_daddr != saddr)
 382                                return -1;
 383                        score += 2;
 384                }
 385                if (inet->inet_dport) {
 386                        if (inet->inet_dport != sport)
 387                                return -1;
 388                        score += 2;
 389                }
 390                if (sk->sk_bound_dev_if) {
 391                        if (sk->sk_bound_dev_if != dif)
 392                                return -1;
 393                        score += 2;
 394                }
 395        }
 396        return score;
 397}
 398
 399
 400/* called with read_rcu_lock() */
 401static struct sock *udp4_lib_lookup2(struct net *net,
 402                __be32 saddr, __be16 sport,
 403                __be32 daddr, unsigned int hnum, int dif,
 404                struct udp_hslot *hslot2, unsigned int slot2)
 405{
 406        struct sock *sk, *result;
 407        struct hlist_nulls_node *node;
 408        int score, badness;
 409
 410begin:
 411        result = NULL;
 412        badness = -1;
 413        udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
 414                score = compute_score2(sk, net, saddr, sport,
 415                                      daddr, hnum, dif);
 416                if (score > badness) {
 417                        result = sk;
 418                        badness = score;
 419                        if (score == SCORE2_MAX)
 420                                goto exact_match;
 421                }
 422        }
 423        /*
 424         * if the nulls value we got at the end of this lookup is
 425         * not the expected one, we must restart lookup.
 426         * We probably met an item that was moved to another chain.
 427         */
 428        if (get_nulls_value(node) != slot2)
 429                goto begin;
 430
 431        if (result) {
 432exact_match:
 433                if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 434                        result = NULL;
 435                else if (unlikely(compute_score2(result, net, saddr, sport,
 436                                  daddr, hnum, dif) < badness)) {
 437                        sock_put(result);
 438                        goto begin;
 439                }
 440        }
 441        return result;
 442}
 443
 444/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 445 * harder than this. -DaveM
 446 */
 447static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 448                __be16 sport, __be32 daddr, __be16 dport,
 449                int dif, struct udp_table *udptable)
 450{
 451        struct sock *sk, *result;
 452        struct hlist_nulls_node *node;
 453        unsigned short hnum = ntohs(dport);
 454        unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
 455        struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
 456        int score, badness;
 457
 458        rcu_read_lock();
 459        if (hslot->count > 10) {
 460                hash2 = udp4_portaddr_hash(net, daddr, hnum);
 461                slot2 = hash2 & udptable->mask;
 462                hslot2 = &udptable->hash2[slot2];
 463                if (hslot->count < hslot2->count)
 464                        goto begin;
 465
 466                result = udp4_lib_lookup2(net, saddr, sport,
 467                                          daddr, hnum, dif,
 468                                          hslot2, slot2);
 469                if (!result) {
 470                        hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 471                        slot2 = hash2 & udptable->mask;
 472                        hslot2 = &udptable->hash2[slot2];
 473                        if (hslot->count < hslot2->count)
 474                                goto begin;
 475
 476                        result = udp4_lib_lookup2(net, saddr, sport,
 477                                                  htonl(INADDR_ANY), hnum, dif,
 478                                                  hslot2, slot2);
 479                }
 480                rcu_read_unlock();
 481                return result;
 482        }
 483begin:
 484        result = NULL;
 485        badness = -1;
 486        sk_nulls_for_each_rcu(sk, node, &hslot->head) {
 487                score = compute_score(sk, net, saddr, hnum, sport,
 488                                      daddr, dport, dif);
 489                if (score > badness) {
 490                        result = sk;
 491                        badness = score;
 492                }
 493        }
 494        /*
 495         * if the nulls value we got at the end of this lookup is
 496         * not the expected one, we must restart lookup.
 497         * We probably met an item that was moved to another chain.
 498         */
 499        if (get_nulls_value(node) != slot)
 500                goto begin;
 501
 502        if (result) {
 503                if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 504                        result = NULL;
 505                else if (unlikely(compute_score(result, net, saddr, hnum, sport,
 506                                  daddr, dport, dif) < badness)) {
 507                        sock_put(result);
 508                        goto begin;
 509                }
 510        }
 511        rcu_read_unlock();
 512        return result;
 513}
 514
 515static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 516                                                 __be16 sport, __be16 dport,
 517                                                 struct udp_table *udptable)
 518{
 519        struct sock *sk;
 520        const struct iphdr *iph = ip_hdr(skb);
 521
 522        if (unlikely(sk = skb_steal_sock(skb)))
 523                return sk;
 524        else
 525                return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
 526                                         iph->daddr, dport, inet_iif(skb),
 527                                         udptable);
 528}
 529
 530struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 531                             __be32 daddr, __be16 dport, int dif)
 532{
 533        return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
 534}
 535EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 536
 537static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
 538                                             __be16 loc_port, __be32 loc_addr,
 539                                             __be16 rmt_port, __be32 rmt_addr,
 540                                             int dif)
 541{
 542        struct hlist_nulls_node *node;
 543        struct sock *s = sk;
 544        unsigned short hnum = ntohs(loc_port);
 545
 546        sk_nulls_for_each_from(s, node) {
 547                struct inet_sock *inet = inet_sk(s);
 548
 549                if (!net_eq(sock_net(s), net) ||
 550                    udp_sk(s)->udp_port_hash != hnum ||
 551                    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 552                    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 553                    (inet->inet_rcv_saddr &&
 554                     inet->inet_rcv_saddr != loc_addr) ||
 555                    ipv6_only_sock(s) ||
 556                    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
 557                        continue;
 558                if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
 559                        continue;
 560                goto found;
 561        }
 562        s = NULL;
 563found:
 564        return s;
 565}
 566
 567/*
 568 * This routine is called by the ICMP module when it gets some
 569 * sort of error condition.  If err < 0 then the socket should
 570 * be closed and the error returned to the user.  If err > 0
 571 * it's just the icmp type << 8 | icmp code.
 572 * Header points to the ip header of the error packet. We move
 573 * on past this. Then (as it used to claim before adjustment)
 574 * header points to the first 8 bytes of the udp header.  We need
 575 * to find the appropriate port.
 576 */
 577
 578void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 579{
 580        struct inet_sock *inet;
 581        struct iphdr *iph = (struct iphdr *)skb->data;
 582        struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 583        const int type = icmp_hdr(skb)->type;
 584        const int code = icmp_hdr(skb)->code;
 585        struct sock *sk;
 586        int harderr;
 587        int err;
 588        struct net *net = dev_net(skb->dev);
 589
 590        sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 591                        iph->saddr, uh->source, skb->dev->ifindex, udptable);
 592        if (sk == NULL) {
 593                ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 594                return; /* No socket for error */
 595        }
 596
 597        err = 0;
 598        harderr = 0;
 599        inet = inet_sk(sk);
 600
 601        switch (type) {
 602        default:
 603        case ICMP_TIME_EXCEEDED:
 604                err = EHOSTUNREACH;
 605                break;
 606        case ICMP_SOURCE_QUENCH:
 607                goto out;
 608        case ICMP_PARAMETERPROB:
 609                err = EPROTO;
 610                harderr = 1;
 611                break;
 612        case ICMP_DEST_UNREACH:
 613                if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 614                        if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 615                                err = EMSGSIZE;
 616                                harderr = 1;
 617                                break;
 618                        }
 619                        goto out;
 620                }
 621                err = EHOSTUNREACH;
 622                if (code <= NR_ICMP_UNREACH) {
 623                        harderr = icmp_err_convert[code].fatal;
 624                        err = icmp_err_convert[code].errno;
 625                }
 626                break;
 627        }
 628
 629        /*
 630         *      RFC1122: OK.  Passes ICMP errors back to application, as per
 631         *      4.1.3.3.
