linux/security/commoncap.c
<<
>>
Prefs
   1/* Common capabilities, needed by capability.o.
   2 *
   3 *      This program is free software; you can redistribute it and/or modify
   4 *      it under the terms of the GNU General Public License as published by
   5 *      the Free Software Foundation; either version 2 of the License, or
   6 *      (at your option) any later version.
   7 *
   8 */
   9
  10#include <linux/capability.h>
  11#include <linux/audit.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/security.h>
  16#include <linux/file.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/skbuff.h>
  22#include <linux/netlink.h>
  23#include <linux/ptrace.h>
  24#include <linux/xattr.h>
  25#include <linux/hugetlb.h>
  26#include <linux/mount.h>
  27#include <linux/sched.h>
  28#include <linux/prctl.h>
  29#include <linux/securebits.h>
  30
  31/*
  32 * If a non-root user executes a setuid-root binary in
  33 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  34 * However if fE is also set, then the intent is for only
  35 * the file capabilities to be applied, and the setuid-root
  36 * bit is left on either to change the uid (plausible) or
  37 * to get full privilege on a kernel without file capabilities
  38 * support.  So in that case we do not raise capabilities.
  39 *
  40 * Warn if that happens, once per boot.
  41 */
  42static void warn_setuid_and_fcaps_mixed(const char *fname)
  43{
  44        static int warned;
  45        if (!warned) {
  46                printk(KERN_INFO "warning: `%s' has both setuid-root and"
  47                        " effective capabilities. Therefore not raising all"
  48                        " capabilities.\n", fname);
  49                warned = 1;
  50        }
  51}
  52
  53int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
  54{
  55        NETLINK_CB(skb).eff_cap = current_cap();
  56        return 0;
  57}
  58
  59int cap_netlink_recv(struct sk_buff *skb, int cap)
  60{
  61        if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
  62                return -EPERM;
  63        return 0;
  64}
  65EXPORT_SYMBOL(cap_netlink_recv);
  66
  67/**
  68 * cap_capable - Determine whether a task has a particular effective capability
  69 * @tsk: The task to query
  70 * @cred: The credentials to use
  71 * @cap: The capability to check for
  72 * @audit: Whether to write an audit message or not
  73 *
  74 * Determine whether the nominated task has the specified capability amongst
  75 * its effective set, returning 0 if it does, -ve if it does not.
  76 *
  77 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  78 * and has_capability() functions.  That is, it has the reverse semantics:
  79 * cap_has_capability() returns 0 when a task has a capability, but the
  80 * kernel's capable() and has_capability() returns 1 for this case.
  81 */
  82int cap_capable(struct task_struct *tsk, const struct cred *cred, int cap,
  83                int audit)
  84{
  85        return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  86}
  87
  88/**
  89 * cap_settime - Determine whether the current process may set the system clock
  90 * @ts: The time to set
  91 * @tz: The timezone to set
  92 *
  93 * Determine whether the current process may set the system clock and timezone
  94 * information, returning 0 if permission granted, -ve if denied.
  95 */
  96int cap_settime(struct timespec *ts, struct timezone *tz)
  97{
  98        if (!capable(CAP_SYS_TIME))
  99                return -EPERM;
 100        return 0;
 101}
 102
 103/**
 104 * cap_ptrace_access_check - Determine whether the current process may access
 105 *                         another
 106 * @child: The process to be accessed
 107 * @mode: The mode of attachment.
 108 *
 109 * Determine whether a process may access another, returning 0 if permission
 110 * granted, -ve if denied.
 111 */
 112int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
 113{
 114        int ret = 0;
 115
 116        rcu_read_lock();
 117        if (!cap_issubset(__task_cred(child)->cap_permitted,
 118                          current_cred()->cap_permitted) &&
 119            !capable(CAP_SYS_PTRACE))
 120                ret = -EPERM;
 121        rcu_read_unlock();
 122        return ret;
 123}
 124
 125/**
 126 * cap_ptrace_traceme - Determine whether another process may trace the current
 127 * @parent: The task proposed to be the tracer
 128 *
 129 * Determine whether the nominated task is permitted to trace the current
 130 * process, returning 0 if permission is granted, -ve if denied.
