linux/sound/sparc/dbri.c
<<
>>
Prefs
   1/*
   2 * Driver for DBRI sound chip found on Sparcs.
   3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   4 *
   5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   6 *
   7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
   9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  10 *
  11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  12 * on Sun SPARCStation 10, 20, LX and Voyager models.
  13 *
  14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  15 *   data time multiplexer with ISDN support (aka T7259)
  16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  18 *   Documentation:
  19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  20 *     Sparc Technology Business (courtesy of Sun Support)
  21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  22 *     available from the Lucent (formerly AT&T microelectronics) home
  23 *     page.
  24 *   - http://www.freesoft.org/Linux/DBRI/
  25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  27 *   Documentation: from the Crystal Semiconductor home page.
  28 *
  29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  30 * memory and a serial device (long pipes, no. 0-15) or between two serial
  31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  32 * device (short pipes).
  33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  34 * The timeslots are linked to 6 circular lists, one for each direction for
  35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  36 * (the second one is a monitor/tee pipe, valid only for serial input).
  37 *
  38 * The mmcodec is connected via the CHI bus and needs the data & some
  39 * parameters (volume, output selection) time multiplexed in 8 byte
  40 * chunks. It also has a control mode, which serves for audio format setting.
  41 *
  42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  45 * audio devices. But the SUN HW group decided against it, at least on my
  46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  47 * connected.
  48 *
  49 * I've tried to stick to the following function naming conventions:
  50 * snd_*        ALSA stuff
  51 * cs4215_*     CS4215 codec specific stuff
  52 * dbri_*       DBRI high-level stuff
  53 * other        DBRI low-level stuff
  54 */
  55
  56#include <linux/interrupt.h>
  57#include <linux/delay.h>
  58#include <linux/irq.h>
  59#include <linux/io.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/gfp.h>
  62
  63#include <sound/core.h>
  64#include <sound/pcm.h>
  65#include <sound/pcm_params.h>
  66#include <sound/info.h>
  67#include <sound/control.h>
  68#include <sound/initval.h>
  69
  70#include <linux/of.h>
  71#include <linux/of_device.h>
  72#include <asm/atomic.h>
  73
  74MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  75MODULE_DESCRIPTION("Sun DBRI");
  76MODULE_LICENSE("GPL");
  77MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  78
  79static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  80static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  81/* Enable this card */
  82static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  83
  84module_param_array(index, int, NULL, 0444);
  85MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  86module_param_array(id, charp, NULL, 0444);
  87MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  88module_param_array(enable, bool, NULL, 0444);
  89MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  90
  91#undef DBRI_DEBUG
  92
  93#define D_INT   (1<<0)
  94#define D_GEN   (1<<1)
  95#define D_CMD   (1<<2)
  96#define D_MM    (1<<3)
  97#define D_USR   (1<<4)
  98#define D_DESC  (1<<5)
  99
 100static int dbri_debug;
 101module_param(dbri_debug, int, 0644);
 102MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 103
 104#ifdef DBRI_DEBUG
 105static char *cmds[] = {
 106        "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 107        "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 108};
 109
 110#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 111
 112#else
 113#define dprintk(a, x...) do { } while (0)
 114
 115#endif                          /* DBRI_DEBUG */
 116
 117#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
 118                                    (intr << 27) |      \
 119                                    value)
 120
 121/***************************************************************************
 122        CS4215 specific definitions and structures
 123****************************************************************************/
 124
 125struct cs4215 {
 126        __u8 data[4];           /* Data mode: Time slots 5-8 */
 127        __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
 128        __u8 onboard;
 129        __u8 offset;            /* Bit offset from frame sync to time slot 1 */
 130        volatile __u32 status;
 131        volatile __u32 version;
 132        __u8 precision;         /* In bits, either 8 or 16 */
 133        __u8 channels;          /* 1 or 2 */
 134};
 135
 136/*
 137 * Control mode first
 138 */
 139
 140/* Time Slot 1, Status register */
 141#define CS4215_CLB      (1<<2)  /* Control Latch Bit */
 142#define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
 143                                /* 0: line: 2.8V, speaker 8V */
 144#define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
 145#define CS4215_RSRVD_1  (1<<5)
 146
 147/* Time Slot 2, Data Format Register */
 148#define CS4215_DFR_LINEAR16     0
 149#define CS4215_DFR_ULAW         1
 150#define CS4215_DFR_ALAW         2
 151#define CS4215_DFR_LINEAR8      3
 152#define CS4215_DFR_STEREO       (1<<2)
 153static struct {
 154        unsigned short freq;
 155        unsigned char xtal;
 156        unsigned char csval;
 157} CS4215_FREQ[] = {
 158        {  8000, (1 << 4), (0 << 3) },
 159        { 16000, (1 << 4), (1 << 3) },
 160        { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
 161        { 32000, (1 << 4), (3 << 3) },
 162     /* {    NA, (1 << 4), (4 << 3) }, */
 163     /* {    NA, (1 << 4), (5 << 3) }, */
 164        { 48000, (1 << 4), (6 << 3) },
 165        {  9600, (1 << 4), (7 << 3) },
 166        {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
 167        { 11025, (2 << 4), (1 << 3) },
 168        { 18900, (2 << 4), (2 << 3) },
 169        { 22050, (2 << 4), (3 << 3) },
 170        { 37800, (2 << 4), (4 << 3) },
 171        { 44100, (2 << 4), (5 << 3) },
 172        { 33075, (2 << 4), (6 << 3) },
 173        {  6615, (2 << 4), (7 << 3) },
 174        { 0, 0, 0}
 175};
 176
 177#define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
 178
 179#define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
 180
 181/* Time Slot 3, Serial Port Control register */
 182#define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
 183#define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
 184#define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
 185#define CS4215_BSEL_128 (1<<2)
 186#define CS4215_BSEL_256 (2<<2)
 187#define CS4215_MCK_MAST (0<<4)  /* Master clock */
 188#define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
 189#define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
 190#define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
 191#define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
 192
 193/* Time Slot 4, Test Register */
 194#define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 195#define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
 196
 197/* Time Slot 5, Parallel Port Register */
 198/* Read only here and the same as the in data mode */
 199
 200/* Time Slot 6, Reserved  */
 201
 202/* Time Slot 7, Version Register  */
 203#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
 204
 205/* Time Slot 8, Reserved  */
 206
 207/*
 208 * Data mode
 209 */
 210/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 211
 212/* Time Slot 5, Output Setting  */
 213#define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
 214#define CS4215_LE       (1<<6)  /* Line Out Enable */
 215#define CS4215_HE       (1<<7)  /* Headphone Enable */
 216
 217/* Time Slot 6, Output Setting  */
 218#define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
 219#define CS4215_SE       (1<<6)  /* Speaker Enable */
 220#define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
 221
 222/* Time Slot 7, Input Setting */
 223#define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
 224#define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
 225#define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
 226#define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
 227#define CS4215_PIO1     (1<<7)
 228
 229/* Time Slot 8, Input Setting */
 230#define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
 231#define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
 232
 233/***************************************************************************
 234                DBRI specific definitions and structures
 235****************************************************************************/
 236
 237/* DBRI main registers */
 238#define REG0    0x00            /* Status and Control */
 239#define REG1    0x04            /* Mode and Interrupt */
 240#define REG2    0x08            /* Parallel IO */
 241#define REG3    0x0c            /* Test */
 242#define REG8    0x20            /* Command Queue Pointer */
 243#define REG9    0x24            /* Interrupt Queue Pointer */
 244
 245#define DBRI_NO_CMDS    64
 246#define DBRI_INT_BLK    64
 247#define DBRI_NO_DESCS   64
 248#define DBRI_NO_PIPES   32
 249#define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
 250
 251#define DBRI_REC        0
 252#define DBRI_PLAY       1
 253#define DBRI_NO_STREAMS 2
 254
 255/* One transmit/receive descriptor */
 256/* When ba != 0 descriptor is used */
 257struct dbri_mem {
 258        volatile __u32 word1;
 259        __u32 ba;       /* Transmit/Receive Buffer Address */
 260        __u32 nda;      /* Next Descriptor Address */
 261        volatile __u32 word4;
 262};
 263
 264/* This structure is in a DMA region where it can accessed by both
 265 * the CPU and the DBRI
 266 */
 267struct dbri_dma {
 268        s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
 269        volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
 270        struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
 271};
 272
 273#define dbri_dma_off(member, elem)      \
 274        ((u32)(unsigned long)           \
 275         (&(((struct dbri_dma *)0)->member[elem])))
 276
 277enum in_or_out { PIPEinput, PIPEoutput };
 278
 279struct dbri_pipe {
 280        u32 sdp;                /* SDP command word */
 281        int nextpipe;           /* Next pipe in linked list */
 282        int length;             /* Length of timeslot (bits) */
 283        int first_desc;         /* Index of first descriptor */
 284        int desc;               /* Index of active descriptor */
 285        volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
 286};
 287
 288/* Per stream (playback or record) information */
 289struct dbri_streaminfo {
 290        struct snd_pcm_substream *substream;
 291        u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
 292        int size;               /* Size of DMA buffer             */
 293        size_t offset;          /* offset in user buffer          */
 294        int pipe;               /* Data pipe used                 */
 295        int left_gain;          /* mixer elements                 */
 296        int right_gain;
 297};
 298
 299/* This structure holds the information for both chips (DBRI & CS4215) */
 300struct snd_dbri {
 301        int regs_size, irq;     /* Needed for unload */
 302        struct platform_device *op;     /* OF device info */
 303        spinlock_t lock;
 304
 305        struct dbri_dma *dma;   /* Pointer to our DMA block */
 306        u32 dma_dvma;           /* DBRI visible DMA address */
 307
 308        void __iomem *regs;     /* dbri HW regs */
 309        int dbri_irqp;          /* intr queue pointer */
 310
 311        struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
 312        int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
 313        spinlock_t cmdlock;     /* Protects cmd queue accesses */
 314        s32 *cmdptr;            /* Pointer to the last queued cmd */
 315
 316        int chi_bpf;
 317
 318        struct cs4215 mm;       /* mmcodec special info */
 319                                /* per stream (playback/record) info */
 320        struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 321};
 322
 323#define DBRI_MAX_VOLUME         63      /* Output volume */
 324#define DBRI_MAX_GAIN           15      /* Input gain */
 325
 326/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 327#define D_P             (1<<15) /* Program command & queue pointer valid */
 328#define D_G             (1<<14) /* Allow 4-Word SBus Burst */
 329#define D_S             (1<<13) /* Allow 16-Word SBus Burst */
 330#define D_E             (1<<12) /* Allow 8-Word SBus Burst */
 331#define D_X             (1<<7)  /* Sanity Timer Disable */
 332#define D_T             (1<<6)  /* Permit activation of the TE interface */
 333#define D_N             (1<<5)  /* Permit activation of the NT interface */
 334#define D_C             (1<<4)  /* Permit activation of the CHI interface */
 335#define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
 336#define D_D             (1<<2)  /* Disable Master Mode */
 337#define D_H             (1<<1)  /* Halt for Analysis */
 338#define D_R             (1<<0)  /* Soft Reset */
 339
 340/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 341#define D_LITTLE_END    (1<<8)  /* Byte Order */
 342#define D_BIG_END       (0<<8)  /* Byte Order */
 343#define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