 632         */
 633        if (!inet->recverr) {
 634                if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 635                        goto out;
 636        } else
 637                ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 638
 639        sk->sk_err = err;
 640        sk->sk_error_report(sk);
 641out:
 642        sock_put(sk);
 643}
 644
 645void udp_err(struct sk_buff *skb, u32 info)
 646{
 647        __udp4_lib_err(skb, info, &udp_table);
 648}
 649
 650/*
 651 * Throw away all pending data and cancel the corking. Socket is locked.
 652 */
 653void udp_flush_pending_frames(struct sock *sk)
 654{
 655        struct udp_sock *up = udp_sk(sk);
 656
 657        if (up->pending) {
 658                up->len = 0;
 659                up->pending = 0;
 660                ip_flush_pending_frames(sk);
 661        }
 662}
 663EXPORT_SYMBOL(udp_flush_pending_frames);
 664
 665/**
 666 *      udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
 667 *      @sk:    socket we are sending on
 668 *      @skb:   sk_buff containing the filled-in UDP header
 669 *              (checksum field must be zeroed out)
 670 */
 671static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
 672                                 __be32 src, __be32 dst, int len)
 673{
 674        unsigned int offset;
 675        struct udphdr *uh = udp_hdr(skb);
 676        __wsum csum = 0;
 677
 678        if (skb_queue_len(&sk->sk_write_queue) == 1) {
 679                /*
 680                 * Only one fragment on the socket.
 681                 */
 682                skb->csum_start = skb_transport_header(skb) - skb->head;
 683                skb->csum_offset = offsetof(struct udphdr, check);
 684                uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
 685        } else {
 686                /*
 687                 * HW-checksum won't work as there are two or more
 688                 * fragments on the socket so that all csums of sk_buffs
 689                 * should be together
 690                 */
 691                offset = skb_transport_offset(skb);
 692                skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
 693
 694                skb->ip_summed = CHECKSUM_NONE;
 695
 696                skb_queue_walk(&sk->sk_write_queue, skb) {
 697                        csum = csum_add(csum, skb->csum);
 698                }
 699
 700                uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 701                if (uh->check == 0)
 702                        uh->check = CSUM_MANGLED_0;
 703        }
 704}
 705
 706/*
 707 * Push out all pending data as one UDP datagram. Socket is locked.
 708 */
 709static int udp_push_pending_frames(struct sock *sk)
 710{
 711        struct udp_sock  *up = udp_sk(sk);
 712        struct inet_sock *inet = inet_sk(sk);
 713        struct flowi *fl = &inet->cork.fl;
 714        struct sk_buff *skb;
 715        struct udphdr *uh;
 716        int err = 0;
 717        int is_udplite = IS_UDPLITE(sk);
 718        __wsum csum = 0;
 719
 720        /* Grab the skbuff where UDP header space exists. */
 721        if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
 722                goto out;
 723
 724        /*
 725         * Create a UDP header
 726         */
 727        uh = udp_hdr(skb);
 728        uh->source = fl->fl_ip_sport;
 729        uh->dest = fl->fl_ip_dport;
 730        uh->len = htons(up->len);
 731        uh->check = 0;
 732
 733        if (is_udplite)                                  /*     UDP-Lite      */
 734                csum  = udplite_csum_outgoing(sk, skb);
 735
 736        else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
 737
 738                skb->ip_summed = CHECKSUM_NONE;
 739                goto send;
 740
 741        } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 742
 743                udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
 744                goto send;
 745
 746        } else                                           /*   `normal' UDP    */
 747                csum = udp_csum_outgoing(sk, skb);
 748
 749        /* add protocol-dependent pseudo-header */
 750        uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
 751                                      sk->sk_protocol, csum);
 752        if (uh->check == 0)
 753                uh->check = CSUM_MANGLED_0;
 754
 755send:
 756        err = ip_push_pending_frames(sk);
 757        if (err) {
 758                if (err == -ENOBUFS && !inet->recverr) {
 759                        UDP_INC_STATS_USER(sock_net(sk),
 760                                           UDP_MIB_SNDBUFERRORS, is_udplite);
 761                        err = 0;
 762                }
 763        } else
 764                UDP_INC_STATS_USER(sock_net(sk),
 765                                   UDP_MIB_OUTDATAGRAMS, is_udplite);
 766out:
 767        up->len = 0;
 768        up->pending = 0;
 769        return err;
 770}
 771
 772int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 773                size_t len)
 774{
 775        struct inet_sock *inet = inet_sk(sk);
 776        struct udp_sock *up = udp_sk(sk);
 777        int ulen = len;
 778        struct ipcm_cookie ipc;
 779        struct rtable *rt = NULL;
 780        int free = 0;
 781        int connected = 0;
 782        __be32 daddr, faddr, saddr;
 783        __be16 dport;
 784        u8  tos;
 785        int err, is_udplite = IS_UDPLITE(sk);
 786        int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 787        int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 788
 789        if (len > 0xFFFF)
 790                return -EMSGSIZE;
 791
 792        /*
 793         *      Check the flags.
 794         */
 795
 796        if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 797                return -EOPNOTSUPP;
 798
 799        ipc.opt = NULL;
 800        ipc.tx_flags = 0;
 801
 802        if (up->pending) {
 803                /*
 804                 * There are pending frames.
 805                 * The socket lock must be held while it's corked.
 806                 */
 807                lock_sock(sk);
 808                if (likely(up->pending)) {
 809                        if (unlikely(up->pending != AF_INET)) {
 810                                release_sock(sk);
 811                                return -EINVAL;
 812                        }
 813                        goto do_append_data;
 814                }
 815                release_sock(sk);
 816        }
 817        ulen += sizeof(struct udphdr);
 818
 819        /*
 820         *      Get and verify the address.
 821         */
 822        if (msg->msg_name) {
 823                struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
 824                if (msg->msg_namelen < sizeof(*usin))
 825                        return -EINVAL;
 826                if (usin->sin_family != AF_INET) {
 827                        if (usin->sin_family != AF_UNSPEC)
 828                                return -EAFNOSUPPORT;
 829                }
 830
 831                daddr = usin->sin_addr.s_addr;
 832                dport = usin->sin_port;
 833                if (dport == 0)
 834                        return -EINVAL;
 835        } else {
 836                if (sk->sk_state != TCP_ESTABLISHED)
 837                        return -EDESTADDRREQ;
 838                daddr = inet->inet_daddr;
 839                dport = inet->inet_dport;
 840                /* Open fast path for connected socket.
