linux/arch/s390/include/asm/bitops.h
<<
>>
Prefs
   1#ifndef _S390_BITOPS_H
   2#define _S390_BITOPS_H
   3
   4/*
   5 *  include/asm-s390/bitops.h
   6 *
   7 *  S390 version
   8 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
   9 *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
  10 *
  11 *  Derived from "include/asm-i386/bitops.h"
  12 *    Copyright (C) 1992, Linus Torvalds
  13 *
  14 */
  15
  16#ifdef __KERNEL__
  17
  18#ifndef _LINUX_BITOPS_H
  19#error only <linux/bitops.h> can be included directly
  20#endif
  21
  22#include <linux/compiler.h>
  23
  24/*
  25 * 32 bit bitops format:
  26 * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
  27 * bit 32 is the LSB of *(addr+4). That combined with the
  28 * big endian byte order on S390 give the following bit
  29 * order in memory:
  30 *    1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
  31 *    0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
  32 * after that follows the next long with bit numbers
  33 *    3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
  34 *    2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
  35 * The reason for this bit ordering is the fact that
  36 * in the architecture independent code bits operations
  37 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
  38 * with operation of the form "set_bit(bitnr, flags)".
  39 *
  40 * 64 bit bitops format:
  41 * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
  42 * bit 64 is the LSB of *(addr+8). That combined with the
  43 * big endian byte order on S390 give the following bit
  44 * order in memory:
  45 *    3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
  46 *    2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
  47 *    1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
  48 *    0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
  49 * after that follows the next long with bit numbers
  50 *    7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
  51 *    6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
  52 *    5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
  53 *    4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
  54 * The reason for this bit ordering is the fact that
  55 * in the architecture independent code bits operations
  56 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
  57 * with operation of the form "set_bit(bitnr, flags)".
  58 */
  59
  60/* bitmap tables from arch/s390/kernel/bitmap.c */
  61extern const char _oi_bitmap[];
  62extern const char _ni_bitmap[];
  63extern const char _zb_findmap[];
  64extern const char _sb_findmap[];
  65
  66#ifndef __s390x__
  67
  68#define __BITOPS_ALIGN          3
  69#define __BITOPS_WORDSIZE       32
  70#define __BITOPS_OR             "or"
  71#define __BITOPS_AND            "nr"
  72#define __BITOPS_XOR            "xr"
  73
  74#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
  75        asm volatile(                                           \
  76                "       l       %0,%2\n"                        \
  77                "0:     lr      %1,%0\n"                        \
  78                __op_string "   %1,%3\n"                        \
  79                "       cs      %0,%1,%2\n"                     \
  80                "       jl      0b"                             \
  81                : "=&d" (__old), "=&d" (__new),                 \
  82                  "=Q" (*(unsigned long *) __addr)              \
  83                : "d" (__val), "Q" (*(unsigned long *) __addr)  \
  84                : "cc");
  85
  86#else /* __s390x__ */
  87
  88#define __BITOPS_ALIGN          7
  89#define __BITOPS_WORDSIZE       64
  90#define __BITOPS_OR             "ogr"
  91#define __BITOPS_AND            "ngr"
  92#define __BITOPS_XOR            "xgr"
  93
  94#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
  95        asm volatile(                                           \
  96                "       lg      %0,%2\n"                        \
  97                "0:     lgr     %1,%0\n"                        \
  98                __op_string "   %1,%3\n"                        \
  99                "       csg     %0,%1,%2\n"                     \
 100                "       jl      0b"                             \
 101                : "=&d" (__old), "=&d" (__new),                 \
 102                  "=Q" (*(unsigned long *) __addr)              \
 103                : "d" (__val), "Q" (*(unsigned long *) __addr)  \
 104                : "cc");
 105
 106#endif /* __s390x__ */
 107
 108#define __BITOPS_WORDS(bits) (((bits)+__BITOPS_WORDSIZE-1)/__BITOPS_WORDSIZE)
 109#define __BITOPS_BARRIER() asm volatile("" : : : "memory")
 110
 111#ifdef CONFIG_SMP
 112/*