 344#define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
 345#define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
 346#define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
 347#define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
 348
 349/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 350#define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
 351#define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
 352#define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
 353#define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
 354#define D_ENPIO         (0xf0)  /* Enable all the pins */
 355#define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
 356#define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
 357#define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
 358#define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
 359
 360/* DBRI Commands (Page 20) */
 361#define D_WAIT          0x0     /* Stop execution */
 362#define D_PAUSE         0x1     /* Flush long pipes */
 363#define D_JUMP          0x2     /* New command queue */
 364#define D_IIQ           0x3     /* Initialize Interrupt Queue */
 365#define D_REX           0x4     /* Report command execution via interrupt */
 366#define D_SDP           0x5     /* Setup Data Pipe */
 367#define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
 368#define D_DTS           0x7     /* Define Time Slot */
 369#define D_SSP           0x8     /* Set short Data Pipe */
 370#define D_CHI           0x9     /* Set CHI Global Mode */
 371#define D_NT            0xa     /* NT Command */
 372#define D_TE            0xb     /* TE Command */
 373#define D_CDEC          0xc     /* Codec setup */
 374#define D_TEST          0xd     /* No comment */
 375#define D_CDM           0xe     /* CHI Data mode command */
 376
 377/* Special bits for some commands */
 378#define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
 379
 380/* Setup Data Pipe */
 381/* IRM */
 382#define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
 383#define D_SDP_CHANGE    (2<<18) /* Report any changes */
 384#define D_SDP_EVERY     (3<<18) /* Report any changes */
 385#define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
 386#define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
 387
 388/* Pipe data MODE */
 389#define D_SDP_MEM       (0<<13) /* To/from memory */
 390#define D_SDP_HDLC      (2<<13)
 391#define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
 392#define D_SDP_SER       (4<<13) /* Serial to serial */
 393#define D_SDP_FIXED     (6<<13) /* Short only */
 394#define D_SDP_MODE(v)   ((v)&(7<<13))
 395
 396#define D_SDP_TO_SER    (1<<12) /* Direction */
 397#define D_SDP_FROM_SER  (0<<12) /* Direction */
 398#define D_SDP_MSB       (1<<11) /* Bit order within Byte */
 399#define D_SDP_LSB       (0<<11) /* Bit order within Byte */
 400#define D_SDP_P         (1<<10) /* Pointer Valid */
 401#define D_SDP_A         (1<<8)  /* Abort */
 402#define D_SDP_C         (1<<7)  /* Clear */
 403
 404/* Define Time Slot */
 405#define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
 406#define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
 407#define D_DTS_INS       (1<<15) /* Insert Time Slot */
 408#define D_DTS_DEL       (0<<15) /* Delete Time Slot */
 409#define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
 410#define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
 411
 412/* Time Slot defines */
 413#define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
 414#define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
 415#define D_TS_DI         (1<<13) /* Data Invert */
 416#define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
 417#define D_TS_MONITOR    (2<<10) /* Monitor pipe */
 418#define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
 419#define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
 420#define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
 421#define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
 422
 423/* Concentration Highway Interface Modes */
 424#define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
 425#define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
 426#define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
 427#define D_CHI_OD        (1<<13) /* Open Drain Enable */
 428#define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
 429#define D_CHI_FD        (1<<11) /* Frame Drive */
 430#define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
 431
 432/* NT: These are here for completeness */
 433#define D_NT_FBIT       (1<<17) /* Frame Bit */
 434#define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
 435#define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
 436#define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
 437#define D_NT_ISNT       (1<<13) /* Configure interface as NT */
 438#define D_NT_FT         (1<<12) /* Fixed Timing */
 439#define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
 440#define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
 441#define D_NT_ACT        (1<<9)  /* Activate Interface */
 442#define D_NT_MFE        (1<<8)  /* Multiframe Enable */
 443#define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
 444#define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
 445#define D_NT_FACT       (1<<1)  /* Force Activation */
 446#define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
 447
 448/* Codec Setup */
 449#define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
 450#define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
 451#define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
 452
 453/* Test */
 454#define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
 455#define D_TEST_SIZE(v)  ((v)<<11)       /* */
 456#define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
 457#define D_TEST_PROC     0x6     /* Microprocessor test */
 458#define D_TEST_SER      0x7     /* Serial-Controller test */
 459#define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
 460#define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
 461#define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
 462#define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
 463#define D_TEST_DUMP     0xe     /* ROM Dump */
 464
 465/* CHI Data Mode */
 466#define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
 467#define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
 468#define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
 469#define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
 470#define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
 471#define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
 472
 473/* The Interrupts */
 474#define D_INTR_BRDY     1       /* Buffer Ready for processing */
 475#define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
 476#define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
 477#define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
 478#define D_INTR_EOL      5       /* End of List */
 479#define D_INTR_CMDI     6       /* Command has bean read */
 480#define D_INTR_XCMP     8       /* Transmission of frame complete */
 481#define D_INTR_SBRI     9       /* BRI status change info */
 482#define D_INTR_FXDT     10      /* Fixed data change */
 483#define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
 484#define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
 485#define D_INTR_DBYT     12      /* Dropped by frame slip */
 486#define D_INTR_RBYT     13      /* Repeated by frame slip */
 487#define D_INTR_LINT     14      /* Lost Interrupt */
 488#define D_INTR_UNDR     15      /* DMA underrun */
 489
 490#define D_INTR_TE       32
 491#define D_INTR_NT       34
 492#define D_INTR_CHI      36
 493#define D_INTR_CMD      38
 494
 495#define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
 496#define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
 497#define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
 498#define D_INTR_GETVAL(v)        ((v) & 0xffff)
 499#define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
 500
 501#define D_P_0           0       /* TE receive anchor */
 502#define D_P_1           1       /* TE transmit anchor */
 503#define D_P_2           2       /* NT transmit anchor */
 504#define D_P_3           3       /* NT receive anchor */
 505#define D_P_4           4       /* CHI send data */
 506#define D_P_5           5       /* CHI receive data */
 507#define D_P_6           6       /* */
 508#define D_P_7           7       /* */
 509#define D_P_8           8       /* */
 510#define D_P_9           9       /* */
 511#define D_P_10          10      /* */
 512#define D_P_11          11      /* */
 513#define D_P_12          12      /* */
 514#define D_P_13          13      /* */
 515#define D_P_14          14      /* */
 516#define D_P_15          15      /* */
 517#define D_P_16          16      /* CHI anchor pipe */
 518#define D_P_17          17      /* CHI send */
 519#define D_P_18          18      /* CHI receive */
 520#define D_P_19          19      /* CHI receive */
 521#define D_P_20          20      /* CHI receive */
 522#define D_P_21          21      /* */
 523#define D_P_22          22      /* */
 524#define D_P_23          23      /* */
 525#define D_P_24          24      /* */
 526#define D_P_25          25      /* */
 527#define D_P_26          26      /* */
 528#define D_P_27          27      /* */
 529#define D_P_28          28      /* */
 530#define D_P_29          29      /* */
 531#define D_P_30          30      /* */
 532#define D_P_31          31      /* */
 533
 534/* Transmit descriptor defines */
 535#define DBRI_TD_F       (1 << 31)       /* End of Frame */
 536#define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
 537#define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
 538#define DBRI_TD_B       (1 << 15)       /* Final interrupt */
 539#define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
 540#define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
 541#define DBRI_TD_FCNT(v) (v)             /* Flag Count */
 542#define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
 543#define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
 544#define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
 545#define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
 546                        /* Maximum buffer size per TD: almost 8KB */
 547#define DBRI_TD_MAXCNT  ((1 << 13) - 4)
 548
 549/* Receive descriptor defines */
 550#define DBRI_RD_F       (1 << 31)       /* End of Frame */
 551#define DBRI_RD_C       (1 << 30)       /* Completed buffer */
 552#define DBRI_RD_B       (1 << 15)       /* Final interrupt */
 553#define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
 554#define DBRI_RD_BCNT(v) (v)             /* Buffer size */
 555#define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
 556#define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
 557#define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
 558#define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
 559#define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
 560#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
 561
 562/* stream_info[] access */
 563/* Translate the ALSA direction into the array index */
 564#define DBRI_STREAMNO(substream)                                \
 565                (substream->stream ==                           \
 566                 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 567
 568/* Return a pointer to dbri_streaminfo */
 569#define DBRI_STREAM(dbri, substream)    \
 570                &dbri->stream_info[DBRI_STREAMNO(substream)]
 571
 572/*
 573 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 574 * So we have to reverse the bits. Note: not all bit lengths are supported
 575 */
 576static __u32 reverse_bytes(__u32 b, int len)
 577{
 578        switch (len) {
 579        case 32:
 580                b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 581        case 16:
 582                b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 583        case 8:
 584                b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 585        case 4:
 586                b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 587        case 2:
 588                b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 589        case 1:
 590        case 0:
 591                break;
 592        default:
 593                printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 594        };
 595
 596        return b;
 597}
 598
 599/*
 600****************************************************************************
 601************** DBRI initialization and command synchronization *************
 602****************************************************************************
 603
 604Commands are sent to the DBRI by building a list of them in memory,
 605then writing the address of the first list item to DBRI register 8.
 606The list is terminated with a WAIT command, which generates a
 607CPU interrupt to signal completion.
 608
 609Since the DBRI can run in parallel with the CPU, several means of
 610synchronization present themselves. The method implemented here uses
 611the dbri_cmdwait() to wait for execution of batch of sent commands.
 612
 613A circular command buffer is used here. A new command is being added
 614while another can be executed. The scheme works by adding two WAIT commands
 615after each sent batch of commands. When the next batch is prepared it is
 616added after the WAIT commands then the WAITs are replaced with single JUMP
 617command to the new batch. The the DBRI is forced to reread the last WAIT
 618command (replaced by the JUMP by then). If the DBRI is still executing
 619previous commands the request to reread the WAIT command is ignored.
