linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/sysdev.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50
  51#include <asm/processor.h>
  52#include <asm/io.h>
  53#include <asm/uaccess.h>
  54#include <asm/pgtable.h>
  55#include <asm-generic/bitops/le.h>
  56
  57#include "coalesced_mmio.h"
  58#include "async_pf.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/kvm.h>
  62
  63MODULE_AUTHOR("Qumranet");
  64MODULE_LICENSE("GPL");
  65
  66/*
  67 * Ordering of locks:
  68 *
  69 *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  70 */
  71
  72DEFINE_SPINLOCK(kvm_lock);
  73LIST_HEAD(vm_list);
  74
  75static cpumask_var_t cpus_hardware_enabled;
  76static int kvm_usage_count = 0;
  77static atomic_t hardware_enable_failed;
  78
  79struct kmem_cache *kvm_vcpu_cache;
  80EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  81
  82static __read_mostly struct preempt_ops kvm_preempt_ops;
  83
  84struct dentry *kvm_debugfs_dir;
  85
  86static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  87                           unsigned long arg);
  88static int hardware_enable_all(void);
  89static void hardware_disable_all(void);
  90
  91static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  92
  93bool kvm_rebooting;
  94EXPORT_SYMBOL_GPL(kvm_rebooting);
  95
  96static bool largepages_enabled = true;
  97
  98static struct page *hwpoison_page;
  99static pfn_t hwpoison_pfn;
 100
 101static struct page *fault_page;
 102static pfn_t fault_pfn;
 103
 104inline int kvm_is_mmio_pfn(pfn_t pfn)
 105{
 106        if (pfn_valid(pfn)) {
 107                int reserved;
 108                struct page *tail = pfn_to_page(pfn);
 109                struct page *head = compound_trans_head(tail);
 110                reserved = PageReserved(head);
 111                if (head != tail) {
 112                        /*
 113                         * "head" is not a dangling pointer
 114                         * (compound_trans_head takes care of that)
 115                         * but the hugepage may have been splitted
 116                         * from under us (and we may not hold a
 117                         * reference count on the head page so it can
 118                         * be reused before we run PageReferenced), so
 119                         * we've to check PageTail before returning
 120                         * what we just read.
 121                         */
 122                        smp_rmb();
 123                        if (PageTail(tail))
 124                                return reserved;
 125                }
 126                return PageReserved(tail);
 127        }
 128
 129        return true;
 130}
 131
 132/*
 133 * Switches to specified vcpu, until a matching vcpu_put()
 134 */
 135void vcpu_load(struct kvm_vcpu *vcpu)
 136{
 137        int cpu;
 138
 139        mutex_lock(&vcpu->mutex);
 140        cpu = get_cpu();
 141        preempt_notifier_register(&vcpu->preempt_notifier);
 142        kvm_arch_vcpu_load(vcpu, cpu);
 143        put_cpu();
 144}
 145
 146void vcpu_put(struct kvm_vcpu *vcpu)
 147{
 148        preempt_disable();
 149        kvm_arch_vcpu_put(vcpu);
 150        preempt_notifier_unregister(&vcpu->preempt_notifier);
 151        preempt_enable();
 152        mutex_unlock(&vcpu->mutex);
 153}
 154
 155static void ack_flush(void *_completed)
 156{
 157}
 158
 159static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 160{
 161        int i, cpu, me;
 162        cpumask_var_t cpus;
 163        bool called = true;
 164        struct kvm_vcpu *vcpu;
 165
 166        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 167
 168        raw_spin_lock(&kvm->requests_lock);
 169        me = smp_processor_id();
 170        kvm_for_each_vcpu(i, vcpu, kvm) {
 171                if (kvm_make_check_request(req, vcpu))
 172                        continue;
 173                cpu = vcpu->cpu;
 174                if (cpus != NULL && cpu != -1 && cpu != me)
 175                        cpumask_set_cpu(cpu, cpus);
 176        }
 177        if (unlikely(cpus == NULL))
 178                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 179        else if (!cpumask_empty(cpus))
 180                smp_call_function_many(cpus, ack_flush, NULL, 1);
 181        else
 182                called = false;
 183        raw_spin_unlock(&kvm->requests_lock);
 184        free_cpumask_var(cpus);
 185        return called;
 186}
 187
 188void kvm_flush_remote_tlbs(struct kvm *kvm)
 189{
 190        int dirty_count = kvm->tlbs_dirty;
 191
 192        smp_mb();
 193        if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 194                ++kvm->stat.remote_tlb_flush;
 195        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 196}
 197
 198void kvm_reload_remote_mmus(struct kvm *kvm)
 199{
 200        make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 201}
 202
 203int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 204{
 205        struct page *page;
 206        int r;
 207
 208        mutex_init(&vcpu->mutex);
 209        vcpu->cpu = -1;
 210        vcpu->kvm = kvm;
 211        vcpu->vcpu_id = id;
 212        init_waitqueue_head(&vcpu->wq);
 213        kvm_async_pf_vcpu_init(vcpu);
 214
 215        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 216        if (!page) {
 217                r = -ENOMEM;
 218                goto fail;
 219        }
 220        vcpu->run = page_address(page);
 221
 222        r = kvm_arch_vcpu_init(vcpu);
 223        if (r < 0)
 224                goto fail_free_run;
 225        return 0;
 226
 227fail_free_run:
 228        free_page((unsigned long)vcpu->run);
 229fail:
 230        return r;
 231}
 232EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 233
 234void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 235{
 236        kvm_arch_vcpu_uninit(vcpu);
 237        free_page((unsigned long)vcpu->run);
 238}
 239EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 240
 241#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 242static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 243{
 244        return container_of(mn, struct kvm, mmu_notifier);
 245}
 246
 247static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 248                                             struct mm_struct *mm,
 249                                             unsigned long address)
 250{
 251        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 252        int need_tlb_flush, idx;
 253
 254        /*
 255         * When ->invalidate_page runs, the linux pte has been zapped
 256         * already but the page is still allocated until
 257         * ->invalidate_page returns. So if we increase the sequence
 258         * here the kvm page fault will notice if the spte can't be
 259         * established because the page is going to be freed. If
 260         * instead the kvm page fault establishes the spte before
 261         * ->invalidate_page runs, kvm_unmap_hva will release it
 262         * before returning.
 263         *
 264         * The sequence increase only need to be seen at spin_unlock
 265         * time, and not at spin_lock time.
 266         *
 267         * Increasing the sequence after the spin_unlock would be
 268         * unsafe because the kvm page fault could then establish the
 269         * pte after kvm_unmap_hva returned, without noticing the page
 270         * is going to be freed.
 271         */
 272        idx = srcu_read_lock(&kvm->srcu);
 273        spin_lock(&kvm->mmu_lock);
 274        kvm->mmu_notifier_seq++;
 275        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 276        spin_unlock(&kvm->mmu_lock);
 277        srcu_read_unlock(&kvm->srcu, idx);
 278
 279        /* we've to flush the tlb before the pages can be freed */
 280        if (need_tlb_flush)
 281                kvm_flush_remote_tlbs(kvm);
 282
 283}
 284
 285static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 286                                        struct mm_struct *mm,
 287                                        unsigned long address,
 288                                        pte_t pte)
 289{
 290        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 291        int idx;
 292
 293        idx = srcu_read_lock(&kvm->srcu);
 294        spin_lock(&kvm->mmu_lock);
 295        kvm->mmu_notifier_seq++;
 296        kvm_set_spte_hva(kvm, address, pte);
 297        spin_unlock(&kvm->mmu_lock);
 298        srcu_read_unlock(&kvm->srcu, idx);
 299}
 300
 301static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 302                                                    struct mm_struct *mm,
 303                                                    unsigned long start,
 304                                                    unsigned long end)
 305{
 306        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 307        int need_tlb_flush = 0, idx;
 308
 309        idx = srcu_read_lock(&kvm->srcu);
 310        spin_lock(&kvm->mmu_lock);
 311        /*
 312         * The count increase must become visible at unlock time as no
 313         * spte can be established without taking the mmu_lock and
 314         * count is also read inside the mmu_lock critical section.
 315         */
 316        kvm->mmu_notifier_count++;
 317        for (; start < end; start += PAGE_SIZE)
 318                need_tlb_flush |= kvm_unmap_hva(kvm, start);
 319        need_tlb_flush |= kvm->tlbs_dirty;
 320        spin_unlock(&kvm->mmu_lock);
 321        srcu_read_unlock(&kvm->srcu, idx);
 322
 323        /* we've to flush the tlb before the pages can be freed */
 324        if (need_tlb_flush)
 325                kvm_flush_remote_tlbs(kvm);
 326}
 327
 328static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 329                                                  struct mm_struct *mm,
 330                                                  unsigned long start,
 331                                                  unsigned long end)
 332{
 333        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 334
 335        spin_lock(&kvm->mmu_lock);
 336        /*
 337         * This sequence increase will notify the kvm page fault that
 338         * the page that is going to be mapped in the spte could have
 339         * been freed.
