linux/arch/tile/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/initrd.h>
  27#include <linux/io.h>
  28#include <linux/highmem.h>
  29#include <linux/smp.h>
  30#include <linux/timex.h>
  31#include <asm/setup.h>
  32#include <asm/sections.h>
  33#include <asm/cacheflush.h>
  34#include <asm/pgalloc.h>
  35#include <asm/mmu_context.h>
  36#include <hv/hypervisor.h>
  37#include <arch/interrupts.h>
  38
  39/* <linux/smp.h> doesn't provide this definition. */
  40#ifndef CONFIG_SMP
  41#define setup_max_cpus 1
  42#endif
  43
  44static inline int ABS(int x) { return x >= 0 ? x : -x; }
  45
  46/* Chip information */
  47char chip_model[64] __write_once;
  48
  49struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  50EXPORT_SYMBOL(node_data);
  51
  52/* We only create bootmem data on node 0. */
  53static bootmem_data_t __initdata node0_bdata;
  54
  55/* Information on the NUMA nodes that we compute early */
  56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
  57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
  58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  61
  62static unsigned long __initdata node_percpu[MAX_NUMNODES];
  63
  64#ifdef CONFIG_HIGHMEM
  65/* Page frame index of end of lowmem on each controller. */
  66unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
  67
  68/* Number of pages that can be mapped into lowmem. */
  69static unsigned long __initdata mappable_physpages;
  70#endif
  71
  72/* Data on which physical memory controller corresponds to which NUMA node */
  73int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  74
  75#ifdef CONFIG_HIGHMEM
  76/* Map information from VAs to PAs */
  77unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  78  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  79EXPORT_SYMBOL(pbase_map);
  80
  81/* Map information from PAs to VAs */
  82void *vbase_map[NR_PA_HIGHBIT_VALUES]
  83  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  84EXPORT_SYMBOL(vbase_map);
  85#endif
  86
  87/* Node number as a function of the high PA bits */
  88int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
  89EXPORT_SYMBOL(highbits_to_node);
  90
  91static unsigned int __initdata maxmem_pfn = -1U;
  92static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
  93        [0 ... MAX_NUMNODES-1] = -1U
  94};
  95static nodemask_t __initdata isolnodes;
  96
  97#ifdef CONFIG_PCI
  98enum { DEFAULT_PCI_RESERVE_MB = 64 };
  99static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 100unsigned long __initdata pci_reserve_start_pfn = -1U;
 101unsigned long __initdata pci_reserve_end_pfn = -1U;
 102#endif
 103
 104static int __init setup_maxmem(char *str)
 105{
 106        long maxmem_mb;
 107        if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
 108            maxmem_mb == 0)
 109                return -EINVAL;
 110
 111        maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
 112                (HPAGE_SHIFT - PAGE_SHIFT);
 113        pr_info("Forcing RAM used to no more than %dMB\n",
 114               maxmem_pfn >> (20 - PAGE_SHIFT));
 115        return 0;
 116}
 117early_param("maxmem", setup_maxmem);
 118
 119static int __init setup_maxnodemem(char *str)
 120{
 121        char *endp;
 122        long maxnodemem_mb, node;
 123
 124        node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 125        if (node >= MAX_NUMNODES || *endp != ':' ||
 126            strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
 127                return -EINVAL;
 128
 129        maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
 130                (HPAGE_SHIFT - PAGE_SHIFT);
 131        pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 132               node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 133        return 0;
 134}
 135early_param("maxnodemem", setup_maxnodemem);
 136
 137static int __init setup_isolnodes(char *str)
 138{
 139        char buf[MAX_NUMNODES * 5];
 140        if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 141                return -EINVAL;
 142
 143        nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 144        pr_info("Set isolnodes value to '%s'\n", buf);
 145        return 0;
 146}
 147early_param("isolnodes", setup_isolnodes);
 148
 149#ifdef CONFIG_PCI
 150static int __init setup_pci_reserve(char* str)
 151{
 152        unsigned long mb;
 153
 154        if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 155            mb > 3 * 1024)
 156                return -EINVAL;
 157
 158        pci_reserve_mb = mb;
 159        pr_info("Reserving %dMB for PCIE root complex mappings\n",
 160               pci_reserve_mb);
 161        return 0;
 162}
 163early_param("pci_reserve", setup_pci_reserve);
 164#endif
 165
 166#ifndef __tilegx__
 167/*
 168 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 169 * This can be used to increase (or decrease) the vmalloc area.
 170 */
 171static int __init parse_vmalloc(char *arg)
 172{
 173        if (!arg)
 174                return -EINVAL;
 175
 176        VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 177
 178        /* See validate_va() for more on this test. */
 179        if ((long)_VMALLOC_START >= 0)
 180                early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 181                            VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 182
 183        return 0;
 184}
 185early_param("vmalloc", parse_vmalloc);
 186#endif
 187
 188#ifdef CONFIG_HIGHMEM
 189/*
 190 * Determine for each controller where its lowmem is mapped and how much of
 191 * it is mapped there.  On controller zero, the first few megabytes are
 192 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 193 * start our data mappings higher up, but for now we don't bother, to avoid
 194 * additional confusion.
 195 *
 196 * One question is whether, on systems with more than 768 Mb and
 197 * controllers of different sizes, to map in a proportionate amount of
 198 * each one, or to try to map the same amount from each controller.
 199 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 200 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 201 * MB, and 128 MB respectively?)  For now we use a proportionate
 202 * solution like the latter.
 203 *
 204 * The VA/PA mapping demands that we align our decisions at 16 MB
 205 * boundaries so that we can rapidly convert VA to PA.