 620
 621Every time a routine wants to write commands to the DBRI, it must
 622first call dbri_cmdlock() and get pointer to a free space in
 623dbri->dma->cmd buffer. After this, the commands can be written to
 624the buffer, and dbri_cmdsend() is called with the final pointer value
 625to send them to the DBRI.
 626
 627*/
 628
 629#define MAXLOOPS 20
 630/*
 631 * Wait for the current command string to execute
 632 */
 633static void dbri_cmdwait(struct snd_dbri *dbri)
 634{
 635        int maxloops = MAXLOOPS;
 636        unsigned long flags;
 637
 638        /* Delay if previous commands are still being processed */
 639        spin_lock_irqsave(&dbri->lock, flags);
 640        while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 641                spin_unlock_irqrestore(&dbri->lock, flags);
 642                msleep_interruptible(1);
 643                spin_lock_irqsave(&dbri->lock, flags);
 644        }
 645        spin_unlock_irqrestore(&dbri->lock, flags);
 646
 647        if (maxloops == 0)
 648                printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 649        else
 650                dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 651                        MAXLOOPS - maxloops - 1);
 652}
 653/*
 654 * Lock the command queue and return pointer to space for len cmd words
 655 * It locks the cmdlock spinlock.
 656 */
 657static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 658{
 659        /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 660        len += 2;
 661        spin_lock(&dbri->cmdlock);
 662        if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 663                return dbri->cmdptr + 2;
 664        else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
 665                return dbri->dma->cmd;
 666        else
 667                printk(KERN_ERR "DBRI: no space for commands.");
 668
 669        return NULL;
 670}
 671
 672/*
 673 * Send prepared cmd string. It works by writing a JUMP cmd into
 674 * the last WAIT cmd and force DBRI to reread the cmd.
 675 * The JUMP cmd points to the new cmd string.
 676 * It also releases the cmdlock spinlock.
 677 *
 678 * Lock must be held before calling this.
 679 */
 680static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 681{
 682        s32 tmp, addr;
 683        static int wait_id = 0;
 684
 685        wait_id++;
 686        wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
 687        *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 688        *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 689
 690        /* Replace the last command with JUMP */
 691        addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 692        *(dbri->cmdptr+1) = addr;
 693        *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 694
 695#ifdef DBRI_DEBUG
 696        if (cmd > dbri->cmdptr) {
 697                s32 *ptr;
 698
 699                for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 700                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 701                                (unsigned long)ptr, *ptr);
 702        } else {
 703                s32 *ptr = dbri->cmdptr;
 704
 705                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 706                ptr++;
 707                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 708                for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 709                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 710                                (unsigned long)ptr, *ptr);
 711        }
 712#endif
 713
 714        /* Reread the last command */
 715        tmp = sbus_readl(dbri->regs + REG0);
 716        tmp |= D_P;
 717        sbus_writel(tmp, dbri->regs + REG0);
 718
 719        dbri->cmdptr = cmd;
 720        spin_unlock(&dbri->cmdlock);
 721}
 722
 723/* Lock must be held when calling this */
 724static void dbri_reset(struct snd_dbri *dbri)
 725{
 726        int i;
 727        u32 tmp;
 728
 729        dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 730                sbus_readl(dbri->regs + REG0),
 731                sbus_readl(dbri->regs + REG2),
 732                sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 733
 734        sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
 735        for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 736                udelay(10);
 737
 738        /* A brute approach - DBRI falls back to working burst size by itself
 739         * On SS20 D_S does not work, so do not try so high. */
 740        tmp = sbus_readl(dbri->regs + REG0);
 741        tmp |= D_G | D_E;
 742        tmp &= ~D_S;
 743        sbus_writel(tmp, dbri->regs + REG0);
 744}
 745
 746/* Lock must not be held before calling this */
 747static void __devinit dbri_initialize(struct snd_dbri *dbri)
 748{
 749        s32 *cmd;
 750        u32 dma_addr;
 751        unsigned long flags;
 752        int n;
 753
 754        spin_lock_irqsave(&dbri->lock, flags);
 755
 756        dbri_reset(dbri);
 757
 758        /* Initialize pipes */
 759        for (n = 0; n < DBRI_NO_PIPES; n++)
 760                dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 761
 762        spin_lock_init(&dbri->cmdlock);
 763        /*
 764         * Initialize the interrupt ring buffer.
 765         */
 766        dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
 767        dbri->dma->intr[0] = dma_addr;
 768        dbri->dbri_irqp = 1;
 769        /*
 770         * Set up the interrupt queue
 771         */
 772        spin_lock(&dbri->cmdlock);
 773        cmd = dbri->cmdptr = dbri->dma->cmd;
 774        *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 775        *(cmd++) = dma_addr;
 776        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 777        dbri->cmdptr = cmd;
 778        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 779        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 780        dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
 781        sbus_writel(dma_addr, dbri->regs + REG8);
 782        spin_unlock(&dbri->cmdlock);
 783
 784        spin_unlock_irqrestore(&dbri->lock, flags);
 785        dbri_cmdwait(dbri);
 786}
 787
 788/*
 789****************************************************************************
 790************************** DBRI data pipe management ***********************
 791****************************************************************************
 792
 793While DBRI control functions use the command and interrupt buffers, the
 794main data path takes the form of data pipes, which can be short (command
 795and interrupt driven), or long (attached to DMA buffers).  These functions
 796provide a rudimentary means of setting up and managing the DBRI's pipes,
 797but the calling functions have to make sure they respect the pipes' linked
 798list ordering, among other things.  The transmit and receive functions
 799here interface closely with the transmit and receive interrupt code.
 800
 801*/
 802static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 803{
 804        return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 805}
 806
 807/* reset_pipe(dbri, pipe)
 808 *
 809 * Called on an in-use pipe to clear anything being transmitted or received
 810 * Lock must be held before calling this.
 811 */
 812static void reset_pipe(struct snd_dbri *dbri, int pipe)
 813{
 814        int sdp;
 815        int desc;
 816        s32 *cmd;
 817
 818        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 819                printk(KERN_ERR "DBRI: reset_pipe called with "
 820                        "illegal pipe number\n");
 821                return;
 822        }
 823
 824        sdp = dbri->pipes[pipe].sdp;
 825        if (sdp == 0) {
 826                printk(KERN_ERR "DBRI: reset_pipe called "
 827                        "on uninitialized pipe\n");
 828                return;
 829        }
 830
 831        cmd = dbri_cmdlock(dbri, 3);
 832        *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 833        *(cmd++) = 0;
 834        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 835        dbri_cmdsend(dbri, cmd, 3);
 836
 837        desc = dbri->pipes[pipe].first_desc;
 838        if (desc >= 0)
 839                do {
 840                        dbri->dma->desc[desc].ba = 0;
 841                        dbri->dma->desc[desc].nda = 0;
 842                        desc = dbri->next_desc[desc];
 843                } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 844
 845        dbri->pipes[pipe].desc = -1;
 846        dbri->pipes[pipe].first_desc = -1;
 847}
 848
 849/*
 850 * Lock must be held before calling this.
 851 */
 852static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 853{
 854        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 855                printk(KERN_ERR "DBRI: setup_pipe called "
 856                        "with illegal pipe number\n");
 857                return;
 858        }
 859
 860        if ((sdp & 0xf800) != sdp) {
 861                printk(KERN_ERR "DBRI: setup_pipe called "
 862                        "with strange SDP value\n");
 863                /* sdp &= 0xf800; */
 864        }
 865
 866        /* If this is a fixed receive pipe, arrange for an interrupt
 867         * every time its data changes
 868         */
 869        if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 870                sdp |= D_SDP_CHANGE;
 871
 872        sdp |= D_PIPE(pipe);
 873        dbri->pipes[pipe].sdp = sdp;
 874        dbri->pipes[pipe].desc = -1;
 875        dbri->pipes[pipe].first_desc = -1;
 876
 877        reset_pipe(dbri, pipe);
 878}
 879
 880/*
 881 * Lock must be held before calling this.
 882 */
 883static void link_time_slot(struct snd_dbri *dbri, int pipe,
 884                           int prevpipe, int nextpipe,
 885                           int length, int cycle)
 886{
 887        s32 *cmd;
 888        int val;
 889
 890        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 891                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 892                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 893                printk(KERN_ERR
 894                    "DBRI: link_time_slot called with illegal pipe number\n");
 895                return;
 896        }
 897
 898        if (dbri->pipes[pipe].sdp == 0
 899                        || dbri->pipes[prevpipe].sdp == 0
 900                        || dbri->pipes[nextpipe].sdp == 0) {
 901                printk(KERN_ERR "DBRI: link_time_slot called "
 902                        "on uninitialized pipe\n");
 903                return;
 904        }
 905
 906        dbri->pipes[prevpipe].nextpipe = pipe;
 907        dbri->pipes[pipe].nextpipe = nextpipe;
 908        dbri->pipes[pipe].length = length;
 909
 910        cmd = dbri_cmdlock(dbri, 4);
 911
 912        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 913                /* Deal with CHI special case:
 914                 * "If transmission on edges 0 or 1 is desired, then cycle n
 915                 *  (where n = # of bit times per frame...) must be used."
 916                 *                  - DBRI data sheet, page 11
 917                 */
 918                if (prevpipe == 16 && cycle == 0)
 919                        cycle = dbri->chi_bpf;
 920
 921                val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 922                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 923                *(cmd++) = 0;
 924                *(cmd++) =
 925                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 926        } else {
 927                val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 928                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 929                *(cmd++) =
 930                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 931                *(cmd++) = 0;
 932        }
 933        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 934
 935        dbri_cmdsend(dbri, cmd, 4);
 936}
 937
 938#if 0
 939/*
 940 * Lock must be held before calling this.
 941 */
 942static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 943                             enum in_or_out direction, int prevpipe,
 944                             int nextpipe)
 945{
 946        s32 *cmd;
 947        int val;
 948
 949        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 950                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 951                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 952                printk(KERN_ERR
 953                    "DBRI: unlink_time_slot called with illegal pipe number\n");
 954                return;
 955        }
 956
 957        cmd = dbri_cmdlock(dbri, 4);
 958
 959        if (direction == PIPEinput) {
 960                val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 961                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 962                *(cmd++) = D_TS_NEXT(nextpipe);
 963                *(cmd++) = 0;
 964        } else {
 965                val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 966                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 967                *(cmd++) = 0;
 968                *(cmd++) = D_TS_NEXT(nextpipe);
 969        }
 970        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 971
 972        dbri_cmdsend(dbri, cmd, 4);
 973}
 974#endif
 975
 976/* xmit_fixed() / recv_fixed()
 977 *
 978 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 979 * expected to change much, and which we don't need to buffer.