 841                   Route will not be used, if at least one option is set.
 842                 */
 843                connected = 1;
 844        }
 845        ipc.addr = inet->inet_saddr;
 846
 847        ipc.oif = sk->sk_bound_dev_if;
 848        err = sock_tx_timestamp(sk, &ipc.tx_flags);
 849        if (err)
 850                return err;
 851        if (msg->msg_controllen) {
 852                err = ip_cmsg_send(sock_net(sk), msg, &ipc);
 853                if (err)
 854                        return err;
 855                if (ipc.opt)
 856                        free = 1;
 857                connected = 0;
 858        }
 859        if (!ipc.opt)
 860                ipc.opt = inet->opt;
 861
 862        saddr = ipc.addr;
 863        ipc.addr = faddr = daddr;
 864
 865        if (ipc.opt && ipc.opt->srr) {
 866                if (!daddr)
 867                        return -EINVAL;
 868                faddr = ipc.opt->faddr;
 869                connected = 0;
 870        }
 871        tos = RT_TOS(inet->tos);
 872        if (sock_flag(sk, SOCK_LOCALROUTE) ||
 873            (msg->msg_flags & MSG_DONTROUTE) ||
 874            (ipc.opt && ipc.opt->is_strictroute)) {
 875                tos |= RTO_ONLINK;
 876                connected = 0;
 877        }
 878
 879        if (ipv4_is_multicast(daddr)) {
 880                if (!ipc.oif)
 881                        ipc.oif = inet->mc_index;
 882                if (!saddr)
 883                        saddr = inet->mc_addr;
 884                connected = 0;
 885        }
 886
 887        if (connected)
 888                rt = (struct rtable *)sk_dst_check(sk, 0);
 889
 890        if (rt == NULL) {
 891                struct flowi fl = { .oif = ipc.oif,
 892                                    .mark = sk->sk_mark,
 893                                    .fl4_dst = faddr,
 894                                    .fl4_src = saddr,
 895                                    .fl4_tos = tos,
 896                                    .proto = sk->sk_protocol,
 897                                    .flags = inet_sk_flowi_flags(sk),
 898                                    .fl_ip_sport = inet->inet_sport,
 899                                    .fl_ip_dport = dport };
 900                struct net *net = sock_net(sk);
 901
 902                security_sk_classify_flow(sk, &fl);
 903                err = ip_route_output_flow(net, &rt, &fl, sk, 1);
 904                if (err) {
 905                        if (err == -ENETUNREACH)
 906                                IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
 907                        goto out;
 908                }
 909
 910                err = -EACCES;
 911                if ((rt->rt_flags & RTCF_BROADCAST) &&
 912                    !sock_flag(sk, SOCK_BROADCAST))
 913                        goto out;
 914                if (connected)
 915                        sk_dst_set(sk, dst_clone(&rt->dst));
 916        }
 917
 918        if (msg->msg_flags&MSG_CONFIRM)
 919                goto do_confirm;
 920back_from_confirm:
 921
 922        saddr = rt->rt_src;
 923        if (!ipc.addr)
 924                daddr = ipc.addr = rt->rt_dst;
 925
 926        lock_sock(sk);
 927        if (unlikely(up->pending)) {
 928                /* The socket is already corked while preparing it. */
 929                /* ... which is an evident application bug. --ANK */
 930                release_sock(sk);
 931
 932                LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
 933                err = -EINVAL;
 934                goto out;
 935        }
 936        /*
 937         *      Now cork the socket to pend data.
 938         */
 939        inet->cork.fl.fl4_dst = daddr;
 940        inet->cork.fl.fl_ip_dport = dport;
 941        inet->cork.fl.fl4_src = saddr;
 942        inet->cork.fl.fl_ip_sport = inet->inet_sport;
 943        up->pending = AF_INET;
 944
 945do_append_data:
 946        up->len += ulen;
 947        getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
 948        err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
 949                        sizeof(struct udphdr), &ipc, &rt,
 950                        corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
 951        if (err)
 952                udp_flush_pending_frames(sk);
 953        else if (!corkreq)
 954                err = udp_push_pending_frames(sk);
 955        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
 956                up->pending = 0;
 957        release_sock(sk);
 958
 959out:
 960        ip_rt_put(rt);
 961        if (free)
 962                kfree(ipc.opt);
 963        if (!err)
 964                return len;
 965        /*
 966         * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
 967         * ENOBUFS might not be good (it's not tunable per se), but otherwise
 968         * we don't have a good statistic (IpOutDiscards but it can be too many
 969         * things).  We could add another new stat but at least for now that
 970         * seems like overkill.
 971         */
 972        if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
 973                UDP_INC_STATS_USER(sock_net(sk),
 974                                UDP_MIB_SNDBUFERRORS, is_udplite);
 975        }
 976        return err;
 977
 978do_confirm:
 979        dst_confirm(&rt->dst);
 980        if (!(msg->msg_flags&MSG_PROBE) || len)
 981                goto back_from_confirm;
 982        err = 0;
 983        goto out;
 984}
 985EXPORT_SYMBOL(udp_sendmsg);
 986
 987int udp_sendpage(struct sock *sk, struct page *page, int offset,
 988                 size_t size, int flags)
 989{
 990        struct udp_sock *up = udp_sk(sk);
 991        int ret;
 992
 993        if (!up->pending) {
 994                struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
 995
 996                /* Call udp_sendmsg to specify destination address which
 997                 * sendpage interface can't pass.
 998                 * This will succeed only when the socket is connected.
 999                 */
1000                ret = udp_sendmsg(NULL, sk, &msg, 0);
1001                if (ret < 0)
1002                        return ret;
1003        }
1004
1005        lock_sock(sk);
1006
1007        if (unlikely(!up->pending)) {
1008                release_sock(sk);
1009
1010                LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1011                return -EINVAL;
1012        }
1013
1014        ret = ip_append_page(sk, page, offset, size, flags);
1015        if (ret == -EOPNOTSUPP) {
1016                release_sock(sk);
1017                return sock_no_sendpage(sk->sk_socket, page, offset,
1018                                        size, flags);
1019        }
1020        if (ret < 0) {
1021                udp_flush_pending_frames(sk);
1022                goto out;
1023        }
1024
1025        up->len += size;
1026        if (!(up->corkflag || (flags&MSG_MORE)))
1027                ret = udp_push_pending_frames(sk);
1028        if (!ret)
1029                ret = size;
1030out:
1031        release_sock(sk);
1032        return ret;
1033}
1034
1035
1036/**
1037 *      first_packet_length     - return length of first packet in receive queue
1038 *      @sk: socket
1039 *
1040 *      Drops all bad checksum frames, until a valid one is found.
1041 *      Returns the length of found skb, or 0 if none is found.
1042 */
1043static unsigned int first_packet_length(struct sock *sk)
1044{
1045        struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1046        struct sk_buff *skb;
1047        unsigned int res;
1048
1049        __skb_queue_head_init(&list_kill);
1050
1051        spin_lock_bh(&rcvq->lock);
1052        while ((skb = skb_peek(rcvq)) != NULL &&
1053                udp_lib_checksum_complete(skb)) {
1054                UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1055                                 IS_UDPLITE(sk));
1056                atomic_inc(&sk->sk_drops);
1057                __skb_unlink(skb, rcvq);
1058                __skb_queue_tail(&list_kill, skb);
1059        }
1060        res = skb ? skb->len : 0;
1061        spin_unlock_bh(&rcvq->lock);
1062
1063        if (!skb_queue_empty(&list_kill)) {
1064                bool slow = lock_sock_fast(sk);
1065
1066                __skb_queue_purge(&list_kill);
1067                sk_mem_reclaim_partial(sk);
1068                unlock_sock_fast(sk, slow);
1069        }
1070        return res;
1071}
1072
1073/*
1074 *      IOCTL requests applicable to the UDP protocol
1075 */
1076
1077int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1078{
1079        switch (cmd) {
1080        case SIOCOUTQ:
1081        {
1082                int amount = sk_wmem_alloc_get(sk);
1083
1084                return put_user(amount, (int __user *)arg);
1085        }
1086
1087        case SIOCINQ:
1088        {
1089                unsigned int amount = first_packet_length(sk);
1090
1091                if (amount)
1092                        /*
1093                         * We will only return the amount
1094                         * of this packet since that is all
1095                         * that will be read.
