linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <asm/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69        int i;
  70        
  71        seq_printf(m, "State:\n");
  72        for_each_online_cpu(i)
  73                seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78        int i;
  79        
  80        for_each_online_cpu(i)
  81                seq_printf(m,
  82                           "Cpu%dClkTck\t: %016lx\n",
  83                           i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void __cpuinit smp_callin(void)
  91{
  92        int cpuid = hard_smp_processor_id();
  93
  94        __local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96        if (tlb_type == hypervisor)
  97                sun4v_ktsb_register();
  98
  99        __flush_tlb_all();
 100
 101        setup_sparc64_timer();
 102
 103        if (cheetah_pcache_forced_on)
 104                cheetah_enable_pcache();
 105
 106        local_irq_enable();
 107
 108        callin_flag = 1;
 109        __asm__ __volatile__("membar #Sync\n\t"
 110                             "flush  %%g6" : : : "memory");
 111
 112        /* Clear this or we will die instantly when we
 113         * schedule back to this idler...
 114         */
 115        current_thread_info()->new_child = 0;
 116
 117        /* Attach to the address space of init_task. */
 118        atomic_inc(&init_mm.mm_count);
 119        current->active_mm = &init_mm;
 120
 121        /* inform the notifiers about the new cpu */
 122        notify_cpu_starting(cpuid);
 123
 124        while (!cpu_isset(cpuid, smp_commenced_mask))
 125                rmb();
 126
 127        ipi_call_lock_irq();
 128        cpu_set(cpuid, cpu_online_map);
 129        ipi_call_unlock_irq();
 130
 131        /* idle thread is expected to have preempt disabled */
 132        preempt_disable();
 133}
 134
 135void cpu_panic(void)
 136{
 137        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138        panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER  0
 149#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS      64      /* magic value */
 152#define NUM_ITERS       5       /* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC 0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162        unsigned long tcenter, t0, t1, tm;
 163        unsigned long i;
 164
 165        for (i = 0; i < NUM_ITERS; i++) {
 166                t0 = tick_ops->get_tick();
 167                go[MASTER] = 1;
 168                membar_safe("#StoreLoad");
 169                while (!(tm = go[SLAVE]))
 170                        rmb();
 171                go[SLAVE] = 0;
 172                wmb();
 173                t1 = tick_ops->get_tick();
 174
 175                if (t1 - t0 < best_t1 - best_t0)
 176                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 177        }
 178
 179        *rt = best_t1 - best_t0;
 180        *master = best_tm - best_t0;
 181
 182        /* average best_t0 and best_t1 without overflow: */
 183        tcenter = (best_t0/2 + best_t1/2);
 184        if (best_t0 % 2 + best_t1 % 2 == 2)
 185                tcenter++;
 186        return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191        long i, delta, adj, adjust_latency = 0, done = 0;
 192        unsigned long flags, rt, master_time_stamp;
 193#if DEBUG_TICK_SYNC
 194        struct {
 195                long rt;        /* roundtrip time */
 196                long master;    /* master's timestamp */
 197                long diff;      /* difference between midpoint and master's timestamp */
 198                long lat;       /* estimate of itc adjustment latency */
 199        } t[NUM_ROUNDS];
 200#endif
 201
 202        go[MASTER] = 1;
 203
 204        while (go[MASTER])
 205                rmb();
 206
 207        local_irq_save(flags);
 208        {
 209                for (i = 0; i < NUM_ROUNDS; i++) {
 210                        delta = get_delta(&rt, &master_time_stamp);
 211                        if (delta == 0)
 212                                done = 1;       /* let's lock on to this... */
 213
 214                        if (!done) {
 215                                if (i > 0) {
 216                                        adjust_latency += -delta;
 217                                        adj = -delta + adjust_latency/4;
 218                                } else
 219                                        adj = -delta;
 220
 221                                tick_ops->add_tick(adj);
 222                        }
 223#if DEBUG_TICK_SYNC
 224                        t[i].rt = rt;
 225                        t[i].master = master_time_stamp;
 226                        t[i].diff = delta;
 227                        t[i].lat = adjust_latency/4;
 228#endif
 229                }
 230        }
 231        local_irq_restore(flags);
 232
 233#if DEBUG_TICK_SYNC
 234        for (i = 0; i < NUM_ROUNDS; i++)
 235                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 236                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 237#endif
 238
 239        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 240               "(last diff %ld cycles, maxerr %lu cycles)\n",
 241               smp_processor_id(), delta, rt);
 242}
 243
 244static void smp_start_sync_tick_client(int cpu);
 245
 246static void smp_synchronize_one_tick(int cpu)
 247{
 248        unsigned long flags, i;
 249
 250        go[MASTER] = 0;
 251
 252        smp_start_sync_tick_client(cpu);
 253
 254        /* wait for client to be ready */