 206 */
 207static void *__init setup_pa_va_mapping(void)
 208{
 209        unsigned long curr_pages = 0;
 210        unsigned long vaddr = PAGE_OFFSET;
 211        nodemask_t highonlynodes = isolnodes;
 212        int i, j;
 213
 214        memset(pbase_map, -1, sizeof(pbase_map));
 215        memset(vbase_map, -1, sizeof(vbase_map));
 216
 217        /* Node zero cannot be isolated for LOWMEM purposes. */
 218        node_clear(0, highonlynodes);
 219
 220        /* Count up the number of pages on non-highonlynodes controllers. */
 221        mappable_physpages = 0;
 222        for_each_online_node(i) {
 223                if (!node_isset(i, highonlynodes))
 224                        mappable_physpages +=
 225                                node_end_pfn[i] - node_start_pfn[i];
 226        }
 227
 228        for_each_online_node(i) {
 229                unsigned long start = node_start_pfn[i];
 230                unsigned long end = node_end_pfn[i];
 231                unsigned long size = end - start;
 232                unsigned long vaddr_end;
 233
 234                if (node_isset(i, highonlynodes)) {
 235                        /* Mark this controller as having no lowmem. */
 236                        node_lowmem_end_pfn[i] = start;
 237                        continue;
 238                }
 239
 240                curr_pages += size;
 241                if (mappable_physpages > MAXMEM_PFN) {
 242                        vaddr_end = PAGE_OFFSET +
 243                                (((u64)curr_pages * MAXMEM_PFN /
 244                                  mappable_physpages)
 245                                 << PAGE_SHIFT);
 246                } else {
 247                        vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 248                }
 249                for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 250                        unsigned long this_pfn =
 251                                start + (j << HUGETLB_PAGE_ORDER);
 252                        pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 253                        if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 254                            (void *)-1)
 255                                vbase_map[__pfn_to_highbits(this_pfn)] =
 256                                        (void *)(vaddr & HPAGE_MASK);
 257                }
 258                node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 259                BUG_ON(node_lowmem_end_pfn[i] > end);
 260        }
 261
 262        /* Return highest address of any mapped memory. */
 263        return (void *)vaddr;
 264}
 265#endif /* CONFIG_HIGHMEM */
 266
 267/*
 268 * Register our most important memory mappings with the debug stub.
 269 *
 270 * This is up to 4 mappings for lowmem, one mapping per memory
 271 * controller, plus one for our text segment.
 272 */
 273static void __cpuinit store_permanent_mappings(void)
 274{
 275        int i;
 276
 277        for_each_online_node(i) {
 278                HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 279#ifdef CONFIG_HIGHMEM
 280                HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 281#else
 282                HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 283#endif
 284
 285                unsigned long pages = high_mapped_pa - node_start_pfn[i];
 286                HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 287                hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 288        }
 289
 290        hv_store_mapping((HV_VirtAddr)_stext,
 291                         (uint32_t)(_einittext - _stext), 0);
 292}
 293
 294/*
 295 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 296 * and node_online_map, doing suitable sanity-checking.
 297 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 298 */
 299static void __init setup_memory(void)
 300{
 301        int i, j;
 302        int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 303#ifdef CONFIG_HIGHMEM
 304        long highmem_pages;
 305#endif
 306#ifndef __tilegx__
 307        int cap;
 308#endif
 309#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 310        long lowmem_pages;
 311#endif
 312
 313        /* We are using a char to hold the cpu_2_node[] mapping */
 314        BUILD_BUG_ON(MAX_NUMNODES > 127);
 315
 316        /* Discover the ranges of memory available to us */
 317        for (i = 0; ; ++i) {
 318                unsigned long start, size, end, highbits;
 319                HV_PhysAddrRange range = hv_inquire_physical(i);
 320                if (range.size == 0)
 321                        break;
 322#ifdef CONFIG_FLATMEM
 323                if (i > 0) {
 324                        pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 325                               range.size, range.start + range.size);
 326                        continue;
 327                }
 328#endif
 329#ifndef __tilegx__
 330                if ((unsigned long)range.start) {
 331                        pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 332                               range.start, range.start + range.size);
 333                        continue;
 334                }
 335#endif
 336                if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 337                    (range.size & (HPAGE_SIZE-1)) != 0) {
 338                        unsigned long long start_pa = range.start;
 339                        unsigned long long orig_size = range.size;
 340                        range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 341                        range.size -= (range.start - start_pa);
 342                        range.size &= HPAGE_MASK;
 343                        pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 344                               " now %#llx-%#llx\n",
 345                               start_pa, start_pa + orig_size,
 346                               range.start, range.start + range.size);
 347                }
 348                highbits = __pa_to_highbits(range.start);
 349                if (highbits >= NR_PA_HIGHBIT_VALUES) {
 350                        pr_err("PA high bits too high: %#llx..%#llx\n",
 351                               range.start, range.start + range.size);
 352                        continue;
 353                }
 354                if (highbits_seen[highbits]) {
 355                        pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 356                               range.start, range.start + range.size);
 357                        continue;
 358                }
 359                highbits_seen[highbits] = 1;
 360                if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 361                        int max_size = maxnodemem_pfn[i];
 362                        if (max_size > 0) {
 363                                pr_err("Maxnodemem reduced node %d to"
 364                                       " %d pages\n", i, max_size);
 365                                range.size = PFN_PHYS(max_size);
 366                        } else {
 367                                pr_err("Maxnodemem disabled node %d\n", i);
 368                                continue;
 369                        }
 370                }
 371                if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 372                        int max_size = maxmem_pfn - num_physpages;
 373                        if (max_size > 0) {
 374                                pr_err("Maxmem reduced node %d to %d pages\n",
 375                                       i, max_size);
 376                                range.size = PFN_PHYS(max_size);
 377                        } else {
 378                                pr_err("Maxmem disabled node %d\n", i);
 379                                continue;
 380                        }
 381                }
 382                if (i >= MAX_NUMNODES) {
 383                        pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 384                               i, range.size, range.size + range.start);
 385                        continue;
 386                }
 387
 388                start = range.start >> PAGE_SHIFT;
 389                size = range.size >> PAGE_SHIFT;
 390                end = start + size;
 391
 392#ifndef __tilegx__
 393                if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 394                    (range.start + range.size)) {
 395                        pr_err("PAs too high to represent: %#llx..%#llx\n",
 396                               range.start, range.start + range.size);
 397                        continue;
 398                }
 399#endif
 400#ifdef CONFIG_PCI
 401                /*
 402                 * Blocks that overlap the pci reserved region must
 403                 * have enough space to hold the maximum percpu data
 404                 * region at the top of the range.  If there isn't
 405                 * enough space above the reserved region, just
 406                 * truncate the node.
