linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  13 */
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
  16#include <linux/init.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/sched.h>
  20#include <linux/smp.h>
  21#include <linux/spinlock.h>
  22#include <linux/kallsyms.h>
  23#include <linux/bootmem.h>
  24#include <linux/interrupt.h>
  25#include <linux/ptrace.h>
  26#include <linux/kgdb.h>
  27#include <linux/kdebug.h>
  28#include <linux/kprobes.h>
  29#include <linux/notifier.h>
  30#include <linux/kdb.h>
  31#include <linux/irq.h>
  32#include <linux/perf_event.h>
  33
  34#include <asm/bootinfo.h>
  35#include <asm/branch.h>
  36#include <asm/break.h>
  37#include <asm/cop2.h>
  38#include <asm/cpu.h>
  39#include <asm/dsp.h>
  40#include <asm/fpu.h>
  41#include <asm/fpu_emulator.h>
  42#include <asm/mipsregs.h>
  43#include <asm/mipsmtregs.h>
  44#include <asm/module.h>
  45#include <asm/pgtable.h>
  46#include <asm/ptrace.h>
  47#include <asm/sections.h>
  48#include <asm/system.h>
  49#include <asm/tlbdebug.h>
  50#include <asm/traps.h>
  51#include <asm/uaccess.h>
  52#include <asm/watch.h>
  53#include <asm/mmu_context.h>
  54#include <asm/types.h>
  55#include <asm/stacktrace.h>
  56#include <asm/uasm.h>
  57
  58extern void check_wait(void);
  59extern asmlinkage void r4k_wait(void);
  60extern asmlinkage void rollback_handle_int(void);
  61extern asmlinkage void handle_int(void);
  62extern asmlinkage void handle_tlbm(void);
  63extern asmlinkage void handle_tlbl(void);
  64extern asmlinkage void handle_tlbs(void);
  65extern asmlinkage void handle_adel(void);
  66extern asmlinkage void handle_ades(void);
  67extern asmlinkage void handle_ibe(void);
  68extern asmlinkage void handle_dbe(void);
  69extern asmlinkage void handle_sys(void);
  70extern asmlinkage void handle_bp(void);
  71extern asmlinkage void handle_ri(void);
  72extern asmlinkage void handle_ri_rdhwr_vivt(void);
  73extern asmlinkage void handle_ri_rdhwr(void);
  74extern asmlinkage void handle_cpu(void);
  75extern asmlinkage void handle_ov(void);
  76extern asmlinkage void handle_tr(void);
  77extern asmlinkage void handle_fpe(void);
  78extern asmlinkage void handle_mdmx(void);
  79extern asmlinkage void handle_watch(void);
  80extern asmlinkage void handle_mt(void);
  81extern asmlinkage void handle_dsp(void);
  82extern asmlinkage void handle_mcheck(void);
  83extern asmlinkage void handle_reserved(void);
  84
  85extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  86                                    struct mips_fpu_struct *ctx, int has_fpu,
  87                                    void *__user *fault_addr);
  88
  89void (*board_be_init)(void);
  90int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  91void (*board_nmi_handler_setup)(void);
  92void (*board_ejtag_handler_setup)(void);
  93void (*board_bind_eic_interrupt)(int irq, int regset);
  94
  95
  96static void show_raw_backtrace(unsigned long reg29)
  97{
  98        unsigned long *sp = (unsigned long *)(reg29 & ~3);
  99        unsigned long addr;
 100
 101        printk("Call Trace:");
 102#ifdef CONFIG_KALLSYMS
 103        printk("\n");
 104#endif
 105        while (!kstack_end(sp)) {
 106                unsigned long __user *p =
 107                        (unsigned long __user *)(unsigned long)sp++;
 108                if (__get_user(addr, p)) {
 109                        printk(" (Bad stack address)");
 110                        break;
 111                }
 112                if (__kernel_text_address(addr))
 113                        print_ip_sym(addr);
 114        }
 115        printk("\n");
 116}
 117
 118#ifdef CONFIG_KALLSYMS
 119int raw_show_trace;
 120static int __init set_raw_show_trace(char *str)
 121{
 122        raw_show_trace = 1;
 123        return 1;
 124}
 125__setup("raw_show_trace", set_raw_show_trace);
 126#endif
 127
 128static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 129{
 130        unsigned long sp = regs->regs[29];
 131        unsigned long ra = regs->regs[31];
 132        unsigned long pc = regs->cp0_epc;
 133
 134        if (raw_show_trace || !__kernel_text_address(pc)) {
 135                show_raw_backtrace(sp);
 136                return;
 137        }
 138        printk("Call Trace:\n");
 139        do {
 140                print_ip_sym(pc);
 141                pc = unwind_stack(task, &sp, pc, &ra);
 142        } while (pc);
 143        printk("\n");
 144}
 145
 146/*
 147 * This routine abuses get_user()/put_user() to reference pointers
 148 * with at least a bit of error checking ...
 149 */
 150static void show_stacktrace(struct task_struct *task,
 151        const struct pt_regs *regs)
 152{
 153        const int field = 2 * sizeof(unsigned long);
 154        long stackdata;
 155        int i;
 156        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 157
 158        printk("Stack :");
 159        i = 0;
 160        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 161                if (i && ((i % (64 / field)) == 0))
 162                        printk("\n       ");
 163                if (i > 39) {
 164                        printk(" ...");
 165                        break;
 166                }
 167
 168                if (__get_user(stackdata, sp++)) {
 169                        printk(" (Bad stack address)");
 170                        break;
 171                }
 172
 173                printk(" %0*lx", field, stackdata);
 174                i++;
 175        }
 176        printk("\n");
 177        show_backtrace(task, regs);
 178}
 179
 180void show_stack(struct task_struct *task, unsigned long *sp)
 181{
 182        struct pt_regs regs;
 183        if (sp) {
 184                regs.regs[29] = (unsigned long)sp;
 185                regs.regs[31] = 0;
 186                regs.cp0_epc = 0;
 187        } else {
 188                if (task && task != current) {
 189                        regs.regs[29] = task->thread.reg29;
 190                        regs.regs[31] = 0;
 191                        regs.cp0_epc = task->thread.reg31;
 192#ifdef CONFIG_KGDB_KDB
 193                } else if (atomic_read(&kgdb_active) != -1 &&
 194                           kdb_current_regs) {
 195                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 196#endif /* CONFIG_KGDB_KDB */
 197                } else {
 198                        prepare_frametrace(&regs);
 199                }
 200        }
 201        show_stacktrace(task, &regs);
 202}
 203
 204/*
 205 * The architecture-independent dump_stack generator
 206 */
 207void dump_stack(void)
 208{
 209        struct pt_regs regs;
 210
 211        prepare_frametrace(&regs);
 212        show_backtrace(current, &regs);
 213}
 214
 215EXPORT_SYMBOL(dump_stack);
 216
 217static void show_code(unsigned int __user *pc)
 218{
 219        long i;
 220        unsigned short __user *pc16 = NULL;
 221
 222        printk("\nCode:");
 223
 224        if ((unsigned long)pc & 1)
 225                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 226        for(i = -3 ; i < 6 ; i++) {
 227                unsigned int insn;
 228                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 229                        printk(" (Bad address in epc)\n");
 230                        break;
 231                }
 232                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 233        }
 234}
 235
 236static void __show_regs(const struct pt_regs *regs)
 237{