 255        while (!go[MASTER])
 256                rmb();
 257
 258        /* now let the client proceed into his loop */
 259        go[MASTER] = 0;
 260        membar_safe("#StoreLoad");
 261
 262        spin_lock_irqsave(&itc_sync_lock, flags);
 263        {
 264                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 265                        while (!go[MASTER])
 266                                rmb();
 267                        go[MASTER] = 0;
 268                        wmb();
 269                        go[SLAVE] = tick_ops->get_tick();
 270                        membar_safe("#StoreLoad");
 271                }
 272        }
 273        spin_unlock_irqrestore(&itc_sync_lock, flags);
 274}
 275
 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 277/* XXX Put this in some common place. XXX */
 278static unsigned long kimage_addr_to_ra(void *p)
 279{
 280        unsigned long val = (unsigned long) p;
 281
 282        return kern_base + (val - KERNBASE);
 283}
 284
 285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 286{
 287        extern unsigned long sparc64_ttable_tl0;
 288        extern unsigned long kern_locked_tte_data;
 289        struct hvtramp_descr *hdesc;
 290        unsigned long trampoline_ra;
 291        struct trap_per_cpu *tb;
 292        u64 tte_vaddr, tte_data;
 293        unsigned long hv_err;
 294        int i;
 295
 296        hdesc = kzalloc(sizeof(*hdesc) +
 297                        (sizeof(struct hvtramp_mapping) *
 298                         num_kernel_image_mappings - 1),
 299                        GFP_KERNEL);
 300        if (!hdesc) {
 301                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 302                       "hvtramp_descr.\n");
 303                return;
 304        }
 305        *descrp = hdesc;
 306
 307        hdesc->cpu = cpu;
 308        hdesc->num_mappings = num_kernel_image_mappings;
 309
 310        tb = &trap_block[cpu];
 311
 312        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 313        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 314
 315        hdesc->thread_reg = thread_reg;
 316
 317        tte_vaddr = (unsigned long) KERNBASE;
 318        tte_data = kern_locked_tte_data;
 319
 320        for (i = 0; i < hdesc->num_mappings; i++) {
 321                hdesc->maps[i].vaddr = tte_vaddr;
 322                hdesc->maps[i].tte   = tte_data;
 323                tte_vaddr += 0x400000;
 324                tte_data  += 0x400000;
 325        }
 326
 327        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 328
 329        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 330                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 331                                 __pa(hdesc));
 332        if (hv_err)
 333                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 334                       "gives error %lu\n", hv_err);
 335}
 336#endif
 337
 338extern unsigned long sparc64_cpu_startup;
 339
 340/* The OBP cpu startup callback truncates the 3rd arg cookie to
 341 * 32-bits (I think) so to be safe we have it read the pointer
 342 * contained here so we work on >4GB machines. -DaveM
 343 */
 344static struct thread_info *cpu_new_thread = NULL;
 345
 346static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
 347{
 348        unsigned long entry =
 349                (unsigned long)(&sparc64_cpu_startup);
 350        unsigned long cookie =
 351                (unsigned long)(&cpu_new_thread);
 352        struct task_struct *p;
 353        void *descr = NULL;
 354        int timeout, ret;
 355
 356        p = fork_idle(cpu);
 357        if (IS_ERR(p))
 358                return PTR_ERR(p);
 359        callin_flag = 0;
 360        cpu_new_thread = task_thread_info(p);
 361
 362        if (tlb_type == hypervisor) {
 363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 364                if (ldom_domaining_enabled)
 365                        ldom_startcpu_cpuid(cpu,
 366                                            (unsigned long) cpu_new_thread,
 367                                            &descr);
 368                else
 369#endif
 370                        prom_startcpu_cpuid(cpu, entry, cookie);
 371        } else {
 372                struct device_node *dp = of_find_node_by_cpuid(cpu);
 373
 374                prom_startcpu(dp->phandle, entry, cookie);
 375        }
 376
 377        for (timeout = 0; timeout < 50000; timeout++) {
 378                if (callin_flag)
 379                        break;
 380                udelay(100);
 381        }
 382
 383        if (callin_flag) {
 384                ret = 0;
 385        } else {
 386                printk("Processor %d is stuck.\n", cpu);
 387                ret = -ENODEV;
 388        }
 389        cpu_new_thread = NULL;
 390
 391        kfree(descr);
 392
 393        return ret;
 394}
 395
 396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 397{
 398        u64 result, target;
 399        int stuck, tmp;
 400
 401        if (this_is_starfire) {
 402                /* map to real upaid */
 403                cpu = (((cpu & 0x3c) << 1) |
 404                        ((cpu & 0x40) >> 4) |
 405                        (cpu & 0x3));
 406        }
 407
 408        target = (cpu << 14) | 0x70;
 409again:
 410        /* Ok, this is the real Spitfire Errata #54.
 411         * One must read back from a UDB internal register
 412         * after writes to the UDB interrupt dispatch, but
 413         * before the membar Sync for that write.