 980 * The DBRI only interrupts us when the data changes (receive pipes),
 981 * or only changes the data when this function is called (transmit pipes).
 982 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 983 *
 984 * These function operate on a 32-bit field, no matter how large
 985 * the actual time slot is.  The interrupt handler takes care of bit
 986 * ordering and alignment.  An 8-bit time slot will always end up
 987 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 988 * depending on the settings passed to setup_pipe().
 989 *
 990 * Lock must not be held before calling it.
 991 */
 992static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
 993{
 994        s32 *cmd;
 995        unsigned long flags;
 996
 997        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
 998                printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
 999                return;
1000        }
1001
1002        if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1003                printk(KERN_ERR "DBRI: xmit_fixed: "
1004                        "Uninitialized pipe %d\n", pipe);
1005                return;
1006        }
1007
1008        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1009                printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1010                return;
1011        }
1012
1013        if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1014                printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1015                        pipe);
1016                return;
1017        }
1018
1019        /* DBRI short pipes always transmit LSB first */
1020
1021        if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1022                data = reverse_bytes(data, dbri->pipes[pipe].length);
1023
1024        cmd = dbri_cmdlock(dbri, 3);
1025
1026        *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1027        *(cmd++) = data;
1028        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1029
1030        spin_lock_irqsave(&dbri->lock, flags);
1031        dbri_cmdsend(dbri, cmd, 3);
1032        spin_unlock_irqrestore(&dbri->lock, flags);
1033        dbri_cmdwait(dbri);
1034
1035}
1036
1037static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1038{
1039        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1040                printk(KERN_ERR "DBRI: recv_fixed called with "
1041                        "illegal pipe number\n");
1042                return;
1043        }
1044
1045        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1046                printk(KERN_ERR "DBRI: recv_fixed called on "
1047                        "non-fixed pipe %d\n", pipe);
1048                return;
1049        }
1050
1051        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1052                printk(KERN_ERR "DBRI: recv_fixed called on "
1053                        "transmit pipe %d\n", pipe);
1054                return;
1055        }
1056
1057        dbri->pipes[pipe].recv_fixed_ptr = ptr;
1058}
1059
1060/* setup_descs()
1061 *
1062 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1063 * with a DMA buffer.
1064 *
1065 * Only pipe numbers 0-15 can be used in this mode.
1066 *
1067 * This function takes a stream number pointing to a data buffer,
1068 * and work by building chains of descriptors which identify the
1069 * data buffers.  Buffers too large for a single descriptor will
1070 * be spread across multiple descriptors.
1071 *
1072 * All descriptors create a ring buffer.
1073 *
1074 * Lock must be held before calling this.
1075 */
1076static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1077{
1078        struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1079        __u32 dvma_buffer;
1080        int desc;
1081        int len;
1082        int first_desc = -1;
1083        int last_desc = -1;
1084
1085        if (info->pipe < 0 || info->pipe > 15) {
1086                printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1087                return -2;
1088        }
1089
1090        if (dbri->pipes[info->pipe].sdp == 0) {
1091                printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1092                       info->pipe);
1093                return -2;
1094        }
1095
1096        dvma_buffer = info->dvma_buffer;
1097        len = info->size;
1098
1099        if (streamno == DBRI_PLAY) {
1100                if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1101                        printk(KERN_ERR "DBRI: setup_descs: "
1102                                "Called on receive pipe %d\n", info->pipe);
1103                        return -2;
1104                }
1105        } else {
1106                if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1107                        printk(KERN_ERR
1108                            "DBRI: setup_descs: Called on transmit pipe %d\n",
1109                             info->pipe);
1110                        return -2;
1111                }
1112                /* Should be able to queue multiple buffers
1113                 * to receive on a pipe
1114                 */
1115                if (pipe_active(dbri, info->pipe)) {
1116                        printk(KERN_ERR "DBRI: recv_on_pipe: "
1117                                "Called on active pipe %d\n", info->pipe);
1118                        return -2;
1119                }
1120
1121                /* Make sure buffer size is multiple of four */
1122                len &= ~3;
1123        }
1124
1125        /* Free descriptors if pipe has any */
1126        desc = dbri->pipes[info->pipe].first_desc;
1127        if (desc >= 0)
1128                do {
1129                        dbri->dma->desc[desc].ba = 0;
1130                        dbri->dma->desc[desc].nda = 0;
1131                        desc = dbri->next_desc[desc];
1132                } while (desc != -1 &&
1133                         desc != dbri->pipes[info->pipe].first_desc);
1134
1135        dbri->pipes[info->pipe].desc = -1;
1136        dbri->pipes[info->pipe].first_desc = -1;
1137
1138        desc = 0;
1139        while (len > 0) {
1140                int mylen;
1141
1142                for (; desc < DBRI_NO_DESCS; desc++) {
1143                        if (!dbri->dma->desc[desc].ba)
1144                                break;
1145                }
1146
1147                if (desc == DBRI_NO_DESCS) {
1148                        printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1149                        return -1;
1150                }
1151
1152                if (len > DBRI_TD_MAXCNT)
1153                        mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1154                else
1155                        mylen = len;
1156
1157                if (mylen > period)
1158                        mylen = period;
1159
1160                dbri->next_desc[desc] = -1;
1161                dbri->dma->desc[desc].ba = dvma_buffer;
1162                dbri->dma->desc[desc].nda = 0;
1163
1164                if (streamno == DBRI_PLAY) {
1165                        dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1166                        dbri->dma->desc[desc].word4 = 0;
1167                        dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1168                } else {
1169                        dbri->dma->desc[desc].word1 = 0;
1170                        dbri->dma->desc[desc].word4 =
1171                            DBRI_RD_B | DBRI_RD_BCNT(mylen);
1172                }
1173
1174                if (first_desc == -1)
1175                        first_desc = desc;
1176                else {
1177                        dbri->next_desc[last_desc] = desc;
1178                        dbri->dma->desc[last_desc].nda =
1179                            dbri->dma_dvma + dbri_dma_off(desc, desc);
1180                }
1181
1182                last_desc = desc;
1183                dvma_buffer += mylen;
1184                len -= mylen;
1185        }
1186
1187        if (first_desc == -1 || last_desc == -1) {
1188                printk(KERN_ERR "DBRI: setup_descs: "
1189                        " Not enough descriptors available\n");
1190                return -1;
1191        }
1192
1193        dbri->dma->desc[last_desc].nda =
1194            dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1195        dbri->next_desc[last_desc] = first_desc;
1196        dbri->pipes[info->pipe].first_desc = first_desc;
1197        dbri->pipes[info->pipe].desc = first_desc;
1198
1199#ifdef DBRI_DEBUG
1200        for (desc = first_desc; desc != -1;) {
1201                dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1202                        desc,
1203                        dbri->dma->desc[desc].word1,
1204                        dbri->dma->desc[desc].ba,
1205                        dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1206                        desc = dbri->next_desc[desc];
1207                        if (desc == first_desc)
1208                                break;
1209        }
1210#endif
1211        return 0;
1212}
1213
1214/*
1215****************************************************************************
1216************************** DBRI - CHI interface ****************************
1217****************************************************************************
1218
1219The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1220multiplexed serial interface which the DBRI can operate in either master
1221(give clock/frame sync) or slave (take clock/frame sync) mode.
1222
1223*/
1224
1225enum master_or_slave { CHImaster, CHIslave };
1226
1227/*
1228 * Lock must not be held before calling it.
1229 */
1230static void reset_chi(struct snd_dbri *dbri,
1231                      enum master_or_slave master_or_slave,
1232                      int bits_per_frame)
1233{
1234        s32 *cmd;
1235        int val;
1236
1237        /* Set CHI Anchor: Pipe 16 */
1238
1239        cmd = dbri_cmdlock(dbri, 4);
1240        val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1241                | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1242        *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1243        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246        dbri_cmdsend(dbri, cmd, 4);
1247
1248        dbri->pipes[16].sdp = 1;
1249        dbri->pipes[16].nextpipe = 16;
1250
1251        cmd = dbri_cmdlock(dbri, 4);
1252
1253        if (master_or_slave == CHIslave) {
1254                /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1255                 *
1256                 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1257                 * IR     = give immediate CHI status interrupt
1258                 * EN     = give CHI status interrupt upon change
1259                 */
1260                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1261        } else {
1262                /* Setup DBRI for CHI Master - generate clock, FS
1263                 *
1264                 * BPF                          =  bits per 8 kHz frame
1265                 * 12.288 MHz / CHICM_divisor   = clock rate
1266                 * FD = 1 - drive CHIFS on rising edge of CHICK
1267                 */
1268                int clockrate = bits_per_frame * 8;
1269                int divisor = 12288 / clockrate;
1270
1271                if (divisor > 255 || divisor * clockrate != 12288)
1272                        printk(KERN_ERR "DBRI: illegal bits_per_frame "
1273                                "in setup_chi\n");
1274
1275                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276                                    | D_CHI_BPF(bits_per_frame));
1277        }
1278
1279        dbri->chi_bpf = bits_per_frame;
1280
1281        /* CHI Data Mode
1282         *
1283         * RCE   =  0 - receive on falling edge of CHICK
1284         * XCE   =  1 - transmit on rising edge of CHICK
1285         * XEN   =  1 - enable transmitter
1286         * REN   =  1 - enable receiver
1287         */
1288
1289        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290        *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1292
1293        dbri_cmdsend(dbri, cmd, 4);
1294}
1295
1296/*
1297****************************************************************************
1298*********************** CS4215 audio codec management **********************
1299****************************************************************************
1300
1301In the standard SPARC audio configuration, the CS4215 codec is attached
1302to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1303
1304 * Lock must not be held before calling it.
1305
1306*/
1307static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1308{
1309        unsigned long flags;
1310
1311        spin_lock_irqsave(&dbri->lock, flags);
1312        /*
1313         * Data mode:
1314         * Pipe  4: Send timeslots 1-4 (audio data)
1315         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1316         * Pipe  6: Receive timeslots 1-4 (audio data)
1317         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1318         *          interrupt, and the rest of the data (slot 5 and 8) is
1319         *          not relevant for us (only for doublechecking).
1320         *
1321         * Control mode:
1322         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1323         * Pipe 18: Receive timeslot 1 (clb).
1324         * Pipe 19: Receive timeslot 7 (version).