 407                 */
 408                if (start <= pci_reserve_start_pfn &&
 409                    end > pci_reserve_start_pfn) {
 410                        unsigned int per_cpu_size =
 411                                __per_cpu_end - __per_cpu_start;
 412                        unsigned int percpu_pages =
 413                                NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 414                        if (end < pci_reserve_end_pfn + percpu_pages) {
 415                                end = pci_reserve_start_pfn;
 416                                pr_err("PCI mapping region reduced node %d to"
 417                                       " %ld pages\n", i, end - start);
 418                        }
 419                }
 420#endif
 421
 422                for (j = __pfn_to_highbits(start);
 423                     j <= __pfn_to_highbits(end - 1); j++)
 424                        highbits_to_node[j] = i;
 425
 426                node_start_pfn[i] = start;
 427                node_end_pfn[i] = end;
 428                node_controller[i] = range.controller;
 429                num_physpages += size;
 430                max_pfn = end;
 431
 432                /* Mark node as online */
 433                node_set(i, node_online_map);
 434                node_set(i, node_possible_map);
 435        }
 436
 437#ifndef __tilegx__
 438        /*
 439         * For 4KB pages, mem_map "struct page" data is 1% of the size
 440         * of the physical memory, so can be quite big (640 MB for
 441         * four 16G zones).  These structures must be mapped in
 442         * lowmem, and since we currently cap out at about 768 MB,
 443         * it's impractical to try to use this much address space.
 444         * For now, arbitrarily cap the amount of physical memory
 445         * we're willing to use at 8 million pages (32GB of 4KB pages).
 446         */
 447        cap = 8 * 1024 * 1024;  /* 8 million pages */
 448        if (num_physpages > cap) {
 449                int num_nodes = num_online_nodes();
 450                int cap_each = cap / num_nodes;
 451                unsigned long dropped_pages = 0;
 452                for (i = 0; i < num_nodes; ++i) {
 453                        int size = node_end_pfn[i] - node_start_pfn[i];
 454                        if (size > cap_each) {
 455                                dropped_pages += (size - cap_each);
 456                                node_end_pfn[i] = node_start_pfn[i] + cap_each;
 457                        }
 458                }
 459                num_physpages -= dropped_pages;
 460                pr_warning("Only using %ldMB memory;"
 461                       " ignoring %ldMB.\n",
 462                       num_physpages >> (20 - PAGE_SHIFT),
 463                       dropped_pages >> (20 - PAGE_SHIFT));
 464                pr_warning("Consider using a larger page size.\n");
 465        }
 466#endif
 467
 468        /* Heap starts just above the last loaded address. */
 469        min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 470
 471#ifdef CONFIG_HIGHMEM
 472        /* Find where we map lowmem from each controller. */
 473        high_memory = setup_pa_va_mapping();
 474
 475        /* Set max_low_pfn based on what node 0 can directly address. */
 476        max_low_pfn = node_lowmem_end_pfn[0];
 477
 478        lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 479                MAXMEM_PFN : mappable_physpages;
 480        highmem_pages = (long) (num_physpages - lowmem_pages);
 481
 482        pr_notice("%ldMB HIGHMEM available.\n",
 483               pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 484        pr_notice("%ldMB LOWMEM available.\n",
 485                        pages_to_mb(lowmem_pages));
 486#else
 487        /* Set max_low_pfn based on what node 0 can directly address. */
 488        max_low_pfn = node_end_pfn[0];
 489
 490#ifndef __tilegx__
 491        if (node_end_pfn[0] > MAXMEM_PFN) {
 492                pr_warning("Only using %ldMB LOWMEM.\n",
 493                       MAXMEM>>20);
 494                pr_warning("Use a HIGHMEM enabled kernel.\n");
 495                max_low_pfn = MAXMEM_PFN;
 496                max_pfn = MAXMEM_PFN;
 497                num_physpages = MAXMEM_PFN;
 498                node_end_pfn[0] = MAXMEM_PFN;
 499        } else {
 500                pr_notice("%ldMB memory available.\n",
 501                       pages_to_mb(node_end_pfn[0]));
 502        }
 503        for (i = 1; i < MAX_NUMNODES; ++i) {
 504                node_start_pfn[i] = 0;
 505                node_end_pfn[i] = 0;
 506        }
 507        high_memory = __va(node_end_pfn[0]);
 508#else
 509        lowmem_pages = 0;
 510        for (i = 0; i < MAX_NUMNODES; ++i) {
 511                int pages = node_end_pfn[i] - node_start_pfn[i];
 512                lowmem_pages += pages;
 513                if (pages)
 514                        high_memory = pfn_to_kaddr(node_end_pfn[i]);
 515        }
 516        pr_notice("%ldMB memory available.\n",
 517               pages_to_mb(lowmem_pages));
 518#endif
 519#endif
 520}
 521
 522static void __init setup_bootmem_allocator(void)
 523{
 524        unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
 525
 526        /* Provide a node 0 bdata. */
 527        NODE_DATA(0)->bdata = &node0_bdata;
 528
 529#ifdef CONFIG_PCI
 530        /* Don't let boot memory alias the PCI region. */
 531        last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
 532#else
 533        last_alloc_pfn = max_low_pfn;
 534#endif
 535
 536        /*
 537         * Initialize the boot-time allocator (with low memory only):
 538         * The first argument says where to put the bitmap, and the
 539         * second says where the end of allocatable memory is.
 540         */
 541        bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
 542
 543        /*
 544         * Let the bootmem allocator use all the space we've given it
 545         * except for its own bitmap.
 546         */
 547        first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
 548        if (first_alloc_pfn >= last_alloc_pfn)
 549                early_panic("Not enough memory on controller 0 for bootmem\n");
 550
 551        free_bootmem(PFN_PHYS(first_alloc_pfn),
 552                     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
 553
 554#ifdef CONFIG_KEXEC
 555        if (crashk_res.start != crashk_res.end)
 556                reserve_bootmem(crashk_res.start,
 557                        crashk_res.end - crashk_res.start + 1, 0);
 558#endif
 559}
 560
 561void *__init alloc_remap(int nid, unsigned long size)
 562{
 563        int pages = node_end_pfn[nid] - node_start_pfn[nid];
 564        void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 565        BUG_ON(size != pages * sizeof(struct page));
 566        memset(map, 0, size);
 567        return map;
 568}
 569
 570static int __init percpu_size(void)
 571{
 572        int size = __per_cpu_end - __per_cpu_start;
 573        size += PERCPU_MODULE_RESERVE;
 574        size += PERCPU_DYNAMIC_EARLY_SIZE;
 575        if (size < PCPU_MIN_UNIT_SIZE)
 576                size = PCPU_MIN_UNIT_SIZE;
 577        size = roundup(size, PAGE_SIZE);
 578
 579        /* In several places we assume the per-cpu data fits on a huge page. */
 580        BUG_ON(kdata_huge && size > HPAGE_SIZE);
 581        return size;
 582}
 583
 584static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
 585{
 586        void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
 587        unsigned long pfn = kaddr_to_pfn(kva);
 588        BUG_ON(goal && PFN_PHYS(pfn) != goal);
 589        return pfn;
 590}
 591
 592static void __init zone_sizes_init(void)
 593{
 594        unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 595        int size = percpu_size();
 596        int num_cpus = smp_height * smp_width;
 597        int i;
 598
 599        for (i = 0; i < num_cpus; ++i)
 600                node_percpu[cpu_to_node(i)] += size;
 601
 602        for_each_online_node(i) {
 603                unsigned long start = node_start_pfn[i];
 604                unsigned long end = node_end_pfn[i];
 605#ifdef CONFIG_HIGHMEM
 606                unsigned long lowmem_end = node_lowmem_end_pfn[i];
 607#else
 608                unsigned long lowmem_end = end;
 609#endif
 610                int memmap_size = (end - start) * sizeof(struct page);
 611                node_free_pfn[i] = start;
 612
 613                /*
 614                 * Set aside pages for per-cpu data and the mem_map array.