 414         * So we use the high UDB control register (ASI 0x7f,
 415         * ADDR 0x20) for the dummy read. -DaveM
 416         */
 417        tmp = 0x40;
 418        __asm__ __volatile__(
 419        "wrpr   %1, %2, %%pstate\n\t"
 420        "stxa   %4, [%0] %3\n\t"
 421        "stxa   %5, [%0+%8] %3\n\t"
 422        "add    %0, %8, %0\n\t"
 423        "stxa   %6, [%0+%8] %3\n\t"
 424        "membar #Sync\n\t"
 425        "stxa   %%g0, [%7] %3\n\t"
 426        "membar #Sync\n\t"
 427        "mov    0x20, %%g1\n\t"
 428        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 429        "membar #Sync"
 430        : "=r" (tmp)
 431        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 432          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 433          "r" (0x10), "0" (tmp)
 434        : "g1");
 435
 436        /* NOTE: PSTATE_IE is still clear. */
 437        stuck = 100000;
 438        do {
 439                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 440                        : "=r" (result)
 441                        : "i" (ASI_INTR_DISPATCH_STAT));
 442                if (result == 0) {
 443                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 444                                             : : "r" (pstate));
 445                        return;
 446                }
 447                stuck -= 1;
 448                if (stuck == 0)
 449                        break;
 450        } while (result & 0x1);
 451        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 452                             : : "r" (pstate));
 453        if (stuck == 0) {
 454                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 455                       smp_processor_id(), result);
 456        } else {
 457                udelay(2);
 458                goto again;
 459        }
 460}
 461
 462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 463{
 464        u64 *mondo, data0, data1, data2;
 465        u16 *cpu_list;
 466        u64 pstate;
 467        int i;
 468
 469        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 470        cpu_list = __va(tb->cpu_list_pa);
 471        mondo = __va(tb->cpu_mondo_block_pa);
 472        data0 = mondo[0];
 473        data1 = mondo[1];
 474        data2 = mondo[2];
 475        for (i = 0; i < cnt; i++)
 476                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 477}
 478
 479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 480 * packet, but we have no use for that.  However we do take advantage of
 481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 482 */
 483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 484{
 485        int nack_busy_id, is_jbus, need_more;
 486        u64 *mondo, pstate, ver, busy_mask;
 487        u16 *cpu_list;
 488
 489        cpu_list = __va(tb->cpu_list_pa);
 490        mondo = __va(tb->cpu_mondo_block_pa);
 491
 492        /* Unfortunately, someone at Sun had the brilliant idea to make the
 493         * busy/nack fields hard-coded by ITID number for this Ultra-III
 494         * derivative processor.
 495         */
 496        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 497        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 498                   (ver >> 32) == __SERRANO_ID);
 499
 500        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 501
 502retry:
 503        need_more = 0;
 504        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 505                             : : "r" (pstate), "i" (PSTATE_IE));
 506
 507        /* Setup the dispatch data registers. */
 508        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 509                             "stxa      %1, [%4] %6\n\t"
 510                             "stxa      %2, [%5] %6\n\t"
 511                             "membar    #Sync\n\t"
 512                             : /* no outputs */
 513                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 514                               "r" (0x40), "r" (0x50), "r" (0x60),
 515                               "i" (ASI_INTR_W));
 516
 517        nack_busy_id = 0;
 518        busy_mask = 0;
 519        {
 520                int i;
 521
 522                for (i = 0; i < cnt; i++) {
 523                        u64 target, nr;
 524
 525                        nr = cpu_list[i];
 526                        if (nr == 0xffff)
 527                                continue;
 528
 529                        target = (nr << 14) | 0x70;
 530                        if (is_jbus) {
 531                                busy_mask |= (0x1UL << (nr * 2));
 532                        } else {
 533                                target |= (nack_busy_id << 24);
 534                                busy_mask |= (0x1UL <<
 535                                              (nack_busy_id * 2));
 536                        }
 537                        __asm__ __volatile__(
 538                                "stxa   %%g0, [%0] %1\n\t"
 539                                "membar #Sync\n\t"
 540                                : /* no outputs */
 541                                : "r" (target), "i" (ASI_INTR_W));
 542                        nack_busy_id++;
 543                        if (nack_busy_id == 32) {
 544                                need_more = 1;
 545                                break;
 546                        }
 547                }
 548        }
 549
 550        /* Now, poll for completion. */
 551        {
 552                u64 dispatch_stat, nack_mask;
 553                long stuck;
 554
 555                stuck = 100000 * nack_busy_id;
 556                nack_mask = busy_mask << 1;
 557                do {
 558                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 559                                             : "=r" (dispatch_stat)
 560                                             : "i" (ASI_INTR_DISPATCH_STAT));
 561                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 562                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 563                                                     : : "r" (pstate));
 564                                if (unlikely(need_more)) {
 565                                        int i, this_cnt = 0;
 566                                        for (i = 0; i < cnt; i++) {
 567                                                if (cpu_list[i] == 0xffff)
 568                                                        continue;
 569                                                cpu_list[i] = 0xffff;
 570                                                this_cnt++;
 571                                                if (this_cnt == 32)
 572                                                        break;
 573                                        }
 574                                        goto retry;
 575                                }
 576                                return;
 577                        }
 578                        if (!--stuck)
 579                                break;
 580                } while (dispatch_stat & busy_mask);
 581
 582                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 583                                     : : "r" (pstate));
 584
 585                if (dispatch_stat & busy_mask) {
 586                        /* Busy bits will not clear, continue instead
 587                         * of freezing up on this cpu.
 588                         */
 589                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 590                               smp_processor_id(), dispatch_stat);
 591                } else {
 592                        int i, this_busy_nack = 0;
 593
 594                        /* Delay some random time with interrupts enabled
 595                         * to prevent deadlock.
 596                         */
 597                        udelay(2 * nack_busy_id);
 598
 599                        /* Clear out the mask bits for cpus which did not
 600                         * NACK us.