 131 */
 132int cap_ptrace_traceme(struct task_struct *parent)
 133{
 134        int ret = 0;
 135
 136        rcu_read_lock();
 137        if (!cap_issubset(current_cred()->cap_permitted,
 138                          __task_cred(parent)->cap_permitted) &&
 139            !has_capability(parent, CAP_SYS_PTRACE))
 140                ret = -EPERM;
 141        rcu_read_unlock();
 142        return ret;
 143}
 144
 145/**
 146 * cap_capget - Retrieve a task's capability sets
 147 * @target: The task from which to retrieve the capability sets
 148 * @effective: The place to record the effective set
 149 * @inheritable: The place to record the inheritable set
 150 * @permitted: The place to record the permitted set
 151 *
 152 * This function retrieves the capabilities of the nominated task and returns
 153 * them to the caller.
 154 */
 155int cap_capget(struct task_struct *target, kernel_cap_t *effective,
 156               kernel_cap_t *inheritable, kernel_cap_t *permitted)
 157{
 158        const struct cred *cred;
 159
 160        /* Derived from kernel/capability.c:sys_capget. */
 161        rcu_read_lock();
 162        cred = __task_cred(target);
 163        *effective   = cred->cap_effective;
 164        *inheritable = cred->cap_inheritable;
 165        *permitted   = cred->cap_permitted;
 166        rcu_read_unlock();
 167        return 0;
 168}
 169
 170/*
 171 * Determine whether the inheritable capabilities are limited to the old
 172 * permitted set.  Returns 1 if they are limited, 0 if they are not.
 173 */
 174static inline int cap_inh_is_capped(void)
 175{
 176
 177        /* they are so limited unless the current task has the CAP_SETPCAP
 178         * capability
 179         */
 180        if (cap_capable(current, current_cred(), CAP_SETPCAP,
 181                        SECURITY_CAP_AUDIT) == 0)
 182                return 0;
 183        return 1;
 184}
 185
 186/**
 187 * cap_capset - Validate and apply proposed changes to current's capabilities
 188 * @new: The proposed new credentials; alterations should be made here
 189 * @old: The current task's current credentials
 190 * @effective: A pointer to the proposed new effective capabilities set
 191 * @inheritable: A pointer to the proposed new inheritable capabilities set
 192 * @permitted: A pointer to the proposed new permitted capabilities set
 193 *
 194 * This function validates and applies a proposed mass change to the current
 195 * process's capability sets.  The changes are made to the proposed new
 196 * credentials, and assuming no error, will be committed by the caller of LSM.
 197 */
 198int cap_capset(struct cred *new,
 199               const struct cred *old,
 200               const kernel_cap_t *effective,
 201               const kernel_cap_t *inheritable,
 202               const kernel_cap_t *permitted)
 203{
 204        if (cap_inh_is_capped() &&
 205            !cap_issubset(*inheritable,
 206                          cap_combine(old->cap_inheritable,
 207                                      old->cap_permitted)))
 208                /* incapable of using this inheritable set */
 209                return -EPERM;
 210
 211        if (!cap_issubset(*inheritable,
 212                          cap_combine(old->cap_inheritable,
 213                                      old->cap_bset)))
 214                /* no new pI capabilities outside bounding set */
 215                return -EPERM;
 216
 217        /* verify restrictions on target's new Permitted set */
 218        if (!cap_issubset(*permitted, old->cap_permitted))
 219                return -EPERM;
 220
 221        /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 222        if (!cap_issubset(*effective, *permitted))
 223                return -EPERM;
 224
 225        new->cap_effective   = *effective;
 226        new->cap_inheritable = *inheritable;
 227        new->cap_permitted   = *permitted;
 228        return 0;
 229}
 230
 231/*
 232 * Clear proposed capability sets for execve().