 340         */
 341        kvm->mmu_notifier_seq++;
 342        /*
 343         * The above sequence increase must be visible before the
 344         * below count decrease but both values are read by the kvm
 345         * page fault under mmu_lock spinlock so we don't need to add
 346         * a smb_wmb() here in between the two.
 347         */
 348        kvm->mmu_notifier_count--;
 349        spin_unlock(&kvm->mmu_lock);
 350
 351        BUG_ON(kvm->mmu_notifier_count < 0);
 352}
 353
 354static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 355                                              struct mm_struct *mm,
 356                                              unsigned long address)
 357{
 358        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 359        int young, idx;
 360
 361        idx = srcu_read_lock(&kvm->srcu);
 362        spin_lock(&kvm->mmu_lock);
 363        young = kvm_age_hva(kvm, address);
 364        spin_unlock(&kvm->mmu_lock);
 365        srcu_read_unlock(&kvm->srcu, idx);
 366
 367        if (young)
 368                kvm_flush_remote_tlbs(kvm);
 369
 370        return young;
 371}
 372
 373static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 374                                       struct mm_struct *mm,
 375                                       unsigned long address)
 376{
 377        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 378        int young, idx;
 379
 380        idx = srcu_read_lock(&kvm->srcu);
 381        spin_lock(&kvm->mmu_lock);
 382        young = kvm_test_age_hva(kvm, address);
 383        spin_unlock(&kvm->mmu_lock);
 384        srcu_read_unlock(&kvm->srcu, idx);
 385
 386        return young;
 387}
 388
 389static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 390                                     struct mm_struct *mm)
 391{
 392        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 393        int idx;
 394
 395        idx = srcu_read_lock(&kvm->srcu);
 396        kvm_arch_flush_shadow(kvm);
 397        srcu_read_unlock(&kvm->srcu, idx);
 398}
 399
 400static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 401        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 402        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 403        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 404        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 405        .test_young             = kvm_mmu_notifier_test_young,
 406        .change_pte             = kvm_mmu_notifier_change_pte,
 407        .release                = kvm_mmu_notifier_release,
 408};
 409
 410static int kvm_init_mmu_notifier(struct kvm *kvm)
 411{
 412        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 413        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 414}
 415
 416#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 417
 418static int kvm_init_mmu_notifier(struct kvm *kvm)
 419{
 420        return 0;
 421}
 422
 423#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 424
 425static struct kvm *kvm_create_vm(void)
 426{
 427        int r, i;
 428        struct kvm *kvm = kvm_arch_alloc_vm();
 429
 430        if (!kvm)
 431                return ERR_PTR(-ENOMEM);
 432
 433        r = kvm_arch_init_vm(kvm);
 434        if (r)
 435                goto out_err_nodisable;
 436
 437        r = hardware_enable_all();
 438        if (r)
 439                goto out_err_nodisable;
 440
 441#ifdef CONFIG_HAVE_KVM_IRQCHIP
 442        INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 443        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 444#endif
 445
 446        r = -ENOMEM;
 447        kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 448        if (!kvm->memslots)
 449                goto out_err_nosrcu;
 450        if (init_srcu_struct(&kvm->srcu))
 451                goto out_err_nosrcu;
 452        for (i = 0; i < KVM_NR_BUSES; i++) {
 453                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 454                                        GFP_KERNEL);
 455                if (!kvm->buses[i])
 456                        goto out_err;
 457        }
 458
 459        r = kvm_init_mmu_notifier(kvm);
 460        if (r)
 461                goto out_err;
 462
 463        kvm->mm = current->mm;
 464        atomic_inc(&kvm->mm->mm_count);
 465        spin_lock_init(&kvm->mmu_lock);
 466        raw_spin_lock_init(&kvm->requests_lock);
 467        kvm_eventfd_init(kvm);
 468        mutex_init(&kvm->lock);
 469        mutex_init(&kvm->irq_lock);
 470        mutex_init(&kvm->slots_lock);
 471        atomic_set(&kvm->users_count, 1);
 472        spin_lock(&kvm_lock);
 473        list_add(&kvm->vm_list, &vm_list);
 474        spin_unlock(&kvm_lock);
 475
 476        return kvm;
 477
 478out_err:
 479        cleanup_srcu_struct(&kvm->srcu);
 480out_err_nosrcu:
 481        hardware_disable_all();
 482out_err_nodisable:
 483        for (i = 0; i < KVM_NR_BUSES; i++)
 484                kfree(kvm->buses[i]);
 485        kfree(kvm->memslots);
 486        kvm_arch_free_vm(kvm);
 487        return ERR_PTR(r);
 488}
 489
 490static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 491{
 492        if (!memslot->dirty_bitmap)
 493                return;
 494
 495        if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 496                vfree(memslot->dirty_bitmap_head);
 497        else
 498                kfree(memslot->dirty_bitmap_head);
 499
 500        memslot->dirty_bitmap = NULL;
 501        memslot->dirty_bitmap_head = NULL;
 502}
 503
 504/*
 505 * Free any memory in @free but not in @dont.
 506 */
 507static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 508                                  struct kvm_memory_slot *dont)
 509{
 510        int i;
 511
 512        if (!dont || free->rmap != dont->rmap)
 513                vfree(free->rmap);
 514
 515        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 516                kvm_destroy_dirty_bitmap(free);
 517
 518
 519        for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
 520                if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
 521                        vfree(free->lpage_info[i]);
 522                        free->lpage_info[i] = NULL;
 523                }
 524        }
 525
 526        free->npages = 0;
 527        free->rmap = NULL;
 528}
 529
 530void kvm_free_physmem(struct kvm *kvm)
 531{
 532        int i;
 533        struct kvm_memslots *slots = kvm->memslots;
 534
 535        for (i = 0; i < slots->nmemslots; ++i)
 536                kvm_free_physmem_slot(&slots->memslots[i], NULL);
 537
 538        kfree(kvm->memslots);
 539}
 540
 541static void kvm_destroy_vm(struct kvm *kvm)
 542{
 543        int i;
 544        struct mm_struct *mm = kvm->mm;
 545
 546        kvm_arch_sync_events(kvm);
 547        spin_lock(&kvm_lock);
 548        list_del(&kvm->vm_list);
 549        spin_unlock(&kvm_lock);
 550        kvm_free_irq_routing(kvm);
 551        for (i = 0; i < KVM_NR_BUSES; i++)
 552                kvm_io_bus_destroy(kvm->buses[i]);
 553        kvm_coalesced_mmio_free(kvm);
 554#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 555        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 556#else
 557        kvm_arch_flush_shadow(kvm);
 558#endif
 559        kvm_arch_destroy_vm(kvm);
 560        kvm_free_physmem(kvm);
 561        cleanup_srcu_struct(&kvm->srcu);
 562        kvm_arch_free_vm(kvm);
 563        hardware_disable_all();
 564        mmdrop(mm);
 565}
 566
 567void kvm_get_kvm(struct kvm *kvm)
 568{
 569        atomic_inc(&kvm->users_count);
 570}
 571EXPORT_SYMBOL_GPL(kvm_get_kvm);
 572
 573void kvm_put_kvm(struct kvm *kvm)
 574{
 575        if (atomic_dec_and_test(&kvm->users_count))
 576                kvm_destroy_vm(kvm);
 577}
 578EXPORT_SYMBOL_GPL(kvm_put_kvm);
 579
 580
 581static int kvm_vm_release(struct inode *inode, struct file *filp)
 582{
 583        struct kvm *kvm = filp->private_data;
 584
 585        kvm_irqfd_release(kvm);
 586
 587        kvm_put_kvm(kvm);
 588        return 0;
 589}
 590
 591/*
 592 * Allocation size is twice as large as the actual dirty bitmap size.
 593 * This makes it possible to do double buffering: see x86's
 594 * kvm_vm_ioctl_get_dirty_log().
 595 */
 596static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 597{
 598        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 599
 600        if (dirty_bytes > PAGE_SIZE)
 601                memslot->dirty_bitmap = vzalloc(dirty_bytes);
 602        else
 603                memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 604
 605        if (!memslot->dirty_bitmap)
 606                return -ENOMEM;
 607
 608        memslot->dirty_bitmap_head = memslot->dirty_bitmap;
 609        return 0;
 610}
 611
 612/*
 613 * Allocate some memory and give it an address in the guest physical address
 614 * space.
 615 *
 616 * Discontiguous memory is allowed, mostly for framebuffers.
 617 *
 618 * Must be called holding mmap_sem for write.