 113 * SMP safe set_bit routine based on compare and swap (CS)
 114 */
 115static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
 116{
 117        unsigned long addr, old, new, mask;
 118
 119        addr = (unsigned long) ptr;
 120        /* calculate address for CS */
 121        addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
 122        /* make OR mask */
 123        mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
 124        /* Do the atomic update. */
 125        __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
 126}
 127
 128/*
 129 * SMP safe clear_bit routine based on compare and swap (CS)
 130 */
 131static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
 132{
 133        unsigned long addr, old, new, mask;
 134
 135        addr = (unsigned long) ptr;
 136        /* calculate address for CS */
 137        addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
 138        /* make AND mask */
 139        mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
 140        /* Do the atomic update. */
 141        __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
 142}
 143
 144/*
 145 * SMP safe change_bit routine based on compare and swap (CS)
 146 */
 147static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
 148{
 149        unsigned long addr, old, new, mask;
 150
 151        addr = (unsigned long) ptr;
 152        /* calculate address for CS */
 153        addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
 154        /* make XOR mask */
 155        mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
 156        /* Do the atomic update. */
 157        __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
 158}
 159
 160/*
 161 * SMP safe test_and_set_bit routine based on compare and swap (CS)
 162 */
 163static inline int
 164test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
 165{
 166        unsigned long addr, old, new, mask;
 167
 168        addr = (unsigned long) ptr;
 169        /* calculate address for CS */
 170        addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
 171        /* make OR/test mask */
 172        mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
 173        /* Do the atomic update. */
 174        __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
 175        __BITOPS_BARRIER();
 176        return (old & mask) != 0;
 177}
 178
 179/*
 180 * SMP safe test_and_clear_bit routine based on compare and swap (CS)
 181 */
 182static inline int
 183test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
 184{
 185        unsigned long addr, old, new, mask;
 186
 187        addr = (unsigned long) ptr;
 188        /* calculate address for CS */
 189        addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
 190        /* make AND/test mask */
 191        mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
 192        /* Do the atomic update. */
 193        __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
 194        __BITOPS_BARRIER();
 195        return (old ^ new) != 0;
 196}
 197
 198/*
 199 * SMP safe test_and_change_bit routine based on compare and swap (CS) 
 200 */
 201static inline int
 202test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
 203{
 204        unsigned long addr, old, new, mask;
 205
 206        addr = (unsigned long) ptr;
 207        /* calculate address for CS */
 208        addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
 209        /* make XOR/test mask */
 210        mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
 211        /* Do the atomic update. */
 212        __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
 213        __BITOPS_BARRIER();
 214        return (old & mask) != 0;
 215}
 216#endif /* CONFIG_SMP */
 217
 218/*
 219 * fast, non-SMP set_bit routine
 220 */
 221static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
 222{
 223        unsigned long addr;
 224
 225        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 226        asm volatile(
 227                "       oc      %O0(1,%R0),%1"
 228                : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
 229}
 230
 231static inline void 
 232__constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
 233{
 234        unsigned long addr;
 235
 236        addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 237        *(unsigned char *) addr |= 1 << (nr & 7);
 238}
 239
 240#define set_bit_simple(nr,addr) \
 241(__builtin_constant_p((nr)) ? \
 242 __constant_set_bit((nr),(addr)) : \
 243 __set_bit((nr),(addr)) )
 244
 245/*
 246 * fast, non-SMP clear_bit routine
 247 */
 248static inline void 
 249__clear_bit(unsigned long nr, volatile unsigned long *ptr)
 250{
 251        unsigned long addr;
 252
 253        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 254        asm volatile(