 615                 *
 616                 * Since the per-cpu data requires special homecaching,
 617                 * if we are in kdata_huge mode, we put it at the end of
 618                 * the lowmem region.  If we're not in kdata_huge mode,
 619                 * we take the per-cpu pages from the bottom of the
 620                 * controller, since that avoids fragmenting a huge page
 621                 * that users might want.  We always take the memmap
 622                 * from the bottom of the controller, since with
 623                 * kdata_huge that lets it be under a huge TLB entry.
 624                 *
 625                 * If the user has requested isolnodes for a controller,
 626                 * though, there'll be no lowmem, so we just alloc_bootmem
 627                 * the memmap.  There will be no percpu memory either.
 628                 */
 629                if (__pfn_to_highbits(start) == 0) {
 630                        /* In low PAs, allocate via bootmem. */
 631                        unsigned long goal = 0;
 632                        node_memmap_pfn[i] =
 633                                alloc_bootmem_pfn(memmap_size, goal);
 634                        if (kdata_huge)
 635                                goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 636                        if (node_percpu[i])
 637                                node_percpu_pfn[i] =
 638                                    alloc_bootmem_pfn(node_percpu[i], goal);
 639                } else if (cpu_isset(i, isolnodes)) {
 640                        node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
 641                        BUG_ON(node_percpu[i] != 0);
 642                } else {
 643                        /* In high PAs, just reserve some pages. */
 644                        node_memmap_pfn[i] = node_free_pfn[i];
 645                        node_free_pfn[i] += PFN_UP(memmap_size);
 646                        if (!kdata_huge) {
 647                                node_percpu_pfn[i] = node_free_pfn[i];
 648                                node_free_pfn[i] += PFN_UP(node_percpu[i]);
 649                        } else {
 650                                node_percpu_pfn[i] =
 651                                        lowmem_end - PFN_UP(node_percpu[i]);
 652                        }
 653                }
 654
 655#ifdef CONFIG_HIGHMEM
 656                if (start > lowmem_end) {
 657                        zones_size[ZONE_NORMAL] = 0;
 658                        zones_size[ZONE_HIGHMEM] = end - start;
 659                } else {
 660                        zones_size[ZONE_NORMAL] = lowmem_end - start;
 661                        zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 662                }
 663#else
 664                zones_size[ZONE_NORMAL] = end - start;
 665#endif
 666
 667                /*
 668                 * Everyone shares node 0's bootmem allocator, but
 669                 * we use alloc_remap(), above, to put the actual
 670                 * struct page array on the individual controllers,
 671                 * which is most of the data that we actually care about.
 672                 * We can't place bootmem allocators on the other
 673                 * controllers since the bootmem allocator can only
 674                 * operate on 32-bit physical addresses.
 675                 */
 676                NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
 677
 678                free_area_init_node(i, zones_size, start, NULL);
 679                printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 680                       PFN_UP(node_percpu[i]));
 681
 682                /* Track the type of memory on each node */
 683                if (zones_size[ZONE_NORMAL])
 684                        node_set_state(i, N_NORMAL_MEMORY);
 685#ifdef CONFIG_HIGHMEM
 686                if (end != start)
 687                        node_set_state(i, N_HIGH_MEMORY);
 688#endif
 689
 690                node_set_online(i);
 691        }
 692}
 693
 694#ifdef CONFIG_NUMA
 695
 696/* which logical CPUs are on which nodes */
 697struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 698EXPORT_SYMBOL(node_2_cpu_mask);
 699
 700/* which node each logical CPU is on */
 701char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 702EXPORT_SYMBOL(cpu_2_node);
 703
 704/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 705static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 706{
 707        if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 708                return -1;
 709        else
 710                return cpu_to_node(cpu);
 711}
 712
 713/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 714static int __init node_neighbors(int node, int cpu,
 715                                 struct cpumask *unbound_cpus)
 716{
 717        int neighbors = 0;
 718        int w = smp_width;
 719        int h = smp_height;
 720        int x = cpu % w;
 721        int y = cpu / w;
 722        if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 723                ++neighbors;
 724        if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 725                ++neighbors;
 726        if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 727                ++neighbors;
 728        if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 729                ++neighbors;
 730        return neighbors;
 731}
 732
 733static void __init setup_numa_mapping(void)
 734{
 735        int distance[MAX_NUMNODES][NR_CPUS];
 736        HV_Coord coord;
 737        int cpu, node, cpus, i, x, y;
 738        int num_nodes = num_online_nodes();
 739        struct cpumask unbound_cpus;
 740        nodemask_t default_nodes;
 741
 742        cpumask_clear(&unbound_cpus);
 743
 744        /* Get set of nodes we will use for defaults */
 745        nodes_andnot(default_nodes, node_online_map, isolnodes);
 746        if (nodes_empty(default_nodes)) {
 747                BUG_ON(!node_isset(0, node_online_map));
 748                pr_err("Forcing NUMA node zero available as a default node\n");
 749                node_set(0, default_nodes);
 750        }
 751
 752        /* Populate the distance[] array */
 753        memset(distance, -1, sizeof(distance));
 754        cpu = 0;
 755        for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 756                for (coord.x = 0; coord.x < smp_width;
 757                     ++coord.x, ++cpu) {
 758                        BUG_ON(cpu >= nr_cpu_ids);
 759                        if (!cpu_possible(cpu)) {
 760                                cpu_2_node[cpu] = -1;
 761                                continue;
 762                        }
 763                        for_each_node_mask(node, default_nodes) {
 764                                HV_MemoryControllerInfo info =
 765                                        hv_inquire_memory_controller(
 766                                                coord, node_controller[node]);
 767                                distance[node][cpu] =
 768                                        ABS(info.coord.x) + ABS(info.coord.y);
 769                        }
 770                        cpumask_set_cpu(cpu, &unbound_cpus);
 771                }
 772        }
 773        cpus = cpu;
 774
 775        /*
 776         * Round-robin through the NUMA nodes until all the cpus are
 777         * assigned.  We could be more clever here (e.g. create four
 778         * sorted linked lists on the same set of cpu nodes, and pull
 779         * off them in round-robin sequence, removing from all four
 780         * lists each time) but given the relatively small numbers
 781         * involved, O(n^2) seem OK for a one-time cost.