1325         */
1326
1327        setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1328        setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1329        setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1330        setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1331
1332        setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1333        setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334        setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335        spin_unlock_irqrestore(&dbri->lock, flags);
1336
1337        dbri_cmdwait(dbri);
1338}
1339
1340static __devinit int cs4215_init_data(struct cs4215 *mm)
1341{
1342        /*
1343         * No action, memory resetting only.
1344         *
1345         * Data Time Slot 5-8
1346         * Speaker,Line and Headphone enable. Gain set to the half.
1347         * Input is mike.
1348         */
1349        mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1350        mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1351        mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1352        mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1353
1354        /*
1355         * Control Time Slot 1-4
1356         * 0: Default I/O voltage scale
1357         * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1358         * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1359         * 3: Tests disabled
1360         */
1361        mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1362        mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1363        mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1364        mm->ctrl[3] = 0;
1365
1366        mm->status = 0;
1367        mm->version = 0xff;
1368        mm->precision = 8;      /* For ULAW */
1369        mm->channels = 1;
1370
1371        return 0;
1372}
1373
1374static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1375{
1376        if (muted) {
1377                dbri->mm.data[0] |= 63;
1378                dbri->mm.data[1] |= 63;
1379                dbri->mm.data[2] &= ~15;
1380                dbri->mm.data[3] &= ~15;
1381        } else {
1382                /* Start by setting the playback attenuation. */
1383                struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1384                int left_gain = info->left_gain & 0x3f;
1385                int right_gain = info->right_gain & 0x3f;
1386
1387                dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1388                dbri->mm.data[1] &= ~0x3f;
1389                dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390                dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1391
1392                /* Now set the recording gain. */
1393                info = &dbri->stream_info[DBRI_REC];
1394                left_gain = info->left_gain & 0xf;
1395                right_gain = info->right_gain & 0xf;
1396                dbri->mm.data[2] |= CS4215_LG(left_gain);
1397                dbri->mm.data[3] |= CS4215_RG(right_gain);
1398        }
1399
1400        xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1401}
1402
1403/*
1404 * Set the CS4215 to data mode.
1405 */
1406static void cs4215_open(struct snd_dbri *dbri)
1407{
1408        int data_width;
1409        u32 tmp;
1410        unsigned long flags;
1411
1412        dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1413                dbri->mm.channels, dbri->mm.precision);
1414
1415        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1416         * to make sure this takes.  This avoids clicking noises.
1417         */
1418
1419        cs4215_setdata(dbri, 1);
1420        udelay(125);
1421
1422        /*
1423         * Data mode:
1424         * Pipe  4: Send timeslots 1-4 (audio data)
1425         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1426         * Pipe  6: Receive timeslots 1-4 (audio data)
1427         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1428         *          interrupt, and the rest of the data (slot 5 and 8) is
1429         *          not relevant for us (only for doublechecking).
1430         *
1431         * Just like in control mode, the time slots are all offset by eight
1432         * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1433         * even if it's the CHI master.  Don't ask me...
1434         */
1435        spin_lock_irqsave(&dbri->lock, flags);
1436        tmp = sbus_readl(dbri->regs + REG0);
1437        tmp &= ~(D_C);          /* Disable CHI */
1438        sbus_writel(tmp, dbri->regs + REG0);
1439
1440        /* Switch CS4215 to data mode - set PIO3 to 1 */
1441        sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1442                    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1443
1444        reset_chi(dbri, CHIslave, 128);
1445
1446        /* Note: this next doesn't work for 8-bit stereo, because the two
1447         * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1448         * (See CS4215 datasheet Fig 15)
1449         *
1450         * DBRI non-contiguous mode would be required to make this work.
1451         */
1452        data_width = dbri->mm.channels * dbri->mm.precision;
1453
1454        link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1455        link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1456        link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1457        link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1458
1459        /* FIXME: enable CHI after _setdata? */
1460        tmp = sbus_readl(dbri->regs + REG0);
1461        tmp |= D_C;             /* Enable CHI */
1462        sbus_writel(tmp, dbri->regs + REG0);
1463        spin_unlock_irqrestore(&dbri->lock, flags);
1464
1465        cs4215_setdata(dbri, 0);
1466}
1467
1468/*
1469 * Send the control information (i.e. audio format)
1470 */
1471static int cs4215_setctrl(struct snd_dbri *dbri)
1472{
1473        int i, val;
1474        u32 tmp;
1475        unsigned long flags;
1476
1477        /* FIXME - let the CPU do something useful during these delays */
1478
1479        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1480         * to make sure this takes.  This avoids clicking noises.
1481         */
1482        cs4215_setdata(dbri, 1);
1483        udelay(125);
1484
1485        /*
1486         * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1487         * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1488         */
1489        val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1490        sbus_writel(val, dbri->regs + REG2);
1491        dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1492        udelay(34);
1493
1494        /* In Control mode, the CS4215 is a slave device, so the DBRI must
1495         * operate as CHI master, supplying clocking and frame synchronization.
1496         *
1497         * In Data mode, however, the CS4215 must be CHI master to insure
1498         * that its data stream is synchronous with its codec.
1499         *
1500         * The upshot of all this?  We start by putting the DBRI into master
1501         * mode, program the CS4215 in Control mode, then switch the CS4215
1502         * into Data mode and put the DBRI into slave mode.  Various timing
1503         * requirements must be observed along the way.
1504         *
1505         * Oh, and one more thing, on a SPARCStation 20 (and maybe
1506         * others?), the addressing of the CS4215's time slots is
1507         * offset by eight bits, so we add eight to all the "cycle"
1508         * values in the Define Time Slot (DTS) commands.  This is
1509         * done in hardware by a TI 248 that delays the DBRI->4215
1510         * frame sync signal by eight clock cycles.  Anybody know why?
1511         */
1512        spin_lock_irqsave(&dbri->lock, flags);
1513        tmp = sbus_readl(dbri->regs + REG0);
1514        tmp &= ~D_C;            /* Disable CHI */
1515        sbus_writel(tmp, dbri->regs + REG0);
1516
1517        reset_chi(dbri, CHImaster, 128);
1518
1519        /*
1520         * Control mode:
1521         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1522         * Pipe 18: Receive timeslot 1 (clb).
1523         * Pipe 19: Receive timeslot 7 (version).
1524         */
1525
1526        link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1527        link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1528        link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1529        spin_unlock_irqrestore(&dbri->lock, flags);
1530
1531        /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1532        dbri->mm.ctrl[0] &= ~CS4215_CLB;
1533        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1534
1535        spin_lock_irqsave(&dbri->lock, flags);
1536        tmp = sbus_readl(dbri->regs + REG0);
1537        tmp |= D_C;             /* Enable CHI */
1538        sbus_writel(tmp, dbri->regs + REG0);
1539        spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541        for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1542                msleep_interruptible(1);
1543
1544        if (i == 0) {
1545                dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1546                        dbri->mm.status);
1547                return -1;
1548        }
1549
1550        /* Disable changes to our copy of the version number, as we are about
1551         * to leave control mode.
1552         */
1553        recv_fixed(dbri, 19, NULL);
1554
1555        /* Terminate CS4215 control mode - data sheet says
1556         * "Set CLB=1 and send two more frames of valid control info"
1557         */
1558        dbri->mm.ctrl[0] |= CS4215_CLB;
1559        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1560
1561        /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1562        udelay(250);
1563
1564        cs4215_setdata(dbri, 0);
1565
1566        return 0;
1567}
1568
1569/*
1570 * Setup the codec with the sampling rate, audio format and number of
1571 * channels.
1572 * As part of the process we resend the settings for the data
1573 * timeslots as well.
1574 */
1575static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1576                          snd_pcm_format_t format, unsigned int channels)
1577{
1578        int freq_idx;
1579        int ret = 0;
1580
1581        /* Lookup index for this rate */
1582        for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1583                if (CS4215_FREQ[freq_idx].freq == rate)
1584                        break;
1585        }
1586        if (CS4215_FREQ[freq_idx].freq != rate) {
1587                printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1588                return -1;
1589        }
1590
1591        switch (format) {
1592        case SNDRV_PCM_FORMAT_MU_LAW:
1593                dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1594                dbri->mm.precision = 8;
1595                break;
1596        case SNDRV_PCM_FORMAT_A_LAW:
1597                dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1598                dbri->mm.precision = 8;
1599                break;
1600        case SNDRV_PCM_FORMAT_U8:
1601                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1602                dbri->mm.precision = 8;
1603                break;
1604        case SNDRV_PCM_FORMAT_S16_BE:
1605                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1606                dbri->mm.precision = 16;
1607                break;
1608        default:
1609                printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1610                return -1;
1611        }
1612
1613        /* Add rate parameters */
1614        dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1615        dbri->mm.ctrl[2] = CS4215_XCLK |
1616            CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1617
1618        dbri->mm.channels = channels;
1619        if (channels == 2)
1620                dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1621
1622        ret = cs4215_setctrl(dbri);
1623        if (ret == 0)
1624                cs4215_open(dbri);      /* set codec to data mode */
1625
1626        return ret;
1627}
1628
1629/*
1630 *
1631 */
1632static __devinit int cs4215_init(struct snd_dbri *dbri)
1633{
1634        u32 reg2 = sbus_readl(dbri->regs + REG2);
1635        dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1636
1637        /* Look for the cs4215 chips */
1638        if (reg2 & D_PIO2) {
1639                dprintk(D_MM, "Onboard CS4215 detected\n");
1640                dbri->mm.onboard = 1;
1641        }
1642        if (reg2 & D_PIO0) {
1643                dprintk(D_MM, "Speakerbox detected\n");
1644                dbri->mm.onboard = 0;
1645
1646                if (reg2 & D_PIO2) {
1647                        printk(KERN_INFO "DBRI: Using speakerbox / "
1648                               "ignoring onboard mmcodec.\n");
1649                        sbus_writel(D_ENPIO2, dbri->regs + REG2);
1650                }
1651        }
1652
1653        if (!(reg2 & (D_PIO0 | D_PIO2))) {
1654                printk(KERN_ERR "DBRI: no mmcodec found.\n");
1655                return -EIO;
1656        }
1657
1658        cs4215_setup_pipes(dbri);
1659        cs4215_init_data(&dbri->mm);
1660
1661        /* Enable capture of the status & version timeslots. */
1662        recv_fixed(dbri, 18, &dbri->mm.status);
1663        recv_fixed(dbri, 19, &dbri->mm.version);
1664
1665        dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1666        if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1667                dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1668                        dbri->mm.offset);
1669                return -EIO;
1670        }
1671        dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1672
1673        return 0;
1674}
1675
1676/*
1677****************************************************************************
1678*************************** DBRI interrupt handler *************************
1679****************************************************************************
1680
1681The DBRI communicates with the CPU mainly via a circular interrupt
1682buffer.  When an interrupt is signaled, the CPU walks through the
1683buffer and calls dbri_process_one_interrupt() for each interrupt word.