 601                         */
 602                        for (i = 0; i < cnt; i++) {
 603                                u64 check_mask, nr;
 604
 605                                nr = cpu_list[i];
 606                                if (nr == 0xffff)
 607                                        continue;
 608
 609                                if (is_jbus)
 610                                        check_mask = (0x2UL << (2*nr));
 611                                else
 612                                        check_mask = (0x2UL <<
 613                                                      this_busy_nack);
 614                                if ((dispatch_stat & check_mask) == 0)
 615                                        cpu_list[i] = 0xffff;
 616                                this_busy_nack += 2;
 617                                if (this_busy_nack == 64)
 618                                        break;
 619                        }
 620
 621                        goto retry;
 622                }
 623        }
 624}
 625
 626/* Multi-cpu list version.  */
 627static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 628{
 629        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 630        unsigned long status;
 631        u16 *cpu_list;
 632
 633        this_cpu = smp_processor_id();
 634
 635        cpu_list = __va(tb->cpu_list_pa);
 636
 637        saw_cpu_error = 0;
 638        retries = 0;
 639        prev_sent = 0;
 640        do {
 641                int forward_progress, n_sent;
 642
 643                status = sun4v_cpu_mondo_send(cnt,
 644                                              tb->cpu_list_pa,
 645                                              tb->cpu_mondo_block_pa);
 646
 647                /* HV_EOK means all cpus received the xcall, we're done.  */
 648                if (likely(status == HV_EOK))
 649                        break;
 650
 651                /* First, see if we made any forward progress.
 652                 *
 653                 * The hypervisor indicates successful sends by setting
 654                 * cpu list entries to the value 0xffff.
 655                 */
 656                n_sent = 0;
 657                for (i = 0; i < cnt; i++) {
 658                        if (likely(cpu_list[i] == 0xffff))
 659                                n_sent++;
 660                }
 661
 662                forward_progress = 0;
 663                if (n_sent > prev_sent)
 664                        forward_progress = 1;
 665
 666                prev_sent = n_sent;
 667
 668                /* If we get a HV_ECPUERROR, then one or more of the cpus
 669                 * in the list are in error state.  Use the cpu_state()
 670                 * hypervisor call to find out which cpus are in error state.
 671                 */
 672                if (unlikely(status == HV_ECPUERROR)) {
 673                        for (i = 0; i < cnt; i++) {
 674                                long err;
 675                                u16 cpu;
 676
 677                                cpu = cpu_list[i];
 678                                if (cpu == 0xffff)
 679                                        continue;
 680
 681                                err = sun4v_cpu_state(cpu);
 682                                if (err == HV_CPU_STATE_ERROR) {
 683                                        saw_cpu_error = (cpu + 1);
 684                                        cpu_list[i] = 0xffff;
 685                                }
 686                        }
 687                } else if (unlikely(status != HV_EWOULDBLOCK))
 688                        goto fatal_mondo_error;
 689
 690                /* Don't bother rewriting the CPU list, just leave the
 691                 * 0xffff and non-0xffff entries in there and the
 692                 * hypervisor will do the right thing.
 693                 *
 694                 * Only advance timeout state if we didn't make any
 695                 * forward progress.
 696                 */
 697                if (unlikely(!forward_progress)) {
 698                        if (unlikely(++retries > 10000))
 699                                goto fatal_mondo_timeout;
 700
 701                        /* Delay a little bit to let other cpus catch up
 702                         * on their cpu mondo queue work.
 703                         */
 704                        udelay(2 * cnt);
 705                }
 706        } while (1);
 707
 708        if (unlikely(saw_cpu_error))
 709                goto fatal_mondo_cpu_error;
 710
 711        return;
 712
 713fatal_mondo_cpu_error:
 714        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 715               "(including %d) were in error state\n",
 716               this_cpu, saw_cpu_error - 1);
 717        return;
 718
 719fatal_mondo_timeout:
 720        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 721               " progress after %d retries.\n",
 722               this_cpu, retries);
 723        goto dump_cpu_list_and_out;
 724
 725fatal_mondo_error:
 726        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 727               this_cpu, status);
 728        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 729               "mondo_block_pa(%lx)\n",
 730               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 731
 732dump_cpu_list_and_out:
 733        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 734        for (i = 0; i < cnt; i++)
 735                printk("%u ", cpu_list[i]);
 736        printk("]\n");
 737}
 738
 739static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 740
 741static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 742{
 743        struct trap_per_cpu *tb;
 744        int this_cpu, i, cnt;
 745        unsigned long flags;
 746        u16 *cpu_list;
 747        u64 *mondo;
 748
 749        /* We have to do this whole thing with interrupts fully disabled.
 750         * Otherwise if we send an xcall from interrupt context it will
 751         * corrupt both our mondo block and cpu list state.
 752         *
 753         * One consequence of this is that we cannot use timeout mechanisms
 754         * that depend upon interrupts being delivered locally.  So, for
 755         * example, we cannot sample jiffies and expect it to advance.
 756         *
 757         * Fortunately, udelay() uses %stick/%tick so we can use that.