 782         */
 783        node = first_node(default_nodes);
 784        while (!cpumask_empty(&unbound_cpus)) {
 785                int best_cpu = -1;
 786                int best_distance = INT_MAX;
 787                for (cpu = 0; cpu < cpus; ++cpu) {
 788                        if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 789                                /*
 790                                 * Compute metric, which is how much
 791                                 * closer the cpu is to this memory
 792                                 * controller than the others, shifted
 793                                 * up, and then the number of
 794                                 * neighbors already in the node as an
 795                                 * epsilon adjustment to try to keep
 796                                 * the nodes compact.
 797                                 */
 798                                int d = distance[node][cpu] * num_nodes;
 799                                for_each_node_mask(i, default_nodes) {
 800                                        if (i != node)
 801                                                d -= distance[i][cpu];
 802                                }
 803                                d *= 8;  /* allow space for epsilon */
 804                                d -= node_neighbors(node, cpu, &unbound_cpus);
 805                                if (d < best_distance) {
 806                                        best_cpu = cpu;
 807                                        best_distance = d;
 808                                }
 809                        }
 810                }
 811                BUG_ON(best_cpu < 0);
 812                cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 813                cpu_2_node[best_cpu] = node;
 814                cpumask_clear_cpu(best_cpu, &unbound_cpus);
 815                node = next_node(node, default_nodes);
 816                if (node == MAX_NUMNODES)
 817                        node = first_node(default_nodes);
 818        }
 819
 820        /* Print out node assignments and set defaults for disabled cpus */
 821        cpu = 0;
 822        for (y = 0; y < smp_height; ++y) {
 823                printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 824                for (x = 0; x < smp_width; ++x, ++cpu) {
 825                        if (cpu_to_node(cpu) < 0) {
 826                                pr_cont(" -");
 827                                cpu_2_node[cpu] = first_node(default_nodes);
 828                        } else {
 829                                pr_cont(" %d", cpu_to_node(cpu));
 830                        }
 831                }
 832                pr_cont("\n");
 833        }
 834}
 835
 836static struct cpu cpu_devices[NR_CPUS];
 837
 838static int __init topology_init(void)
 839{
 840        int i;
 841
 842        for_each_online_node(i)
 843                register_one_node(i);
 844
 845        for (i = 0; i < smp_height * smp_width; ++i)
 846                register_cpu(&cpu_devices[i], i);
 847
 848        return 0;
 849}
 850
 851subsys_initcall(topology_init);
 852
 853#else /* !CONFIG_NUMA */
 854
 855#define setup_numa_mapping() do { } while (0)
 856
 857#endif /* CONFIG_NUMA */
 858
 859/**
 860 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 861 * @boot: Is this the boot cpu?
 862 *
 863 * Called from setup_arch() on the boot cpu, or online_secondary().
 864 */
 865void __cpuinit setup_cpu(int boot)
 866{
 867        /* The boot cpu sets up its permanent mappings much earlier. */
 868        if (!boot)
 869                store_permanent_mappings();
 870
 871        /* Allow asynchronous TLB interrupts. */
 872#if CHIP_HAS_TILE_DMA()
 873        arch_local_irq_unmask(INT_DMATLB_MISS);
 874        arch_local_irq_unmask(INT_DMATLB_ACCESS);
 875#endif
 876#if CHIP_HAS_SN_PROC()
 877        arch_local_irq_unmask(INT_SNITLB_MISS);
 878#endif
 879#ifdef __tilegx__
 880        arch_local_irq_unmask(INT_SINGLE_STEP_K);
 881#endif
 882
 883        /*
 884         * Allow user access to many generic SPRs, like the cycle
 885         * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 886         */
 887        __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 888
 889#if CHIP_HAS_SN()
 890        /* Static network is not restricted. */
 891        __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 892#endif
 893#if CHIP_HAS_SN_PROC()
 894        __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 895        __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 896#endif
 897
 898        /*
 899         * Set the MPL for interrupt control 0 & 1 to the corresponding
 900         * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 901         * SPRs, as well as the interrupt mask.
 902         */
 903        __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 904        __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 905
 906        /* Initialize IRQ support for this cpu. */
 907        setup_irq_regs();
 908
 909#ifdef CONFIG_HARDWALL
 910        /* Reset the network state on this cpu. */
 911        reset_network_state();
 912#endif
 913}
 914
 915static int __initdata set_initramfs_file;
 916static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
 917
 918static int __init setup_initramfs_file(char *str)
 919{
 920        if (str == NULL)
 921                return -EINVAL;
 922        strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
 923        set_initramfs_file = 1;
 924
 925        return 0;
 926}
 927early_param("initramfs_file", setup_initramfs_file);
 928
 929/*
 930 * We look for an additional "initramfs.cpio.gz" file in the hvfs.
 931 * If there is one, we allocate some memory for it and it will be
 932 * unpacked to the initramfs after any built-in initramfs_data.