 619 */
 620int __kvm_set_memory_region(struct kvm *kvm,
 621                            struct kvm_userspace_memory_region *mem,
 622                            int user_alloc)
 623{
 624        int r, flush_shadow = 0;
 625        gfn_t base_gfn;
 626        unsigned long npages;
 627        unsigned long i;
 628        struct kvm_memory_slot *memslot;
 629        struct kvm_memory_slot old, new;
 630        struct kvm_memslots *slots, *old_memslots;
 631
 632        r = -EINVAL;
 633        /* General sanity checks */
 634        if (mem->memory_size & (PAGE_SIZE - 1))
 635                goto out;
 636        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 637                goto out;
 638        if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
 639                goto out;
 640        if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
 641                goto out;
 642        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 643                goto out;
 644
 645        memslot = &kvm->memslots->memslots[mem->slot];
 646        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 647        npages = mem->memory_size >> PAGE_SHIFT;
 648
 649        r = -EINVAL;
 650        if (npages > KVM_MEM_MAX_NR_PAGES)
 651                goto out;
 652
 653        if (!npages)
 654                mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 655
 656        new = old = *memslot;
 657
 658        new.id = mem->slot;
 659        new.base_gfn = base_gfn;
 660        new.npages = npages;
 661        new.flags = mem->flags;
 662
 663        /* Disallow changing a memory slot's size. */
 664        r = -EINVAL;
 665        if (npages && old.npages && npages != old.npages)
 666                goto out_free;
 667
 668        /* Check for overlaps */
 669        r = -EEXIST;
 670        for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 671                struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 672
 673                if (s == memslot || !s->npages)
 674                        continue;
 675                if (!((base_gfn + npages <= s->base_gfn) ||
 676                      (base_gfn >= s->base_gfn + s->npages)))
 677                        goto out_free;
 678        }
 679
 680        /* Free page dirty bitmap if unneeded */
 681        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 682                new.dirty_bitmap = NULL;
 683
 684        r = -ENOMEM;
 685
 686        /* Allocate if a slot is being created */
 687#ifndef CONFIG_S390
 688        if (npages && !new.rmap) {
 689                new.rmap = vzalloc(npages * sizeof(*new.rmap));
 690
 691                if (!new.rmap)
 692                        goto out_free;
 693
 694                new.user_alloc = user_alloc;
 695                new.userspace_addr = mem->userspace_addr;
 696        }
 697        if (!npages)
 698                goto skip_lpage;
 699
 700        for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
 701                unsigned long ugfn;
 702                unsigned long j;
 703                int lpages;
 704                int level = i + 2;
 705
 706                /* Avoid unused variable warning if no large pages */
 707                (void)level;
 708
 709                if (new.lpage_info[i])
 710                        continue;
 711
 712                lpages = 1 + ((base_gfn + npages - 1)
 713                             >> KVM_HPAGE_GFN_SHIFT(level));
 714                lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
 715
 716                new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
 717
 718                if (!new.lpage_info[i])
 719                        goto out_free;
 720
 721                if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
 722                        new.lpage_info[i][0].write_count = 1;
 723                if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
 724                        new.lpage_info[i][lpages - 1].write_count = 1;
 725                ugfn = new.userspace_addr >> PAGE_SHIFT;
 726                /*
 727                 * If the gfn and userspace address are not aligned wrt each
 728                 * other, or if explicitly asked to, disable large page
 729                 * support for this slot
 730                 */
 731                if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
 732                    !largepages_enabled)
 733                        for (j = 0; j < lpages; ++j)
 734                                new.lpage_info[i][j].write_count = 1;
 735        }
 736
 737skip_lpage:
 738
 739        /* Allocate page dirty bitmap if needed */
 740        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 741                if (kvm_create_dirty_bitmap(&new) < 0)
 742                        goto out_free;
 743                /* destroy any largepage mappings for dirty tracking */
 744                if (old.npages)
 745                        flush_shadow = 1;
 746        }
 747#else  /* not defined CONFIG_S390 */
 748        new.user_alloc = user_alloc;
 749        if (user_alloc)
 750                new.userspace_addr = mem->userspace_addr;
 751#endif /* not defined CONFIG_S390 */
 752
 753        if (!npages) {
 754                r = -ENOMEM;
 755                slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 756                if (!slots)
 757                        goto out_free;
 758                memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
 759                if (mem->slot >= slots->nmemslots)
 760                        slots->nmemslots = mem->slot + 1;
 761                slots->generation++;
 762                slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
 763
 764                old_memslots = kvm->memslots;
 765                rcu_assign_pointer(kvm->memslots, slots);
 766                synchronize_srcu_expedited(&kvm->srcu);
 767                /* From this point no new shadow pages pointing to a deleted
 768                 * memslot will be created.
 769                 *
 770                 * validation of sp->gfn happens in:
 771                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 772                 *      - kvm_is_visible_gfn (mmu_check_roots)
 773                 */
 774                kvm_arch_flush_shadow(kvm);
 775                kfree(old_memslots);
 776        }
 777
 778        r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 779        if (r)
 780                goto out_free;
 781
 782        /* map the pages in iommu page table */
 783        if (npages) {
 784                r = kvm_iommu_map_pages(kvm, &new);
 785                if (r)
 786                        goto out_free;
 787        }
 788
 789        r = -ENOMEM;
 790        slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 791        if (!slots)
 792                goto out_free;
 793        memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
 794        if (mem->slot >= slots->nmemslots)
 795                slots->nmemslots = mem->slot + 1;
 796        slots->generation++;
 797
 798        /* actual memory is freed via old in kvm_free_physmem_slot below */
 799        if (!npages) {
 800                new.rmap = NULL;
 801                new.dirty_bitmap = NULL;
 802                for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
 803                        new.lpage_info[i] = NULL;
 804        }
 805
 806        slots->memslots[mem->slot] = new;
 807        old_memslots = kvm->memslots;
 808        rcu_assign_pointer(kvm->memslots, slots);
 809        synchronize_srcu_expedited(&kvm->srcu);
 810
 811        kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 812
 813        kvm_free_physmem_slot(&old, &new);
 814        kfree(old_memslots);
 815
 816        if (flush_shadow)
 817                kvm_arch_flush_shadow(kvm);
 818
 819        return 0;
 820
 821out_free:
 822        kvm_free_physmem_slot(&new, &old);
 823out:
 824        return r;
 825
 826}
 827EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 828
 829int kvm_set_memory_region(struct kvm *kvm,
 830                          struct kvm_userspace_memory_region *mem,
 831                          int user_alloc)
 832{
 833        int r;
 834
 835        mutex_lock(&kvm->slots_lock);
 836        r = __kvm_set_memory_region(kvm, mem, user_alloc);
 837        mutex_unlock(&kvm->slots_lock);
 838        return r;
 839}
 840EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 841
 842int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 843                                   struct
 844                                   kvm_userspace_memory_region *mem,
 845                                   int user_alloc)
 846{
 847        if (mem->slot >= KVM_MEMORY_SLOTS)
 848                return -EINVAL;
 849        return kvm_set_memory_region(kvm, mem, user_alloc);
 850}
 851
 852int kvm_get_dirty_log(struct kvm *kvm,
 853                        struct kvm_dirty_log *log, int *is_dirty)
 854{
 855        struct kvm_memory_slot *memslot;
 856        int r, i;
 857        unsigned long n;
 858        unsigned long any = 0;
 859
 860        r = -EINVAL;
 861        if (log->slot >= KVM_MEMORY_SLOTS)
 862                goto out;
 863
 864        memslot = &kvm->memslots->memslots[log->slot];
 865        r = -ENOENT;
 866        if (!memslot->dirty_bitmap)
 867                goto out;
 868
 869        n = kvm_dirty_bitmap_bytes(memslot);
 870
 871        for (i = 0; !any && i < n/sizeof(long); ++i)
 872                any = memslot->dirty_bitmap[i];
 873
 874        r = -EFAULT;
 875        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 876                goto out;
 877
 878        if (any)
 879                *is_dirty = 1;
 880
 881        r = 0;
 882out:
 883        return r;
 884}
 885
 886void kvm_disable_largepages(void)
 887{
 888        largepages_enabled = false;
 889}
 890EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 891
 892int is_error_page(struct page *page)
 893{
 894        return page == bad_page || page == hwpoison_page || page == fault_page;
 895}
 896EXPORT_SYMBOL_GPL(is_error_page);
 897
 898int is_error_pfn(pfn_t pfn)
 899{
 900        return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 901}
 902EXPORT_SYMBOL_GPL(is_error_pfn);
 903
 904int is_hwpoison_pfn(pfn_t pfn)
 905{
 906        return pfn == hwpoison_pfn;
 907}
 908EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
 909
 910int is_fault_pfn(pfn_t pfn)
 911{
 912        return pfn == fault_pfn;
 913}
 914EXPORT_SYMBOL_GPL(is_fault_pfn);
 915
 916static inline unsigned long bad_hva(void)
 917{
 918        return PAGE_OFFSET;
 919}
 920
 921int kvm_is_error_hva(unsigned long addr)
 922{
 923        return addr == bad_hva();
 924}
 925EXPORT_SYMBOL_GPL(kvm_is_error_hva);
 926
 927static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
 928                                                gfn_t gfn)
 929{
 930        int i;
 931