 758         */
 759        local_irq_save(flags);
 760
 761        this_cpu = smp_processor_id();
 762        tb = &trap_block[this_cpu];
 763
 764        mondo = __va(tb->cpu_mondo_block_pa);
 765        mondo[0] = data0;
 766        mondo[1] = data1;
 767        mondo[2] = data2;
 768        wmb();
 769
 770        cpu_list = __va(tb->cpu_list_pa);
 771
 772        /* Setup the initial cpu list.  */
 773        cnt = 0;
 774        for_each_cpu(i, mask) {
 775                if (i == this_cpu || !cpu_online(i))
 776                        continue;
 777                cpu_list[cnt++] = i;
 778        }
 779
 780        if (cnt)
 781                xcall_deliver_impl(tb, cnt);
 782
 783        local_irq_restore(flags);
 784}
 785
 786/* Send cross call to all processors mentioned in MASK_P
 787 * except self.  Really, there are only two cases currently,
 788 * "&cpu_online_map" and "&mm->cpu_vm_mask".
 789 */
 790static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 791{
 792        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 793
 794        xcall_deliver(data0, data1, data2, mask);
 795}
 796
 797/* Send cross call to all processors except self. */
 798static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 799{
 800        smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
 801}
 802
 803extern unsigned long xcall_sync_tick;
 804
 805static void smp_start_sync_tick_client(int cpu)
 806{
 807        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 808                      &cpumask_of_cpu(cpu));
 809}
 810
 811extern unsigned long xcall_call_function;
 812
 813void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 814{
 815        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 816}
 817
 818extern unsigned long xcall_call_function_single;
 819
 820void arch_send_call_function_single_ipi(int cpu)
 821{
 822        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 823                      &cpumask_of_cpu(cpu));
 824}
 825
 826void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 827{
 828        clear_softint(1 << irq);
 829        generic_smp_call_function_interrupt();
 830}
 831
 832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 833{
 834        clear_softint(1 << irq);
 835        generic_smp_call_function_single_interrupt();
 836}
 837
 838static void tsb_sync(void *info)
 839{
 840        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 841        struct mm_struct *mm = info;
 842
 843        /* It is not valid to test "currrent->active_mm == mm" here.
 844         *
 845         * The value of "current" is not changed atomically with
 846         * switch_mm().  But that's OK, we just need to check the
 847         * current cpu's trap block PGD physical address.
 848         */
 849        if (tp->pgd_paddr == __pa(mm->pgd))
 850                tsb_context_switch(mm);
 851}
 852
 853void smp_tsb_sync(struct mm_struct *mm)
 854{
 855        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 856}
 857
 858extern unsigned long xcall_flush_tlb_mm;
 859extern unsigned long xcall_flush_tlb_pending;
 860extern unsigned long xcall_flush_tlb_kernel_range;
 861extern unsigned long xcall_fetch_glob_regs;
 862extern unsigned long xcall_receive_signal;
 863extern unsigned long xcall_new_mmu_context_version;
 864#ifdef CONFIG_KGDB
 865extern unsigned long xcall_kgdb_capture;
 866#endif
 867
 868#ifdef DCACHE_ALIASING_POSSIBLE
 869extern unsigned long xcall_flush_dcache_page_cheetah;
 870#endif
 871extern unsigned long xcall_flush_dcache_page_spitfire;
 872
 873#ifdef CONFIG_DEBUG_DCFLUSH
 874extern atomic_t dcpage_flushes;
 875extern atomic_t dcpage_flushes_xcall;
 876#endif
 877
 878static inline void __local_flush_dcache_page(struct page *page)
 879{
 880#ifdef DCACHE_ALIASING_POSSIBLE
 881        __flush_dcache_page(page_address(page),
 882                            ((tlb_type == spitfire) &&
 883                             page_mapping(page) != NULL));
 884#else
 885        if (page_mapping(page) != NULL &&
 886            tlb_type == spitfire)
 887                __flush_icache_page(__pa(page_address(page)));
 888#endif
 889}
 890
 891void smp_flush_dcache_page_impl(struct page *page, int cpu)
 892{
 893        int this_cpu;
 894
 895        if (tlb_type == hypervisor)
 896                return;
 897
 898#ifdef CONFIG_DEBUG_DCFLUSH
 899        atomic_inc(&dcpage_flushes);
 900#endif
 901
 902        this_cpu = get_cpu();
 903
 904        if (cpu == this_cpu) {
 905                __local_flush_dcache_page(page);
 906        } else if (cpu_online(cpu)) {
 907                void *pg_addr = page_address(page);
 908                u64 data0 = 0;
 909
 910                if (tlb_type == spitfire) {
 911                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 912                        if (page_mapping(page) != NULL)
 913                                data0 |= ((u64)1 << 32);
 914                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 915#ifdef DCACHE_ALIASING_POSSIBLE
 916                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 917#endif
 918                }
 919                if (data0) {
 920                        xcall_deliver(data0, __pa(pg_addr),
 921                                      (u64) pg_addr, &cpumask_of_cpu(cpu));
 922#ifdef CONFIG_DEBUG_DCFLUSH
 923                        atomic_inc(&dcpage_flushes_xcall);
 924#endif
 925                }
 926        }
 927
 928        put_cpu();
 929}
 930
 931void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 932{
 933        void *pg_addr;
 934        u64 data0;
 935
 936        if (tlb_type == hypervisor)
 937                return;
 938
 939        preempt_disable();
 940
 941#ifdef CONFIG_DEBUG_DCFLUSH
 942        atomic_inc(&dcpage_flushes);
 943#endif
 944        data0 = 0;
 945        pg_addr = page_address(page);
 946        if (tlb_type == spitfire) {
 947                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 948                if (page_mapping(page) != NULL)
 949                        data0 |= ((u64)1 << 32);
 950        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 951#ifdef DCACHE_ALIASING_POSSIBLE
 952                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 953#endif
 954        }
 955        if (data0) {
 956                xcall_deliver(data0, __pa(pg_addr),
 957                              (u64) pg_addr, &cpu_online_map);
 958#ifdef CONFIG_DEBUG_DCFLUSH
 959                atomic_inc(&dcpage_flushes_xcall);
 960#endif
 961        }
 962        __local_flush_dcache_page(page);
 963
 964        preempt_enable();
 965}
 966
 967void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 968{
 969        struct mm_struct *mm;
 970        unsigned long flags;
 971
 972        clear_softint(1 << irq);
 973
 974        /* See if we need to allocate a new TLB context because
 975         * the version of the one we are using is now out of date.