 933 */
 934static void __init load_hv_initrd(void)
 935{
 936        HV_FS_StatInfo stat;
 937        int fd, rc;
 938        void *initrd;
 939
 940        fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
 941        if (fd == HV_ENOENT) {
 942                if (set_initramfs_file)
 943                        pr_warning("No such hvfs initramfs file '%s'\n",
 944                                   initramfs_file);
 945                return;
 946        }
 947        BUG_ON(fd < 0);
 948        stat = hv_fs_fstat(fd);
 949        BUG_ON(stat.size < 0);
 950        if (stat.flags & HV_FS_ISDIR) {
 951                pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
 952                           initramfs_file);
 953                return;
 954        }
 955        initrd = alloc_bootmem_pages(stat.size);
 956        rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
 957        if (rc != stat.size) {
 958                pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
 959                       stat.size, initramfs_file, rc);
 960                free_initrd_mem((unsigned long) initrd, stat.size);
 961                return;
 962        }
 963        initrd_start = (unsigned long) initrd;
 964        initrd_end = initrd_start + stat.size;
 965}
 966
 967void __init free_initrd_mem(unsigned long begin, unsigned long end)
 968{
 969        free_bootmem(__pa(begin), end - begin);
 970}
 971
 972static void __init validate_hv(void)
 973{
 974        /*
 975         * It may already be too late, but let's check our built-in
 976         * configuration against what the hypervisor is providing.
 977         */
 978        unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
 979        int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
 980        int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
 981        HV_ASIDRange asid_range;
 982
 983#ifndef CONFIG_SMP
 984        HV_Topology topology = hv_inquire_topology();
 985        BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
 986        if (topology.width != 1 || topology.height != 1) {
 987                pr_warning("Warning: booting UP kernel on %dx%d grid;"
 988                           " will ignore all but first tile.\n",
 989                           topology.width, topology.height);
 990        }
 991#endif
 992
 993        if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
 994                early_panic("Hypervisor glue size %ld is too big!\n",
 995                            glue_size);
 996        if (hv_page_size != PAGE_SIZE)
 997                early_panic("Hypervisor page size %#x != our %#lx\n",
 998                            hv_page_size, PAGE_SIZE);
 999        if (hv_hpage_size != HPAGE_SIZE)
1000                early_panic("Hypervisor huge page size %#x != our %#lx\n",
1001                            hv_hpage_size, HPAGE_SIZE);
1002
1003#ifdef CONFIG_SMP
1004        /*
1005         * Some hypervisor APIs take a pointer to a bitmap array
1006         * whose size is at least the number of cpus on the chip.
1007         * We use a struct cpumask for this, so it must be big enough.
1008         */
1009        if ((smp_height * smp_width) > nr_cpu_ids)
1010                early_panic("Hypervisor %d x %d grid too big for Linux"
1011                            " NR_CPUS %d\n", smp_height, smp_width,
1012                            nr_cpu_ids);
1013#endif
1014
1015        /*
1016         * Check that we're using allowed ASIDs, and initialize the
1017         * various asid variables to their appropriate initial states.
1018         */
1019        asid_range = hv_inquire_asid(0);
1020        __get_cpu_var(current_asid) = min_asid = asid_range.start;
1021        max_asid = asid_range.start + asid_range.size - 1;
1022
1023        if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1024                       sizeof(chip_model)) < 0) {
1025                pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1026                strlcpy(chip_model, "unknown", sizeof(chip_model));
1027        }
1028}
1029
1030static void __init validate_va(void)
1031{
1032#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1033        /*
1034         * Similarly, make sure we're only using allowed VAs.
1035         * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1036         * and 0 .. KERNEL_HIGH_VADDR.
1037         * In addition, make sure we CAN'T use the end of memory, since
1038         * we use the last chunk of each pgd for the pgd_list.
1039         */
1040        int i, user_kernel_ok = 0;
1041        unsigned long max_va = 0;
1042        unsigned long list_va =
1043                ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1044
1045        for (i = 0; ; ++i) {
1046                HV_VirtAddrRange range = hv_inquire_virtual(i);
1047                if (range.size == 0)
1048                        break;
1049                if (range.start <= MEM_USER_INTRPT &&
1050                    range.start + range.size >= MEM_HV_INTRPT)
1051                        user_kernel_ok = 1;
1052                if (range.start == 0)
1053                        max_va = range.size;
1054                BUG_ON(range.start + range.size > list_va);
1055        }
1056        if (!user_kernel_ok)
1057                early_panic("Hypervisor not configured for user/kernel VAs\n");
1058        if (max_va == 0)
1059                early_panic("Hypervisor not configured for low VAs\n");
1060        if (max_va < KERNEL_HIGH_VADDR)
1061                early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1062                            max_va, KERNEL_HIGH_VADDR);
1063
1064        /* Kernel PCs must have their high bit set; see intvec.S. */
1065        if ((long)VMALLOC_START >= 0)
1066                early_panic(
1067                        "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1068                        "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1069                        "or smaller VMALLOC_RESERVE.\n",
1070                        VMALLOC_START);
1071#endif
1072}
1073
1074/*
1075 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1076 * to cache data on at a page level, i.e. what cpus can be placed in
1077 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1078 * cpus plus any other cpus that are willing to share their cache.
1079 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1080 */
1081struct cpumask __write_once cpu_lotar_map;
1082EXPORT_SYMBOL(cpu_lotar_map);
1083
1084#if CHIP_HAS_CBOX_HOME_MAP()
1085/*
1086 * hash_for_home_map lists all the tiles that hash-for-home data
1087 * will be cached on.  Note that this may includes tiles that are not
1088 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1089 * device is being shared between multiple supervisors).
1090 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1091 */
1092struct cpumask hash_for_home_map;
1093EXPORT_SYMBOL(hash_for_home_map);
1094#endif
1095
1096/*
1097 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1098 * flush on our behalf.  It is set to cpu_possible_map OR'ed with
1099 * hash_for_home_map, and it is what should be passed to
1100 * hv_flush_remote() to flush all caches.  Note that if there are
1101 * dedicated hypervisor driver tiles that have authorized use of their
1102 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1103 * cpu_cacheable_map, as they are a special case.