1096                         */
1097                        amount -= sizeof(struct udphdr);
1098
1099                return put_user(amount, (int __user *)arg);
1100        }
1101
1102        default:
1103                return -ENOIOCTLCMD;
1104        }
1105
1106        return 0;
1107}
1108EXPORT_SYMBOL(udp_ioctl);
1109
1110/*
1111 *      This should be easy, if there is something there we
1112 *      return it, otherwise we block.
1113 */
1114
1115int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1116                size_t len, int noblock, int flags, int *addr_len)
1117{
1118        struct inet_sock *inet = inet_sk(sk);
1119        struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1120        struct sk_buff *skb;
1121        unsigned int ulen;
1122        int peeked;
1123        int err;
1124        int is_udplite = IS_UDPLITE(sk);
1125        bool slow;
1126
1127        /*
1128         *      Check any passed addresses
1129         */
1130        if (addr_len)
1131                *addr_len = sizeof(*sin);
1132
1133        if (flags & MSG_ERRQUEUE)
1134                return ip_recv_error(sk, msg, len);
1135
1136try_again:
1137        skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1138                                  &peeked, &err);
1139        if (!skb)
1140                goto out;
1141
1142        ulen = skb->len - sizeof(struct udphdr);
1143        if (len > ulen)
1144                len = ulen;
1145        else if (len < ulen)
1146                msg->msg_flags |= MSG_TRUNC;
1147
1148        /*
1149         * If checksum is needed at all, try to do it while copying the
1150         * data.  If the data is truncated, or if we only want a partial
1151         * coverage checksum (UDP-Lite), do it before the copy.
1152         */
1153
1154        if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1155                if (udp_lib_checksum_complete(skb))
1156                        goto csum_copy_err;
1157        }
1158
1159        if (skb_csum_unnecessary(skb))
1160                err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1161                                              msg->msg_iov, len);
1162        else {
1163                err = skb_copy_and_csum_datagram_iovec(skb,
1164                                                       sizeof(struct udphdr),
1165                                                       msg->msg_iov);
1166
1167                if (err == -EINVAL)
1168                        goto csum_copy_err;
1169        }
1170
1171        if (err)
1172                goto out_free;
1173
1174        if (!peeked)
1175                UDP_INC_STATS_USER(sock_net(sk),
1176                                UDP_MIB_INDATAGRAMS, is_udplite);
1177
1178        sock_recv_ts_and_drops(msg, sk, skb);
1179
1180        /* Copy the address. */
1181        if (sin) {
1182                sin->sin_family = AF_INET;
1183                sin->sin_port = udp_hdr(skb)->source;
1184                sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1185                memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1186        }
1187        if (inet->cmsg_flags)
1188                ip_cmsg_recv(msg, skb);
1189
1190        err = len;
1191        if (flags & MSG_TRUNC)
1192                err = ulen;
1193
1194out_free:
1195        skb_free_datagram_locked(sk, skb);
1196out:
1197        return err;
1198
1199csum_copy_err:
1200        slow = lock_sock_fast(sk);
1201        if (!skb_kill_datagram(sk, skb, flags))
1202                UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1203        unlock_sock_fast(sk, slow);
1204
1205        if (noblock)
1206                return -EAGAIN;
1207        goto try_again;
1208}
1209
1210
1211int udp_disconnect(struct sock *sk, int flags)
1212{
1213        struct inet_sock *inet = inet_sk(sk);
1214        /*
1215         *      1003.1g - break association.
1216         */
1217
1218        sk->sk_state = TCP_CLOSE;
1219        inet->inet_daddr = 0;
1220        inet->inet_dport = 0;
1221        sock_rps_save_rxhash(sk, 0);
1222        sk->sk_bound_dev_if = 0;
1223        if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1224                inet_reset_saddr(sk);
1225
1226        if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1227                sk->sk_prot->unhash(sk);
1228                inet->inet_sport = 0;
1229        }
1230        sk_dst_reset(sk);
1231        return 0;
1232}
1233EXPORT_SYMBOL(udp_disconnect);
1234
1235void udp_lib_unhash(struct sock *sk)
1236{
1237        if (sk_hashed(sk)) {
1238                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1239                struct udp_hslot *hslot, *hslot2;
1240
1241                hslot  = udp_hashslot(udptable, sock_net(sk),
1242                                      udp_sk(sk)->udp_port_hash);
1243                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1244
1245                spin_lock_bh(&hslot->lock);
1246                if (sk_nulls_del_node_init_rcu(sk)) {
1247                        hslot->count--;
1248                        inet_sk(sk)->inet_num = 0;
1249                        sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1250
1251                        spin_lock(&hslot2->lock);
1252                        hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1253                        hslot2->count--;
1254                        spin_unlock(&hslot2->lock);
1255                }
1256                spin_unlock_bh(&hslot->lock);
1257        }
1258}
1259EXPORT_SYMBOL(udp_lib_unhash);
1260
1261/*
1262 * inet_rcv_saddr was changed, we must rehash secondary hash
1263 */
1264void udp_lib_rehash(struct sock *sk, u16 newhash)
1265{
1266        if (sk_hashed(sk)) {
1267                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1268                struct udp_hslot *hslot, *hslot2, *nhslot2;
1269
1270                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1271                nhslot2 = udp_hashslot2(udptable, newhash);
1272                udp_sk(sk)->udp_portaddr_hash = newhash;
1273                if (hslot2 != nhslot2) {
1274                        hslot = udp_hashslot(udptable, sock_net(sk),
1275                                             udp_sk(sk)->udp_port_hash);
1276                        /* we must lock primary chain too */
1277                        spin_lock_bh(&hslot->lock);
1278
1279                        spin_lock(&hslot2->lock);
1280                        hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1281                        hslot2->count--;
1282                        spin_unlock(&hslot2->lock);
1283
1284                        spin_lock(&nhslot2->lock);
1285                        hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1286                                                 &nhslot2->head);
1287                        nhslot2->count++;
1288                        spin_unlock(&nhslot2->lock);
1289
1290                        spin_unlock_bh(&hslot->lock);
1291                }
1292        }
1293}
1294EXPORT_SYMBOL(udp_lib_rehash);
1295
1296static void udp_v4_rehash(struct sock *sk)
1297{
1298        u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1299                                          inet_sk(sk)->inet_rcv_saddr,
1300                                          inet_sk(sk)->inet_num);
1301        udp_lib_rehash(sk, new_hash);
1302}
1303
1304static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1305{
1306        int rc;
1307
1308        if (inet_sk(sk)->inet_daddr)
1309                sock_rps_save_rxhash(sk, skb->rxhash);
1310
1311        rc = ip_queue_rcv_skb(sk, skb);
1312        if (rc < 0) {
1313                int is_udplite = IS_UDPLITE(sk);
1314
1315                /* Note that an ENOMEM error is charged twice */
1316                if (rc == -ENOMEM)
1317                        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1318                                         is_udplite);
1319                UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1320                kfree_skb(skb);
1321                return -1;
1322        }
1323
1324        return 0;
1325
1326}
1327
1328/* returns:
1329 *  -1: error
1330 *   0: success
1331 *  >0: "udp encap" protocol resubmission
1332 *
1333 * Note that in the success and error cases, the skb is assumed to
1334 * have either been requeued or freed.