1684Complicated interrupts are handled by dedicated functions (which
1685appear first in this file).  Any pending interrupts can be serviced by
1686calling dbri_process_interrupt_buffer(), which works even if the CPU's
1687interrupts are disabled.
1688
1689*/
1690
1691/* xmit_descs()
1692 *
1693 * Starts transmitting the current TD's for recording/playing.
1694 * For playback, ALSA has filled the DMA memory with new data (we hope).
1695 */
1696static void xmit_descs(struct snd_dbri *dbri)
1697{
1698        struct dbri_streaminfo *info;
1699        s32 *cmd;
1700        unsigned long flags;
1701        int first_td;
1702
1703        if (dbri == NULL)
1704                return;         /* Disabled */
1705
1706        info = &dbri->stream_info[DBRI_REC];
1707        spin_lock_irqsave(&dbri->lock, flags);
1708
1709        if (info->pipe >= 0) {
1710                first_td = dbri->pipes[info->pipe].first_desc;
1711
1712                dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1713
1714                /* Stream could be closed by the time we run. */
1715                if (first_td >= 0) {
1716                        cmd = dbri_cmdlock(dbri, 2);
1717                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1718                                            dbri->pipes[info->pipe].sdp
1719                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1720                        *(cmd++) = dbri->dma_dvma +
1721                                   dbri_dma_off(desc, first_td);
1722                        dbri_cmdsend(dbri, cmd, 2);
1723
1724                        /* Reset our admin of the pipe. */
1725                        dbri->pipes[info->pipe].desc = first_td;
1726                }
1727        }
1728
1729        info = &dbri->stream_info[DBRI_PLAY];
1730
1731        if (info->pipe >= 0) {
1732                first_td = dbri->pipes[info->pipe].first_desc;
1733
1734                dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1735
1736                /* Stream could be closed by the time we run. */
1737                if (first_td >= 0) {
1738                        cmd = dbri_cmdlock(dbri, 2);
1739                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1740                                            dbri->pipes[info->pipe].sdp
1741                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1742                        *(cmd++) = dbri->dma_dvma +
1743                                   dbri_dma_off(desc, first_td);
1744                        dbri_cmdsend(dbri, cmd, 2);
1745
1746                        /* Reset our admin of the pipe. */
1747                        dbri->pipes[info->pipe].desc = first_td;
1748                }
1749        }
1750
1751        spin_unlock_irqrestore(&dbri->lock, flags);
1752}
1753
1754/* transmission_complete_intr()
1755 *
1756 * Called by main interrupt handler when DBRI signals transmission complete
1757 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1758 *
1759 * Walks through the pipe's list of transmit buffer descriptors and marks
1760 * them as available. Stops when the first descriptor is found without
1761 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1762 *
1763 * The DMA buffers are not released. They form a ring buffer and
1764 * they are filled by ALSA while others are transmitted by DMA.
1765 *
1766 */
1767
1768static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1769{
1770        struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1771        int td = dbri->pipes[pipe].desc;
1772        int status;
1773
1774        while (td >= 0) {
1775                if (td >= DBRI_NO_DESCS) {
1776                        printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1777                        return;
1778                }
1779
1780                status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1781                if (!(status & DBRI_TD_TBC))
1782                        break;
1783
1784                dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1785
1786                dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1787                info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1788
1789                td = dbri->next_desc[td];
1790                dbri->pipes[pipe].desc = td;
1791        }
1792
1793        /* Notify ALSA */
1794        spin_unlock(&dbri->lock);
1795        snd_pcm_period_elapsed(info->substream);
1796        spin_lock(&dbri->lock);
1797}
1798
1799static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1800{
1801        struct dbri_streaminfo *info;
1802        int rd = dbri->pipes[pipe].desc;
1803        s32 status;
1804
1805        if (rd < 0 || rd >= DBRI_NO_DESCS) {
1806                printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1807                return;
1808        }
1809
1810        dbri->pipes[pipe].desc = dbri->next_desc[rd];
1811        status = dbri->dma->desc[rd].word1;
1812        dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1813
1814        info = &dbri->stream_info[DBRI_REC];
1815        info->offset += DBRI_RD_CNT(status);
1816
1817        /* FIXME: Check status */
1818
1819        dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1820                rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1821
1822        /* Notify ALSA */
1823        spin_unlock(&dbri->lock);
1824        snd_pcm_period_elapsed(info->substream);
1825        spin_lock(&dbri->lock);
1826}
1827
1828static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1829{
1830        int val = D_INTR_GETVAL(x);
1831        int channel = D_INTR_GETCHAN(x);
1832        int command = D_INTR_GETCMD(x);
1833        int code = D_INTR_GETCODE(x);
1834#ifdef DBRI_DEBUG
1835        int rval = D_INTR_GETRVAL(x);
1836#endif
1837
1838        if (channel == D_INTR_CMD) {
1839                dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1840                        cmds[command], val);
1841        } else {
1842                dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1843                        channel, code, rval);
1844        }
1845
1846        switch (code) {
1847        case D_INTR_CMDI:
1848                if (command != D_WAIT)
1849                        printk(KERN_ERR "DBRI: Command read interrupt\n");
1850                break;
1851        case D_INTR_BRDY:
1852                reception_complete_intr(dbri, channel);
1853                break;
1854        case D_INTR_XCMP:
1855        case D_INTR_MINT:
1856                transmission_complete_intr(dbri, channel);
1857                break;
1858        case D_INTR_UNDR:
1859                /* UNDR - Transmission underrun
1860                 * resend SDP command with clear pipe bit (C) set
1861                 */
1862                {
1863        /* FIXME: do something useful in case of underrun */
1864                        printk(KERN_ERR "DBRI: Underrun error\n");
1865#if 0
1866                        s32 *cmd;
1867                        int pipe = channel;
1868                        int td = dbri->pipes[pipe].desc;
1869
1870                        dbri->dma->desc[td].word4 = 0;
1871                        cmd = dbri_cmdlock(dbri, NoGetLock);
1872                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1873                                            dbri->pipes[pipe].sdp
1874                                            | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1875                        *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1876                        dbri_cmdsend(dbri, cmd);
1877#endif
1878                }
1879                break;
1880        case D_INTR_FXDT:
1881                /* FXDT - Fixed data change */
1882                if (dbri->pipes[channel].sdp & D_SDP_MSB)
1883                        val = reverse_bytes(val, dbri->pipes[channel].length);
1884
1885                if (dbri->pipes[channel].recv_fixed_ptr)
1886                        *(dbri->pipes[channel].recv_fixed_ptr) = val;
1887                break;
1888        default:
1889                if (channel != D_INTR_CMD)
1890                        printk(KERN_WARNING
1891                               "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1892        }
1893}
1894
1895/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1896 * buffer until it finds a zero word (indicating nothing more to do
1897 * right now).  Non-zero words require processing and are handed off
1898 * to dbri_process_one_interrupt AFTER advancing the pointer.
1899 */
1900static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1901{
1902        s32 x;
1903
1904        while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1905                dbri->dma->intr[dbri->dbri_irqp] = 0;
1906                dbri->dbri_irqp++;
1907                if (dbri->dbri_irqp == DBRI_INT_BLK)
1908                        dbri->dbri_irqp = 1;
1909
1910                dbri_process_one_interrupt(dbri, x);
1911        }
1912}
1913
1914static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1915{
1916        struct snd_dbri *dbri = dev_id;
1917        static int errcnt = 0;
1918        int x;
1919
1920        if (dbri == NULL)
1921                return IRQ_NONE;
1922        spin_lock(&dbri->lock);
1923
1924        /*
1925         * Read it, so the interrupt goes away.
1926         */
1927        x = sbus_readl(dbri->regs + REG1);
1928
1929        if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1930                u32 tmp;
1931
1932                if (x & D_MRR)
1933                        printk(KERN_ERR
1934                               "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1935                               x);
1936                if (x & D_MLE)
1937                        printk(KERN_ERR
1938                               "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1939                               x);
1940                if (x & D_LBG)
1941                        printk(KERN_ERR
1942                               "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1943                if (x & D_MBE)
1944                        printk(KERN_ERR
1945                               "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1946
1947                /* Some of these SBus errors cause the chip's SBus circuitry
1948                 * to be disabled, so just re-enable and try to keep going.
1949                 *
1950                 * The only one I've seen is MRR, which will be triggered
1951                 * if you let a transmit pipe underrun, then try to CDP it.
1952                 *
1953                 * If these things persist, we reset the chip.
