linux/arch/x86/kernel/cpu/mcheck/mce.c
<<
>>
Prefs
   1/*
   2 * Machine check handler.
   3 *
   4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
   5 * Rest from unknown author(s).
   6 * 2004 Andi Kleen. Rewrote most of it.
   7 * Copyright 2008 Intel Corporation
   8 * Author: Andi Kleen
   9 */
  10#include <linux/thread_info.h>
  11#include <linux/capability.h>
  12#include <linux/miscdevice.h>
  13#include <linux/interrupt.h>
  14#include <linux/ratelimit.h>
  15#include <linux/kallsyms.h>
  16#include <linux/rcupdate.h>
  17#include <linux/kobject.h>
  18#include <linux/uaccess.h>
  19#include <linux/kdebug.h>
  20#include <linux/kernel.h>
  21#include <linux/percpu.h>
  22#include <linux/string.h>
  23#include <linux/sysdev.h>
  24#include <linux/syscore_ops.h>
  25#include <linux/delay.h>
  26#include <linux/ctype.h>
  27#include <linux/sched.h>
  28#include <linux/sysfs.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/kmod.h>
  33#include <linux/poll.h>
  34#include <linux/nmi.h>
  35#include <linux/cpu.h>
  36#include <linux/smp.h>
  37#include <linux/fs.h>
  38#include <linux/mm.h>
  39#include <linux/debugfs.h>
  40#include <linux/edac_mce.h>
  41
  42#include <asm/processor.h>
  43#include <asm/hw_irq.h>
  44#include <asm/apic.h>
  45#include <asm/idle.h>
  46#include <asm/ipi.h>
  47#include <asm/mce.h>
  48#include <asm/msr.h>
  49
  50#include "mce-internal.h"
  51
  52static DEFINE_MUTEX(mce_read_mutex);
  53
  54#define rcu_dereference_check_mce(p) \
  55        rcu_dereference_index_check((p), \
  56                              rcu_read_lock_sched_held() || \
  57                              lockdep_is_held(&mce_read_mutex))
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/mce.h>
  61
  62int mce_disabled __read_mostly;
  63
  64#define MISC_MCELOG_MINOR       227
  65
  66#define SPINUNIT 100    /* 100ns */
  67
  68atomic_t mce_entry;
  69
  70DEFINE_PER_CPU(unsigned, mce_exception_count);
  71
  72/*
  73 * Tolerant levels:
  74 *   0: always panic on uncorrected errors, log corrected errors
  75 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
  76 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
  77 *   3: never panic or SIGBUS, log all errors (for testing only)
  78 */
  79static int                      tolerant                __read_mostly = 1;
  80static int                      banks                   __read_mostly;
  81static int                      rip_msr                 __read_mostly;
  82static int                      mce_bootlog             __read_mostly = -1;
  83static int                      monarch_timeout         __read_mostly = -1;
  84static int                      mce_panic_timeout       __read_mostly;
  85static int                      mce_dont_log_ce         __read_mostly;
  86int                             mce_cmci_disabled       __read_mostly;
  87int                             mce_ignore_ce           __read_mostly;
  88int                             mce_ser                 __read_mostly;
  89
  90struct mce_bank                *mce_banks               __read_mostly;
  91
  92/* User mode helper program triggered by machine check event */
  93static unsigned long            mce_need_notify;
  94static char                     mce_helper[128];
  95static char                     *mce_helper_argv[2] = { mce_helper, NULL };
  96
  97static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
  98static DEFINE_PER_CPU(struct mce, mces_seen);
  99static int                      cpu_missing;
 100
 101/*
 102 * CPU/chipset specific EDAC code can register a notifier call here to print
 103 * MCE errors in a human-readable form.