 255                "       nc      %O0(1,%R0),%1"
 256                : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" );
 257}
 258
 259static inline void 
 260__constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
 261{
 262        unsigned long addr;
 263
 264        addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 265        *(unsigned char *) addr &= ~(1 << (nr & 7));
 266}
 267
 268#define clear_bit_simple(nr,addr) \
 269(__builtin_constant_p((nr)) ? \
 270 __constant_clear_bit((nr),(addr)) : \
 271 __clear_bit((nr),(addr)) )
 272
 273/* 
 274 * fast, non-SMP change_bit routine 
 275 */
 276static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
 277{
 278        unsigned long addr;
 279
 280        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 281        asm volatile(
 282                "       xc      %O0(1,%R0),%1"
 283                : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
 284}
 285
 286static inline void 
 287__constant_change_bit(const unsigned long nr, volatile unsigned long *ptr) 
 288{
 289        unsigned long addr;
 290
 291        addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 292        *(unsigned char *) addr ^= 1 << (nr & 7);
 293}
 294
 295#define change_bit_simple(nr,addr) \
 296(__builtin_constant_p((nr)) ? \
 297 __constant_change_bit((nr),(addr)) : \
 298 __change_bit((nr),(addr)) )
 299
 300/*
 301 * fast, non-SMP test_and_set_bit routine
 302 */
 303static inline int
 304test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
 305{
 306        unsigned long addr;
 307        unsigned char ch;
 308
 309        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 310        ch = *(unsigned char *) addr;
 311        asm volatile(
 312                "       oc      %O0(1,%R0),%1"
 313                : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
 314                : "cc", "memory");
 315        return (ch >> (nr & 7)) & 1;
 316}
 317#define __test_and_set_bit(X,Y)         test_and_set_bit_simple(X,Y)
 318
 319/*
 320 * fast, non-SMP test_and_clear_bit routine
 321 */
 322static inline int
 323test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
 324{
 325        unsigned long addr;
 326        unsigned char ch;
 327
 328        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 329        ch = *(unsigned char *) addr;
 330        asm volatile(
 331                "       nc      %O0(1,%R0),%1"
 332                : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7])
 333                : "cc", "memory");
 334        return (ch >> (nr & 7)) & 1;
 335}
 336#define __test_and_clear_bit(X,Y)       test_and_clear_bit_simple(X,Y)
 337
 338/*
 339 * fast, non-SMP test_and_change_bit routine
 340 */
 341static inline int
 342test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
 343{
 344        unsigned long addr;
 345        unsigned char ch;
 346
 347        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 348        ch = *(unsigned char *) addr;
 349        asm volatile(
 350                "       xc      %O0(1,%R0),%1"
 351                : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
 352                : "cc", "memory");
 353        return (ch >> (nr & 7)) & 1;
 354}
 355#define __test_and_change_bit(X,Y)      test_and_change_bit_simple(X,Y)
 356
 357#ifdef CONFIG_SMP
 358#define set_bit             set_bit_cs
 359#define clear_bit           clear_bit_cs
 360#define change_bit          change_bit_cs
 361#define test_and_set_bit    test_and_set_bit_cs
 362#define test_and_clear_bit  test_and_clear_bit_cs
 363#define test_and_change_bit test_and_change_bit_cs
 364#else
 365#define set_bit             set_bit_simple
 366#define clear_bit           clear_bit_simple
 367#define change_bit          change_bit_simple
 368#define test_and_set_bit    test_and_set_bit_simple
 369#define test_and_clear_bit  test_and_clear_bit_simple
 370#define test_and_change_bit test_and_change_bit_simple
 371#endif
 372
 373
 374/*
 375 * This routine doesn't need to be atomic.
 376 */
 377
 378static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
 379{
 380        unsigned long addr;
 381        unsigned char ch;
 382
 383        addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
 384        ch = *(volatile unsigned char *) addr;
 385        return (ch >> (nr & 7)) & 1;
 386}
 387
 388static inline int 
 389__constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
 390    return (((volatile char *) addr)
 391            [(nr^(__BITOPS_WORDSIZE-8))>>3] & (1<<(nr&7))) != 0;
 392}
 393
 394#define test_bit(nr,addr) \
 395(__builtin_constant_p((nr)) ? \
 396 __constant_test_bit((nr),(addr)) : \
 397 __test_bit((nr),(addr)) )
 398
 399/*
 400 * Optimized find bit helper functions.