 932        for (i = 0; i < slots->nmemslots; ++i) {
 933                struct kvm_memory_slot *memslot = &slots->memslots[i];
 934
 935                if (gfn >= memslot->base_gfn
 936                    && gfn < memslot->base_gfn + memslot->npages)
 937                        return memslot;
 938        }
 939        return NULL;
 940}
 941
 942struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 943{
 944        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 945}
 946EXPORT_SYMBOL_GPL(gfn_to_memslot);
 947
 948int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 949{
 950        int i;
 951        struct kvm_memslots *slots = kvm_memslots(kvm);
 952
 953        for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 954                struct kvm_memory_slot *memslot = &slots->memslots[i];
 955
 956                if (memslot->flags & KVM_MEMSLOT_INVALID)
 957                        continue;
 958
 959                if (gfn >= memslot->base_gfn
 960                    && gfn < memslot->base_gfn + memslot->npages)
 961                        return 1;
 962        }
 963        return 0;
 964}
 965EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
 966
 967unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
 968{
 969        struct vm_area_struct *vma;
 970        unsigned long addr, size;
 971
 972        size = PAGE_SIZE;
 973
 974        addr = gfn_to_hva(kvm, gfn);
 975        if (kvm_is_error_hva(addr))
 976                return PAGE_SIZE;
 977
 978        down_read(&current->mm->mmap_sem);
 979        vma = find_vma(current->mm, addr);
 980        if (!vma)
 981                goto out;
 982
 983        size = vma_kernel_pagesize(vma);
 984
 985out:
 986        up_read(&current->mm->mmap_sem);
 987
 988        return size;
 989}
 990
 991int memslot_id(struct kvm *kvm, gfn_t gfn)
 992{
 993        int i;
 994        struct kvm_memslots *slots = kvm_memslots(kvm);
 995        struct kvm_memory_slot *memslot = NULL;
 996
 997        for (i = 0; i < slots->nmemslots; ++i) {
 998                memslot = &slots->memslots[i];
 999
1000                if (gfn >= memslot->base_gfn
1001                    && gfn < memslot->base_gfn + memslot->npages)
1002                        break;
1003        }
1004
1005        return memslot - slots->memslots;
1006}
1007
1008static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1009                                     gfn_t *nr_pages)
1010{
1011        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1012                return bad_hva();
1013
1014        if (nr_pages)
1015                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1016
1017        return gfn_to_hva_memslot(slot, gfn);
1018}
1019
1020unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1021{
1022        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1023}
1024EXPORT_SYMBOL_GPL(gfn_to_hva);
1025
1026static pfn_t get_fault_pfn(void)
1027{
1028        get_page(fault_page);
1029        return fault_pfn;
1030}
1031
1032static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1033                        bool *async, bool write_fault, bool *writable)
1034{
1035        struct page *page[1];
1036        int npages = 0;
1037        pfn_t pfn;
1038
1039        /* we can do it either atomically or asynchronously, not both */
1040        BUG_ON(atomic && async);
1041
1042        BUG_ON(!write_fault && !writable);
1043
1044        if (writable)
1045                *writable = true;
1046
1047        if (atomic || async)
1048                npages = __get_user_pages_fast(addr, 1, 1, page);
1049
1050        if (unlikely(npages != 1) && !atomic) {
1051                might_sleep();
1052
1053                if (writable)
1054                        *writable = write_fault;
1055
1056                npages = get_user_pages_fast(addr, 1, write_fault, page);
1057
1058                /* map read fault as writable if possible */
1059                if (unlikely(!write_fault) && npages == 1) {
1060                        struct page *wpage[1];
1061
1062                        npages = __get_user_pages_fast(addr, 1, 1, wpage);
1063                        if (npages == 1) {
1064                                *writable = true;
1065                                put_page(page[0]);
1066                                page[0] = wpage[0];
1067                        }
1068                        npages = 1;
1069                }
1070        }
1071
1072        if (unlikely(npages != 1)) {
1073                struct vm_area_struct *vma;
1074
1075                if (atomic)
1076                        return get_fault_pfn();
1077
1078                down_read(&current->mm->mmap_sem);
1079                if (is_hwpoison_address(addr)) {
1080                        up_read(&current->mm->mmap_sem);
1081                        get_page(hwpoison_page);
1082                        return page_to_pfn(hwpoison_page);
1083                }
1084
1085                vma = find_vma_intersection(current->mm, addr, addr+1);
1086
1087                if (vma == NULL)
1088                        pfn = get_fault_pfn();
1089                else if ((vma->vm_flags & VM_PFNMAP)) {
1090                        pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1091                                vma->vm_pgoff;
1092                        BUG_ON(!kvm_is_mmio_pfn(pfn));
1093                } else {
1094                        if (async && (vma->vm_flags & VM_WRITE))
1095                                *async = true;
1096                        pfn = get_fault_pfn();
1097                }
1098                up_read(&current->mm->mmap_sem);
1099        } else
1100                pfn = page_to_pfn(page[0]);
1101
1102        return pfn;
1103}
1104
1105pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1106{
1107        return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1108}
1109EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1110
1111static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1112                          bool write_fault, bool *writable)
1113{
1114        unsigned long addr;
1115
1116        if (async)
1117                *async = false;
1118
1119        addr = gfn_to_hva(kvm, gfn);
1120        if (kvm_is_error_hva(addr)) {
1121                get_page(bad_page);
1122                return page_to_pfn(bad_page);
1123        }
1124
1125        return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1126}
1127
1128pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1129{
1130        return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1131}
1132EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1133
1134pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1135                       bool write_fault, bool *writable)
1136{
1137        return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1138}
1139EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1140
1141pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1142{
1143        return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1144}
1145EXPORT_SYMBOL_GPL(gfn_to_pfn);
1146
1147pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1148                      bool *writable)
1149{
1150        return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1151}
1152EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1153
1154pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1155                         struct kvm_memory_slot *slot, gfn_t gfn)
1156{
1157        unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1158        return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1159}
1160
1161int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1162                                                                  int nr_pages)
1163{
1164        unsigned long addr;
1165        gfn_t entry;
1166
1167        addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1168        if (kvm_is_error_hva(addr))
1169                return -1;
1170
1171        if (entry < nr_pages)
1172                return 0;
1173
1174        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1175}
1176EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1177
1178struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1179{
1180        pfn_t pfn;
1181
1182        pfn = gfn_to_pfn(kvm, gfn);
1183        if (!kvm_is_mmio_pfn(pfn))
1184                return pfn_to_page(pfn);
1185
1186        WARN_ON(kvm_is_mmio_pfn(pfn));
1187
1188        get_page(bad_page);
1189        return bad_page;
1190}
1191
1192EXPORT_SYMBOL_GPL(gfn_to_page);
1193
1194void kvm_release_page_clean(struct page *page)
1195{
1196        kvm_release_pfn_clean(page_to_pfn(page));
1197}
1198EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1199
1200void kvm_release_pfn_clean(pfn_t pfn)
1201{
1202        if (!kvm_is_mmio_pfn(pfn))
1203                put_page(pfn_to_page(pfn));
1204}
1205EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1206
1207void kvm_release_page_dirty(struct page *page)
1208{
1209        kvm_release_pfn_dirty(page_to_pfn(page));
1210}
1211EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1212
1213void kvm_release_pfn_dirty(pfn_t pfn)
1214{
1215        kvm_set_pfn_dirty(pfn);
1216        kvm_release_pfn_clean(pfn);
1217}
1218EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1219
1220void kvm_set_page_dirty(struct page *page)
1221{
1222        kvm_set_pfn_dirty(page_to_pfn(page));
1223}
1224EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1225
1226void kvm_set_pfn_dirty(pfn_t pfn)
1227{
1228        if (!kvm_is_mmio_pfn(pfn)) {
1229                struct page *page = pfn_to_page(pfn);
1230                if (!PageReserved(page))
1231                        SetPageDirty(page);
1232        }
1233}
1234EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1235
1236void kvm_set_pfn_accessed(pfn_t pfn)
1237{
1238        if (!kvm_is_mmio_pfn(pfn))
1239                mark_page_accessed(pfn_to_page(pfn));
1240}
1241EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1242
1243void kvm_get_pfn(pfn_t pfn)
1244{
1245        if (!kvm_is_mmio_pfn(pfn))
1246                get_page(pfn_to_page(pfn));
1247}
1248EXPORT_SYMBOL_GPL(kvm_get_pfn);
1249
1250static int next_segment(unsigned long len, int offset)
1251{
1252        if (len > PAGE_SIZE - offset)
1253                return PAGE_SIZE - offset;
1254        else
1255                return len;
1256}
1257
1258int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1259                        int len)
1260{
1261        int r;
1262        unsigned long addr;
1263
1264        addr = gfn_to_hva(kvm, gfn);
1265        if (kvm_is_error_hva(addr))
1266                return -EFAULT;
1267        r = copy_from_user(data, (void __user *)addr + offset, len);
1268        if (r)
1269                return -EFAULT;
1270        return 0;
1271}
1272EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1273
1274int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1275{
1276        gfn_t gfn = gpa >> PAGE_SHIFT;