 104 */
 105ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
 106EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
 107
 108static int default_decode_mce(struct notifier_block *nb, unsigned long val,
 109                               void *data)
 110{
 111        pr_emerg(HW_ERR "No human readable MCE decoding support on this CPU type.\n");
 112        pr_emerg(HW_ERR "Run the message through 'mcelog --ascii' to decode.\n");
 113
 114        return NOTIFY_STOP;
 115}
 116
 117static struct notifier_block mce_dec_nb = {
 118        .notifier_call = default_decode_mce,
 119        .priority      = -1,
 120};
 121
 122/* MCA banks polled by the period polling timer for corrected events */
 123DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
 124        [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
 125};
 126
 127static DEFINE_PER_CPU(struct work_struct, mce_work);
 128
 129/* Do initial initialization of a struct mce */
 130void mce_setup(struct mce *m)
 131{
 132        memset(m, 0, sizeof(struct mce));
 133        m->cpu = m->extcpu = smp_processor_id();
 134        rdtscll(m->tsc);
 135        /* We hope get_seconds stays lockless */
 136        m->time = get_seconds();
 137        m->cpuvendor = boot_cpu_data.x86_vendor;
 138        m->cpuid = cpuid_eax(1);
 139#ifdef CONFIG_SMP
 140        m->socketid = cpu_data(m->extcpu).phys_proc_id;
 141#endif
 142        m->apicid = cpu_data(m->extcpu).initial_apicid;
 143        rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
 144}
 145
 146DEFINE_PER_CPU(struct mce, injectm);
 147EXPORT_PER_CPU_SYMBOL_GPL(injectm);
 148
 149/*
 150 * Lockless MCE logging infrastructure.
 151 * This avoids deadlocks on printk locks without having to break locks. Also
 152 * separate MCEs from kernel messages to avoid bogus bug reports.
 153 */
 154
 155static struct mce_log mcelog = {
 156        .signature      = MCE_LOG_SIGNATURE,
 157        .len            = MCE_LOG_LEN,
 158        .recordlen      = sizeof(struct mce),
 159};
 160
 161void mce_log(struct mce *mce)
 162{
 163        unsigned next, entry;
 164
 165        /* Emit the trace record: */
 166        trace_mce_record(mce);
 167
 168        mce->finished = 0;
 169        wmb();
 170        for (;;) {
 171                entry = rcu_dereference_check_mce(mcelog.next);
 172                for (;;) {
 173                        /*
 174                         * If edac_mce is enabled, it will check the error type
 175                         * and will process it, if it is a known error.
 176                         * Otherwise, the error will be sent through mcelog
 177                         * interface
 178                         */
 179                        if (edac_mce_parse(mce))
 180                                return;
 181
 182                        /*
 183                         * When the buffer fills up discard new entries.
 184                         * Assume that the earlier errors are the more
 185                         * interesting ones:
 186                         */
 187                        if (entry >= MCE_LOG_LEN) {
 188                                set_bit(MCE_OVERFLOW,
 189                                        (unsigned long *)&mcelog.flags);
 190                                return;
 191                        }
 192                        /* Old left over entry. Skip: */
 193                        if (mcelog.entry[entry].finished) {
 194                                entry++;
 195                                continue;
 196                        }
 197                        break;
 198                }
 199                smp_rmb();
 200                next = entry + 1;
 201                if (cmpxchg(&mcelog.next, entry, next) == entry)
 202                        break;
 203        }
 204        memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
 205        wmb();
 206        mcelog.entry[entry].finished = 1;
 207        wmb();
 208
 209        mce->finished = 1;
 210        set_bit(0, &mce_need_notify);
 211}
 212
 213static void print_mce(struct mce *m)
 214{
 215        pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
 216               m->extcpu, m->mcgstatus, m->bank, m->status);
 217
 218        if (m->ip) {
 219                pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
 220                        !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
 221                                m->cs, m->ip);
 222
 223                if (m->cs == __KERNEL_CS)
 224                        print_symbol("{%s}", m->ip);
 225                pr_cont("\n");
 226        }
 227
 228        pr_emerg(HW_ERR "TSC %llx ", m->tsc);
 229        if (m->addr)
 230                pr_cont("ADDR %llx ", m->addr);
 231        if (m->misc)
 232                pr_cont("MISC %llx ", m->misc);
 233
 234        pr_cont("\n");
 235        pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
 236                m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
 237
 238        /*
 239         * Print out human-readable details about the MCE error,
 240         * (if the CPU has an implementation for that)
 241         */
 242        atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
 243}
 244
 245#define PANIC_TIMEOUT 5 /* 5 seconds */
 246
 247static atomic_t mce_paniced;
 248
 249static int fake_panic;
 250static atomic_t mce_fake_paniced;
 251
 252/* Panic in progress. Enable interrupts and wait for final IPI */