 233 */
 234static inline void bprm_clear_caps(struct linux_binprm *bprm)
 235{
 236        cap_clear(bprm->cred->cap_permitted);
 237        bprm->cap_effective = false;
 238}
 239
 240/**
 241 * cap_inode_need_killpriv - Determine if inode change affects privileges
 242 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 243 *
 244 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 245 * affects the security markings on that inode, and if it is, should
 246 * inode_killpriv() be invoked or the change rejected?
 247 *
 248 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
 249 * -ve to deny the change.
 250 */
 251int cap_inode_need_killpriv(struct dentry *dentry)
 252{
 253        struct inode *inode = dentry->d_inode;
 254        int error;
 255
 256        if (!inode->i_op->getxattr)
 257               return 0;
 258
 259        error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
 260        if (error <= 0)
 261                return 0;
 262        return 1;
 263}
 264
 265/**
 266 * cap_inode_killpriv - Erase the security markings on an inode
 267 * @dentry: The inode/dentry to alter
 268 *
 269 * Erase the privilege-enhancing security markings on an inode.
 270 *
 271 * Returns 0 if successful, -ve on error.
 272 */
 273int cap_inode_killpriv(struct dentry *dentry)
 274{
 275        struct inode *inode = dentry->d_inode;
 276
 277        if (!inode->i_op->removexattr)
 278               return 0;
 279
 280        return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
 281}
 282
 283/*
 284 * Calculate the new process capability sets from the capability sets attached
 285 * to a file.
 286 */
 287static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
 288                                          struct linux_binprm *bprm,
 289                                          bool *effective)
 290{
 291        struct cred *new = bprm->cred;
 292        unsigned i;
 293        int ret = 0;
 294
 295        if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 296                *effective = true;
 297
 298        CAP_FOR_EACH_U32(i) {
 299                __u32 permitted = caps->permitted.cap[i];
 300                __u32 inheritable = caps->inheritable.cap[i];
 301
 302                /*
 303                 * pP' = (X & fP) | (pI & fI)
 304                 */
 305                new->cap_permitted.cap[i] =
 306                        (new->cap_bset.cap[i] & permitted) |
 307                        (new->cap_inheritable.cap[i] & inheritable);
 308
 309                if (permitted & ~new->cap_permitted.cap[i])
 310                        /* insufficient to execute correctly */
 311                        ret = -EPERM;
 312        }
 313
 314        /*
 315         * For legacy apps, with no internal support for recognizing they
 316         * do not have enough capabilities, we return an error if they are
 317         * missing some "forced" (aka file-permitted) capabilities.
 318         */
 319        return *effective ? ret : 0;
 320}
 321
 322/*
 323 * Extract the on-exec-apply capability sets for an executable file.
 324 */
 325int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
 326{
 327        struct inode *inode = dentry->d_inode;
 328        __u32 magic_etc;
 329        unsigned tocopy, i;
 330        int size;
 331        struct vfs_cap_data caps;
 332
 333        memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
 334
 335        if (!inode || !inode->i_op->getxattr)
 336                return -ENODATA;
 337
 338        size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
 339                                   XATTR_CAPS_SZ);
 340        if (size == -ENODATA || size == -EOPNOTSUPP)
 341                /* no data, that's ok */
 342                return -ENODATA;
 343        if (size < 0)
 344                return size;
 345
 346        if (size < sizeof(magic_etc))
 347                return -EINVAL;
 348
 349        cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
 350
 351        switch (magic_etc & VFS_CAP_REVISION_MASK) {
 352        case VFS_CAP_REVISION_1:
 353                if (size != XATTR_CAPS_SZ_1)
 354                        return -EINVAL;
 355                tocopy = VFS_CAP_U32_1;
 356                break;
 357        case VFS_CAP_REVISION_2:
 358                if (size != XATTR_CAPS_SZ_2)
 359                        return -EINVAL;
 360                tocopy = VFS_CAP_U32_2;
 361                break;
 362        default:
 363                return -EINVAL;
 364        }
 365
 366        CAP_FOR_EACH_U32(i) {
 367                if (i >= tocopy)
 368                        break;
 369                cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
 370                cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
 371        }
 372
 373        return 0;
 374}
 375
 376/*
 377 * Attempt to get the on-exec apply capability sets for an executable file from
 378 * its xattrs and, if present, apply them to the proposed credentials being
 379 * constructed by execve().