 238        const int field = 2 * sizeof(unsigned long);
 239        unsigned int cause = regs->cp0_cause;
 240        int i;
 241
 242        printk("Cpu %d\n", smp_processor_id());
 243
 244        /*
 245         * Saved main processor registers
 246         */
 247        for (i = 0; i < 32; ) {
 248                if ((i % 4) == 0)
 249                        printk("$%2d   :", i);
 250                if (i == 0)
 251                        printk(" %0*lx", field, 0UL);
 252                else if (i == 26 || i == 27)
 253                        printk(" %*s", field, "");
 254                else
 255                        printk(" %0*lx", field, regs->regs[i]);
 256
 257                i++;
 258                if ((i % 4) == 0)
 259                        printk("\n");
 260        }
 261
 262#ifdef CONFIG_CPU_HAS_SMARTMIPS
 263        printk("Acx    : %0*lx\n", field, regs->acx);
 264#endif
 265        printk("Hi    : %0*lx\n", field, regs->hi);
 266        printk("Lo    : %0*lx\n", field, regs->lo);
 267
 268        /*
 269         * Saved cp0 registers
 270         */
 271        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 272               (void *) regs->cp0_epc);
 273        printk("    %s\n", print_tainted());
 274        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 275               (void *) regs->regs[31]);
 276
 277        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 278
 279        if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 280                if (regs->cp0_status & ST0_KUO)
 281                        printk("KUo ");
 282                if (regs->cp0_status & ST0_IEO)
 283                        printk("IEo ");
 284                if (regs->cp0_status & ST0_KUP)
 285                        printk("KUp ");
 286                if (regs->cp0_status & ST0_IEP)
 287                        printk("IEp ");
 288                if (regs->cp0_status & ST0_KUC)
 289                        printk("KUc ");
 290                if (regs->cp0_status & ST0_IEC)
 291                        printk("IEc ");
 292        } else {
 293                if (regs->cp0_status & ST0_KX)
 294                        printk("KX ");
 295                if (regs->cp0_status & ST0_SX)
 296                        printk("SX ");
 297                if (regs->cp0_status & ST0_UX)
 298                        printk("UX ");
 299                switch (regs->cp0_status & ST0_KSU) {
 300                case KSU_USER:
 301                        printk("USER ");
 302                        break;
 303                case KSU_SUPERVISOR:
 304                        printk("SUPERVISOR ");
 305                        break;
 306                case KSU_KERNEL:
 307                        printk("KERNEL ");
 308                        break;
 309                default:
 310                        printk("BAD_MODE ");
 311                        break;
 312                }
 313                if (regs->cp0_status & ST0_ERL)
 314                        printk("ERL ");
 315                if (regs->cp0_status & ST0_EXL)
 316                        printk("EXL ");
 317                if (regs->cp0_status & ST0_IE)
 318                        printk("IE ");
 319        }
 320        printk("\n");
 321
 322        printk("Cause : %08x\n", cause);
 323
 324        cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 325        if (1 <= cause && cause <= 5)
 326                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 327
 328        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 329               cpu_name_string());
 330}
 331
 332/*
 333 * FIXME: really the generic show_regs should take a const pointer argument.
 334 */
 335void show_regs(struct pt_regs *regs)
 336{
 337        __show_regs((struct pt_regs *)regs);
 338}
 339
 340void show_registers(struct pt_regs *regs)
 341{
 342        const int field = 2 * sizeof(unsigned long);
 343
 344        __show_regs(regs);
 345        print_modules();
 346        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 347               current->comm, current->pid, current_thread_info(), current,
 348              field, current_thread_info()->tp_value);
 349        if (cpu_has_userlocal) {
 350                unsigned long tls;
 351
 352                tls = read_c0_userlocal();
 353                if (tls != current_thread_info()->tp_value)
 354                        printk("*HwTLS: %0*lx\n", field, tls);
 355        }
 356
 357        show_stacktrace(current, regs);
 358        show_code((unsigned int __user *) regs->cp0_epc);
 359        printk("\n");
 360}
 361
 362static int regs_to_trapnr(struct pt_regs *regs)
 363{
 364        return (regs->cp0_cause >> 2) & 0x1f;
 365}
 366
 367static DEFINE_SPINLOCK(die_lock);
 368
 369void __noreturn die(const char *str, struct pt_regs *regs)
 370{
 371        static int die_counter;
 372        int sig = SIGSEGV;
 373#ifdef CONFIG_MIPS_MT_SMTC
 374        unsigned long dvpret = dvpe();
 375#endif /* CONFIG_MIPS_MT_SMTC */
 376
 377        if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 378                sig = 0;
 379
 380        console_verbose();
 381        spin_lock_irq(&die_lock);
 382        bust_spinlocks(1);
 383#ifdef CONFIG_MIPS_MT_SMTC
 384        mips_mt_regdump(dvpret);
 385#endif /* CONFIG_MIPS_MT_SMTC */
 386
 387        printk("%s[#%d]:\n", str, ++die_counter);
 388        show_registers(regs);
 389        add_taint(TAINT_DIE);
 390        spin_unlock_irq(&die_lock);
 391
 392        if (in_interrupt())
 393                panic("Fatal exception in interrupt");
 394
 395        if (panic_on_oops) {
 396                printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 397                ssleep(5);
 398                panic("Fatal exception");
 399        }
 400
 401        do_exit(sig);
 402}
 403
 404extern struct exception_table_entry __start___dbe_table[];
 405extern struct exception_table_entry __stop___dbe_table[];
 406
 407__asm__(
 408"       .section        __dbe_table, \"a\"\n"
 409"       .previous                       \n");
 410
 411/* Given an address, look for it in the exception tables. */
 412static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 413{
 414        const struct exception_table_entry *e;
 415
 416        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 417        if (!e)
 418                e = search_module_dbetables(addr);
 419        return e;
 420}
 421
 422asmlinkage void do_be(struct pt_regs *regs)
 423{
 424        const int field = 2 * sizeof(unsigned long);
 425        const struct exception_table_entry *fixup = NULL;
 426        int data = regs->cp0_cause & 4;
 427        int action = MIPS_BE_FATAL;
 428
 429        /* XXX For now.  Fixme, this searches the wrong table ...  */
 430        if (data && !user_mode(regs))
 431                fixup = search_dbe_tables(exception_epc(regs));
 432
 433        if (fixup)
 434                action = MIPS_BE_FIXUP;
 435
 436        if (board_be_handler)
 437                action = board_be_handler(regs, fixup != NULL);
 438
 439        switch (action) {
 440        case MIPS_BE_DISCARD:
 441                return;
 442        case MIPS_BE_FIXUP:
 443                if (fixup) {
 444                        regs->cp0_epc = fixup->nextinsn;
 445                        return;
 446                }
 447                break;
 448        default:
 449                break;
 450        }
 451
 452        /*
 453         * Assume it would be too dangerous to continue ...