1954                 */
1955                if ((++errcnt) % 10 == 0) {
1956                        dprintk(D_INT, "Interrupt errors exceeded.\n");
1957                        dbri_reset(dbri);
1958                } else {
1959                        tmp = sbus_readl(dbri->regs + REG0);
1960                        tmp &= ~(D_D);
1961                        sbus_writel(tmp, dbri->regs + REG0);
1962                }
1963        }
1964
1965        dbri_process_interrupt_buffer(dbri);
1966
1967        spin_unlock(&dbri->lock);
1968
1969        return IRQ_HANDLED;
1970}
1971
1972/****************************************************************************
1973                PCM Interface
1974****************************************************************************/
1975static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1976        .info           = SNDRV_PCM_INFO_MMAP |
1977                          SNDRV_PCM_INFO_INTERLEAVED |
1978                          SNDRV_PCM_INFO_BLOCK_TRANSFER |
1979                          SNDRV_PCM_INFO_MMAP_VALID |
1980                          SNDRV_PCM_INFO_BATCH,
1981        .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1982                          SNDRV_PCM_FMTBIT_A_LAW |
1983                          SNDRV_PCM_FMTBIT_U8 |
1984                          SNDRV_PCM_FMTBIT_S16_BE,
1985        .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1986        .rate_min               = 5512,
1987        .rate_max               = 48000,
1988        .channels_min           = 1,
1989        .channels_max           = 2,
1990        .buffer_bytes_max       = 64 * 1024,
1991        .period_bytes_min       = 1,
1992        .period_bytes_max       = DBRI_TD_MAXCNT,
1993        .periods_min            = 1,
1994        .periods_max            = 1024,
1995};
1996
1997static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1998                              struct snd_pcm_hw_rule *rule)
1999{
2000        struct snd_interval *c = hw_param_interval(params,
2001                                SNDRV_PCM_HW_PARAM_CHANNELS);
2002        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2003        struct snd_mask fmt;
2004
2005        snd_mask_any(&fmt);
2006        if (c->min > 1) {
2007                fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2008                return snd_mask_refine(f, &fmt);
2009        }
2010        return 0;
2011}
2012
2013static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2014                                struct snd_pcm_hw_rule *rule)
2015{
2016        struct snd_interval *c = hw_param_interval(params,
2017                                SNDRV_PCM_HW_PARAM_CHANNELS);
2018        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2019        struct snd_interval ch;
2020
2021        snd_interval_any(&ch);
2022        if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2023                ch.min = 1;
2024                ch.max = 1;
2025                ch.integer = 1;
2026                return snd_interval_refine(c, &ch);
2027        }
2028        return 0;
2029}
2030
2031static int snd_dbri_open(struct snd_pcm_substream *substream)
2032{
2033        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2034        struct snd_pcm_runtime *runtime = substream->runtime;
2035        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2036        unsigned long flags;
2037
2038        dprintk(D_USR, "open audio output.\n");
2039        runtime->hw = snd_dbri_pcm_hw;
2040
2041        spin_lock_irqsave(&dbri->lock, flags);
2042        info->substream = substream;
2043        info->offset = 0;
2044        info->dvma_buffer = 0;
2045        info->pipe = -1;
2046        spin_unlock_irqrestore(&dbri->lock, flags);
2047
2048        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2049                            snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2050                            -1);
2051        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2052                            snd_hw_rule_channels, NULL,
2053                            SNDRV_PCM_HW_PARAM_CHANNELS,
2054                            -1);
2055
2056        cs4215_open(dbri);
2057
2058        return 0;
2059}
2060
2061static int snd_dbri_close(struct snd_pcm_substream *substream)
2062{
2063        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2064        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2065
2066        dprintk(D_USR, "close audio output.\n");
2067        info->substream = NULL;
2068        info->offset = 0;
2069
2070        return 0;
2071}
2072
2073static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2074                              struct snd_pcm_hw_params *hw_params)
2075{
2076        struct snd_pcm_runtime *runtime = substream->runtime;
2077        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2078        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2079        int direction;
2080        int ret;
2081
2082        /* set sampling rate, audio format and number of channels */
2083        ret = cs4215_prepare(dbri, params_rate(hw_params),
2084                             params_format(hw_params),
2085                             params_channels(hw_params));
2086        if (ret != 0)
2087                return ret;
2088
2089        if ((ret = snd_pcm_lib_malloc_pages(substream,
2090                                params_buffer_bytes(hw_params))) < 0) {
2091                printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2092                return ret;
2093        }
2094
2095        /* hw_params can get called multiple times. Only map the DMA once.
2096         */
2097        if (info->dvma_buffer == 0) {
2098                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2099                        direction = DMA_TO_DEVICE;
2100                else
2101                        direction = DMA_FROM_DEVICE;
2102
2103                info->dvma_buffer =
2104                        dma_map_single(&dbri->op->dev,
2105                                       runtime->dma_area,
2106                                       params_buffer_bytes(hw_params),
2107                                       direction);
2108        }
2109
2110        direction = params_buffer_bytes(hw_params);
2111        dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2112                direction, info->dvma_buffer);
2113        return 0;
2114}
2115
2116static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2117{
2118        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2119        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2120        int direction;
2121
2122        dprintk(D_USR, "hw_free.\n");
2123
2124        /* hw_free can get called multiple times. Only unmap the DMA once.
2125         */
2126        if (info->dvma_buffer) {
2127                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2128                        direction = DMA_TO_DEVICE;
2129                else
2130                        direction = DMA_FROM_DEVICE;
2131
2132                dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2133                                 substream->runtime->buffer_size, direction);
2134                info->dvma_buffer = 0;
2135        }
2136        if (info->pipe != -1) {
2137                reset_pipe(dbri, info->pipe);
2138                info->pipe = -1;
2139        }
2140
2141        return snd_pcm_lib_free_pages(substream);
2142}
2143
2144static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2145{
2146        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2147        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2148        int ret;
2149
2150        info->size = snd_pcm_lib_buffer_bytes(substream);
2151        if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2152                info->pipe = 4; /* Send pipe */
2153        else
2154                info->pipe = 6; /* Receive pipe */
2155
2156        spin_lock_irq(&dbri->lock);
2157        info->offset = 0;
2158
2159        /* Setup the all the transmit/receive descriptors to cover the
2160         * whole DMA buffer.
2161         */
2162        ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2163                          snd_pcm_lib_period_bytes(substream));
2164
2165        spin_unlock_irq(&dbri->lock);
2166
2167        dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2168        return ret;
2169}
2170
2171static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2172{
2173        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2174        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2175        int ret = 0;
2176
2177        switch (cmd) {
2178        case SNDRV_PCM_TRIGGER_START:
2179                dprintk(D_USR, "start audio, period is %d bytes\n",
2180                        (int)snd_pcm_lib_period_bytes(substream));
2181                /* Re-submit the TDs. */
2182                xmit_descs(dbri);
2183                break;
2184        case SNDRV_PCM_TRIGGER_STOP:
2185                dprintk(D_USR, "stop audio.\n");
2186                reset_pipe(dbri, info->pipe);
2187                break;
2188        default:
2189                ret = -EINVAL;
2190        }
2191
2192        return ret;
2193}
2194
2195static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2196{
2197        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2198        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2199        snd_pcm_uframes_t ret;
2200
2201        ret = bytes_to_frames(substream->runtime, info->offset)
2202                % substream->runtime->buffer_size;
2203        dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2204                ret, substream->runtime->buffer_size);
2205        return ret;
2206}
2207
2208static struct snd_pcm_ops snd_dbri_ops = {
2209        .open = snd_dbri_open,
2210        .close = snd_dbri_close,
2211        .ioctl = snd_pcm_lib_ioctl,
2212        .hw_params = snd_dbri_hw_params,
2213        .hw_free = snd_dbri_hw_free,
2214        .prepare = snd_dbri_prepare,
2215        .trigger = snd_dbri_trigger,
2216        .pointer = snd_dbri_pointer,
2217};
2218
2219static int __devinit snd_dbri_pcm(struct snd_card *card)
2220{
2221        struct snd_pcm *pcm;
2222        int err;
2223
2224        if ((err = snd_pcm_new(card,
2225                               /* ID */             "sun_dbri",
2226                               /* device */         0,
2227                               /* playback count */ 1,
2228                               /* capture count */  1, &pcm)) < 0)
2229                return err;
2230
2231        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2232        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2233
2234        pcm->private_data = card->private_data;
2235        pcm->info_flags = 0;
2236        strcpy(pcm->name, card->shortname);
2237
2238        if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2239                        SNDRV_DMA_TYPE_CONTINUOUS,
2240                        snd_dma_continuous_data(GFP_KERNEL),
2241                        64 * 1024, 64 * 1024)) < 0)
2242                return err;
2243
2244        return 0;
2245}
2246
2247/*****************************************************************************
2248                        Mixer interface
2249*****************************************************************************/
2250
2251static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2252                                  struct snd_ctl_elem_info *uinfo)
2253{
2254        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2255        uinfo->count = 2;
2256        uinfo->value.integer.min = 0;
2257        if (kcontrol->private_value == DBRI_PLAY)
2258                uinfo->value.integer.max = DBRI_MAX_VOLUME;
2259        else
2260                uinfo->value.integer.max = DBRI_MAX_GAIN;
2261        return 0;
2262}
2263
2264static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2265                                 struct snd_ctl_elem_value *ucontrol)
2266{
2267        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2268        struct dbri_streaminfo *info;
2269
2270        if (snd_BUG_ON(!dbri))
2271                return -EINVAL;
2272        info = &dbri->stream_info[kcontrol->private_value];
2273
2274        ucontrol->value.integer.value[0] = info->left_gain;
2275        ucontrol->value.integer.value[1] = info->right_gain;
2276        return 0;
2277}
2278
2279static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2280                                 struct snd_ctl_elem_value *ucontrol)
2281{
2282        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2283        struct dbri_streaminfo *info =
2284                                &dbri->stream_info[kcontrol->private_value];
2285        unsigned int vol[2];
2286        int changed = 0;
2287
2288        vol[0] = ucontrol->value.integer.value[0];
2289        vol[1] = ucontrol->value.integer.value[1];
2290        if (kcontrol->private_value == DBRI_PLAY) {
2291                if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2292                        return -EINVAL;
2293        } else {
2294                if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2295                        return -EINVAL;
2296        }
2297
2298        if (info->left_gain != vol[0]) {
2299                info->left_gain = vol[0];
2300                changed = 1;
2301        }
2302        if (info->right_gain != vol[1]) {
2303                info->right_gain = vol[1];
2304                changed = 1;
2305        }
2306        if (changed) {
2307                /* First mute outputs, and wait 1/8000 sec (125 us)
2308                 * to make sure this takes.  This avoids clicking noises.
2309                 */
2310                cs4215_setdata(dbri, 1);
2311                udelay(125);
2312                cs4215_setdata(dbri, 0);
2313        }
2314        return changed;
2315}
2316
2317static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2318                                  struct snd_ctl_elem_info *uinfo)
2319{
2320        int mask = (kcontrol->private_value >> 16) & 0xff;
2321
2322        uinfo->type = (mask == 1) ?