 976         */
 977        mm = current->active_mm;
 978        if (unlikely(!mm || (mm == &init_mm)))
 979                return;
 980
 981        spin_lock_irqsave(&mm->context.lock, flags);
 982
 983        if (unlikely(!CTX_VALID(mm->context)))
 984                get_new_mmu_context(mm);
 985
 986        spin_unlock_irqrestore(&mm->context.lock, flags);
 987
 988        load_secondary_context(mm);
 989        __flush_tlb_mm(CTX_HWBITS(mm->context),
 990                       SECONDARY_CONTEXT);
 991}
 992
 993void smp_new_mmu_context_version(void)
 994{
 995        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 996}
 997
 998#ifdef CONFIG_KGDB
 999void kgdb_roundup_cpus(unsigned long flags)
1000{
1001        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002}
1003#endif
1004
1005void smp_fetch_global_regs(void)
1006{
1007        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008}
1009
1010/* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1014 *
1015 * The SMP TLB coherency scheme we use works as follows:
1016 *
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 *    space has (potentially) executed on, this is the heuristic
1019 *    we use to avoid doing cross calls.
1020 *
1021 *    Also, for flushing from kswapd and also for clones, we
1022 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1023 *
1024 * 2) TLB context numbers are shared globally across all processors
1025 *    in the system, this allows us to play several games to avoid
1026 *    cross calls.
1027 *
1028 *    One invariant is that when a cpu switches to a process, and
1029 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1030 *    current cpu's bit set, that tlb context is flushed locally.
1031 *
1032 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1033 *    cross calls when we want to flush the currently running process's
1034 *    tlb state.  This is done by clearing all cpu bits except the current
1035 *    processor's in current->mm->cpu_vm_mask and performing the
1036 *    flush locally only.  This will force any subsequent cpus which run
1037 *    this task to flush the context from the local tlb if the process
1038 *    migrates to another cpu (again).
1039 *
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 *    bullet for most cases and perform the cross call (but only to
1042 *    the cpus listed in cpu_vm_mask).
1043 *
1044 *    The performance gain from "optimizing" away the cross call for threads is
1045 *    questionable (in theory the big win for threads is the massive sharing of
1046 *    address space state across processors).
1047 */
1048
1049/* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1052 */
1053void smp_flush_tlb_mm(struct mm_struct *mm)
1054{
1055        u32 ctx = CTX_HWBITS(mm->context);
1056        int cpu = get_cpu();
1057
1058        if (atomic_read(&mm->mm_users) == 1) {
1059                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060                goto local_flush_and_out;
1061        }
1062
1063        smp_cross_call_masked(&xcall_flush_tlb_mm,
1064                              ctx, 0, 0,
1065                              mm_cpumask(mm));
1066
1067local_flush_and_out:
1068        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070        put_cpu();
1071}
1072
1073void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1074{
1075        u32 ctx = CTX_HWBITS(mm->context);
1076        int cpu = get_cpu();
1077
1078        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1079                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1080        else
1081                smp_cross_call_masked(&xcall_flush_tlb_pending,
1082                                      ctx, nr, (unsigned long) vaddrs,
1083                                      mm_cpumask(mm));
1084
1085        __flush_tlb_pending(ctx, nr, vaddrs);
1086
1087        put_cpu();
1088}
1089
1090void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1091{
1092        start &= PAGE_MASK;
1093        end    = PAGE_ALIGN(end);
1094        if (start != end) {
1095                smp_cross_call(&xcall_flush_tlb_kernel_range,
1096                               0, start, end);
1097
1098                __flush_tlb_kernel_range(start, end);
1099        }
1100}
1101
1102/* CPU capture. */
1103/* #define CAPTURE_DEBUG */
1104extern unsigned long xcall_capture;
1105
1106static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1107static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1108static unsigned long penguins_are_doing_time;
1109
1110void smp_capture(void)
1111{
1112        int result = atomic_add_ret(1, &smp_capture_depth);
1113
1114        if (result == 1) {
1115                int ncpus = num_online_cpus();
1116
1117#ifdef CAPTURE_DEBUG
1118                printk("CPU[%d]: Sending penguins to jail...",
1119                       smp_processor_id());
1120#endif
1121                penguins_are_doing_time = 1;
1122                atomic_inc(&smp_capture_registry);
1123                smp_cross_call(&xcall_capture, 0, 0, 0);
1124                while (atomic_read(&smp_capture_registry) != ncpus)
1125                        rmb();
1126#ifdef CAPTURE_DEBUG
1127                printk("done\n");
1128#endif
1129        }
1130}
1131
1132void smp_release(void)
1133{
1134        if (atomic_dec_and_test(&smp_capture_depth)) {
1135#ifdef CAPTURE_DEBUG
1136                printk("CPU[%d]: Giving pardon to "
1137                       "imprisoned penguins\n",
1138                       smp_processor_id());
1139#endif
1140                penguins_are_doing_time = 0;
1141                membar_safe("#StoreLoad");
1142                atomic_dec(&smp_capture_registry);
1143        }
1144}
1145
1146/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1147 * set, so they can service tlb flush xcalls...