 454         */
 455        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 456               data ? "Data" : "Instruction",
 457               field, regs->cp0_epc, field, regs->regs[31]);
 458        if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 459            == NOTIFY_STOP)
 460                return;
 461
 462        die_if_kernel("Oops", regs);
 463        force_sig(SIGBUS, current);
 464}
 465
 466/*
 467 * ll/sc, rdhwr, sync emulation
 468 */
 469
 470#define OPCODE 0xfc000000
 471#define BASE   0x03e00000
 472#define RT     0x001f0000
 473#define OFFSET 0x0000ffff
 474#define LL     0xc0000000
 475#define SC     0xe0000000
 476#define SPEC0  0x00000000
 477#define SPEC3  0x7c000000
 478#define RD     0x0000f800
 479#define FUNC   0x0000003f
 480#define SYNC   0x0000000f
 481#define RDHWR  0x0000003b
 482
 483/*
 484 * The ll_bit is cleared by r*_switch.S
 485 */
 486
 487unsigned int ll_bit;
 488struct task_struct *ll_task;
 489
 490static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 491{
 492        unsigned long value, __user *vaddr;
 493        long offset;
 494
 495        /*
 496         * analyse the ll instruction that just caused a ri exception
 497         * and put the referenced address to addr.
 498         */
 499
 500        /* sign extend offset */
 501        offset = opcode & OFFSET;
 502        offset <<= 16;
 503        offset >>= 16;
 504
 505        vaddr = (unsigned long __user *)
 506                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 507
 508        if ((unsigned long)vaddr & 3)
 509                return SIGBUS;
 510        if (get_user(value, vaddr))
 511                return SIGSEGV;
 512
 513        preempt_disable();
 514
 515        if (ll_task == NULL || ll_task == current) {
 516                ll_bit = 1;
 517        } else {
 518                ll_bit = 0;
 519        }
 520        ll_task = current;
 521
 522        preempt_enable();
 523
 524        regs->regs[(opcode & RT) >> 16] = value;
 525
 526        return 0;
 527}
 528
 529static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 530{
 531        unsigned long __user *vaddr;
 532        unsigned long reg;
 533        long offset;
 534
 535        /*
 536         * analyse the sc instruction that just caused a ri exception
 537         * and put the referenced address to addr.
 538         */
 539
 540        /* sign extend offset */
 541        offset = opcode & OFFSET;
 542        offset <<= 16;
 543        offset >>= 16;
 544
 545        vaddr = (unsigned long __user *)
 546                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 547        reg = (opcode & RT) >> 16;
 548
 549        if ((unsigned long)vaddr & 3)
 550                return SIGBUS;
 551
 552        preempt_disable();
 553
 554        if (ll_bit == 0 || ll_task != current) {
 555                regs->regs[reg] = 0;
 556                preempt_enable();
 557                return 0;
 558        }
 559
 560        preempt_enable();
 561
 562        if (put_user(regs->regs[reg], vaddr))
 563                return SIGSEGV;
 564
 565        regs->regs[reg] = 1;
 566
 567        return 0;
 568}
 569
 570/*
 571 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 572 * opcodes are supposed to result in coprocessor unusable exceptions if
 573 * executed on ll/sc-less processors.  That's the theory.  In practice a
 574 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 575 * instead, so we're doing the emulation thing in both exception handlers.
 576 */
 577static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 578{
 579        if ((opcode & OPCODE) == LL) {
 580                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 581                                1, 0, regs, 0);
 582                return simulate_ll(regs, opcode);
 583        }
 584        if ((opcode & OPCODE) == SC) {
 585                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 586                                1, 0, regs, 0);
 587                return simulate_sc(regs, opcode);
 588        }
 589
 590        return -1;                      /* Must be something else ... */
 591}
 592
 593/*
 594 * Simulate trapping 'rdhwr' instructions to provide user accessible
 595 * registers not implemented in hardware.
 596 */
 597static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 598{
 599        struct thread_info *ti = task_thread_info(current);
 600
 601        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 602                int rd = (opcode & RD) >> 11;
 603                int rt = (opcode & RT) >> 16;
 604                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 605                                1, 0, regs, 0);
 606                switch (rd) {
 607                case 0:         /* CPU number */
 608                        regs->regs[rt] = smp_processor_id();
 609                        return 0;
 610                case 1:         /* SYNCI length */
 611                        regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 612                                             current_cpu_data.icache.linesz);
 613                        return 0;
 614                case 2:         /* Read count register */
 615                        regs->regs[rt] = read_c0_count();
 616                        return 0;
 617                case 3:         /* Count register resolution */
 618                        switch (current_cpu_data.cputype) {
 619                        case CPU_20KC:
 620                        case CPU_25KF:
 621                                regs->regs[rt] = 1;
 622                                break;
 623                        default:
 624                                regs->regs[rt] = 2;
 625                        }
 626                        return 0;
 627                case 29:
 628                        regs->regs[rt] = ti->tp_value;
 629                        return 0;
 630                default:
 631                        return -1;
 632                }
 633        }
 634
 635        /* Not ours.  */
 636        return -1;
 637}
 638
 639static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 640{
 641        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 642                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 643                                1, 0, regs, 0);
 644                return 0;
 645        }
 646
 647        return -1;                      /* Must be something else ... */
 648}
 649
 650asmlinkage void do_ov(struct pt_regs *regs)
 651{
 652        siginfo_t info;
 653
 654        die_if_kernel("Integer overflow", regs);
 655
 656        info.si_code = FPE_INTOVF;
 657        info.si_signo = SIGFPE;
 658        info.si_errno = 0;
 659        info.si_addr = (void __user *) regs->cp0_epc;
 660        force_sig_info(SIGFPE, &info, current);
 661}
 662
 663static int process_fpemu_return(int sig, void __user *fault_addr)
 664{
 665        if (sig == SIGSEGV || sig == SIGBUS) {
 666                struct siginfo si = {0};
 667                si.si_addr = fault_addr;
 668                si.si_signo = sig;
 669                if (sig == SIGSEGV) {
 670                        if (find_vma(current->mm, (unsigned long)fault_addr))
 671                                si.si_code = SEGV_ACCERR;
 672                        else
 673                                si.si_code = SEGV_MAPERR;
 674                } else {
 675                        si.si_code = BUS_ADRERR;
 676                }
 677                force_sig_info(sig, &si, current);
 678                return 1;
 679        } else if (sig) {
 680                force_sig(sig, current);
 681                return 1;
 682        } else {
 683                return 0;
 684        }
 685}
 686
 687/*
 688 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 689 */
 690asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 691{
 692        siginfo_t info = {0};
 693
 694        if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 695            == NOTIFY_STOP)
 696                return;
 697        die_if_kernel("FP exception in kernel code", regs);
 698
 699        if (fcr31 & FPU_CSR_UNI_X) {
 700                int sig;
 701                void __user *fault_addr = NULL;
 702
 703                /*
 704                 * Unimplemented operation exception.  If we've got the full
 705                 * software emulator on-board, let's use it...