1104 */
1105struct cpumask __write_once cpu_cacheable_map;
1106EXPORT_SYMBOL(cpu_cacheable_map);
1107
1108static __initdata struct cpumask disabled_map;
1109
1110static int __init disabled_cpus(char *str)
1111{
1112        int boot_cpu = smp_processor_id();
1113
1114        if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1115                return -EINVAL;
1116        if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1117                pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1118                cpumask_clear_cpu(boot_cpu, &disabled_map);
1119        }
1120        return 0;
1121}
1122
1123early_param("disabled_cpus", disabled_cpus);
1124
1125void __init print_disabled_cpus(void)
1126{
1127        if (!cpumask_empty(&disabled_map)) {
1128                char buf[100];
1129                cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1130                pr_info("CPUs not available for Linux: %s\n", buf);
1131        }
1132}
1133
1134static void __init setup_cpu_maps(void)
1135{
1136        struct cpumask hv_disabled_map, cpu_possible_init;
1137        int boot_cpu = smp_processor_id();
1138        int cpus, i, rc;
1139
1140        /* Learn which cpus are allowed by the hypervisor. */
1141        rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1142                              (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1143                              sizeof(cpu_cacheable_map));
1144        if (rc < 0)
1145                early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1146        if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1147                early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1148
1149        /* Compute the cpus disabled by the hvconfig file. */
1150        cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1151
1152        /* Include them with the cpus disabled by "disabled_cpus". */
1153        cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1154
1155        /*
1156         * Disable every cpu after "setup_max_cpus".  But don't mark
1157         * as disabled the cpus that are outside of our initial rectangle,
1158         * since that turns out to be confusing.
1159         */
1160        cpus = 1;                          /* this cpu */
1161        cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1162        for (i = 0; cpus < setup_max_cpus; ++i)
1163                if (!cpumask_test_cpu(i, &disabled_map))
1164                        ++cpus;
1165        for (; i < smp_height * smp_width; ++i)
1166                cpumask_set_cpu(i, &disabled_map);
1167        cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1168        for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1169                cpumask_clear_cpu(i, &disabled_map);
1170
1171        /*
1172         * Setup cpu_possible map as every cpu allocated to us, minus
1173         * the results of any "disabled_cpus" settings.
1174         */
1175        cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1176        init_cpu_possible(&cpu_possible_init);
1177
1178        /* Learn which cpus are valid for LOTAR caching. */
1179        rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1180                              (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1181                              sizeof(cpu_lotar_map));
1182        if (rc < 0) {
1183                pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1184                cpu_lotar_map = cpu_possible_map;
1185        }
1186
1187#if CHIP_HAS_CBOX_HOME_MAP()
1188        /* Retrieve set of CPUs used for hash-for-home caching */
1189        rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1190                              (HV_VirtAddr) hash_for_home_map.bits,
1191                              sizeof(hash_for_home_map));
1192        if (rc < 0)
1193                early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1194        cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1195#else
1196        cpu_cacheable_map = cpu_possible_map;
1197#endif
1198}
1199
1200
1201static int __init dataplane(char *str)
1202{
1203        pr_warning("WARNING: dataplane support disabled in this kernel\n");
1204        return 0;
1205}
1206
1207early_param("dataplane", dataplane);
1208
1209#ifdef CONFIG_CMDLINE_BOOL
1210static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1211#endif
1212
1213void __init setup_arch(char **cmdline_p)
1214{
1215        int len;
1216
1217#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1218        len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1219                                  COMMAND_LINE_SIZE);
1220        if (boot_command_line[0])
1221                pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1222                           boot_command_line);
1223        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1224#else
1225        char *hv_cmdline;
1226#if defined(CONFIG_CMDLINE_BOOL)
1227        if (builtin_cmdline[0]) {
1228                int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1229                                          COMMAND_LINE_SIZE);
1230                if (builtin_len < COMMAND_LINE_SIZE-1)
1231                        boot_command_line[builtin_len++] = ' ';
1232                hv_cmdline = &boot_command_line[builtin_len];
1233                len = COMMAND_LINE_SIZE - builtin_len;
1234        } else
1235#endif
1236        {
1237                hv_cmdline = boot_command_line;
1238                len = COMMAND_LINE_SIZE;
1239        }
1240        len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1241        if (len < 0 || len > COMMAND_LINE_SIZE)
1242                early_panic("hv_get_command_line failed: %d\n", len);
1243#endif
1244
1245        *cmdline_p = boot_command_line;
1246
1247        /* Set disabled_map and setup_max_cpus very early */
1248        parse_early_param();
1249
1250        /* Make sure the kernel is compatible with the hypervisor. */
1251        validate_hv();
1252        validate_va();
1253
1254        setup_cpu_maps();
1255
1256
1257#ifdef CONFIG_PCI
1258        /*
1259         * Initialize the PCI structures.  This is done before memory
1260         * setup so that we know whether or not a pci_reserve region
1261         * is necessary.
1262         */
1263        if (tile_pci_init() == 0)
1264                pci_reserve_mb = 0;
1265
1266        /* PCI systems reserve a region just below 4GB for mapping iomem. */
1267        pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1268        pci_reserve_start_pfn = pci_reserve_end_pfn -
1269                (pci_reserve_mb << (20 - PAGE_SHIFT));
1270#endif
1271
1272        init_mm.start_code = (unsigned long) _text;
1273        init_mm.end_code = (unsigned long) _etext;
1274        init_mm.end_data = (unsigned long) _edata;
1275        init_mm.brk = (unsigned long) _end;
1276
1277        setup_memory();
1278        store_permanent_mappings();
1279        setup_bootmem_allocator();
1280
1281        /*
1282         * NOTE: before this point _nobody_ is allowed to allocate
1283         * any memory using the bootmem allocator.
1284         */
1285
1286        paging_init();
1287        setup_numa_mapping();
1288        zone_sizes_init();
1289        set_page_homes();
1290        setup_cpu(1);
1291        setup_clock();
1292        load_hv_initrd();
1293}
1294
1295
1296/*
1297 * Set up per-cpu memory.
1298 */
1299
1300unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1301EXPORT_SYMBOL(__per_cpu_offset);
1302
1303static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1304static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1305
1306/*
1307 * As the percpu code allocates pages, we return the pages from the
1308 * end of the node for the specified cpu.
1309 */
1310static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1311{
1312        int nid = cpu_to_node(cpu);
1313        unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1314
1315        BUG_ON(size % PAGE_SIZE != 0);
1316        pfn_offset[nid] += size / PAGE_SIZE;
1317        BUG_ON(node_percpu[nid] < size);
1318        node_percpu[nid] -= size;
1319        if (percpu_pfn[cpu] == 0)
1320                percpu_pfn[cpu] = pfn;
1321        return pfn_to_kaddr(pfn);
1322}
1323
1324/*
1325 * Pages reserved for percpu memory are not freeable, and in any case we are
1326 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1327 */
1328static void __init pcpu_fc_free(void *ptr, size_t size)
1329{
1330}
1331
1332/*
1333 * Set up vmalloc page tables using bootmem for the percpu code.