 401 */
 402
 403/**
 404 * __ffz_word_loop - find byte offset of first long != -1UL
 405 * @addr: pointer to array of unsigned long
 406 * @size: size of the array in bits
 407 */
 408static inline unsigned long __ffz_word_loop(const unsigned long *addr,
 409                                            unsigned long size)
 410{
 411        typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
 412        unsigned long bytes = 0;
 413
 414        asm volatile(
 415#ifndef __s390x__
 416                "       ahi     %1,-1\n"
 417                "       sra     %1,5\n"
 418                "       jz      1f\n"
 419                "0:     c       %2,0(%0,%3)\n"
 420                "       jne     1f\n"
 421                "       la      %0,4(%0)\n"
 422                "       brct    %1,0b\n"
 423                "1:\n"
 424#else
 425                "       aghi    %1,-1\n"
 426                "       srag    %1,%1,6\n"
 427                "       jz      1f\n"
 428                "0:     cg      %2,0(%0,%3)\n"
 429                "       jne     1f\n"
 430                "       la      %0,8(%0)\n"
 431                "       brct    %1,0b\n"
 432                "1:\n"
 433#endif
 434                : "+&a" (bytes), "+&d" (size)
 435                : "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr)
 436                : "cc" );
 437        return bytes;
 438}
 439
 440/**
 441 * __ffs_word_loop - find byte offset of first long != 0UL
 442 * @addr: pointer to array of unsigned long
 443 * @size: size of the array in bits
 444 */
 445static inline unsigned long __ffs_word_loop(const unsigned long *addr,
 446                                            unsigned long size)
 447{
 448        typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
 449        unsigned long bytes = 0;
 450
 451        asm volatile(
 452#ifndef __s390x__
 453                "       ahi     %1,-1\n"
 454                "       sra     %1,5\n"
 455                "       jz      1f\n"
 456                "0:     c       %2,0(%0,%3)\n"
 457                "       jne     1f\n"
 458                "       la      %0,4(%0)\n"
 459                "       brct    %1,0b\n"
 460                "1:\n"
 461#else
 462                "       aghi    %1,-1\n"
 463                "       srag    %1,%1,6\n"
 464                "       jz      1f\n"
 465                "0:     cg      %2,0(%0,%3)\n"
 466                "       jne     1f\n"
 467                "       la      %0,8(%0)\n"
 468                "       brct    %1,0b\n"
 469                "1:\n"
 470#endif
 471                : "+&a" (bytes), "+&a" (size)
 472                : "d" (0UL), "a" (addr), "m" (*(addrtype *) addr)
 473                : "cc" );
 474        return bytes;
 475}
 476
 477/**
 478 * __ffz_word - add number of the first unset bit
 479 * @nr: base value the bit number is added to
 480 * @word: the word that is searched for unset bits
 481 */
 482static inline unsigned long __ffz_word(unsigned long nr, unsigned long word)
 483{
 484#ifdef __s390x__
 485        if ((word & 0xffffffff) == 0xffffffff) {
 486                word >>= 32;
 487                nr += 32;
 488        }
 489#endif
 490        if ((word & 0xffff) == 0xffff) {
 491                word >>= 16;
 492                nr += 16;
 493        }
 494        if ((word & 0xff) == 0xff) {
 495                word >>= 8;
 496                nr += 8;
 497        }
 498        return nr + _zb_findmap[(unsigned char) word];
 499}
 500
 501/**
 502 * __ffs_word - add number of the first set bit
 503 * @nr: base value the bit number is added to
 504 * @word: the word that is searched for set bits
 505 */
 506static inline unsigned long __ffs_word(unsigned long nr, unsigned long word)
 507{
 508#ifdef __s390x__