 380 */
 381static int get_file_caps(struct linux_binprm *bprm, bool *effective)
 382{
 383        struct dentry *dentry;
 384        int rc = 0;
 385        struct cpu_vfs_cap_data vcaps;
 386
 387        bprm_clear_caps(bprm);
 388
 389        if (!file_caps_enabled)
 390                return 0;
 391
 392        if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
 393                return 0;
 394
 395        dentry = dget(bprm->file->f_dentry);
 396
 397        rc = get_vfs_caps_from_disk(dentry, &vcaps);
 398        if (rc < 0) {
 399                if (rc == -EINVAL)
 400                        printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
 401                                __func__, rc, bprm->filename);
 402                else if (rc == -ENODATA)
 403                        rc = 0;
 404                goto out;
 405        }
 406
 407        rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
 408        if (rc == -EINVAL)
 409                printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
 410                       __func__, rc, bprm->filename);
 411
 412out:
 413        dput(dentry);
 414        if (rc)
 415                bprm_clear_caps(bprm);
 416
 417        return rc;
 418}
 419
 420/**
 421 * cap_bprm_set_creds - Set up the proposed credentials for execve().
 422 * @bprm: The execution parameters, including the proposed creds
 423 *
 424 * Set up the proposed credentials for a new execution context being
 425 * constructed by execve().  The proposed creds in @bprm->cred is altered,
 426 * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 427 */
 428int cap_bprm_set_creds(struct linux_binprm *bprm)
 429{
 430        const struct cred *old = current_cred();
 431        struct cred *new = bprm->cred;
 432        bool effective;
 433        int ret;
 434
 435        effective = false;
 436        ret = get_file_caps(bprm, &effective);
 437        if (ret < 0)
 438                return ret;
 439
 440        if (!issecure(SECURE_NOROOT)) {
 441                /*
 442                 * If the legacy file capability is set, then don't set privs
 443                 * for a setuid root binary run by a non-root user.  Do set it
 444                 * for a root user just to cause least surprise to an admin.
 445                 */
 446                if (effective && new->uid != 0 && new->euid == 0) {
 447                        warn_setuid_and_fcaps_mixed(bprm->filename);
 448                        goto skip;
 449                }
 450                /*
 451                 * To support inheritance of root-permissions and suid-root
 452                 * executables under compatibility mode, we override the
 453                 * capability sets for the file.
 454                 *
 455                 * If only the real uid is 0, we do not set the effective bit.