1334 */
1335static void __init pcpu_fc_populate_pte(unsigned long addr)
1336{
1337        pgd_t *pgd;
1338        pud_t *pud;
1339        pmd_t *pmd;
1340        pte_t *pte;
1341
1342        BUG_ON(pgd_addr_invalid(addr));
1343        if (addr < VMALLOC_START || addr >= VMALLOC_END)
1344                panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1345                      " try increasing CONFIG_VMALLOC_RESERVE\n",
1346                      addr, VMALLOC_START, VMALLOC_END);
1347
1348        pgd = swapper_pg_dir + pgd_index(addr);
1349        pud = pud_offset(pgd, addr);
1350        BUG_ON(!pud_present(*pud));
1351        pmd = pmd_offset(pud, addr);
1352        if (pmd_present(*pmd)) {
1353                BUG_ON(pmd_huge_page(*pmd));
1354        } else {
1355                pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1356                                      HV_PAGE_TABLE_ALIGN, 0);
1357                pmd_populate_kernel(&init_mm, pmd, pte);
1358        }
1359}
1360
1361void __init setup_per_cpu_areas(void)
1362{
1363        struct page *pg;
1364        unsigned long delta, pfn, lowmem_va;
1365        unsigned long size = percpu_size();
1366        char *ptr;
1367        int rc, cpu, i;
1368
1369        rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1370                                   pcpu_fc_free, pcpu_fc_populate_pte);
1371        if (rc < 0)
1372                panic("Cannot initialize percpu area (err=%d)", rc);
1373
1374        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1375        for_each_possible_cpu(cpu) {
1376                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1377
1378                /* finv the copy out of cache so we can change homecache */
1379                ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1380                __finv_buffer(ptr, size);
1381                pfn = percpu_pfn[cpu];
1382
1383                /* Rewrite the page tables to cache on that cpu */
1384                pg = pfn_to_page(pfn);
1385                for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1386
1387                        /* Update the vmalloc mapping and page home. */
1388                        pte_t *ptep =
1389                                virt_to_pte(NULL, (unsigned long)ptr + i);
1390                        pte_t pte = *ptep;
1391                        BUG_ON(pfn != pte_pfn(pte));
1392                        pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1393                        pte = set_remote_cache_cpu(pte, cpu);
1394                        set_pte(ptep, pte);
1395
1396                        /* Update the lowmem mapping for consistency. */
1397                        lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1398                        ptep = virt_to_pte(NULL, lowmem_va);
1399                        if (pte_huge(*ptep)) {
1400                                printk(KERN_DEBUG "early shatter of huge page"
1401                                       " at %#lx\n", lowmem_va);
1402                                shatter_pmd((pmd_t *)ptep);
1403                                ptep = virt_to_pte(NULL, lowmem_va);
1404                                BUG_ON(pte_huge(*ptep));
1405                        }
1406                        BUG_ON(pfn != pte_pfn(*ptep));
1407                        set_pte(ptep, pte);
1408                }
1409        }
1410
1411        /* Set our thread pointer appropriately. */
1412        set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1413
1414        /* Make sure the finv's have completed. */
1415        mb_incoherent();
1416
1417        /* Flush the TLB so we reference it properly from here on out. */
1418        local_flush_tlb_all();
1419}
1420
1421static struct resource data_resource = {
1422        .name   = "Kernel data",
1423        .start  = 0,
1424        .end    = 0,
1425        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1426};
1427
1428static struct resource code_resource = {
1429        .name   = "Kernel code",
1430        .start  = 0,
1431        .end    = 0,
1432        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1433};
1434
1435/*
1436 * We reserve all resources above 4GB so that PCI won't try to put
1437 * mappings above 4GB; the standard allows that for some devices but
1438 * the probing code trunates values to 32 bits.
1439 */
1440#ifdef CONFIG_PCI
1441static struct resource* __init
1442insert_non_bus_resource(void)
1443{
1444        struct resource *res =
1445                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1446        res->name = "Non-Bus Physical Address Space";
1447        res->start = (1ULL << 32);
1448        res->end = -1LL;
1449        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1450        if (insert_resource(&iomem_resource, res)) {
1451                kfree(res);
1452                return NULL;
1453        }
1454        return res;
1455}
1456#endif
1457
1458static struct resource* __init
1459insert_ram_resource(u64 start_pfn, u64 end_pfn)
1460{
1461        struct resource *res =
1462                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1463        res->name = "System RAM";
1464        res->start = start_pfn << PAGE_SHIFT;
1465        res->end = (end_pfn << PAGE_SHIFT) - 1;
1466        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1467        if (insert_resource(&iomem_resource, res)) {
1468                kfree(res);
1469                return NULL;
1470        }
1471        return res;
1472}
1473
1474/*
1475 * Request address space for all standard resources
1476 *
1477 * If the system includes PCI root complex drivers, we need to create
1478 * a window just below 4GB where PCI BARs can be mapped.
1479 */
1480static int __init request_standard_resources(void)
1481{
1482        int i;
1483        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1484
1485        iomem_resource.end = -1LL;
1486#ifdef CONFIG_PCI
1487        insert_non_bus_resource();
1488#endif
1489
1490        for_each_online_node(i) {
1491                u64 start_pfn = node_start_pfn[i];
1492                u64 end_pfn = node_end_pfn[i];
1493
1494#ifdef CONFIG_PCI
1495                if (start_pfn <= pci_reserve_start_pfn &&
1496                    end_pfn > pci_reserve_start_pfn) {
1497                        if (end_pfn > pci_reserve_end_pfn)
1498                                insert_ram_resource(pci_reserve_end_pfn,
1499                                                     end_pfn);
1500                        end_pfn = pci_reserve_start_pfn;
1501                }
1502#endif
1503                insert_ram_resource(start_pfn, end_pfn);
1504        }
1505
1506        code_resource.start = __pa(_text - CODE_DELTA);
1507        code_resource.end = __pa(_etext - CODE_DELTA)-1;
1508        data_resource.start = __pa(_sdata);
1509        data_resource.end = __pa(_end)-1;
1510
1511        insert_resource(&iomem_resource, &code_resource);
1512        insert_resource(&iomem_resource, &data_resource);
1513
1514#ifdef CONFIG_KEXEC
1515        insert_resource(&iomem_resource, &crashk_res);
1516#endif
1517
1518        return 0;
1519}
1520
1521subsys_initcall(request_standard_resources);
1522