1277        int seg;
1278        int offset = offset_in_page(gpa);
1279        int ret;
1280
1281        while ((seg = next_segment(len, offset)) != 0) {
1282                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1283                if (ret < 0)
1284                        return ret;
1285                offset = 0;
1286                len -= seg;
1287                data += seg;
1288                ++gfn;
1289        }
1290        return 0;
1291}
1292EXPORT_SYMBOL_GPL(kvm_read_guest);
1293
1294int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1295                          unsigned long len)
1296{
1297        int r;
1298        unsigned long addr;
1299        gfn_t gfn = gpa >> PAGE_SHIFT;
1300        int offset = offset_in_page(gpa);
1301
1302        addr = gfn_to_hva(kvm, gfn);
1303        if (kvm_is_error_hva(addr))
1304                return -EFAULT;
1305        pagefault_disable();
1306        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1307        pagefault_enable();
1308        if (r)
1309                return -EFAULT;
1310        return 0;
1311}
1312EXPORT_SYMBOL(kvm_read_guest_atomic);
1313
1314int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1315                         int offset, int len)
1316{
1317        int r;
1318        unsigned long addr;
1319
1320        addr = gfn_to_hva(kvm, gfn);
1321        if (kvm_is_error_hva(addr))
1322                return -EFAULT;
1323        r = copy_to_user((void __user *)addr + offset, data, len);
1324        if (r)
1325                return -EFAULT;
1326        mark_page_dirty(kvm, gfn);
1327        return 0;
1328}
1329EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1330
1331int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1332                    unsigned long len)
1333{
1334        gfn_t gfn = gpa >> PAGE_SHIFT;
1335        int seg;
1336        int offset = offset_in_page(gpa);
1337        int ret;
1338
1339        while ((seg = next_segment(len, offset)) != 0) {
1340                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1341                if (ret < 0)
1342                        return ret;
1343                offset = 0;
1344                len -= seg;
1345                data += seg;
1346                ++gfn;
1347        }
1348        return 0;
1349}
1350
1351int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1352                              gpa_t gpa)
1353{
1354        struct kvm_memslots *slots = kvm_memslots(kvm);
1355        int offset = offset_in_page(gpa);
1356        gfn_t gfn = gpa >> PAGE_SHIFT;
1357
1358        ghc->gpa = gpa;
1359        ghc->generation = slots->generation;
1360        ghc->memslot = __gfn_to_memslot(slots, gfn);
1361        ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1362        if (!kvm_is_error_hva(ghc->hva))
1363                ghc->hva += offset;
1364        else
1365                return -EFAULT;
1366
1367        return 0;
1368}
1369EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1370
1371int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1372                           void *data, unsigned long len)
1373{
1374        struct kvm_memslots *slots = kvm_memslots(kvm);
1375        int r;
1376
1377        if (slots->generation != ghc->generation)
1378                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1379
1380        if (kvm_is_error_hva(ghc->hva))
1381                return -EFAULT;
1382
1383        r = copy_to_user((void __user *)ghc->hva, data, len);
1384        if (r)
1385                return -EFAULT;
1386        mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1387
1388        return 0;
1389}
1390EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1391
1392int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1393{
1394        return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1395                                    offset, len);
1396}
1397EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1398
1399int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1400{
1401        gfn_t gfn = gpa >> PAGE_SHIFT;
1402        int seg;
1403        int offset = offset_in_page(gpa);
1404        int ret;
1405
1406        while ((seg = next_segment(len, offset)) != 0) {
1407                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1408                if (ret < 0)
1409                        return ret;
1410                offset = 0;
1411                len -= seg;
1412                ++gfn;
1413        }
1414        return 0;
1415}
1416EXPORT_SYMBOL_GPL(kvm_clear_guest);
1417
1418void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1419                             gfn_t gfn)
1420{
1421        if (memslot && memslot->dirty_bitmap) {
1422                unsigned long rel_gfn = gfn - memslot->base_gfn;
1423
1424                generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1425        }
1426}
1427
1428void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1429{
1430        struct kvm_memory_slot *memslot;
1431
1432        memslot = gfn_to_memslot(kvm, gfn);
1433        mark_page_dirty_in_slot(kvm, memslot, gfn);
1434}
1435
1436/*
1437 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1438 */
1439void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1440{
1441        DEFINE_WAIT(wait);
1442
1443        for (;;) {
1444                prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1445
1446                if (kvm_arch_vcpu_runnable(vcpu)) {
1447                        kvm_make_request(KVM_REQ_UNHALT, vcpu);
1448                        break;
1449                }
1450                if (kvm_cpu_has_pending_timer(vcpu))
1451                        break;
1452                if (signal_pending(current))
1453                        break;
1454
1455                schedule();
1456        }
1457
1458        finish_wait(&vcpu->wq, &wait);
1459}
1460
1461void kvm_resched(struct kvm_vcpu *vcpu)
1462{
1463        if (!need_resched())
1464                return;
1465        cond_resched();
1466}
1467EXPORT_SYMBOL_GPL(kvm_resched);
1468
1469void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1470{
1471        ktime_t expires;
1472        DEFINE_WAIT(wait);
1473
1474        prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1475
1476        /* Sleep for 100 us, and hope lock-holder got scheduled */
1477        expires = ktime_add_ns(ktime_get(), 100000UL);
1478        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1479
1480        finish_wait(&vcpu->wq, &wait);
1481}
1482EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1483
1484static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1485{
1486        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1487        struct page *page;
1488
1489        if (vmf->pgoff == 0)
1490                page = virt_to_page(vcpu->run);
1491#ifdef CONFIG_X86
1492        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1493                page = virt_to_page(vcpu->arch.pio_data);
1494#endif
1495#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1496        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1497                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1498#endif
1499        else
1500                return VM_FAULT_SIGBUS;
1501        get_page(page);
1502        vmf->page = page;
1503        return 0;
1504}
1505
1506static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1507        .fault = kvm_vcpu_fault,
1508};
1509
1510static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1511{
1512        vma->vm_ops = &kvm_vcpu_vm_ops;
1513        return 0;
1514}
1515
1516static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1517{
1518        struct kvm_vcpu *vcpu = filp->private_data;
1519
1520        kvm_put_kvm(vcpu->kvm);
1521        return 0;
1522}
1523
1524static struct file_operations kvm_vcpu_fops = {
1525        .release        = kvm_vcpu_release,
1526        .unlocked_ioctl = kvm_vcpu_ioctl,
1527        .compat_ioctl   = kvm_vcpu_ioctl,
1528        .mmap           = kvm_vcpu_mmap,
1529        .llseek         = noop_llseek,
1530};
1531
1532/*
1533 * Allocates an inode for the vcpu.
1534 */
1535static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1536{
1537        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1538}
1539
1540/*
1541 * Creates some virtual cpus.  Good luck creating more than one.
1542 */
1543static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1544{
1545        int r;
1546        struct kvm_vcpu *vcpu, *v;
1547
1548        vcpu = kvm_arch_vcpu_create(kvm, id);
1549        if (IS_ERR(vcpu))
1550                return PTR_ERR(vcpu);
1551
1552        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1553
1554        r = kvm_arch_vcpu_setup(vcpu);
1555        if (r)
1556                return r;
1557
1558        mutex_lock(&kvm->lock);
1559        if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1560                r = -EINVAL;
1561                goto vcpu_destroy;
1562        }
1563
1564        kvm_for_each_vcpu(r, v, kvm)
1565                if (v->vcpu_id == id) {
1566                        r = -EEXIST;
1567                        goto vcpu_destroy;
1568                }
1569
1570        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1571
1572        /* Now it's all set up, let userspace reach it */
1573        kvm_get_kvm(kvm);
1574        r = create_vcpu_fd(vcpu);
1575        if (r < 0) {
1576                kvm_put_kvm(kvm);
1577                goto vcpu_destroy;
1578        }
1579
1580        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1581        smp_wmb();
1582        atomic_inc(&kvm->online_vcpus);
1583
1584#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1585        if (kvm->bsp_vcpu_id == id)
1586                kvm->bsp_vcpu = vcpu;
1587#endif
1588        mutex_unlock(&kvm->lock);
1589        return r;
1590
1591vcpu_destroy:
1592        mutex_unlock(&kvm->lock);
1593        kvm_arch_vcpu_destroy(vcpu);
1594        return r;
1595}
1596
1597static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1598{
1599        if (sigset) {
1600                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1601                vcpu->sigset_active = 1;
1602                vcpu->sigset = *sigset;
1603        } else
1604                vcpu->sigset_active = 0;
1605        return 0;
1606}
1607
1608static long kvm_vcpu_ioctl(struct file *filp,
1609                           unsigned int ioctl, unsigned long arg)
1610{
1611        struct kvm_vcpu *vcpu = filp->private_data;
1612        void __user *argp = (void __user *)arg;
1613        int r;
1614        struct kvm_fpu *fpu = NULL;
1615        struct kvm_sregs *kvm_sregs = NULL;
1616
1617        if (vcpu->kvm->mm != current->mm)
1618                return -EIO;
1619
1620#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1621        /*
1622         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1623         * so vcpu_load() would break it.