 456                 */
 457                if (new->euid == 0 || new->uid == 0) {
 458                        /* pP' = (cap_bset & ~0) | (pI & ~0) */
 459                        new->cap_permitted = cap_combine(old->cap_bset,
 460                                                         old->cap_inheritable);
 461                }
 462                if (new->euid == 0)
 463                        effective = true;
 464        }
 465skip:
 466
 467        /* Don't let someone trace a set[ug]id/setpcap binary with the revised
 468         * credentials unless they have the appropriate permit
 469         */
 470        if ((new->euid != old->uid ||
 471             new->egid != old->gid ||
 472             !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
 473            bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
 474                /* downgrade; they get no more than they had, and maybe less */
 475                if (!capable(CAP_SETUID)) {
 476                        new->euid = new->uid;
 477                        new->egid = new->gid;
 478                }
 479                new->cap_permitted = cap_intersect(new->cap_permitted,
 480                                                   old->cap_permitted);
 481        }
 482
 483        new->suid = new->fsuid = new->euid;
 484        new->sgid = new->fsgid = new->egid;
 485
 486        /* For init, we want to retain the capabilities set in the initial
 487         * task.  Thus we skip the usual capability rules
 488         */
 489        if (!is_global_init(current)) {
 490                if (effective)
 491                        new->cap_effective = new->cap_permitted;
 492                else
 493                        cap_clear(new->cap_effective);
 494        }
 495        bprm->cap_effective = effective;
 496
 497        /*
 498         * Audit candidate if current->cap_effective is set
 499         *
 500         * We do not bother to audit if 3 things are true:
 501         *   1) cap_effective has all caps
 502         *   2) we are root
 503         *   3) root is supposed to have all caps (SECURE_NOROOT)
 504         * Since this is just a normal root execing a process.
 505         *
 506         * Number 1 above might fail if you don't have a full bset, but I think
 507         * that is interesting information to audit.
 508         */
 509        if (!cap_isclear(new->cap_effective)) {
 510                if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
 511                    new->euid != 0 || new->uid != 0 ||
 512                    issecure(SECURE_NOROOT)) {
 513                        ret = audit_log_bprm_fcaps(bprm, new, old);
 514                        if (ret < 0)
 515                                return ret;
 516                }
 517        }
 518
 519        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 520        return 0;
 521}
 522
 523/**
 524 * cap_bprm_secureexec - Determine whether a secure execution is required
 525 * @bprm: The execution parameters
 526 *
 527 * Determine whether a secure execution is required, return 1 if it is, and 0
 528 * if it is not.
 529 *
 530 * The credentials have been committed by this point, and so are no longer
 531 * available through @bprm->cred.
 532 */
 533int cap_bprm_secureexec(struct linux_binprm *bprm)
 534{
 535        const struct cred *cred = current_cred();
 536
 537        if (cred->uid != 0) {
 538                if (bprm->cap_effective)
 539                        return 1;
 540                if (!cap_isclear(cred->cap_permitted))
 541                        return 1;
 542        }
 543
 544        return (cred->euid != cred->uid ||
 545                cred->egid != cred->gid);
 546}
 547
 548/**
 549 * cap_inode_setxattr - Determine whether an xattr may be altered
 550 * @dentry: The inode/dentry being altered
 551 * @name: The name of the xattr to be changed
 552 * @value: The value that the xattr will be changed to
 553 * @size: The size of value
 554 * @flags: The replacement flag
 555 *
 556 * Determine whether an xattr may be altered or set on an inode, returning 0 if
 557 * permission is granted, -ve if denied.
 558 *
 559 * This is used to make sure security xattrs don't get updated or set by those
 560 * who aren't privileged to do so.
 561 */
 562int cap_inode_setxattr(struct dentry *dentry, const char *name,
 563                       const void *value, size_t size, int flags)
 564{
 565        if (!strcmp(name, XATTR_NAME_CAPS)) {
 566                if (!capable(CAP_SETFCAP))
 567                        return -EPERM;
 568                return 0;
 569        }
 570
 571        if (!strncmp(name, XATTR_SECURITY_PREFIX,
 572                     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
 573            !capable(CAP_SYS_ADMIN))
 574                return -EPERM;
 575        return 0;
 576}
 577
 578/**
 579 * cap_inode_removexattr - Determine whether an xattr may be removed
 580 * @dentry: The inode/dentry being altered
 581 * @name: The name of the xattr to be changed
 582 *
 583 * Determine whether an xattr may be removed from an inode, returning 0 if
 584 * permission is granted, -ve if denied.
 585 *
 586 * This is used to make sure security xattrs don't get removed by those who
 587 * aren't privileged to remove them.