 706                 *
 707                 * Force FPU to dump state into task/thread context.  We're
 708                 * moving a lot of data here for what is probably a single
 709                 * instruction, but the alternative is to pre-decode the FP
 710                 * register operands before invoking the emulator, which seems
 711                 * a bit extreme for what should be an infrequent event.
 712                 */
 713                /* Ensure 'resume' not overwrite saved fp context again. */
 714                lose_fpu(1);
 715
 716                /* Run the emulator */
 717                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 718                                               &fault_addr);
 719
 720                /*
 721                 * We can't allow the emulated instruction to leave any of
 722                 * the cause bit set in $fcr31.
 723                 */
 724                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 725
 726                /* Restore the hardware register state */
 727                own_fpu(1);     /* Using the FPU again.  */
 728
 729                /* If something went wrong, signal */
 730                process_fpemu_return(sig, fault_addr);
 731
 732                return;
 733        } else if (fcr31 & FPU_CSR_INV_X)
 734                info.si_code = FPE_FLTINV;
 735        else if (fcr31 & FPU_CSR_DIV_X)
 736                info.si_code = FPE_FLTDIV;
 737        else if (fcr31 & FPU_CSR_OVF_X)
 738                info.si_code = FPE_FLTOVF;
 739        else if (fcr31 & FPU_CSR_UDF_X)
 740                info.si_code = FPE_FLTUND;
 741        else if (fcr31 & FPU_CSR_INE_X)
 742                info.si_code = FPE_FLTRES;
 743        else
 744                info.si_code = __SI_FAULT;
 745        info.si_signo = SIGFPE;
 746        info.si_errno = 0;
 747        info.si_addr = (void __user *) regs->cp0_epc;
 748        force_sig_info(SIGFPE, &info, current);
 749}
 750
 751static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 752        const char *str)
 753{
 754        siginfo_t info;
 755        char b[40];
 756
 757#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 758        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 759                return;
 760#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 761
 762        if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 763                return;
 764
 765        /*
 766         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 767         * insns, even for trap and break codes that indicate arithmetic
 768         * failures.  Weird ...
 769         * But should we continue the brokenness???  --macro
 770         */
 771        switch (code) {
 772        case BRK_OVERFLOW:
 773        case BRK_DIVZERO:
 774                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 775                die_if_kernel(b, regs);
 776                if (code == BRK_DIVZERO)
 777                        info.si_code = FPE_INTDIV;
 778                else
 779                        info.si_code = FPE_INTOVF;
 780                info.si_signo = SIGFPE;
 781                info.si_errno = 0;
 782                info.si_addr = (void __user *) regs->cp0_epc;
 783                force_sig_info(SIGFPE, &info, current);
 784                break;
 785        case BRK_BUG:
 786                die_if_kernel("Kernel bug detected", regs);
 787                force_sig(SIGTRAP, current);
 788                break;
 789        case BRK_MEMU:
 790                /*
 791                 * Address errors may be deliberately induced by the FPU
 792                 * emulator to retake control of the CPU after executing the
 793                 * instruction in the delay slot of an emulated branch.
 794                 *
 795                 * Terminate if exception was recognized as a delay slot return
 796                 * otherwise handle as normal.
 797                 */
 798                if (do_dsemulret(regs))
 799                        return;
 800
 801                die_if_kernel("Math emu break/trap", regs);
 802                force_sig(SIGTRAP, current);
 803                break;
 804        default:
 805                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 806                die_if_kernel(b, regs);
 807                force_sig(SIGTRAP, current);
 808        }
 809}
 810
 811asmlinkage void do_bp(struct pt_regs *regs)
 812{
 813        unsigned int opcode, bcode;
 814
 815        if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 816                goto out_sigsegv;
 817
 818        /*
 819         * There is the ancient bug in the MIPS assemblers that the break
 820         * code starts left to bit 16 instead to bit 6 in the opcode.
 821         * Gas is bug-compatible, but not always, grrr...
 822         * We handle both cases with a simple heuristics.  --macro
 823         */
 824        bcode = ((opcode >> 6) & ((1 << 20) - 1));
 825        if (bcode >= (1 << 10))
 826                bcode >>= 10;
 827
 828        /*
 829         * notify the kprobe handlers, if instruction is likely to
 830         * pertain to them.
 831         */
 832        switch (bcode) {
 833        case BRK_KPROBE_BP:
 834                if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 835                        return;
 836                else
 837                        break;
 838        case BRK_KPROBE_SSTEPBP:
 839                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 840                        return;
 841                else
 842                        break;
 843        default:
 844                break;
 845        }
 846
 847        do_trap_or_bp(regs, bcode, "Break");
 848        return;
 849
 850out_sigsegv:
 851        force_sig(SIGSEGV, current);
 852}
 853
 854asmlinkage void do_tr(struct pt_regs *regs)
 855{
 856        unsigned int opcode, tcode = 0;
 857
 858        if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 859                goto out_sigsegv;
 860
 861        /* Immediate versions don't provide a code.  */
 862        if (!(opcode & OPCODE))
 863                tcode = ((opcode >> 6) & ((1 << 10) - 1));
 864
 865        do_trap_or_bp(regs, tcode, "Trap");
 866        return;
 867
 868out_sigsegv:
 869        force_sig(SIGSEGV, current);
 870}
 871
 872asmlinkage void do_ri(struct pt_regs *regs)
 873{
 874        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 875        unsigned long old_epc = regs->cp0_epc;
 876        unsigned int opcode = 0;
 877        int status = -1;
 878
 879        if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 880            == NOTIFY_STOP)
 881                return;
 882
 883        die_if_kernel("Reserved instruction in kernel code", regs);
 884
 885        if (unlikely(compute_return_epc(regs) < 0))
 886                return;
 887
 888        if (unlikely(get_user(opcode, epc) < 0))
 889                status = SIGSEGV;
 890
 891        if (!cpu_has_llsc && status < 0)
 892                status = simulate_llsc(regs, opcode);
 893
 894        if (status < 0)
 895                status = simulate_rdhwr(regs, opcode);
 896
 897        if (status < 0)
 898                status = simulate_sync(regs, opcode);
 899
 900        if (status < 0)
 901                status = SIGILL;
 902
 903        if (unlikely(status > 0)) {
 904                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
 905                force_sig(status, current);
 906        }
 907}
 908
 909/*
 910 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 911 * emulated more than some threshold number of instructions, force migration to
 912 * a "CPU" that has FP support.
 913 */
 914static void mt_ase_fp_affinity(void)
 915{
 916#ifdef CONFIG_MIPS_MT_FPAFF
 917        if (mt_fpemul_threshold > 0 &&
 918             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 919                /*
 920                 * If there's no FPU present, or if the application has already
 921                 * restricted the allowed set to exclude any CPUs with FPUs,
 922                 * we'll skip the procedure.