1624         */
1625        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1626                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1627#endif
1628
1629
1630        vcpu_load(vcpu);
1631        switch (ioctl) {
1632        case KVM_RUN:
1633                r = -EINVAL;
1634                if (arg)
1635                        goto out;
1636                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1637                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1638                break;
1639        case KVM_GET_REGS: {
1640                struct kvm_regs *kvm_regs;
1641
1642                r = -ENOMEM;
1643                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1644                if (!kvm_regs)
1645                        goto out;
1646                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1647                if (r)
1648                        goto out_free1;
1649                r = -EFAULT;
1650                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1651                        goto out_free1;
1652                r = 0;
1653out_free1:
1654                kfree(kvm_regs);
1655                break;
1656        }
1657        case KVM_SET_REGS: {
1658                struct kvm_regs *kvm_regs;
1659
1660                r = -ENOMEM;
1661                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1662                if (!kvm_regs)
1663                        goto out;
1664                r = -EFAULT;
1665                if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1666                        goto out_free2;
1667                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1668                if (r)
1669                        goto out_free2;
1670                r = 0;
1671out_free2:
1672                kfree(kvm_regs);
1673                break;
1674        }
1675        case KVM_GET_SREGS: {
1676                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1677                r = -ENOMEM;
1678                if (!kvm_sregs)
1679                        goto out;
1680                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1681                if (r)
1682                        goto out;
1683                r = -EFAULT;
1684                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1685                        goto out;
1686                r = 0;
1687                break;
1688        }
1689        case KVM_SET_SREGS: {
1690                kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1691                r = -ENOMEM;
1692                if (!kvm_sregs)
1693                        goto out;
1694                r = -EFAULT;
1695                if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1696                        goto out;
1697                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1698                if (r)
1699                        goto out;
1700                r = 0;
1701                break;
1702        }
1703        case KVM_GET_MP_STATE: {
1704                struct kvm_mp_state mp_state;
1705
1706                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1707                if (r)
1708                        goto out;
1709                r = -EFAULT;
1710                if (copy_to_user(argp, &mp_state, sizeof mp_state))
1711                        goto out;
1712                r = 0;
1713                break;
1714        }
1715        case KVM_SET_MP_STATE: {
1716                struct kvm_mp_state mp_state;
1717
1718                r = -EFAULT;
1719                if (copy_from_user(&mp_state, argp, sizeof mp_state))
1720                        goto out;
1721                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1722                if (r)
1723                        goto out;
1724                r = 0;
1725                break;
1726        }
1727        case KVM_TRANSLATE: {
1728                struct kvm_translation tr;
1729
1730                r = -EFAULT;
1731                if (copy_from_user(&tr, argp, sizeof tr))
1732                        goto out;
1733                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1734                if (r)
1735                        goto out;
1736                r = -EFAULT;
1737                if (copy_to_user(argp, &tr, sizeof tr))
1738                        goto out;
1739                r = 0;
1740                break;
1741        }
1742        case KVM_SET_GUEST_DEBUG: {
1743                struct kvm_guest_debug dbg;
1744
1745                r = -EFAULT;
1746                if (copy_from_user(&dbg, argp, sizeof dbg))
1747                        goto out;
1748                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1749                if (r)
1750                        goto out;
1751                r = 0;
1752                break;
1753        }
1754        case KVM_SET_SIGNAL_MASK: {
1755                struct kvm_signal_mask __user *sigmask_arg = argp;
1756                struct kvm_signal_mask kvm_sigmask;
1757                sigset_t sigset, *p;
1758
1759                p = NULL;
1760                if (argp) {
1761                        r = -EFAULT;
1762                        if (copy_from_user(&kvm_sigmask, argp,
1763                                           sizeof kvm_sigmask))
1764                                goto out;
1765                        r = -EINVAL;
1766                        if (kvm_sigmask.len != sizeof sigset)
1767                                goto out;
1768                        r = -EFAULT;
1769                        if (copy_from_user(&sigset, sigmask_arg->sigset,
1770                                           sizeof sigset))
1771                                goto out;
1772                        p = &sigset;
1773                }
1774                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1775                break;
1776        }
1777        case KVM_GET_FPU: {
1778                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1779                r = -ENOMEM;
1780                if (!fpu)
1781                        goto out;
1782                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1783                if (r)
1784                        goto out;
1785                r = -EFAULT;
1786                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1787                        goto out;
1788                r = 0;
1789                break;
1790        }
1791        case KVM_SET_FPU: {
1792                fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1793                r = -ENOMEM;
1794                if (!fpu)
1795                        goto out;
1796                r = -EFAULT;
1797                if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1798                        goto out;
1799                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1800                if (r)
1801                        goto out;
1802                r = 0;
1803                break;
1804        }
1805        default:
1806                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1807        }
1808out:
1809        vcpu_put(vcpu);
1810        kfree(fpu);
1811        kfree(kvm_sregs);
1812        return r;
1813}
1814
1815static long kvm_vm_ioctl(struct file *filp,
1816                           unsigned int ioctl, unsigned long arg)
1817{
1818        struct kvm *kvm = filp->private_data;
1819        void __user *argp = (void __user *)arg;
1820        int r;
1821
1822        if (kvm->mm != current->mm)
1823                return -EIO;
1824        switch (ioctl) {
1825        case KVM_CREATE_VCPU:
1826                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1827                if (r < 0)
1828                        goto out;
1829                break;
1830        case KVM_SET_USER_MEMORY_REGION: {
1831                struct kvm_userspace_memory_region kvm_userspace_mem;
1832
1833                r = -EFAULT;
1834                if (copy_from_user(&kvm_userspace_mem, argp,
1835                                                sizeof kvm_userspace_mem))
1836                        goto out;
1837
1838                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1839                if (r)
1840                        goto out;
1841                break;
1842        }
1843        case KVM_GET_DIRTY_LOG: {
1844                struct kvm_dirty_log log;
1845
1846                r = -EFAULT;
1847                if (copy_from_user(&log, argp, sizeof log))
1848                        goto out;
1849                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1850                if (r)
1851                        goto out;
1852                break;
1853        }
1854#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1855        case KVM_REGISTER_COALESCED_MMIO: {
1856                struct kvm_coalesced_mmio_zone zone;
1857                r = -EFAULT;
1858                if (copy_from_user(&zone, argp, sizeof zone))
1859                        goto out;
1860                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1861                if (r)
1862                        goto out;
1863                r = 0;
1864                break;
1865        }
1866        case KVM_UNREGISTER_COALESCED_MMIO: {
1867                struct kvm_coalesced_mmio_zone zone;
1868                r = -EFAULT;
1869                if (copy_from_user(&zone, argp, sizeof zone))
1870                        goto out;
1871                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1872                if (r)
1873                        goto out;
1874                r = 0;
1875                break;
1876        }
1877#endif
1878        case KVM_IRQFD: {
1879                struct kvm_irqfd data;
1880
1881                r = -EFAULT;
1882                if (copy_from_user(&data, argp, sizeof data))
1883                        goto out;
1884                r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1885                break;
1886        }
1887        case KVM_IOEVENTFD: {
1888                struct kvm_ioeventfd data;
1889
1890                r = -EFAULT;
1891                if (copy_from_user(&data, argp, sizeof data))
1892                        goto out;