 588 */
 589int cap_inode_removexattr(struct dentry *dentry, const char *name)
 590{
 591        if (!strcmp(name, XATTR_NAME_CAPS)) {
 592                if (!capable(CAP_SETFCAP))
 593                        return -EPERM;
 594                return 0;
 595        }
 596
 597        if (!strncmp(name, XATTR_SECURITY_PREFIX,
 598                     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
 599            !capable(CAP_SYS_ADMIN))
 600                return -EPERM;
 601        return 0;
 602}
 603
 604/*
 605 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 606 * a process after a call to setuid, setreuid, or setresuid.
 607 *
 608 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 609 *  {r,e,s}uid != 0, the permitted and effective capabilities are
 610 *  cleared.
 611 *
 612 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 613 *  capabilities of the process are cleared.
 614 *
 615 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 616 *  capabilities are set to the permitted capabilities.
 617 *
 618 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
 619 *  never happen.
 620 *
 621 *  -astor
 622 *
 623 * cevans - New behaviour, Oct '99
 624 * A process may, via prctl(), elect to keep its capabilities when it
 625 * calls setuid() and switches away from uid==0. Both permitted and
 626 * effective sets will be retained.
 627 * Without this change, it was impossible for a daemon to drop only some
 628 * of its privilege. The call to setuid(!=0) would drop all privileges!
 629 * Keeping uid 0 is not an option because uid 0 owns too many vital
 630 * files..
 631 * Thanks to Olaf Kirch and Peter Benie for spotting this.
 632 */
 633static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
 634{
 635        if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
 636            (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
 637            !issecure(SECURE_KEEP_CAPS)) {
 638                cap_clear(new->cap_permitted);
 639                cap_clear(new->cap_effective);
 640        }
 641        if (old->euid == 0 && new->euid != 0)
 642                cap_clear(new->cap_effective);
 643        if (old->euid != 0 && new->euid == 0)
 644                new->cap_effective = new->cap_permitted;
 645}
 646
 647/**
 648 * cap_task_fix_setuid - Fix up the results of setuid() call
 649 * @new: The proposed credentials
 650 * @old: The current task's current credentials
 651 * @flags: Indications of what has changed
 652 *
 653 * Fix up the results of setuid() call before the credential changes are
 654 * actually applied, returning 0 to grant the changes, -ve to deny them.
 655 */
 656int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
 657{
 658        switch (flags) {
 659        case LSM_SETID_RE:
 660        case LSM_SETID_ID:
 661        case LSM_SETID_RES:
 662                /* juggle the capabilities to follow [RES]UID changes unless
 663                 * otherwise suppressed */
 664                if (!issecure(SECURE_NO_SETUID_FIXUP))
 665                        cap_emulate_setxuid(new, old);
 666                break;
 667
 668        case LSM_SETID_FS:
 669                /* juggle the capabilties to follow FSUID changes, unless
 670                 * otherwise suppressed
 671                 *
 672                 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
 673                 *          if not, we might be a bit too harsh here.
 674                 */
 675                if (!issecure(SECURE_NO_SETUID_FIXUP)) {
 676                        if (old->fsuid == 0 && new->fsuid != 0)
 677                                new->cap_effective =
 678                                        cap_drop_fs_set(new->cap_effective);
 679
 680                        if (old->fsuid != 0 && new->fsuid == 0)
 681                                new->cap_effective =
 682                                        cap_raise_fs_set(new->cap_effective,
 683                                                         new->cap_permitted);
 684                }
 685                break;
 686
 687        default:
 688                return -EINVAL;
 689        }
 690
 691        return 0;
 692}
 693
 694/*
 695 * Rationale: code calling task_setscheduler, task_setioprio, and
 696 * task_setnice, assumes that
 697 *   . if capable(cap_sys_nice), then those actions should be allowed
 698 *   . if not capable(cap_sys_nice), but acting on your own processes,
 699 *      then those actions should be allowed
 700 * This is insufficient now since you can call code without suid, but
 701 * yet with increased caps.