 509        if ((word & 0xffffffff) == 0) {
 510                word >>= 32;
 511                nr += 32;
 512        }
 513#endif
 514        if ((word & 0xffff) == 0) {
 515                word >>= 16;
 516                nr += 16;
 517        }
 518        if ((word & 0xff) == 0) {
 519                word >>= 8;
 520                nr += 8;
 521        }
 522        return nr + _sb_findmap[(unsigned char) word];
 523}
 524
 525
 526/**
 527 * __load_ulong_be - load big endian unsigned long
 528 * @p: pointer to array of unsigned long
 529 * @offset: byte offset of source value in the array
 530 */
 531static inline unsigned long __load_ulong_be(const unsigned long *p,
 532                                            unsigned long offset)
 533{
 534        p = (unsigned long *)((unsigned long) p + offset);
 535        return *p;
 536}
 537
 538/**
 539 * __load_ulong_le - load little endian unsigned long
 540 * @p: pointer to array of unsigned long
 541 * @offset: byte offset of source value in the array
 542 */
 543static inline unsigned long __load_ulong_le(const unsigned long *p,
 544                                            unsigned long offset)
 545{
 546        unsigned long word;
 547
 548        p = (unsigned long *)((unsigned long) p + offset);
 549#ifndef __s390x__
 550        asm volatile(
 551                "       ic      %0,%O1(%R1)\n"
 552                "       icm     %0,2,%O1+1(%R1)\n"
 553                "       icm     %0,4,%O1+2(%R1)\n"
 554                "       icm     %0,8,%O1+3(%R1)"
 555                : "=&d" (word) : "Q" (*p) : "cc");
 556#else
 557        asm volatile(
 558                "       lrvg    %0,%1"
 559                : "=d" (word) : "m" (*p) );
 560#endif
 561        return word;
 562}
 563
 564/*
 565 * The various find bit functions.
 566 */
 567
 568/*
 569 * ffz - find first zero in word.
 570 * @word: The word to search
 571 *
 572 * Undefined if no zero exists, so code should check against ~0UL first.
 573 */
 574static inline unsigned long ffz(unsigned long word)
 575{
 576        return __ffz_word(0, word);
 577}
 578
 579/**
 580 * __ffs - find first bit in word.
 581 * @word: The word to search
 582 *
 583 * Undefined if no bit exists, so code should check against 0 first.
 584 */
 585static inline unsigned long __ffs (unsigned long word)
 586{
 587        return __ffs_word(0, word);
 588}
 589
 590/**
 591 * ffs - find first bit set
 592 * @x: the word to search
 593 *
 594 * This is defined the same way as
 595 * the libc and compiler builtin ffs routines, therefore
 596 * differs in spirit from the above ffz (man ffs).
 597 */
 598static inline int ffs(int x)
 599{
 600        if (!x)
 601                return 0;
 602        return __ffs_word(1, x);
 603}
 604
 605/**
 606 * find_first_zero_bit - find the first zero bit in a memory region
 607 * @addr: The address to start the search at
 608 * @size: The maximum size to search
 609 *
 610 * Returns the bit-number of the first zero bit, not the number of the byte
 611 * containing a bit.
 612 */
 613static inline unsigned long find_first_zero_bit(const unsigned long *addr,
 614                                                unsigned long size)
 615{
 616        unsigned long bytes, bits;
 617
 618        if (!size)
 619                return 0;
 620        bytes = __ffz_word_loop(addr, size);
 621        bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes));
 622        return (bits < size) ? bits : size;
 623}
 624
 625/**
 626 * find_first_bit - find the first set bit in a memory region
 627 * @addr: The address to start the search at
 628 * @size: The maximum size to search
 629 *
 630 * Returns the bit-number of the first set bit, not the number of the byte
 631 * containing a bit.