1893                r = kvm_ioeventfd(kvm, &data);
1894                break;
1895        }
1896#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1897        case KVM_SET_BOOT_CPU_ID:
1898                r = 0;
1899                mutex_lock(&kvm->lock);
1900                if (atomic_read(&kvm->online_vcpus) != 0)
1901                        r = -EBUSY;
1902                else
1903                        kvm->bsp_vcpu_id = arg;
1904                mutex_unlock(&kvm->lock);
1905                break;
1906#endif
1907        default:
1908                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1909                if (r == -ENOTTY)
1910                        r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1911        }
1912out:
1913        return r;
1914}
1915
1916#ifdef CONFIG_COMPAT
1917struct compat_kvm_dirty_log {
1918        __u32 slot;
1919        __u32 padding1;
1920        union {
1921                compat_uptr_t dirty_bitmap; /* one bit per page */
1922                __u64 padding2;
1923        };
1924};
1925
1926static long kvm_vm_compat_ioctl(struct file *filp,
1927                           unsigned int ioctl, unsigned long arg)
1928{
1929        struct kvm *kvm = filp->private_data;
1930        int r;
1931
1932        if (kvm->mm != current->mm)
1933                return -EIO;
1934        switch (ioctl) {
1935        case KVM_GET_DIRTY_LOG: {
1936                struct compat_kvm_dirty_log compat_log;
1937                struct kvm_dirty_log log;
1938
1939                r = -EFAULT;
1940                if (copy_from_user(&compat_log, (void __user *)arg,
1941                                   sizeof(compat_log)))
1942                        goto out;
1943                log.slot         = compat_log.slot;
1944                log.padding1     = compat_log.padding1;
1945                log.padding2     = compat_log.padding2;
1946                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1947
1948                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1949                if (r)
1950                        goto out;
1951                break;
1952        }
1953        default:
1954                r = kvm_vm_ioctl(filp, ioctl, arg);
1955        }
1956
1957out:
1958        return r;
1959}
1960#endif
1961
1962static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1963{
1964        struct page *page[1];
1965        unsigned long addr;
1966        int npages;
1967        gfn_t gfn = vmf->pgoff;
1968        struct kvm *kvm = vma->vm_file->private_data;
1969
1970        addr = gfn_to_hva(kvm, gfn);
1971        if (kvm_is_error_hva(addr))
1972                return VM_FAULT_SIGBUS;
1973
1974        npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1975                                NULL);
1976        if (unlikely(npages != 1))
1977                return VM_FAULT_SIGBUS;
1978
1979        vmf->page = page[0];
1980        return 0;
1981}
1982
1983static const struct vm_operations_struct kvm_vm_vm_ops = {
1984        .fault = kvm_vm_fault,
1985};
1986
1987static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1988{
1989        vma->vm_ops = &kvm_vm_vm_ops;
1990        return 0;
1991}
1992
1993static struct file_operations kvm_vm_fops = {
1994        .release        = kvm_vm_release,
1995        .unlocked_ioctl = kvm_vm_ioctl,
1996#ifdef CONFIG_COMPAT
1997        .compat_ioctl   = kvm_vm_compat_ioctl,
1998#endif
1999        .mmap           = kvm_vm_mmap,
2000        .llseek         = noop_llseek,
2001};
2002
2003static int kvm_dev_ioctl_create_vm(void)
2004{
2005        int r;
2006        struct kvm *kvm;
2007
2008        kvm = kvm_create_vm();
2009        if (IS_ERR(kvm))
2010                return PTR_ERR(kvm);
2011#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2012        r = kvm_coalesced_mmio_init(kvm);
2013        if (r < 0) {
2014                kvm_put_kvm(kvm);
2015                return r;
2016        }
2017#endif
2018        r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2019        if (r < 0)
2020                kvm_put_kvm(kvm);
2021
2022        return r;
2023}
2024
2025static long kvm_dev_ioctl_check_extension_generic(long arg)
2026{
2027        switch (arg) {
2028        case KVM_CAP_USER_MEMORY:
2029        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2030        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2031#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2032        case KVM_CAP_SET_BOOT_CPU_ID:
2033#endif
2034        case KVM_CAP_INTERNAL_ERROR_DATA:
2035                return 1;
2036#ifdef CONFIG_HAVE_KVM_IRQCHIP
2037        case KVM_CAP_IRQ_ROUTING:
2038                return KVM_MAX_IRQ_ROUTES;
2039#endif
2040        default:
2041                break;
2042        }
2043        return kvm_dev_ioctl_check_extension(arg);
2044}
2045
2046static long kvm_dev_ioctl(struct file *filp,
2047                          unsigned int ioctl, unsigned long arg)
2048{
2049        long r = -EINVAL;
2050
2051        switch (ioctl) {
2052        case KVM_GET_API_VERSION:
2053                r = -EINVAL;
2054                if (arg)
2055                        goto out;
2056                r = KVM_API_VERSION;
2057                break;
2058        case KVM_CREATE_VM:
2059                r = -EINVAL;
2060                if (arg)
2061                        goto out;
2062                r = kvm_dev_ioctl_create_vm();
2063                break;
2064        case KVM_CHECK_EXTENSION:
2065                r = kvm_dev_ioctl_check_extension_generic(arg);
2066                break;
2067        case KVM_GET_VCPU_MMAP_SIZE:
2068                r = -EINVAL;
2069                if (arg)
2070                        goto out;
2071                r = PAGE_SIZE;     /* struct kvm_run */
2072#ifdef CONFIG_X86
2073                r += PAGE_SIZE;    /* pio data page */
2074#endif
2075#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2076                r += PAGE_SIZE;    /* coalesced mmio ring page */
2077#endif
2078                break;
2079        case KVM_TRACE_ENABLE:
2080        case KVM_TRACE_PAUSE:
2081        case KVM_TRACE_DISABLE:
2082                r = -EOPNOTSUPP;
2083                break;
2084        default:
2085                return kvm_arch_dev_ioctl(filp, ioctl, arg);
2086        }
2087out:
2088        return r;
2089}
2090
2091static struct file_operations kvm_chardev_ops = {
2092        .unlocked_ioctl = kvm_dev_ioctl,
2093        .compat_ioctl   = kvm_dev_ioctl,
2094        .llseek         = noop_llseek,
2095};
2096
2097static struct miscdevice kvm_dev = {
2098        KVM_MINOR,
2099        "kvm",
2100        &kvm_chardev_ops,
2101};
2102
2103static void hardware_enable_nolock(void *junk)
2104{
2105        int cpu = raw_smp_processor_id();
2106        int r;
2107
2108        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2109                return;
2110
2111        cpumask_set_cpu(cpu, cpus_hardware_enabled);
2112
2113        r = kvm_arch_hardware_enable(NULL);
2114
2115        if (r) {
2116                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2117                atomic_inc(&hardware_enable_failed);
2118                printk(KERN_INFO "kvm: enabling virtualization on "
2119                                 "CPU%d failed\n", cpu);
2120        }
2121}
2122
2123static void hardware_enable(void *junk)
2124{
2125        spin_lock(&kvm_lock);
2126        hardware_enable_nolock(junk);
2127        spin_unlock(&kvm_lock);
2128}
2129
2130static void hardware_disable_nolock(void *junk)
2131{
2132        int cpu = raw_smp_processor_id();
2133
2134        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2135                return;
2136        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2137        kvm_arch_hardware_disable(NULL);
2138}
2139
2140static void hardware_disable(void *junk)
2141{
2142        spin_lock(&kvm_lock);
2143        hardware_disable_nolock(junk);
2144        spin_unlock(&kvm_lock);
2145}
2146
2147static void hardware_disable_all_nolock(void)
2148{
2149        BUG_ON(!kvm_usage_count);
2150
2151        kvm_usage_count--;
2152        if (!kvm_usage_count)
2153                on_each_cpu(hardware_disable_nolock, NULL, 1);
2154}
2155
2156static void hardware_disable_all(void)
2157{
2158        spin_lock(&kvm_lock);
2159        hardware_disable_all_nolock();
2160        spin_unlock(&kvm_lock);
2161}
2162
2163static int hardware_enable_all(void)
2164{
2165        int r = 0;
2166
2167        spin_lock(&kvm_lock);
2168
2169        kvm_usage_count++;
2170        if (kvm_usage_count == 1) {
2171                atomic_set(&hardware_enable_failed, 0);
2172                on_each_cpu(hardware_enable_nolock, NULL, 1);
2173
2174                if (atomic_read(&hardware_enable_failed)) {
2175                        hardware_disable_all_nolock();
2176                        r = -EBUSY;
2177                }
2178        }
2179
2180        spin_unlock(&kvm_lock);
2181
2182        return r;
2183}
2184
2185static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2186                           void *v)
2187{
2188        int cpu = (long)v;
2189
2190        if (!kvm_usage_count)
2191                return NOTIFY_OK;
2192
2193        val &= ~CPU_TASKS_FROZEN;
2194        switch (val) {
2195        case CPU_DYING:
2196                printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2197                       cpu);
2198                hardware_disable(NULL);
2199                break;
2200        case CPU_STARTING:
2201                printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2202                       cpu);
2203                hardware_enable(NULL);
2204                break;
2205        }
2206        return NOTIFY_OK;
2207}
2208
2209
2210asmlinkage void kvm_spurious_fault(void)
2211{
2212        /* Fault while not rebooting.  We want the trace. */
2213        BUG();
2214}
2215EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2216
2217static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2218                      void *v)
2219{
2220        /*
2221         * Some (well, at least mine) BIOSes hang on reboot if
2222         * in vmx root mode.
2223         *
2224         * And Intel TXT required VMX off for all cpu when system shutdown.