 702 * So we check for increased caps on the target process.
 703 */
 704static int cap_safe_nice(struct task_struct *p)
 705{
 706        int is_subset;
 707
 708        rcu_read_lock();
 709        is_subset = cap_issubset(__task_cred(p)->cap_permitted,
 710                                 current_cred()->cap_permitted);
 711        rcu_read_unlock();
 712
 713        if (!is_subset && !capable(CAP_SYS_NICE))
 714                return -EPERM;
 715        return 0;
 716}
 717
 718/**
 719 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
 720 * @p: The task to affect
 721 *
 722 * Detemine if the requested scheduler policy change is permitted for the
 723 * specified task, returning 0 if permission is granted, -ve if denied.
 724 */
 725int cap_task_setscheduler(struct task_struct *p)
 726{
 727        return cap_safe_nice(p);
 728}
 729
 730/**
 731 * cap_task_ioprio - Detemine if I/O priority change is permitted
 732 * @p: The task to affect
 733 * @ioprio: The I/O priority to set
 734 *
 735 * Detemine if the requested I/O priority change is permitted for the specified
 736 * task, returning 0 if permission is granted, -ve if denied.
 737 */
 738int cap_task_setioprio(struct task_struct *p, int ioprio)
 739{
 740        return cap_safe_nice(p);
 741}
 742
 743/**
 744 * cap_task_ioprio - Detemine if task priority change is permitted
 745 * @p: The task to affect
 746 * @nice: The nice value to set
 747 *
 748 * Detemine if the requested task priority change is permitted for the
 749 * specified task, returning 0 if permission is granted, -ve if denied.
 750 */
 751int cap_task_setnice(struct task_struct *p, int nice)
 752{
 753        return cap_safe_nice(p);
 754}
 755
 756/*
 757 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
 758 * the current task's bounding set.  Returns 0 on success, -ve on error.
 759 */
 760static long cap_prctl_drop(struct cred *new, unsigned long cap)
 761{
 762        if (!capable(CAP_SETPCAP))
 763                return -EPERM;
 764        if (!cap_valid(cap))
 765                return -EINVAL;
 766
 767        cap_lower(new->cap_bset, cap);
 768        return 0;
 769}
 770
 771/**
 772 * cap_task_prctl - Implement process control functions for this security module
 773 * @option: The process control function requested
 774 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
 775 *
 776 * Allow process control functions (sys_prctl()) to alter capabilities; may
 777 * also deny access to other functions not otherwise implemented here.
 778 *
 779 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
 780 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
 781 * modules will consider performing the function.
 782 */
 783int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 784                   unsigned long arg4, unsigned long arg5)
 785{
 786        struct cred *new;
 787        long error = 0;
 788
 789        new = prepare_creds();
 790        if (!new)
 791                return -ENOMEM;
 792
 793        switch (option) {
 794        case PR_CAPBSET_READ:
 795                error = -EINVAL;
 796                if (!cap_valid(arg2))
 797                        goto error;
 798                error = !!cap_raised(new->cap_bset, arg2);
 799                goto no_change;
 800
 801        case PR_CAPBSET_DROP:
 802                error = cap_prctl_drop(new, arg2);
 803                if (error < 0)
 804                        goto error;
 805                goto changed;
 806
 807        /*
 808         * The next four prctl's remain to assist with transitioning a
 809         * system from legacy UID=0 based privilege (when filesystem
 810         * capabilities are not in use) to a system using filesystem
 811         * capabilities only - as the POSIX.1e draft intended.
 812         *
 813         * Note:
 814         *
 815         *  PR_SET_SECUREBITS =
 816         *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
 817         *    | issecure_mask(SECURE_NOROOT)
 818         *    | issecure_mask(SECURE_NOROOT_LOCKED)
 819         *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
 820         *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
 821         *
 822         * will ensure that the current process and all of its
 823         * children will be locked into a pure
 824         * capability-based-privilege environment.