 923                 */
 924                if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 925                        cpumask_t tmask;
 926
 927                        current->thread.user_cpus_allowed
 928                                = current->cpus_allowed;
 929                        cpus_and(tmask, current->cpus_allowed,
 930                                mt_fpu_cpumask);
 931                        set_cpus_allowed_ptr(current, &tmask);
 932                        set_thread_flag(TIF_FPUBOUND);
 933                }
 934        }
 935#endif /* CONFIG_MIPS_MT_FPAFF */
 936}
 937
 938/*
 939 * No lock; only written during early bootup by CPU 0.
 940 */
 941static RAW_NOTIFIER_HEAD(cu2_chain);
 942
 943int __ref register_cu2_notifier(struct notifier_block *nb)
 944{
 945        return raw_notifier_chain_register(&cu2_chain, nb);
 946}
 947
 948int cu2_notifier_call_chain(unsigned long val, void *v)
 949{
 950        return raw_notifier_call_chain(&cu2_chain, val, v);
 951}
 952
 953static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 954        void *data)
 955{
 956        struct pt_regs *regs = data;
 957
 958        switch (action) {
 959        default:
 960                die_if_kernel("Unhandled kernel unaligned access or invalid "
 961                              "instruction", regs);
 962                /* Fall through  */
 963
 964        case CU2_EXCEPTION:
 965                force_sig(SIGILL, current);
 966        }
 967
 968        return NOTIFY_OK;
 969}
 970
 971asmlinkage void do_cpu(struct pt_regs *regs)
 972{
 973        unsigned int __user *epc;
 974        unsigned long old_epc;
 975        unsigned int opcode;
 976        unsigned int cpid;
 977        int status;
 978        unsigned long __maybe_unused flags;
 979
 980        die_if_kernel("do_cpu invoked from kernel context!", regs);
 981
 982        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 983
 984        switch (cpid) {
 985        case 0:
 986                epc = (unsigned int __user *)exception_epc(regs);
 987                old_epc = regs->cp0_epc;
 988                opcode = 0;
 989                status = -1;
 990
 991                if (unlikely(compute_return_epc(regs) < 0))
 992                        return;
 993
 994                if (unlikely(get_user(opcode, epc) < 0))
 995                        status = SIGSEGV;
 996
 997                if (!cpu_has_llsc && status < 0)
 998                        status = simulate_llsc(regs, opcode);
 999
1000                if (status < 0)
1001                        status = simulate_rdhwr(regs, opcode);
1002
1003                if (status < 0)
1004                        status = SIGILL;
1005
1006                if (unlikely(status > 0)) {
1007                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1008                        force_sig(status, current);
1009                }
1010
1011                return;
1012
1013        case 1:
1014                if (used_math())        /* Using the FPU again.  */
1015                        own_fpu(1);
1016                else {                  /* First time FPU user.  */
1017                        init_fpu();
1018                        set_used_math();
1019                }
1020
1021                if (!raw_cpu_has_fpu) {
1022                        int sig;
1023                        void __user *fault_addr = NULL;
1024                        sig = fpu_emulator_cop1Handler(regs,
1025                                                       &current->thread.fpu,
1026                                                       0, &fault_addr);
1027                        if (!process_fpemu_return(sig, fault_addr))
1028                                mt_ase_fp_affinity();
1029                }
1030
1031                return;
1032
1033        case 2:
1034                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1035                return;
1036
1037        case 3:
1038                break;
1039        }
1040
1041        force_sig(SIGILL, current);
1042}
1043
1044asmlinkage void do_mdmx(struct pt_regs *regs)
1045{
1046        force_sig(SIGILL, current);
1047}
1048
1049/*
1050 * Called with interrupts disabled.
1051 */
1052asmlinkage void do_watch(struct pt_regs *regs)
1053{
1054        u32 cause;
1055
1056        /*
1057         * Clear WP (bit 22) bit of cause register so we don't loop
1058         * forever.
1059         */
1060        cause = read_c0_cause();
1061        cause &= ~(1 << 22);
1062        write_c0_cause(cause);
1063
1064        /*
1065         * If the current thread has the watch registers loaded, save
1066         * their values and send SIGTRAP.  Otherwise another thread
1067         * left the registers set, clear them and continue.
1068         */
1069        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1070                mips_read_watch_registers();
1071                local_irq_enable();
1072                force_sig(SIGTRAP, current);
1073        } else {
1074                mips_clear_watch_registers();
1075                local_irq_enable();
1076        }
1077}
1078
1079asmlinkage void do_mcheck(struct pt_regs *regs)
1080{
1081        const int field = 2 * sizeof(unsigned long);
1082        int multi_match = regs->cp0_status & ST0_TS;
1083
1084        show_regs(regs);
1085
1086        if (multi_match) {
1087                printk("Index   : %0x\n", read_c0_index());
1088                printk("Pagemask: %0x\n", read_c0_pagemask());
1089                printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1090                printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1091                printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1092                printk("\n");
1093                dump_tlb_all();
1094        }
1095
1096        show_code((unsigned int __user *) regs->cp0_epc);
1097
1098        /*
1099         * Some chips may have other causes of machine check (e.g. SB1
1100         * graduation timer)
1101         */
1102        panic("Caught Machine Check exception - %scaused by multiple "
1103              "matching entries in the TLB.",
1104              (multi_match) ? "" : "not ");
1105}
1106
1107asmlinkage void do_mt(struct pt_regs *regs)
1108{
1109        int subcode;
1110
1111        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1112                        >> VPECONTROL_EXCPT_SHIFT;
1113        switch (subcode) {
1114        case 0:
1115                printk(KERN_DEBUG "Thread Underflow\n");
1116                break;
1117        case 1:
1118                printk(KERN_DEBUG "Thread Overflow\n");
1119                break;
1120        case 2:
1121                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1122                break;
1123        case 3:
1124                printk(KERN_DEBUG "Gating Storage Exception\n");
1125                break;
1126        case 4:
1127                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1128                break;
1129        case 5:
1130                printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1131                break;
1132        default:
1133                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1134                        subcode);
1135                break;
1136        }
1137        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1138
1139        force_sig(SIGILL, current);
1140}
1141
1142
1143asmlinkage void do_dsp(struct pt_regs *regs)
1144{
1145        if (cpu_has_dsp)
1146                panic("Unexpected DSP exception\n");
1147
1148        force_sig(SIGILL, current);
1149}
1150
1151asmlinkage void do_reserved(struct pt_regs *regs)
1152{
1153        /*
1154         * Game over - no way to handle this if it ever occurs.  Most probably
1155         * caused by a new unknown cpu type or after another deadly
1156         * hard/software error.