2323            SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2324        uinfo->count = 1;
2325        uinfo->value.integer.min = 0;
2326        uinfo->value.integer.max = mask;
2327        return 0;
2328}
2329
2330static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2331                                 struct snd_ctl_elem_value *ucontrol)
2332{
2333        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2334        int elem = kcontrol->private_value & 0xff;
2335        int shift = (kcontrol->private_value >> 8) & 0xff;
2336        int mask = (kcontrol->private_value >> 16) & 0xff;
2337        int invert = (kcontrol->private_value >> 24) & 1;
2338
2339        if (snd_BUG_ON(!dbri))
2340                return -EINVAL;
2341
2342        if (elem < 4)
2343                ucontrol->value.integer.value[0] =
2344                    (dbri->mm.data[elem] >> shift) & mask;
2345        else
2346                ucontrol->value.integer.value[0] =
2347                    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2348
2349        if (invert == 1)
2350                ucontrol->value.integer.value[0] =
2351                    mask - ucontrol->value.integer.value[0];
2352        return 0;
2353}
2354
2355static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2356                                 struct snd_ctl_elem_value *ucontrol)
2357{
2358        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2359        int elem = kcontrol->private_value & 0xff;
2360        int shift = (kcontrol->private_value >> 8) & 0xff;
2361        int mask = (kcontrol->private_value >> 16) & 0xff;
2362        int invert = (kcontrol->private_value >> 24) & 1;
2363        int changed = 0;
2364        unsigned short val;
2365
2366        if (snd_BUG_ON(!dbri))
2367                return -EINVAL;
2368
2369        val = (ucontrol->value.integer.value[0] & mask);
2370        if (invert == 1)
2371                val = mask - val;
2372        val <<= shift;
2373
2374        if (elem < 4) {
2375                dbri->mm.data[elem] = (dbri->mm.data[elem] &
2376                                       ~(mask << shift)) | val;
2377                changed = (val != dbri->mm.data[elem]);
2378        } else {
2379                dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2380                                           ~(mask << shift)) | val;
2381                changed = (val != dbri->mm.ctrl[elem - 4]);
2382        }
2383
2384        dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2385                "mixer-value=%ld, mm-value=0x%x\n",
2386                mask, changed, ucontrol->value.integer.value[0],
2387                dbri->mm.data[elem & 3]);
2388
2389        if (changed) {
2390                /* First mute outputs, and wait 1/8000 sec (125 us)
2391                 * to make sure this takes.  This avoids clicking noises.
2392                 */
2393                cs4215_setdata(dbri, 1);
2394                udelay(125);
2395                cs4215_setdata(dbri, 0);
2396        }
2397        return changed;
2398}
2399
2400/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2401   timeslots. Shift is the bit offset in the timeslot, mask defines the
2402   number of bits. invert is a boolean for use with attenuation.
2403 */
2404#define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2405{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2406  .info = snd_cs4215_info_single,                               \
2407  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2408  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2409                        ((invert) << 24) },
2410
2411static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2412        {
2413         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2414         .name  = "Playback Volume",
2415         .info  = snd_cs4215_info_volume,
2416         .get   = snd_cs4215_get_volume,
2417         .put   = snd_cs4215_put_volume,
2418         .private_value = DBRI_PLAY,
2419         },
2420        CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2421        CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2422        CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2423        {
2424         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425         .name  = "Capture Volume",
2426         .info  = snd_cs4215_info_volume,
2427         .get   = snd_cs4215_get_volume,
2428         .put   = snd_cs4215_put_volume,
2429         .private_value = DBRI_REC,
2430         },
2431        /* FIXME: mic/line switch */
2432        CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2433        CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2434        CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2435        CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2436};
2437
2438static int __devinit snd_dbri_mixer(struct snd_card *card)
2439{
2440        int idx, err;
2441        struct snd_dbri *dbri;
2442
2443        if (snd_BUG_ON(!card || !card->private_data))
2444                return -EINVAL;
2445        dbri = card->private_data;
2446
2447        strcpy(card->mixername, card->shortname);
2448
2449        for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2450                err = snd_ctl_add(card,
2451                                snd_ctl_new1(&dbri_controls[idx], dbri));
2452                if (err < 0)
2453                        return err;
2454        }
2455
2456        for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2457                dbri->stream_info[idx].left_gain = 0;
2458                dbri->stream_info[idx].right_gain = 0;
2459        }
2460
2461        return 0;
2462}
2463
2464/****************************************************************************
2465                        /proc interface
2466****************************************************************************/
2467static void dbri_regs_read(struct snd_info_entry *entry,
2468                           struct snd_info_buffer *buffer)
2469{
2470        struct snd_dbri *dbri = entry->private_data;
2471
2472        snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2473        snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2474        snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2475        snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2476}
2477
2478#ifdef DBRI_DEBUG
2479static void dbri_debug_read(struct snd_info_entry *entry,
2480                            struct snd_info_buffer *buffer)
2481{
2482        struct snd_dbri *dbri = entry->private_data;
2483        int pipe;
2484        snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2485
2486        for (pipe = 0; pipe < 32; pipe++) {
2487                if (pipe_active(dbri, pipe)) {
2488                        struct dbri_pipe *pptr = &dbri->pipes[pipe];
2489                        snd_iprintf(buffer,
2490                                    "Pipe %d: %s SDP=0x%x desc=%d, "
2491                                    "len=%d next %d\n",
2492                                    pipe,
2493                                   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2494                                                                 "input",
2495                                    pptr->sdp, pptr->desc,
2496                                    pptr->length, pptr->nextpipe);
2497                }
2498        }
2499}
2500#endif
2501
2502static void __devinit snd_dbri_proc(struct snd_card *card)
2503{
2504        struct snd_dbri *dbri = card->private_data;
2505        struct snd_info_entry *entry;
2506
2507        if (!snd_card_proc_new(card, "regs", &entry))
2508                snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2509
2510#ifdef DBRI_DEBUG
2511        if (!snd_card_proc_new(card, "debug", &entry)) {
2512                snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2513                entry->mode = S_IFREG | S_IRUGO;        /* Readable only. */
2514        }
2515#endif
2516}
2517
2518/*
2519****************************************************************************
2520**************************** Initialization ********************************
2521****************************************************************************
2522*/
2523static void snd_dbri_free(struct snd_dbri *dbri);
2524
2525static int __devinit snd_dbri_create(struct snd_card *card,
2526                                     struct platform_device *op,
2527                                     int irq, int dev)
2528{
2529        struct snd_dbri *dbri = card->private_data;
2530        int err;
2531
2532        spin_lock_init(&dbri->lock);
2533        dbri->op = op;
2534        dbri->irq = irq;
2535
2536        dbri->dma = dma_alloc_coherent(&op->dev,
2537                                       sizeof(struct dbri_dma),
2538                                       &dbri->dma_dvma, GFP_ATOMIC);
2539        if (!dbri->dma)
2540                return -ENOMEM;
2541        memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2542
2543        dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2544                dbri->dma, dbri->dma_dvma);
2545
2546        /* Map the registers into memory. */
2547        dbri->regs_size = resource_size(&op->resource[0]);
2548        dbri->regs = of_ioremap(&op->resource[0], 0,
2549                                dbri->regs_size, "DBRI Registers");
2550        if (!dbri->regs) {
2551                printk(KERN_ERR "DBRI: could not allocate registers\n");
2552                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2553                                  (void *)dbri->dma, dbri->dma_dvma);
2554                return -EIO;
2555        }
2556
2557        err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2558                          "DBRI audio", dbri);
2559        if (err) {
2560                printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2561                of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2562                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2563                                  (void *)dbri->dma, dbri->dma_dvma);
2564                return err;
2565        }
2566
2567        /* Do low level initialization of the DBRI and CS4215 chips */
2568        dbri_initialize(dbri);
2569        err = cs4215_init(dbri);
2570        if (err) {
2571                snd_dbri_free(dbri);
2572                return err;
2573        }
2574
2575        return 0;
2576}
2577
2578static void snd_dbri_free(struct snd_dbri *dbri)
2579{
2580        dprintk(D_GEN, "snd_dbri_free\n");
2581        dbri_reset(dbri);
2582
2583        if (dbri->irq)
2584                free_irq(dbri->irq, dbri);
2585
2586        if (dbri->regs)
2587                of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2588
2589        if (dbri->dma)
2590                dma_free_coherent(&dbri->op->dev,
2591                                  sizeof(struct dbri_dma),
2592                                  (void *)dbri->dma, dbri->dma_dvma);
2593}
2594
2595static int __devinit dbri_probe(struct platform_device *op, const struct of_device_id *match)
2596{
2597        struct snd_dbri *dbri;
2598        struct resource *rp;
2599        struct snd_card *card;
2600        static int dev = 0;
2601        int irq;
2602        int err;
2603
2604        if (dev >= SNDRV_CARDS)
2605                return -ENODEV;
2606        if (!enable[dev]) {
2607                dev++;
2608                return -ENOENT;
2609        }
2610
2611        irq = op->archdata.irqs[0];
2612        if (irq <= 0) {
2613                printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2614                return -ENODEV;
2615        }
2616
2617        err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2618                              sizeof(struct snd_dbri), &card);
2619        if (err < 0)
2620                return err;
2621
2622        strcpy(card->driver, "DBRI");
2623        strcpy(card->shortname, "Sun DBRI");
2624        rp = &op->resource[0];
2625        sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2626                card->shortname,
2627                rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2628
2629        err = snd_dbri_create(card, op, irq, dev);
2630        if (err < 0) {
2631                snd_card_free(card);
2632                return err;
2633        }
2634
2635        dbri = card->private_data;
2636        err = snd_dbri_pcm(card);
2637        if (err < 0)
2638                goto _err;
2639
2640        err = snd_dbri_mixer(card);
2641        if (err < 0)
2642                goto _err;
2643
2644        /* /proc file handling */
2645        snd_dbri_proc(card);
2646        dev_set_drvdata(&op->dev, card);
2647
2648        err = snd_card_register(card);
2649        if (err < 0)
2650                goto _err;
2651
2652        printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2653               dev, dbri->regs,
2654               dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2655        dev++;
2656
2657        return 0;
2658
2659_err:
2660        snd_dbri_free(dbri);
2661        snd_card_free(card);
2662        return err;
2663}
2664
2665static int __devexit dbri_remove(struct platform_device *op)
2666{
2667        struct snd_card *card = dev_get_drvdata(&op->dev);
2668
2669        snd_dbri_free(card->private_data);
2670        snd_card_free(card);
2671
2672        dev_set_drvdata(&op->dev, NULL);
2673
2674        return 0;
2675}
2676
2677static const struct of_device_id dbri_match[] = {
2678        {
2679                .name = "SUNW,DBRIe",
2680        },
2681        {
2682                .name = "SUNW,DBRIf",
2683        },
2684        {},
2685};
2686
2687MODULE_DEVICE_TABLE(of, dbri_match);
2688
2689static struct of_platform_driver dbri_sbus_driver = {
2690        .driver = {
2691                .name = "dbri",
2692                .owner = THIS_MODULE,
2693                .of_match_table = dbri_match,
2694        },
2695        .probe          = dbri_probe,
2696        .remove         = __devexit_p(dbri_remove),
2697};
2698
2699/* Probe for the dbri chip and then attach the driver. */
2700static int __init dbri_init(void)
2701{
2702        return of_register_platform_driver(&dbri_sbus_driver);
2703}
2704
2705static void __exit dbri_exit(void)
2706{
2707        of_unregister_platform_driver(&dbri_sbus_driver);
2708}
2709
2710module_init(dbri_init);
2711module_exit(dbri_exit);
2712