1148 */
1149extern void prom_world(int);
1150
1151void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152{
1153        clear_softint(1 << irq);
1154
1155        preempt_disable();
1156
1157        __asm__ __volatile__("flushw");
1158        prom_world(1);
1159        atomic_inc(&smp_capture_registry);
1160        membar_safe("#StoreLoad");
1161        while (penguins_are_doing_time)
1162                rmb();
1163        atomic_dec(&smp_capture_registry);
1164        prom_world(0);
1165
1166        preempt_enable();
1167}
1168
1169/* /proc/profile writes can call this, don't __init it please. */
1170int setup_profiling_timer(unsigned int multiplier)
1171{
1172        return -EINVAL;
1173}
1174
1175void __init smp_prepare_cpus(unsigned int max_cpus)
1176{
1177}
1178
1179void __devinit smp_prepare_boot_cpu(void)
1180{
1181}
1182
1183void __init smp_setup_processor_id(void)
1184{
1185        if (tlb_type == spitfire)
1186                xcall_deliver_impl = spitfire_xcall_deliver;
1187        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1188                xcall_deliver_impl = cheetah_xcall_deliver;
1189        else
1190                xcall_deliver_impl = hypervisor_xcall_deliver;
1191}
1192
1193void __devinit smp_fill_in_sib_core_maps(void)
1194{
1195        unsigned int i;
1196
1197        for_each_present_cpu(i) {
1198                unsigned int j;
1199
1200                cpus_clear(cpu_core_map[i]);
1201                if (cpu_data(i).core_id == 0) {
1202                        cpu_set(i, cpu_core_map[i]);
1203                        continue;
1204                }
1205
1206                for_each_present_cpu(j) {
1207                        if (cpu_data(i).core_id ==
1208                            cpu_data(j).core_id)
1209                                cpu_set(j, cpu_core_map[i]);
1210                }
1211        }
1212
1213        for_each_present_cpu(i) {
1214                unsigned int j;
1215
1216                cpus_clear(per_cpu(cpu_sibling_map, i));
1217                if (cpu_data(i).proc_id == -1) {
1218                        cpu_set(i, per_cpu(cpu_sibling_map, i));
1219                        continue;
1220                }
1221
1222                for_each_present_cpu(j) {
1223                        if (cpu_data(i).proc_id ==
1224                            cpu_data(j).proc_id)
1225                                cpu_set(j, per_cpu(cpu_sibling_map, i));
1226                }
1227        }
1228}
1229
1230int __cpuinit __cpu_up(unsigned int cpu)
1231{
1232        int ret = smp_boot_one_cpu(cpu);
1233
1234        if (!ret) {
1235                cpu_set(cpu, smp_commenced_mask);
1236                while (!cpu_isset(cpu, cpu_online_map))
1237                        mb();
1238                if (!cpu_isset(cpu, cpu_online_map)) {
1239                        ret = -ENODEV;
1240                } else {
1241                        /* On SUN4V, writes to %tick and %stick are
1242                         * not allowed.
1243                         */
1244                        if (tlb_type != hypervisor)
1245                                smp_synchronize_one_tick(cpu);
1246                }
1247        }
1248        return ret;
1249}
1250
1251#ifdef CONFIG_HOTPLUG_CPU
1252void cpu_play_dead(void)
1253{
1254        int cpu = smp_processor_id();
1255        unsigned long pstate;
1256
1257        idle_task_exit();
1258
1259        if (tlb_type == hypervisor) {
1260                struct trap_per_cpu *tb = &trap_block[cpu];
1261
1262                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1263                                tb->cpu_mondo_pa, 0);
1264                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1265                                tb->dev_mondo_pa, 0);
1266                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1267                                tb->resum_mondo_pa, 0);
1268                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1269                                tb->nonresum_mondo_pa, 0);
1270        }
1271
1272        cpu_clear(cpu, smp_commenced_mask);
1273        membar_safe("#Sync");
1274
1275        local_irq_disable();
1276
1277        __asm__ __volatile__(
1278                "rdpr   %%pstate, %0\n\t"
1279                "wrpr   %0, %1, %%pstate"
1280                : "=r" (pstate)
1281                : "i" (PSTATE_IE));
1282
1283        while (1)
1284                barrier();
1285}
1286
1287int __cpu_disable(void)
1288{
1289        int cpu = smp_processor_id();
1290        cpuinfo_sparc *c;
1291        int i;
1292
1293        for_each_cpu_mask(i, cpu_core_map[cpu])
1294                cpu_clear(cpu, cpu_core_map[i]);
1295        cpus_clear(cpu_core_map[cpu]);
1296
1297        for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1298                cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1299        cpus_clear(per_cpu(cpu_sibling_map, cpu));
1300
1301        c = &cpu_data(cpu);
1302
1303        c->core_id = 0;
1304        c->proc_id = -1;
1305
1306        smp_wmb();
1307
1308        /* Make sure no interrupts point to this cpu.  */
1309        fixup_irqs();
1310
1311        local_irq_enable();
1312        mdelay(1);
1313        local_irq_disable();
1314
1315        ipi_call_lock();
1316        cpu_clear(cpu, cpu_online_map);
1317        ipi_call_unlock();
1318
1319        cpu_map_rebuild();
1320
1321        return 0;
1322}
1323
1324void __cpu_die(unsigned int cpu)
1325{
1326        int i;
1327
1328        for (i = 0; i < 100; i++) {
1329                smp_rmb();
1330                if (!cpu_isset(cpu, smp_commenced_mask))