1335 */
1336int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1337{
1338        struct udp_sock *up = udp_sk(sk);
1339        int rc;
1340        int is_udplite = IS_UDPLITE(sk);
1341
1342        /*
1343         *      Charge it to the socket, dropping if the queue is full.
1344         */
1345        if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1346                goto drop;
1347        nf_reset(skb);
1348
1349        if (up->encap_type) {
1350                /*
1351                 * This is an encapsulation socket so pass the skb to
1352                 * the socket's udp_encap_rcv() hook. Otherwise, just
1353                 * fall through and pass this up the UDP socket.
1354                 * up->encap_rcv() returns the following value:
1355                 * =0 if skb was successfully passed to the encap
1356                 *    handler or was discarded by it.
1357                 * >0 if skb should be passed on to UDP.
1358                 * <0 if skb should be resubmitted as proto -N
1359                 */
1360
1361                /* if we're overly short, let UDP handle it */
1362                if (skb->len > sizeof(struct udphdr) &&
1363                    up->encap_rcv != NULL) {
1364                        int ret;
1365
1366                        ret = (*up->encap_rcv)(sk, skb);
1367                        if (ret <= 0) {
1368                                UDP_INC_STATS_BH(sock_net(sk),
1369                                                 UDP_MIB_INDATAGRAMS,
1370                                                 is_udplite);
1371                                return -ret;
1372                        }
1373                }
1374
1375                /* FALLTHROUGH -- it's a UDP Packet */
1376        }
1377
1378        /*
1379         *      UDP-Lite specific tests, ignored on UDP sockets
1380         */
1381        if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1382
1383                /*
1384                 * MIB statistics other than incrementing the error count are
1385                 * disabled for the following two types of errors: these depend
1386                 * on the application settings, not on the functioning of the
1387                 * protocol stack as such.
1388                 *
1389                 * RFC 3828 here recommends (sec 3.3): "There should also be a
1390                 * way ... to ... at least let the receiving application block
1391                 * delivery of packets with coverage values less than a value
1392                 * provided by the application."
1393                 */
1394                if (up->pcrlen == 0) {          /* full coverage was set  */
1395                        LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1396                                "%d while full coverage %d requested\n",
1397                                UDP_SKB_CB(skb)->cscov, skb->len);
1398                        goto drop;
1399                }
1400                /* The next case involves violating the min. coverage requested
1401                 * by the receiver. This is subtle: if receiver wants x and x is
1402                 * greater than the buffersize/MTU then receiver will complain
1403                 * that it wants x while sender emits packets of smaller size y.
1404                 * Therefore the above ...()->partial_cov statement is essential.
1405                 */
1406                if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1407                        LIMIT_NETDEBUG(KERN_WARNING
1408                                "UDPLITE: coverage %d too small, need min %d\n",
1409                                UDP_SKB_CB(skb)->cscov, up->pcrlen);
1410                        goto drop;
1411                }
1412        }
1413
1414        if (rcu_dereference_raw(sk->sk_filter)) {
1415                if (udp_lib_checksum_complete(skb))
1416                        goto drop;
1417        }
1418
1419
1420        if (sk_rcvqueues_full(sk, skb))
1421                goto drop;
1422
1423        rc = 0;
1424
1425        bh_lock_sock(sk);
1426        if (!sock_owned_by_user(sk))
1427                rc = __udp_queue_rcv_skb(sk, skb);
1428        else if (sk_add_backlog(sk, skb)) {
1429                bh_unlock_sock(sk);
1430                goto drop;
1431        }
1432        bh_unlock_sock(sk);
1433
1434        return rc;
1435
1436drop:
1437        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1438        atomic_inc(&sk->sk_drops);
1439        kfree_skb(skb);
1440        return -1;
1441}
1442
1443
1444static void flush_stack(struct sock **stack, unsigned int count,
1445                        struct sk_buff *skb, unsigned int final)
1446{
1447        unsigned int i;
1448        struct sk_buff *skb1 = NULL;
1449        struct sock *sk;
1450
1451        for (i = 0; i < count; i++) {
1452                sk = stack[i];
1453                if (likely(skb1 == NULL))
1454                        skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1455
1456                if (!skb1) {
1457                        atomic_inc(&sk->sk_drops);
1458                        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1459                                         IS_UDPLITE(sk));
1460                        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1461                                         IS_UDPLITE(sk));
1462                }
1463
1464                if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1465                        skb1 = NULL;
1466        }
1467        if (unlikely(skb1))
1468                kfree_skb(skb1);
1469}
1470
1471/*
1472 *      Multicasts and broadcasts go to each listener.
1473 *
1474 *      Note: called only from the BH handler context.
1475 */
1476static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1477                                    struct udphdr  *uh,
1478                                    __be32 saddr, __be32 daddr,
1479                                    struct udp_table *udptable)
1480{
1481        struct sock *sk, *stack[256 / sizeof(struct sock *)];
1482        struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1483        int dif;
1484        unsigned int i, count = 0;
1485
1486        spin_lock(&hslot->lock);
1487        sk = sk_nulls_head(&hslot->head);
1488        dif = skb->dev->ifindex;
1489        sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1490        while (sk) {
1491                stack[count++] = sk;
1492                sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1493                                       daddr, uh->source, saddr, dif);
1494                if (unlikely(count == ARRAY_SIZE(stack))) {
1495                        if (!sk)
1496                                break;
1497                        flush_stack(stack, count, skb, ~0);
1498                        count = 0;
1499                }
1500        }
1501        /*
1502         * before releasing chain lock, we must take a reference on sockets
1503         */
1504        for (i = 0; i < count; i++)
1505                sock_hold(stack[i]);
1506
1507        spin_unlock(&hslot->lock);
1508
1509        /*
1510         * do the slow work with no lock held
1511         */
1512        if (count) {
1513                flush_stack(stack, count, skb, count - 1);
1514
1515                for (i = 0; i < count; i++)
1516                        sock_put(stack[i]);
1517        } else {
1518                kfree_skb(skb);
1519        }
1520        return 0;
1521}
1522
1523/* Initialize UDP checksum. If exited with zero value (success),
1524 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1525 * Otherwise, csum completion requires chacksumming packet body,
1526 * including udp header and folding it to skb->csum.