1157         */
1158        show_regs(regs);
1159        panic("Caught reserved exception %ld - should not happen.",
1160              (regs->cp0_cause & 0x7f) >> 2);
1161}
1162
1163static int __initdata l1parity = 1;
1164static int __init nol1parity(char *s)
1165{
1166        l1parity = 0;
1167        return 1;
1168}
1169__setup("nol1par", nol1parity);
1170static int __initdata l2parity = 1;
1171static int __init nol2parity(char *s)
1172{
1173        l2parity = 0;
1174        return 1;
1175}
1176__setup("nol2par", nol2parity);
1177
1178/*
1179 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1180 * it different ways.
1181 */
1182static inline void parity_protection_init(void)
1183{
1184        switch (current_cpu_type()) {
1185        case CPU_24K:
1186        case CPU_34K:
1187        case CPU_74K:
1188        case CPU_1004K:
1189                {
1190#define ERRCTL_PE       0x80000000
1191#define ERRCTL_L2P      0x00800000
1192                        unsigned long errctl;
1193                        unsigned int l1parity_present, l2parity_present;
1194
1195                        errctl = read_c0_ecc();
1196                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1197
1198                        /* probe L1 parity support */
1199                        write_c0_ecc(errctl | ERRCTL_PE);
1200                        back_to_back_c0_hazard();
1201                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1202
1203                        /* probe L2 parity support */
1204                        write_c0_ecc(errctl|ERRCTL_L2P);
1205                        back_to_back_c0_hazard();
1206                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1207
1208                        if (l1parity_present && l2parity_present) {
1209                                if (l1parity)
1210                                        errctl |= ERRCTL_PE;
1211                                if (l1parity ^ l2parity)
1212                                        errctl |= ERRCTL_L2P;
1213                        } else if (l1parity_present) {
1214                                if (l1parity)
1215                                        errctl |= ERRCTL_PE;
1216                        } else if (l2parity_present) {
1217                                if (l2parity)
1218                                        errctl |= ERRCTL_L2P;
1219                        } else {
1220                                /* No parity available */
1221                        }
1222
1223                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1224
1225                        write_c0_ecc(errctl);
1226                        back_to_back_c0_hazard();
1227                        errctl = read_c0_ecc();
1228                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1229
1230                        if (l1parity_present)
1231                                printk(KERN_INFO "Cache parity protection %sabled\n",
1232                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1233
1234                        if (l2parity_present) {
1235                                if (l1parity_present && l1parity)
1236                                        errctl ^= ERRCTL_L2P;
1237                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1238                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1239                        }
1240                }
1241                break;
1242
1243        case CPU_5KC:
1244                write_c0_ecc(0x80000000);
1245                back_to_back_c0_hazard();
1246                /* Set the PE bit (bit 31) in the c0_errctl register. */
1247                printk(KERN_INFO "Cache parity protection %sabled\n",
1248                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1249                break;
1250        case CPU_20KC:
1251        case CPU_25KF:
1252                /* Clear the DE bit (bit 16) in the c0_status register. */
1253                printk(KERN_INFO "Enable cache parity protection for "
1254                       "MIPS 20KC/25KF CPUs.\n");
1255                clear_c0_status(ST0_DE);
1256                break;
1257        default:
1258                break;
1259        }
1260}
1261
1262asmlinkage void cache_parity_error(void)
1263{
1264        const int field = 2 * sizeof(unsigned long);
1265        unsigned int reg_val;
1266
1267        /* For the moment, report the problem and hang. */
1268        printk("Cache error exception:\n");
1269        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1270        reg_val = read_c0_cacheerr();
1271        printk("c0_cacheerr == %08x\n", reg_val);
1272
1273        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1274               reg_val & (1<<30) ? "secondary" : "primary",
1275               reg_val & (1<<31) ? "data" : "insn");
1276        printk("Error bits: %s%s%s%s%s%s%s\n",
1277               reg_val & (1<<29) ? "ED " : "",
1278               reg_val & (1<<28) ? "ET " : "",
1279               reg_val & (1<<26) ? "EE " : "",
1280               reg_val & (1<<25) ? "EB " : "",
1281               reg_val & (1<<24) ? "EI " : "",
1282               reg_val & (1<<23) ? "E1 " : "",
1283               reg_val & (1<<22) ? "E0 " : "");
1284        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1285
1286#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1287        if (reg_val & (1<<22))
1288                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1289
1290        if (reg_val & (1<<23))
1291                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1292#endif
1293
1294        panic("Can't handle the cache error!");
1295}
1296
1297/*
1298 * SDBBP EJTAG debug exception handler.
1299 * We skip the instruction and return to the next instruction.
1300 */
1301void ejtag_exception_handler(struct pt_regs *regs)
1302{
1303        const int field = 2 * sizeof(unsigned long);
1304        unsigned long depc, old_epc;
1305        unsigned int debug;
1306
1307        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1308        depc = read_c0_depc();
1309        debug = read_c0_debug();
1310        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1311        if (debug & 0x80000000) {
1312                /*
1313                 * In branch delay slot.
1314                 * We cheat a little bit here and use EPC to calculate the
1315                 * debug return address (DEPC). EPC is restored after the
1316                 * calculation.
1317                 */
1318                old_epc = regs->cp0_epc;
1319                regs->cp0_epc = depc;
1320                __compute_return_epc(regs);
1321                depc = regs->cp0_epc;
1322                regs->cp0_epc = old_epc;
1323        } else
1324                depc += 4;
1325        write_c0_depc(depc);
1326
1327#if 0
1328        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1329        write_c0_debug(debug | 0x100);
1330#endif
1331}
1332
1333/*
1334 * NMI exception handler.
1335 */
1336NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1337{
1338        bust_spinlocks(1);
1339        printk("NMI taken!!!!\n");
1340        die("NMI", regs);
1341}
1342
1343#define VECTORSPACING 0x100     /* for EI/VI mode */
1344
1345unsigned long ebase;
1346unsigned long exception_handlers[32];
1347unsigned long vi_handlers[64];
1348
1349void __init *set_except_vector(int n, void *addr)
1350{
1351        unsigned long handler = (unsigned long) addr;
1352        unsigned long old_handler = exception_handlers[n];
1353
1354        exception_handlers[n] = handler;
1355        if (n == 0 && cpu_has_divec) {
1356                unsigned long jump_mask = ~((1 << 28) - 1);
1357                u32 *buf = (u32 *)(ebase + 0x200);
1358                unsigned int k0 = 26;
1359                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1360                        uasm_i_j(&buf, handler & ~jump_mask);
1361                        uasm_i_nop(&buf);
1362                } else {
1363                        UASM_i_LA(&buf, k0, handler);
1364                        uasm_i_jr(&buf, k0);
1365                        uasm_i_nop(&buf);
1366                }
1367                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1368        }
1369        return (void *)old_handler;
1370}
1371
1372static asmlinkage void do_default_vi(void)
1373{
1374        show_regs(get_irq_regs());
1375        panic("Caught unexpected vectored interrupt.");
1376}
1377
1378static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1379{
1380        unsigned long handler;
1381        unsigned long old_handler = vi_handlers[n];
1382        int srssets = current_cpu_data.srsets;
1383        u32 *w;
1384        unsigned char *b;
1385
1386        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1387
1388        if (addr == NULL) {
1389                handler = (unsigned long) do_default_vi;
1390                srs = 0;
1391        } else
1392                handler = (unsigned long) addr;
1393        vi_handlers[n] = (unsigned long) addr;
1394
1395        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1396
1397        if (srs >= srssets)
1398                panic("Shadow register set %d not supported", srs);
1399
1400        if (cpu_has_veic) {
1401                if (board_bind_eic_interrupt)
1402                        board_bind_eic_interrupt(n, srs);
1403        } else if (cpu_has_vint) {
1404                /* SRSMap is only defined if shadow sets are implemented */
1405                if (srssets > 1)
1406                        change_c0_srsmap(0xf << n*4, srs << n*4);
1407        }
1408
1409        if (srs == 0) {
1410                /*
1411                 * If no shadow set is selected then use the default handler
1412                 * that does normal register saving and a standard interrupt exit
1413                 */
1414
1415                extern char except_vec_vi, except_vec_vi_lui;
1416                extern char except_vec_vi_ori, except_vec_vi_end;
1417                extern char rollback_except_vec_vi;
1418                char *vec_start = (cpu_wait == r4k_wait) ?