1331                        break;
1332                msleep(100);
1333        }
1334        if (cpu_isset(cpu, smp_commenced_mask)) {
1335                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336        } else {
1337#if defined(CONFIG_SUN_LDOMS)
1338                unsigned long hv_err;
1339                int limit = 100;
1340
1341                do {
1342                        hv_err = sun4v_cpu_stop(cpu);
1343                        if (hv_err == HV_EOK) {
1344                                cpu_clear(cpu, cpu_present_map);
1345                                break;
1346                        }
1347                } while (--limit > 0);
1348                if (limit <= 0) {
1349                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350                               hv_err);
1351                }
1352#endif
1353        }
1354}
1355#endif
1356
1357void __init smp_cpus_done(unsigned int max_cpus)
1358{
1359        pcr_arch_init();
1360}
1361
1362void smp_send_reschedule(int cpu)
1363{
1364        xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1365                      &cpumask_of_cpu(cpu));
1366}
1367
1368void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1369{
1370        clear_softint(1 << irq);
1371}
1372
1373/* This is a nop because we capture all other cpus
1374 * anyways when making the PROM active.
1375 */
1376void smp_send_stop(void)
1377{
1378}
1379
1380/**
1381 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1382 * @cpu: cpu to allocate for
1383 * @size: size allocation in bytes
1384 * @align: alignment
1385 *
1386 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1387 * does the right thing for NUMA regardless of the current
1388 * configuration.
1389 *
1390 * RETURNS:
1391 * Pointer to the allocated area on success, NULL on failure.
1392 */
1393static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1394                                        size_t align)
1395{
1396        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1397#ifdef CONFIG_NEED_MULTIPLE_NODES
1398        int node = cpu_to_node(cpu);
1399        void *ptr;
1400
1401        if (!node_online(node) || !NODE_DATA(node)) {
1402                ptr = __alloc_bootmem(size, align, goal);
1403                pr_info("cpu %d has no node %d or node-local memory\n",
1404                        cpu, node);
1405                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1406                         cpu, size, __pa(ptr));
1407        } else {
1408                ptr = __alloc_bootmem_node(NODE_DATA(node),
1409                                           size, align, goal);
1410                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1411                         "%016lx\n", cpu, size, node, __pa(ptr));
1412        }
1413        return ptr;
1414#else
1415        return __alloc_bootmem(size, align, goal);
1416#endif
1417}
1418
1419static void __init pcpu_free_bootmem(void *ptr, size_t size)
1420{
1421        free_bootmem(__pa(ptr), size);
1422}
1423
1424static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1425{
1426        if (cpu_to_node(from) == cpu_to_node(to))
1427                return LOCAL_DISTANCE;
1428        else
1429                return REMOTE_DISTANCE;
1430}
1431
1432static void __init pcpu_populate_pte(unsigned long addr)
1433{
1434        pgd_t *pgd = pgd_offset_k(addr);
1435        pud_t *pud;
1436        pmd_t *pmd;
1437
1438        pud = pud_offset(pgd, addr);
1439        if (pud_none(*pud)) {
1440                pmd_t *new;
1441
1442                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1443                pud_populate(&init_mm, pud, new);
1444        }
1445
1446        pmd = pmd_offset(pud, addr);
1447        if (!pmd_present(*pmd)) {
1448                pte_t *new;
1449
1450                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1451                pmd_populate_kernel(&init_mm, pmd, new);
1452        }
1453}
1454
1455void __init setup_per_cpu_areas(void)
1456{
1457        unsigned long delta;
1458        unsigned int cpu;
1459        int rc = -EINVAL;
1460
1461        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1462                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1463                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1464                                            pcpu_cpu_distance,
1465                                            pcpu_alloc_bootmem,
1466                                            pcpu_free_bootmem);
1467                if (rc)
1468                        pr_warning("PERCPU: %s allocator failed (%d), "
1469                                   "falling back to page size\n",
1470                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1471        }
1472        if (rc < 0)
1473                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1474                                           pcpu_alloc_bootmem,
1475                                           pcpu_free_bootmem,
1476                                           pcpu_populate_pte);
1477        if (rc < 0)
1478                panic("cannot initialize percpu area (err=%d)", rc);
1479
1480        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1481        for_each_possible_cpu(cpu)
1482                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1483
1484        /* Setup %g5 for the boot cpu.  */
1485        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1486
1487        of_fill_in_cpu_data();
1488        if (tlb_type == hypervisor)
1489                mdesc_fill_in_cpu_data(cpu_all_mask);
1490}
1491