1527 */
1528static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1529                                 int proto)
1530{
1531        const struct iphdr *iph;
1532        int err;
1533
1534        UDP_SKB_CB(skb)->partial_cov = 0;
1535        UDP_SKB_CB(skb)->cscov = skb->len;
1536
1537        if (proto == IPPROTO_UDPLITE) {
1538                err = udplite_checksum_init(skb, uh);
1539                if (err)
1540                        return err;
1541        }
1542
1543        iph = ip_hdr(skb);
1544        if (uh->check == 0) {
1545                skb->ip_summed = CHECKSUM_UNNECESSARY;
1546        } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1547                if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1548                                      proto, skb->csum))
1549                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1550        }
1551        if (!skb_csum_unnecessary(skb))
1552                skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1553                                               skb->len, proto, 0);
1554        /* Probably, we should checksum udp header (it should be in cache
1555         * in any case) and data in tiny packets (< rx copybreak).
1556         */
1557
1558        return 0;
1559}
1560
1561/*
1562 *      All we need to do is get the socket, and then do a checksum.
1563 */
1564
1565int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1566                   int proto)
1567{
1568        struct sock *sk;
1569        struct udphdr *uh;
1570        unsigned short ulen;
1571        struct rtable *rt = skb_rtable(skb);
1572        __be32 saddr, daddr;
1573        struct net *net = dev_net(skb->dev);
1574
1575        /*
1576         *  Validate the packet.
1577         */
1578        if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1579                goto drop;              /* No space for header. */
1580
1581        uh   = udp_hdr(skb);
1582        ulen = ntohs(uh->len);
1583        saddr = ip_hdr(skb)->saddr;
1584        daddr = ip_hdr(skb)->daddr;
1585
1586        if (ulen > skb->len)
1587                goto short_packet;
1588
1589        if (proto == IPPROTO_UDP) {
1590                /* UDP validates ulen. */
1591                if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1592                        goto short_packet;
1593                uh = udp_hdr(skb);
1594        }
1595
1596        if (udp4_csum_init(skb, uh, proto))
1597                goto csum_error;
1598
1599        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1600                return __udp4_lib_mcast_deliver(net, skb, uh,
1601                                saddr, daddr, udptable);
1602
1603        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1604
1605        if (sk != NULL) {
1606                int ret = udp_queue_rcv_skb(sk, skb);
1607                sock_put(sk);
1608
1609                /* a return value > 0 means to resubmit the input, but
1610                 * it wants the return to be -protocol, or 0
1611                 */
1612                if (ret > 0)
1613                        return -ret;
1614                return 0;
1615        }
1616
1617        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1618                goto drop;
1619        nf_reset(skb);
1620
1621        /* No socket. Drop packet silently, if checksum is wrong */
1622        if (udp_lib_checksum_complete(skb))
1623                goto csum_error;
1624
1625        UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1626        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1627
1628        /*
1629         * Hmm.  We got an UDP packet to a port to which we
1630         * don't wanna listen.  Ignore it.
1631         */
1632        kfree_skb(skb);
1633        return 0;
1634
1635short_packet:
1636        LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1637                       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1638                       &saddr,
1639                       ntohs(uh->source),
1640                       ulen,
1641                       skb->len,
1642                       &daddr,
1643                       ntohs(uh->dest));
1644        goto drop;
1645
1646csum_error:
1647        /*
1648         * RFC1122: OK.  Discards the bad packet silently (as far as
1649         * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1650         */
1651        LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1652                       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1653                       &saddr,
1654                       ntohs(uh->source),
1655                       &daddr,
1656                       ntohs(uh->dest),
1657                       ulen);
1658drop:
1659        UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1660        kfree_skb(skb);
1661        return 0;
1662}
1663
1664int udp_rcv(struct sk_buff *skb)
1665{
1666        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1667}
1668
1669void udp_destroy_sock(struct sock *sk)
1670{
1671        bool slow = lock_sock_fast(sk);
1672        udp_flush_pending_frames(sk);
1673        unlock_sock_fast(sk, slow);
1674}
1675
1676/*
1677 *      Socket option code for UDP
1678 */
1679int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1680                       char __user *optval, unsigned int optlen,
1681                       int (*push_pending_frames)(struct sock *))
1682{
1683        struct udp_sock *up = udp_sk(sk);
1684        int val;
1685        int err = 0;
1686        int is_udplite = IS_UDPLITE(sk);
1687
1688        if (optlen < sizeof(int))
1689                return -EINVAL;
1690
1691        if (get_user(val, (int __user *)optval))
1692                return -EFAULT;
1693
1694        switch (optname) {
1695        case UDP_CORK:
1696                if (val != 0) {
1697                        up->corkflag = 1;
1698                } else {
1699                        up->corkflag = 0;
1700                        lock_sock(sk);
1701                        (*push_pending_frames)(sk);
1702                        release_sock(sk);
1703                }
1704                break;
1705
1706        case UDP_ENCAP:
1707                switch (val) {
1708                case 0:
1709                case UDP_ENCAP_ESPINUDP:
1710                case UDP_ENCAP_ESPINUDP_NON_IKE:
1711                        up->encap_rcv = xfrm4_udp_encap_rcv;
1712                        /* FALLTHROUGH */
1713                case UDP_ENCAP_L2TPINUDP:
1714                        up->encap_type = val;
1715                        break;
1716                default:
1717                        err = -ENOPROTOOPT;
1718                        break;
1719                }
1720                break;
1721
1722        /*
1723         *      UDP-Lite's partial checksum coverage (RFC 3828).
1724         */
1725        /* The sender sets actual checksum coverage length via this option.
1726         * The case coverage > packet length is handled by send module. */
1727        case UDPLITE_SEND_CSCOV:
1728                if (!is_udplite)         /* Disable the option on UDP sockets */
1729                        return -ENOPROTOOPT;
1730                if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1731                        val = 8;
1732                else if (val > USHRT_MAX)
1733                        val = USHRT_MAX;
1734                up->pcslen = val;
1735                up->pcflag |= UDPLITE_SEND_CC;
1736                break;
1737
1738        /* The receiver specifies a minimum checksum coverage value. To make
1739         * sense, this should be set to at least 8 (as done below). If zero is
1740         * used, this again means full checksum coverage.                     */
1741        case UDPLITE_RECV_CSCOV:
1742                if (!is_udplite)         /* Disable the option on UDP sockets */
1743                        return -ENOPROTOOPT;
1744                if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1745                        val = 8;
1746                else if (val > USHRT_MAX)
1747                        val = USHRT_MAX;
1748                up->pcrlen = val;
1749                up->pcflag |= UDPLITE_RECV_CC;
1750                break;
1751
1752        default:
1753                err = -ENOPROTOOPT;
1754                break;
1755        }
1756
1757        return err;
1758}
1759EXPORT_SYMBOL(udp_lib_setsockopt);
1760
1761int udp_setsockopt(struct sock *sk, int level, int optname,
1762                   char __user *optval, unsigned int optlen)
1763{
1764        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1765                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1766                                          udp_push_pending_frames);
1767        return ip_setsockopt(sk, level, optname, optval, optlen);
1768}
1769
1770#ifdef CONFIG_COMPAT
1771int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1772                          char __user *optval, unsigned int optlen)
1773{
1774        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1775                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1776                                          udp_push_pending_frames);
1777        return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1778}
1779#endif
1780
1781int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1782                       char __user *optval, int __user *optlen)
1783{
1784        struct udp_sock *up = udp_sk(sk);
1785        int val, len;
1786
1787        if (get_user(len, optlen))
1788                return -EFAULT;
1789
1790        len = min_t(unsigned int, len, sizeof(int));
1791
1792        if (len < 0)
1793                return -EINVAL;
1794
1795        switch (optname) {
1796        case UDP_CORK:
1797                val = up->corkflag;
1798                break;
1799
1800        case UDP_ENCAP:
1801                val = up->encap_type;
1802                break;
1803
1804        /* The following two cannot be changed on UDP sockets, the return is
1805         * always 0 (which corresponds to the full checksum coverage of UDP). */
1806        case UDPLITE_SEND_CSCOV:
1807                val = up->pcslen;
1808                break;
1809
1810        case UDPLITE_RECV_CSCOV:
1811                val = up->pcrlen;
1812                break;
1813
1814        default:
1815                return -ENOPROTOOPT;
1816        }
1817
1818        if (put_user(len, optlen))
1819                return -EFAULT;
1820        if (copy_to_user(optval, &val, len))
1821                return -EFAULT;
1822        return 0;
1823}
1824EXPORT_SYMBOL(udp_lib_getsockopt);
1825
1826int udp_getsockopt(struct sock *sk, int level, int optname,
1827                   char __user *optval, int __user *optlen)
1828{
1829        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1830                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1831        return ip_getsockopt(sk, level, optname, optval, optlen);
1832}
1833
1834#ifdef CONFIG_COMPAT
1835int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1836                                 char __user *optval, int __user *optlen)
1837{
1838        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1839                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1840        return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1841}
1842#endif
1843/**
1844 *      udp_poll - wait for a UDP event.