1419                        &rollback_except_vec_vi : &except_vec_vi;
1420#ifdef CONFIG_MIPS_MT_SMTC
1421                /*
1422                 * We need to provide the SMTC vectored interrupt handler
1423                 * not only with the address of the handler, but with the
1424                 * Status.IM bit to be masked before going there.
1425                 */
1426                extern char except_vec_vi_mori;
1427                const int mori_offset = &except_vec_vi_mori - vec_start;
1428#endif /* CONFIG_MIPS_MT_SMTC */
1429                const int handler_len = &except_vec_vi_end - vec_start;
1430                const int lui_offset = &except_vec_vi_lui - vec_start;
1431                const int ori_offset = &except_vec_vi_ori - vec_start;
1432
1433                if (handler_len > VECTORSPACING) {
1434                        /*
1435                         * Sigh... panicing won't help as the console
1436                         * is probably not configured :(
1437                         */
1438                        panic("VECTORSPACING too small");
1439                }
1440
1441                memcpy(b, vec_start, handler_len);
1442#ifdef CONFIG_MIPS_MT_SMTC
1443                BUG_ON(n > 7);  /* Vector index %d exceeds SMTC maximum. */
1444
1445                w = (u32 *)(b + mori_offset);
1446                *w = (*w & 0xffff0000) | (0x100 << n);
1447#endif /* CONFIG_MIPS_MT_SMTC */
1448                w = (u32 *)(b + lui_offset);
1449                *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1450                w = (u32 *)(b + ori_offset);
1451                *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1452                local_flush_icache_range((unsigned long)b,
1453                                         (unsigned long)(b+handler_len));
1454        }
1455        else {
1456                /*
1457                 * In other cases jump directly to the interrupt handler
1458                 *
1459                 * It is the handlers responsibility to save registers if required
1460                 * (eg hi/lo) and return from the exception using "eret"
1461                 */
1462                w = (u32 *)b;
1463                *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1464                *w = 0;
1465                local_flush_icache_range((unsigned long)b,
1466                                         (unsigned long)(b+8));
1467        }
1468
1469        return (void *)old_handler;
1470}
1471
1472void *set_vi_handler(int n, vi_handler_t addr)
1473{
1474        return set_vi_srs_handler(n, addr, 0);
1475}
1476
1477extern void cpu_cache_init(void);
1478extern void tlb_init(void);
1479extern void flush_tlb_handlers(void);
1480
1481/*
1482 * Timer interrupt
1483 */
1484int cp0_compare_irq;
1485int cp0_compare_irq_shift;
1486
1487/*
1488 * Performance counter IRQ or -1 if shared with timer
1489 */
1490int cp0_perfcount_irq;
1491EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1492
1493static int __cpuinitdata noulri;
1494
1495static int __init ulri_disable(char *s)
1496{
1497        pr_info("Disabling ulri\n");
1498        noulri = 1;
1499
1500        return 1;
1501}
1502__setup("noulri", ulri_disable);
1503
1504void __cpuinit per_cpu_trap_init(void)
1505{
1506        unsigned int cpu = smp_processor_id();
1507        unsigned int status_set = ST0_CU0;
1508        unsigned int hwrena = cpu_hwrena_impl_bits;
1509#ifdef CONFIG_MIPS_MT_SMTC
1510        int secondaryTC = 0;
1511        int bootTC = (cpu == 0);
1512
1513        /*
1514         * Only do per_cpu_trap_init() for first TC of Each VPE.
1515         * Note that this hack assumes that the SMTC init code
1516         * assigns TCs consecutively and in ascending order.
1517         */
1518
1519        if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1520            ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1521                secondaryTC = 1;
1522#endif /* CONFIG_MIPS_MT_SMTC */
1523
1524        /*
1525         * Disable coprocessors and select 32-bit or 64-bit addressing
1526         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1527         * flag that some firmware may have left set and the TS bit (for
1528         * IP27).  Set XX for ISA IV code to work.
1529         */
1530#ifdef CONFIG_64BIT
1531        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1532#endif
1533        if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1534                status_set |= ST0_XX;
1535        if (cpu_has_dsp)
1536                status_set |= ST0_MX;
1537
1538        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1539                         status_set);
1540
1541        if (cpu_has_mips_r2)
1542                hwrena |= 0x0000000f;
1543
1544        if (!noulri && cpu_has_userlocal)
1545                hwrena |= (1 << 29);
1546
1547        if (hwrena)
1548                write_c0_hwrena(hwrena);
1549
1550#ifdef CONFIG_MIPS_MT_SMTC
1551        if (!secondaryTC) {
1552#endif /* CONFIG_MIPS_MT_SMTC */
1553
1554        if (cpu_has_veic || cpu_has_vint) {
1555                unsigned long sr = set_c0_status(ST0_BEV);
1556                write_c0_ebase(ebase);
1557                write_c0_status(sr);
1558                /* Setting vector spacing enables EI/VI mode  */
1559                change_c0_intctl(0x3e0, VECTORSPACING);
1560        }
1561        if (cpu_has_divec) {
1562                if (cpu_has_mipsmt) {
1563                        unsigned int vpflags = dvpe();
1564                        set_c0_cause(CAUSEF_IV);
1565                        evpe(vpflags);
1566                } else
1567                        set_c0_cause(CAUSEF_IV);
1568        }
1569
1570        /*
1571         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1572         *
1573         *  o read IntCtl.IPTI to determine the timer interrupt
1574         *  o read IntCtl.IPPCI to determine the performance counter interrupt
1575         */
1576        if (cpu_has_mips_r2) {
1577                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1578                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1579                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1580                if (cp0_perfcount_irq == cp0_compare_irq)
1581                        cp0_perfcount_irq = -1;
1582        } else {
1583                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1584                cp0_compare_irq_shift = cp0_compare_irq;
1585                cp0_perfcount_irq = -1;
1586        }
1587
1588#ifdef CONFIG_MIPS_MT_SMTC
1589        }
1590#endif /* CONFIG_MIPS_MT_SMTC */
1591
1592        cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1593
1594        atomic_inc(&init_mm.mm_count);
1595        current->active_mm = &init_mm;
1596        BUG_ON(current->mm);
1597        enter_lazy_tlb(&init_mm, current);
1598
1599#ifdef CONFIG_MIPS_MT_SMTC
1600        if (bootTC) {
1601#endif /* CONFIG_MIPS_MT_SMTC */
1602                cpu_cache_init();
1603                tlb_init();
1604#ifdef CONFIG_MIPS_MT_SMTC
1605        } else if (!secondaryTC) {
1606                /*
1607                 * First TC in non-boot VPE must do subset of tlb_init()
1608                 * for MMU countrol registers.