2225         */
2226        printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2227        kvm_rebooting = true;
2228        on_each_cpu(hardware_disable_nolock, NULL, 1);
2229        return NOTIFY_OK;
2230}
2231
2232static struct notifier_block kvm_reboot_notifier = {
2233        .notifier_call = kvm_reboot,
2234        .priority = 0,
2235};
2236
2237static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2238{
2239        int i;
2240
2241        for (i = 0; i < bus->dev_count; i++) {
2242                struct kvm_io_device *pos = bus->devs[i];
2243
2244                kvm_iodevice_destructor(pos);
2245        }
2246        kfree(bus);
2247}
2248
2249/* kvm_io_bus_write - called under kvm->slots_lock */
2250int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2251                     int len, const void *val)
2252{
2253        int i;
2254        struct kvm_io_bus *bus;
2255
2256        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2257        for (i = 0; i < bus->dev_count; i++)
2258                if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2259                        return 0;
2260        return -EOPNOTSUPP;
2261}
2262
2263/* kvm_io_bus_read - called under kvm->slots_lock */
2264int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2265                    int len, void *val)
2266{
2267        int i;
2268        struct kvm_io_bus *bus;
2269
2270        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2271        for (i = 0; i < bus->dev_count; i++)
2272                if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2273                        return 0;
2274        return -EOPNOTSUPP;
2275}
2276
2277/* Caller must hold slots_lock. */
2278int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2279                            struct kvm_io_device *dev)
2280{
2281        struct kvm_io_bus *new_bus, *bus;
2282
2283        bus = kvm->buses[bus_idx];
2284        if (bus->dev_count > NR_IOBUS_DEVS-1)
2285                return -ENOSPC;
2286
2287        new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2288        if (!new_bus)
2289                return -ENOMEM;
2290        memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2291        new_bus->devs[new_bus->dev_count++] = dev;
2292        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2293        synchronize_srcu_expedited(&kvm->srcu);
2294        kfree(bus);
2295
2296        return 0;
2297}
2298
2299/* Caller must hold slots_lock. */
2300int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2301                              struct kvm_io_device *dev)
2302{
2303        int i, r;
2304        struct kvm_io_bus *new_bus, *bus;
2305
2306        new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2307        if (!new_bus)
2308                return -ENOMEM;
2309
2310        bus = kvm->buses[bus_idx];
2311        memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2312
2313        r = -ENOENT;
2314        for (i = 0; i < new_bus->dev_count; i++)
2315                if (new_bus->devs[i] == dev) {
2316                        r = 0;
2317                        new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2318                        break;
2319                }
2320
2321        if (r) {
2322                kfree(new_bus);
2323                return r;
2324        }
2325
2326        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2327        synchronize_srcu_expedited(&kvm->srcu);
2328        kfree(bus);
2329        return r;
2330}
2331
2332static struct notifier_block kvm_cpu_notifier = {
2333        .notifier_call = kvm_cpu_hotplug,
2334};
2335
2336static int vm_stat_get(void *_offset, u64 *val)
2337{
2338        unsigned offset = (long)_offset;
2339        struct kvm *kvm;
2340
2341        *val = 0;
2342        spin_lock(&kvm_lock);
2343        list_for_each_entry(kvm, &vm_list, vm_list)
2344                *val += *(u32 *)((void *)kvm + offset);
2345        spin_unlock(&kvm_lock);
2346        return 0;
2347}
2348
2349DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2350
2351static int vcpu_stat_get(void *_offset, u64 *val)
2352{
2353        unsigned offset = (long)_offset;
2354        struct kvm *kvm;
2355        struct kvm_vcpu *vcpu;
2356        int i;
2357
2358        *val = 0;
2359        spin_lock(&kvm_lock);
2360        list_for_each_entry(kvm, &vm_list, vm_list)
2361                kvm_for_each_vcpu(i, vcpu, kvm)
2362                        *val += *(u32 *)((void *)vcpu + offset);
2363
2364        spin_unlock(&kvm_lock);
2365        return 0;
2366}
2367
2368DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2369
2370static const struct file_operations *stat_fops[] = {
2371        [KVM_STAT_VCPU] = &vcpu_stat_fops,
2372        [KVM_STAT_VM]   = &vm_stat_fops,
2373};
2374
2375static void kvm_init_debug(void)
2376{
2377        struct kvm_stats_debugfs_item *p;
2378
2379        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2380        for (p = debugfs_entries; p->name; ++p)
2381                p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2382                                                (void *)(long)p->offset,
2383                                                stat_fops[p->kind]);
2384}
2385
2386static void kvm_exit_debug(void)
2387{
2388        struct kvm_stats_debugfs_item *p;
2389
2390        for (p = debugfs_entries; p->name; ++p)
2391                debugfs_remove(p->dentry);
2392        debugfs_remove(kvm_debugfs_dir);
2393}
2394
2395static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2396{
2397        if (kvm_usage_count)
2398                hardware_disable_nolock(NULL);
2399        return 0;
2400}
2401
2402static int kvm_resume(struct sys_device *dev)
2403{
2404        if (kvm_usage_count) {
2405                WARN_ON(spin_is_locked(&kvm_lock));
2406                hardware_enable_nolock(NULL);
2407        }
2408        return 0;
2409}
2410
2411static struct sysdev_class kvm_sysdev_class = {
2412        .name = "kvm",
2413        .suspend = kvm_suspend,
2414        .resume = kvm_resume,
2415};
2416
2417static struct sys_device kvm_sysdev = {
2418        .id = 0,
2419        .cls = &kvm_sysdev_class,
2420};
2421
2422struct page *bad_page;
2423pfn_t bad_pfn;
2424
2425static inline
2426struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2427{
2428        return container_of(pn, struct kvm_vcpu, preempt_notifier);
2429}
2430
2431static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2432{
2433        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2434
2435        kvm_arch_vcpu_load(vcpu, cpu);
2436}
2437
2438static void kvm_sched_out(struct preempt_notifier *pn,
2439                          struct task_struct *next)
2440{
2441        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2442
2443        kvm_arch_vcpu_put(vcpu);
2444}
2445
2446int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2447                  struct module *module)
2448{
2449        int r;
2450        int cpu;
2451
2452        r = kvm_arch_init(opaque);
2453        if (r)
2454                goto out_fail;
2455
2456        bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2457
2458        if (bad_page == NULL) {
2459                r = -ENOMEM;
2460                goto out;
2461        }
2462
2463        bad_pfn = page_to_pfn(bad_page);
2464
2465        hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2466
2467        if (hwpoison_page == NULL) {
2468                r = -ENOMEM;
2469                goto out_free_0;
2470        }
2471
2472        hwpoison_pfn = page_to_pfn(hwpoison_page);
2473
2474        fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2475
2476        if (fault_page == NULL) {
2477                r = -ENOMEM;
2478                goto out_free_0;
2479        }
2480
2481        fault_pfn = page_to_pfn(fault_page);
2482
2483        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2484                r = -ENOMEM;
2485                goto out_free_0;
2486        }
2487
2488        r = kvm_arch_hardware_setup();
2489        if (r < 0)
2490                goto out_free_0a;
2491
2492        for_each_online_cpu(cpu) {
2493                smp_call_function_single(cpu,
2494                                kvm_arch_check_processor_compat,
2495                                &r, 1);
2496                if (r < 0)
2497                        goto out_free_1;
2498        }
2499
2500        r = register_cpu_notifier(&kvm_cpu_notifier);
2501        if (r)
2502                goto out_free_2;
2503        register_reboot_notifier(&kvm_reboot_notifier);
2504
2505        r = sysdev_class_register(&kvm_sysdev_class);
2506        if (r)
2507                goto out_free_3;
2508
2509        r = sysdev_register(&kvm_sysdev);
2510        if (r)
2511                goto out_free_4;
2512
2513        /* A kmem cache lets us meet the alignment requirements of fx_save. */
2514        if (!vcpu_align)
2515                vcpu_align = __alignof__(struct kvm_vcpu);
2516        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2517                                           0, NULL);
2518        if (!kvm_vcpu_cache) {
2519                r = -ENOMEM;
2520                goto out_free_5;
2521        }
2522
2523        r = kvm_async_pf_init();
2524        if (r)
2525                goto out_free;
2526
2527        kvm_chardev_ops.owner = module;
2528        kvm_vm_fops.owner = module;
2529        kvm_vcpu_fops.owner = module;
2530
2531        r = misc_register(&kvm_dev);
2532        if (r) {
2533                printk(KERN_ERR "kvm: misc device register failed\n");
2534                goto out_unreg;
2535        }
2536
2537        kvm_preempt_ops.sched_in = kvm_sched_in;
2538        kvm_preempt_ops.sched_out = kvm_sched_out;
2539
2540        kvm_init_debug();
2541
2542        return 0;
2543
2544out_unreg:
2545        kvm_async_pf_deinit();
2546out_free:
2547        kmem_cache_destroy(kvm_vcpu_cache);
2548out_free_5:
2549        sysdev_unregister(&kvm_sysdev);
2550out_free_4:
2551        sysdev_class_unregister(&kvm_sysdev_class);
2552out_free_3:
2553        unregister_reboot_notifier(&kvm_reboot_notifier);
2554        unregister_cpu_notifier(&kvm_cpu_notifier);
2555out_free_2:
2556out_free_1:
2557        kvm_arch_hardware_unsetup();
2558out_free_0a:
2559        free_cpumask_var(cpus_hardware_enabled);
2560out_free_0:
2561        if (fault_page)
2562                __free_page(fault_page);
2563        if (hwpoison_page)
2564                __free_page(hwpoison_page);
2565        __free_page(bad_page);
2566out:
2567        kvm_arch_exit();
2568out_fail:
2569        return r;
2570}
2571EXPORT_SYMBOL_GPL(kvm_init);
2572
2573void kvm_exit(void)
2574{
2575        kvm_exit_debug();
2576        misc_deregister(&kvm_dev);
2577        kmem_cache_destroy(kvm_vcpu_cache);
2578        kvm_async_pf_deinit();
2579        sysdev_unregister(&kvm_sysdev);
2580        sysdev_class_unregister(&kvm_sysdev_class);
2581        unregister_reboot_notifier(&kvm_reboot_notifier);
2582        unregister_cpu_notifier(&kvm_cpu_notifier);
2583        on_each_cpu(hardware_disable_nolock, NULL, 1);
2584        kvm_arch_hardware_unsetup();
2585        kvm_arch_exit();
2586        free_cpumask_var(cpus_hardware_enabled);
2587        __free_page(hwpoison_page);
2588        __free_page(bad_page);
2589}
2590EXPORT_SYMBOL_GPL(kvm_exit);
2591