 825         */
 826        case PR_SET_SECUREBITS:
 827                error = -EPERM;
 828                if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
 829                     & (new->securebits ^ arg2))                        /*[1]*/
 830                    || ((new->securebits & SECURE_ALL_LOCKS & ~arg2))   /*[2]*/
 831                    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))   /*[3]*/
 832                    || (cap_capable(current, current_cred(), CAP_SETPCAP,
 833                                    SECURITY_CAP_AUDIT) != 0)           /*[4]*/
 834                        /*
 835                         * [1] no changing of bits that are locked
 836                         * [2] no unlocking of locks
 837                         * [3] no setting of unsupported bits
 838                         * [4] doing anything requires privilege (go read about
 839                         *     the "sendmail capabilities bug")
 840                         */
 841                    )
 842                        /* cannot change a locked bit */
 843                        goto error;
 844                new->securebits = arg2;
 845                goto changed;
 846
 847        case PR_GET_SECUREBITS:
 848                error = new->securebits;
 849                goto no_change;
 850
 851        case PR_GET_KEEPCAPS:
 852                if (issecure(SECURE_KEEP_CAPS))
 853                        error = 1;
 854                goto no_change;
 855
 856        case PR_SET_KEEPCAPS:
 857                error = -EINVAL;
 858                if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
 859                        goto error;
 860                error = -EPERM;
 861                if (issecure(SECURE_KEEP_CAPS_LOCKED))
 862                        goto error;
 863                if (arg2)
 864                        new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
 865                else
 866                        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 867                goto changed;
 868
 869        default:
 870                /* No functionality available - continue with default */
 871                error = -ENOSYS;
 872                goto error;
 873        }
 874
 875        /* Functionality provided */
 876changed:
 877        return commit_creds(new);
 878
 879no_change:
 880error:
 881        abort_creds(new);
 882        return error;
 883}
 884
 885/**
 886 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
 887 * @mm: The VM space in which the new mapping is to be made
 888 * @pages: The size of the mapping
 889 *
 890 * Determine whether the allocation of a new virtual mapping by the current
 891 * task is permitted, returning 0 if permission is granted, -ve if not.
 892 */
 893int cap_vm_enough_memory(struct mm_struct *mm, long pages)
 894{
 895        int cap_sys_admin = 0;
 896
 897        if (cap_capable(current, current_cred(), CAP_SYS_ADMIN,
 898                        SECURITY_CAP_NOAUDIT) == 0)
 899                cap_sys_admin = 1;
 900        return __vm_enough_memory(mm, pages, cap_sys_admin);
 901}
 902
 903/*
 904 * cap_file_mmap - check if able to map given addr
 905 * @file: unused
 906 * @reqprot: unused
 907 * @prot: unused
 908 * @flags: unused
 909 * @addr: address attempting to be mapped
 910 * @addr_only: unused
 911 *
 912 * If the process is attempting to map memory below dac_mmap_min_addr they need
 913 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
 914 * capability security module.  Returns 0 if this mapping should be allowed
 915 * -EPERM if not.
 916 */
 917int cap_file_mmap(struct file *file, unsigned long reqprot,
 918                  unsigned long prot, unsigned long flags,
 919                  unsigned long addr, unsigned long addr_only)
 920{
 921        int ret = 0;
 922
 923        if (addr < dac_mmap_min_addr) {
 924                ret = cap_capable(current, current_cred(), CAP_SYS_RAWIO,
 925                                  SECURITY_CAP_AUDIT);
 926                /* set PF_SUPERPRIV if it turns out we allow the low mmap */
 927                if (ret == 0)
 928                        current->flags |= PF_SUPERPRIV;
 929        }
 930        return ret;
 931}
 932