 632 */
 633static inline unsigned long find_first_bit(const unsigned long * addr,
 634                                           unsigned long size)
 635{
 636        unsigned long bytes, bits;
 637
 638        if (!size)
 639                return 0;
 640        bytes = __ffs_word_loop(addr, size);
 641        bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes));
 642        return (bits < size) ? bits : size;
 643}
 644
 645/**
 646 * find_next_zero_bit - find the first zero bit in a memory region
 647 * @addr: The address to base the search on
 648 * @offset: The bitnumber to start searching at
 649 * @size: The maximum size to search
 650 */
 651static inline int find_next_zero_bit (const unsigned long * addr,
 652                                      unsigned long size,
 653                                      unsigned long offset)
 654{
 655        const unsigned long *p;
 656        unsigned long bit, set;
 657
 658        if (offset >= size)
 659                return size;
 660        bit = offset & (__BITOPS_WORDSIZE - 1);
 661        offset -= bit;
 662        size -= offset;
 663        p = addr + offset / __BITOPS_WORDSIZE;
 664        if (bit) {
 665                /*
 666                 * __ffz_word returns __BITOPS_WORDSIZE
 667                 * if no zero bit is present in the word.
 668                 */
 669                set = __ffz_word(bit, *p >> bit);
 670                if (set >= size)
 671                        return size + offset;
 672                if (set < __BITOPS_WORDSIZE)
 673                        return set + offset;
 674                offset += __BITOPS_WORDSIZE;
 675                size -= __BITOPS_WORDSIZE;
 676                p++;
 677        }
 678        return offset + find_first_zero_bit(p, size);
 679}
 680
 681/**
 682 * find_next_bit - find the first set bit in a memory region
 683 * @addr: The address to base the search on
 684 * @offset: The bitnumber to start searching at
 685 * @size: The maximum size to search
 686 */
 687static inline int find_next_bit (const unsigned long * addr,
 688                                 unsigned long size,
 689                                 unsigned long offset)
 690{
 691        const unsigned long *p;
 692        unsigned long bit, set;
 693
 694        if (offset >= size)
 695                return size;
 696        bit = offset & (__BITOPS_WORDSIZE - 1);
 697        offset -= bit;
 698        size -= offset;
 699        p = addr + offset / __BITOPS_WORDSIZE;
 700        if (bit) {
 701                /*
 702                 * __ffs_word returns __BITOPS_WORDSIZE
 703                 * if no one bit is present in the word.
 704                 */
 705                set = __ffs_word(0, *p & (~0UL << bit));
 706                if (set >= size)
 707                        return size + offset;
 708                if (set < __BITOPS_WORDSIZE)
 709                        return set + offset;
 710                offset += __BITOPS_WORDSIZE;
 711                size -= __BITOPS_WORDSIZE;
 712                p++;
 713        }
 714        return offset + find_first_bit(p, size);
 715}
 716
 717/*
 718 * Every architecture must define this function. It's the fastest
 719 * way of searching a 140-bit bitmap where the first 100 bits are
 720 * unlikely to be set. It's guaranteed that at least one of the 140
 721 * bits is cleared.
 722 */
 723static inline int sched_find_first_bit(unsigned long *b)
 724{
 725        return find_first_bit(b, 140);
 726}
 727
 728#include <asm-generic/bitops/fls.h>
 729#include <asm-generic/bitops/__fls.h>
 730#include <asm-generic/bitops/fls64.h>
 731
 732#include <asm-generic/bitops/hweight.h>
 733#include <asm-generic/bitops/lock.h>
 734
 735/*
 736 * ATTENTION: intel byte ordering convention for ext2 and minix !!
 737 * bit 0 is the LSB of addr; bit 31 is the MSB of addr;
 738 * bit 32 is the LSB of (addr+4).