1845 *      @file - file struct
1846 *      @sock - socket
1847 *      @wait - poll table
1848 *
1849 *      This is same as datagram poll, except for the special case of
1850 *      blocking sockets. If application is using a blocking fd
1851 *      and a packet with checksum error is in the queue;
1852 *      then it could get return from select indicating data available
1853 *      but then block when reading it. Add special case code
1854 *      to work around these arguably broken applications.
1855 */
1856unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1857{
1858        unsigned int mask = datagram_poll(file, sock, wait);
1859        struct sock *sk = sock->sk;
1860
1861        /* Check for false positives due to checksum errors */
1862        if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1863            !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1864                mask &= ~(POLLIN | POLLRDNORM);
1865
1866        return mask;
1867
1868}
1869EXPORT_SYMBOL(udp_poll);
1870
1871struct proto udp_prot = {
1872        .name              = "UDP",
1873        .owner             = THIS_MODULE,
1874        .close             = udp_lib_close,
1875        .connect           = ip4_datagram_connect,
1876        .disconnect        = udp_disconnect,
1877        .ioctl             = udp_ioctl,
1878        .destroy           = udp_destroy_sock,
1879        .setsockopt        = udp_setsockopt,
1880        .getsockopt        = udp_getsockopt,
1881        .sendmsg           = udp_sendmsg,
1882        .recvmsg           = udp_recvmsg,
1883        .sendpage          = udp_sendpage,
1884        .backlog_rcv       = __udp_queue_rcv_skb,
1885        .hash              = udp_lib_hash,
1886        .unhash            = udp_lib_unhash,
1887        .rehash            = udp_v4_rehash,
1888        .get_port          = udp_v4_get_port,
1889        .memory_allocated  = &udp_memory_allocated,
1890        .sysctl_mem        = sysctl_udp_mem,
1891        .sysctl_wmem       = &sysctl_udp_wmem_min,
1892        .sysctl_rmem       = &sysctl_udp_rmem_min,
1893        .obj_size          = sizeof(struct udp_sock),
1894        .slab_flags        = SLAB_DESTROY_BY_RCU,
1895        .h.udp_table       = &udp_table,
1896#ifdef CONFIG_COMPAT
1897        .compat_setsockopt = compat_udp_setsockopt,
1898        .compat_getsockopt = compat_udp_getsockopt,
1899#endif
1900        .clear_sk          = sk_prot_clear_portaddr_nulls,
1901};
1902EXPORT_SYMBOL(udp_prot);
1903
1904/* ------------------------------------------------------------------------ */
1905#ifdef CONFIG_PROC_FS
1906
1907static struct sock *udp_get_first(struct seq_file *seq, int start)
1908{
1909        struct sock *sk;
1910        struct udp_iter_state *state = seq->private;
1911        struct net *net = seq_file_net(seq);
1912
1913        for (state->bucket = start; state->bucket <= state->udp_table->mask;
1914             ++state->bucket) {
1915                struct hlist_nulls_node *node;
1916                struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1917
1918                if (hlist_nulls_empty(&hslot->head))
1919                        continue;
1920
1921                spin_lock_bh(&hslot->lock);
1922                sk_nulls_for_each(sk, node, &hslot->head) {
1923                        if (!net_eq(sock_net(sk), net))
1924                                continue;
1925                        if (sk->sk_family == state->family)
1926                                goto found;
1927                }
1928                spin_unlock_bh(&hslot->lock);
1929        }
1930        sk = NULL;
1931found:
1932        return sk;
1933}
1934
1935static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1936{
1937        struct udp_iter_state *state = seq->private;
1938        struct net *net = seq_file_net(seq);
1939
1940        do {
1941                sk = sk_nulls_next(sk);
1942        } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1943
1944        if (!sk) {
1945                if (state->bucket <= state->udp_table->mask)
1946                        spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1947                return udp_get_first(seq, state->bucket + 1);
1948        }
1949        return sk;
1950}
1951
1952static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1953{
1954        struct sock *sk = udp_get_first(seq, 0);
1955
1956        if (sk)
1957                while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1958                        --pos;
1959        return pos ? NULL : sk;
1960}
1961
1962static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1963{
1964        struct udp_iter_state *state = seq->private;
1965        state->bucket = MAX_UDP_PORTS;
1966
1967        return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1968}
1969
1970static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1971{
1972        struct sock *sk;
1973
1974        if (v == SEQ_START_TOKEN)
1975                sk = udp_get_idx(seq, 0);
1976        else
1977                sk = udp_get_next(seq, v);
1978
1979        ++*pos;
1980        return sk;
1981}
1982
1983static void udp_seq_stop(struct seq_file *seq, void *v)
1984{
1985        struct udp_iter_state *state = seq->private;
1986
1987        if (state->bucket <= state->udp_table->mask)
1988                spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1989}
1990
1991static int udp_seq_open(struct inode *inode, struct file *file)
1992{
1993        struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1994        struct udp_iter_state *s;
1995        int err;
1996
1997        err = seq_open_net(inode, file, &afinfo->seq_ops,
1998                           sizeof(struct udp_iter_state));
1999        if (err < 0)
2000                return err;
2001
2002        s = ((struct seq_file *)file->private_data)->private;
2003        s->family               = afinfo->family;
2004        s->udp_table            = afinfo->udp_table;
2005        return err;
2006}
2007
2008/* ------------------------------------------------------------------------ */
2009int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2010{
2011        struct proc_dir_entry *p;
2012        int rc = 0;
2013
2014        afinfo->seq_fops.open           = udp_seq_open;
2015        afinfo->seq_fops.read           = seq_read;
2016        afinfo->seq_fops.llseek         = seq_lseek;
2017        afinfo->seq_fops.release        = seq_release_net;
2018
2019        afinfo->seq_ops.start           = udp_seq_start;
2020        afinfo->seq_ops.next            = udp_seq_next;
2021        afinfo->seq_ops.stop            = udp_seq_stop;
2022
2023        p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2024                             &afinfo->seq_fops, afinfo);
2025        if (!p)
2026                rc = -ENOMEM;
2027        return rc;
2028}
2029EXPORT_SYMBOL(udp_proc_register);
2030
2031void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2032{
2033        proc_net_remove(net, afinfo->name);
2034}
2035EXPORT_SYMBOL(udp_proc_unregister);
2036
2037/* ------------------------------------------------------------------------ */
2038static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2039                int bucket, int *len)
2040{
2041        struct inet_sock *inet = inet_sk(sp);
2042        __be32 dest = inet->inet_daddr;
2043        __be32 src  = inet->inet_rcv_saddr;
2044        __u16 destp       = ntohs(inet->inet_dport);