1609                 */
1610                write_c0_pagemask(PM_DEFAULT_MASK);
1611                write_c0_wired(0);
1612        }
1613#endif /* CONFIG_MIPS_MT_SMTC */
1614        TLBMISS_HANDLER_SETUP();
1615}
1616
1617/* Install CPU exception handler */
1618void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1619{
1620        memcpy((void *)(ebase + offset), addr, size);
1621        local_flush_icache_range(ebase + offset, ebase + offset + size);
1622}
1623
1624static char panic_null_cerr[] __cpuinitdata =
1625        "Trying to set NULL cache error exception handler";
1626
1627/*
1628 * Install uncached CPU exception handler.
1629 * This is suitable only for the cache error exception which is the only
1630 * exception handler that is being run uncached.
1631 */
1632void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1633        unsigned long size)
1634{
1635        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1636
1637        if (!addr)
1638                panic(panic_null_cerr);
1639
1640        memcpy((void *)(uncached_ebase + offset), addr, size);
1641}
1642
1643static int __initdata rdhwr_noopt;
1644static int __init set_rdhwr_noopt(char *str)
1645{
1646        rdhwr_noopt = 1;
1647        return 1;
1648}
1649
1650__setup("rdhwr_noopt", set_rdhwr_noopt);
1651
1652void __init trap_init(void)
1653{
1654        extern char except_vec3_generic, except_vec3_r4000;
1655        extern char except_vec4;
1656        unsigned long i;
1657        int rollback;
1658
1659        check_wait();
1660        rollback = (cpu_wait == r4k_wait);
1661
1662#if defined(CONFIG_KGDB)
1663        if (kgdb_early_setup)
1664                return; /* Already done */
1665#endif
1666
1667        if (cpu_has_veic || cpu_has_vint) {
1668                unsigned long size = 0x200 + VECTORSPACING*64;
1669                ebase = (unsigned long)
1670                        __alloc_bootmem(size, 1 << fls(size), 0);
1671        } else {
1672                ebase = CKSEG0;
1673                if (cpu_has_mips_r2)
1674                        ebase += (read_c0_ebase() & 0x3ffff000);
1675        }
1676
1677        per_cpu_trap_init();
1678
1679        /*
1680         * Copy the generic exception handlers to their final destination.
1681         * This will be overriden later as suitable for a particular
1682         * configuration.
1683         */
1684        set_handler(0x180, &except_vec3_generic, 0x80);
1685
1686        /*
1687         * Setup default vectors
1688         */
1689        for (i = 0; i <= 31; i++)
1690                set_except_vector(i, handle_reserved);
1691
1692        /*
1693         * Copy the EJTAG debug exception vector handler code to it's final
1694         * destination.
1695         */
1696        if (cpu_has_ejtag && board_ejtag_handler_setup)
1697                board_ejtag_handler_setup();
1698
1699        /*
1700         * Only some CPUs have the watch exceptions.
1701         */
1702        if (cpu_has_watch)
1703                set_except_vector(23, handle_watch);
1704
1705        /*
1706         * Initialise interrupt handlers
1707         */
1708        if (cpu_has_veic || cpu_has_vint) {
1709                int nvec = cpu_has_veic ? 64 : 8;
1710                for (i = 0; i < nvec; i++)
1711                        set_vi_handler(i, NULL);
1712        }
1713        else if (cpu_has_divec)
1714                set_handler(0x200, &except_vec4, 0x8);
1715
1716        /*
1717         * Some CPUs can enable/disable for cache parity detection, but does
1718         * it different ways.
1719         */
1720        parity_protection_init();
1721
1722        /*
1723         * The Data Bus Errors / Instruction Bus Errors are signaled
1724         * by external hardware.  Therefore these two exceptions
1725         * may have board specific handlers.
1726         */
1727        if (board_be_init)
1728                board_be_init();
1729
1730        set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1731        set_except_vector(1, handle_tlbm);
1732        set_except_vector(2, handle_tlbl);
1733        set_except_vector(3, handle_tlbs);
1734
1735        set_except_vector(4, handle_adel);
1736        set_except_vector(5, handle_ades);
1737
1738        set_except_vector(6, handle_ibe);
1739        set_except_vector(7, handle_dbe);
1740
1741        set_except_vector(8, handle_sys);
1742        set_except_vector(9, handle_bp);
1743        set_except_vector(10, rdhwr_noopt ? handle_ri :
1744                          (cpu_has_vtag_icache ?
1745                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1746        set_except_vector(11, handle_cpu);
1747        set_except_vector(12, handle_ov);
1748        set_except_vector(13, handle_tr);
1749
1750        if (current_cpu_type() == CPU_R6000 ||
1751            current_cpu_type() == CPU_R6000A) {
1752                /*
1753                 * The R6000 is the only R-series CPU that features a machine
1754                 * check exception (similar to the R4000 cache error) and
1755                 * unaligned ldc1/sdc1 exception.  The handlers have not been
1756                 * written yet.  Well, anyway there is no R6000 machine on the
1757                 * current list of targets for Linux/MIPS.
1758                 * (Duh, crap, there is someone with a triple R6k machine)
1759                 */
1760                //set_except_vector(14, handle_mc);
1761                //set_except_vector(15, handle_ndc);
1762        }
1763
1764
1765        if (board_nmi_handler_setup)
1766                board_nmi_handler_setup();
1767
1768        if (cpu_has_fpu && !cpu_has_nofpuex)
1769                set_except_vector(15, handle_fpe);
1770
1771        set_except_vector(22, handle_mdmx);
1772
1773        if (cpu_has_mcheck)
1774                set_except_vector(24, handle_mcheck);
1775
1776        if (cpu_has_mipsmt)
1777                set_except_vector(25, handle_mt);
1778
1779        set_except_vector(26, handle_dsp);
1780
1781        if (cpu_has_vce)
1782                /* Special exception: R4[04]00 uses also the divec space. */
1783                memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1784        else if (cpu_has_4kex)
1785                memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1786        else
1787                memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1788
1789        local_flush_icache_range(ebase, ebase + 0x400);
1790        flush_tlb_handlers();
1791
1792        sort_extable(__start___dbe_table, __stop___dbe_table);
1793
1794        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
1795}
1796