 739 * That combined with the little endian byte order of Intel gives the
 740 * following bit order in memory:
 741 *    07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
 742 *    23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
 743 */
 744
 745static inline void __set_bit_le(unsigned long nr, void *addr)
 746{
 747        __set_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 748}
 749
 750static inline void __clear_bit_le(unsigned long nr, void *addr)
 751{
 752        __clear_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 753}
 754
 755static inline int __test_and_set_bit_le(unsigned long nr, void *addr)
 756{
 757        return __test_and_set_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 758}
 759
 760static inline int test_and_set_bit_le(unsigned long nr, void *addr)
 761{
 762        return test_and_set_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 763}
 764
 765static inline int __test_and_clear_bit_le(unsigned long nr, void *addr)
 766{
 767        return __test_and_clear_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 768}
 769
 770static inline int test_and_clear_bit_le(unsigned long nr, void *addr)
 771{
 772        return test_and_clear_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 773}
 774
 775static inline int test_bit_le(unsigned long nr, const void *addr)
 776{
 777        return test_bit(nr ^ (__BITOPS_WORDSIZE - 8), addr);
 778}
 779
 780static inline int find_first_zero_bit_le(void *vaddr, unsigned int size)
 781{
 782        unsigned long bytes, bits;
 783
 784        if (!size)
 785                return 0;
 786        bytes = __ffz_word_loop(vaddr, size);
 787        bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes));
 788        return (bits < size) ? bits : size;
 789}
 790
 791static inline int find_next_zero_bit_le(void *vaddr, unsigned long size,
 792                                          unsigned long offset)
 793{
 794        unsigned long *addr = vaddr, *p;
 795        unsigned long bit, set;
 796
 797        if (offset >= size)
 798                return size;
 799        bit = offset & (__BITOPS_WORDSIZE - 1);
 800        offset -= bit;
 801        size -= offset;
 802        p = addr + offset / __BITOPS_WORDSIZE;
 803        if (bit) {
 804                /*
 805                 * s390 version of ffz returns __BITOPS_WORDSIZE
 806                 * if no zero bit is present in the word.
 807                 */
 808                set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit);
 809                if (set >= size)
 810                        return size + offset;
 811                if (set < __BITOPS_WORDSIZE)
 812                        return set + offset;
 813                offset += __BITOPS_WORDSIZE;
 814                size -= __BITOPS_WORDSIZE;
 815                p++;
 816        }
 817        return offset + find_first_zero_bit_le(p, size);
 818}
 819
 820static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size)
 821{
 822        unsigned long bytes, bits;
 823
 824        if (!size)
 825                return 0;
 826        bytes = __ffs_word_loop(vaddr, size);
 827        bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes));
 828        return (bits < size) ? bits : size;
 829}
 830
 831static inline int find_next_bit_le(void *vaddr, unsigned long size,
 832                                     unsigned long offset)
 833{
 834        unsigned long *addr = vaddr, *p;
 835        unsigned long bit, set;
 836
 837        if (offset >= size)
 838                return size;
 839        bit = offset & (__BITOPS_WORDSIZE - 1);
 840        offset -= bit;
 841        size -= offset;
 842        p = addr + offset / __BITOPS_WORDSIZE;
 843        if (bit) {
 844                /*
 845                 * s390 version of ffz returns __BITOPS_WORDSIZE
 846                 * if no zero bit is present in the word.
 847                 */
 848                set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit));
 849                if (set >= size)
 850                        return size + offset;
 851                if (set < __BITOPS_WORDSIZE)
 852                        return set + offset;
 853                offset += __BITOPS_WORDSIZE;
 854                size -= __BITOPS_WORDSIZE;
 855                p++;
 856        }
 857        return offset + find_first_bit_le(p, size);
 858}
 859
 860#define ext2_set_bit_atomic(lock, nr, addr)     \
 861        test_and_set_bit_le(nr, addr)
 862#define ext2_clear_bit_atomic(lock, nr, addr)   \
 863        test_and_clear_bit_le(nr, addr)
 864
 865
 866#endif /* __KERNEL__ */
 867
 868#endif /* _S390_BITOPS_H */
 869