2045        __u16 srcp        = ntohs(inet->inet_sport);
2046
2047        seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2048                " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
2049                bucket, src, srcp, dest, destp, sp->sk_state,
2050                sk_wmem_alloc_get(sp),
2051                sk_rmem_alloc_get(sp),
2052                0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2053                atomic_read(&sp->sk_refcnt), sp,
2054                atomic_read(&sp->sk_drops), len);
2055}
2056
2057int udp4_seq_show(struct seq_file *seq, void *v)
2058{
2059        if (v == SEQ_START_TOKEN)
2060                seq_printf(seq, "%-127s\n",
2061                           "  sl  local_address rem_address   st tx_queue "
2062                           "rx_queue tr tm->when retrnsmt   uid  timeout "
2063                           "inode ref pointer drops");
2064        else {
2065                struct udp_iter_state *state = seq->private;
2066                int len;
2067
2068                udp4_format_sock(v, seq, state->bucket, &len);
2069                seq_printf(seq, "%*s\n", 127 - len, "");
2070        }
2071        return 0;
2072}
2073
2074/* ------------------------------------------------------------------------ */
2075static struct udp_seq_afinfo udp4_seq_afinfo = {
2076        .name           = "udp",
2077        .family         = AF_INET,
2078        .udp_table      = &udp_table,
2079        .seq_fops       = {
2080                .owner  =       THIS_MODULE,
2081        },
2082        .seq_ops        = {
2083                .show           = udp4_seq_show,
2084        },
2085};
2086
2087static int __net_init udp4_proc_init_net(struct net *net)
2088{
2089        return udp_proc_register(net, &udp4_seq_afinfo);
2090}
2091
2092static void __net_exit udp4_proc_exit_net(struct net *net)
2093{
2094        udp_proc_unregister(net, &udp4_seq_afinfo);
2095}
2096
2097static struct pernet_operations udp4_net_ops = {
2098        .init = udp4_proc_init_net,
2099        .exit = udp4_proc_exit_net,
2100};
2101
2102int __init udp4_proc_init(void)
2103{
2104        return register_pernet_subsys(&udp4_net_ops);
2105}
2106
2107void udp4_proc_exit(void)
2108{
2109        unregister_pernet_subsys(&udp4_net_ops);
2110}
2111#endif /* CONFIG_PROC_FS */
2112
2113static __initdata unsigned long uhash_entries;
2114static int __init set_uhash_entries(char *str)
2115{
2116        if (!str)
2117                return 0;
2118        uhash_entries = simple_strtoul(str, &str, 0);
2119        if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2120                uhash_entries = UDP_HTABLE_SIZE_MIN;
2121        return 1;
2122}
2123__setup("uhash_entries=", set_uhash_entries);
2124
2125void __init udp_table_init(struct udp_table *table, const char *name)
2126{
2127        unsigned int i;
2128
2129        if (!CONFIG_BASE_SMALL)
2130                table->hash = alloc_large_system_hash(name,
2131                        2 * sizeof(struct udp_hslot),
2132                        uhash_entries,
2133                        21, /* one slot per 2 MB */
2134                        0,
2135                        &table->log,
2136                        &table->mask,
2137                        64 * 1024);
2138        /*
2139         * Make sure hash table has the minimum size
2140         */
2141        if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2142                table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2143                                      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2144                if (!table->hash)
2145                        panic(name);
2146                table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2147                table->mask = UDP_HTABLE_SIZE_MIN - 1;
2148        }
2149        table->hash2 = table->hash + (table->mask + 1);
2150        for (i = 0; i <= table->mask; i++) {
2151                INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2152                table->hash[i].count = 0;
2153                spin_lock_init(&table->hash[i].lock);
2154        }
2155        for (i = 0; i <= table->mask; i++) {
2156                INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2157                table->hash2[i].count = 0;
2158                spin_lock_init(&table->hash2[i].lock);
2159        }
2160}
2161
2162void __init udp_init(void)
2163{
2164        unsigned long nr_pages, limit;
2165
2166        udp_table_init(&udp_table, "UDP");
2167        /* Set the pressure threshold up by the same strategy of TCP. It is a
2168         * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2169         * toward zero with the amount of memory, with a floor of 128 pages.
2170         */
2171        nr_pages = totalram_pages - totalhigh_pages;
2172        limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2173        limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2174        limit = max(limit, 128UL);
2175        sysctl_udp_mem[0] = limit / 4 * 3;
2176        sysctl_udp_mem[1] = limit;
2177        sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2178
2179        sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2180        sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2181}
2182
2183int udp4_ufo_send_check(struct sk_buff *skb)
2184{
2185        const struct iphdr *iph;
2186        struct udphdr *uh;
2187
2188        if (!pskb_may_pull(skb, sizeof(*uh)))
2189                return -EINVAL;
2190
2191        iph = ip_hdr(skb);
2192        uh = udp_hdr(skb);
2193
2194        uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2195                                       IPPROTO_UDP, 0);
2196        skb->csum_start = skb_transport_header(skb) - skb->head;
2197        skb->csum_offset = offsetof(struct udphdr, check);
2198        skb->ip_summed = CHECKSUM_PARTIAL;
2199        return 0;
2200}
2201
2202struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2203{
2204        struct sk_buff *segs = ERR_PTR(-EINVAL);
2205        unsigned int mss;
2206        int offset;
2207        __wsum csum;
2208
2209        mss = skb_shinfo(skb)->gso_size;
2210        if (unlikely(skb->len <= mss))
2211                goto out;
2212
2213        if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2214                /* Packet is from an untrusted source, reset gso_segs. */
2215                int type = skb_shinfo(skb)->gso_type;
2216
2217                if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2218                             !(type & (SKB_GSO_UDP))))
2219                        goto out;
2220
2221                skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2222
2223                segs = NULL;
2224                goto out;
2225        }
2226
2227        /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2228         * do checksum of UDP packets sent as multiple IP fragments.
2229         */
2230        offset = skb_checksum_start_offset(skb);
2231        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2232        offset += skb->csum_offset;
2233        *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2234        skb->ip_summed = CHECKSUM_NONE;
2235
2236        /* Fragment the skb. IP headers of the fragments are updated in
2237         * inet_gso_segment()
2238         */
2239        segs = skb_segment(skb, features);
2240out:
2241        return segs;
2242}
2243
2244