 253static void wait_for_panic(void)
 254{
 255        long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
 256
 257        preempt_disable();
 258        local_irq_enable();
 259        while (timeout-- > 0)
 260                udelay(1);
 261        if (panic_timeout == 0)
 262                panic_timeout = mce_panic_timeout;
 263        panic("Panicing machine check CPU died");
 264}
 265
 266static void mce_panic(char *msg, struct mce *final, char *exp)
 267{
 268        int i, apei_err = 0;
 269
 270        if (!fake_panic) {
 271                /*
 272                 * Make sure only one CPU runs in machine check panic
 273                 */
 274                if (atomic_inc_return(&mce_paniced) > 1)
 275                        wait_for_panic();
 276                barrier();
 277
 278                bust_spinlocks(1);
 279                console_verbose();
 280        } else {
 281                /* Don't log too much for fake panic */
 282                if (atomic_inc_return(&mce_fake_paniced) > 1)
 283                        return;
 284        }
 285        /* First print corrected ones that are still unlogged */
 286        for (i = 0; i < MCE_LOG_LEN; i++) {
 287                struct mce *m = &mcelog.entry[i];
 288                if (!(m->status & MCI_STATUS_VAL))
 289                        continue;
 290                if (!(m->status & MCI_STATUS_UC)) {
 291                        print_mce(m);
 292                        if (!apei_err)
 293                                apei_err = apei_write_mce(m);
 294                }
 295        }
 296        /* Now print uncorrected but with the final one last */
 297        for (i = 0; i < MCE_LOG_LEN; i++) {
 298                struct mce *m = &mcelog.entry[i];
 299                if (!(m->status & MCI_STATUS_VAL))
 300                        continue;
 301                if (!(m->status & MCI_STATUS_UC))
 302                        continue;
 303                if (!final || memcmp(m, final, sizeof(struct mce))) {
 304                        print_mce(m);
 305                        if (!apei_err)
 306                                apei_err = apei_write_mce(m);
 307                }
 308        }
 309        if (final) {
 310                print_mce(final);
 311                if (!apei_err)
 312                        apei_err = apei_write_mce(final);
 313        }
 314        if (cpu_missing)
 315                pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
 316        if (exp)
 317                pr_emerg(HW_ERR "Machine check: %s\n", exp);
 318        if (!fake_panic) {
 319                if (panic_timeout == 0)
 320                        panic_timeout = mce_panic_timeout;
 321                panic(msg);
 322        } else
 323                pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
 324}
 325
 326/* Support code for software error injection */
 327
 328static int msr_to_offset(u32 msr)
 329{
 330        unsigned bank = __this_cpu_read(injectm.bank);
 331
 332        if (msr == rip_msr)
 333                return offsetof(struct mce, ip);
 334        if (msr == MSR_IA32_MCx_STATUS(bank))
 335                return offsetof(struct mce, status);
 336        if (msr == MSR_IA32_MCx_ADDR(bank))
 337                return offsetof(struct mce, addr);
 338        if (msr == MSR_IA32_MCx_MISC(bank))
 339                return offsetof(struct mce, misc);
 340        if (msr == MSR_IA32_MCG_STATUS)
 341                return offsetof(struct mce, mcgstatus);
 342        return -1;
 343}
 344
 345/* MSR access wrappers used for error injection */
 346static u64 mce_rdmsrl(u32 msr)
 347{
 348        u64 v;
 349
 350        if (__this_cpu_read(injectm.finished)) {
 351                int offset = msr_to_offset(msr);
 352
 353                if (offset < 0)
 354                        return 0;
 355                return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
 356        }
 357
 358        if (rdmsrl_safe(msr, &v)) {
 359                WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
 360                /*
 361                 * Return zero in case the access faulted. This should
 362                 * not happen normally but can happen if the CPU does
 363                 * something weird, or if the code is buggy.
 364                 */
 365                v = 0;
 366        }
 367
 368        return v;
 369}
 370
 371static void mce_wrmsrl(u32 msr, u64 v)
 372{
 373        if (__this_cpu_read(injectm.finished)) {
 374                int offset = msr_to_offset(msr);
 375
 376                if (offset >= 0)
 377                        *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
 378                return;
 379        }
 380        wrmsrl(msr, v);
 381}
 382
 383/*
 384 * Simple lockless ring to communicate PFNs from the exception handler with the
 385 * process context work function. This is vastly simplified because there's
 386 * only a single reader and a single writer.
 387 */
 388#define MCE_RING_SIZE 16        /* we use one entry less */
 389
 390struct mce_ring {
 391        unsigned short start;
 392        unsigned short end;
 393        unsigned long ring[MCE_RING_SIZE];
 394};
 395static DEFINE_PER_CPU(struct mce_ring, mce_ring);
 396
 397/* Runs with CPU affinity in workqueue */
 398static int mce_ring_empty(void)
 399{
 400        struct mce_ring *r = &__get_cpu_var(mce_ring);
 401
 402        return r->start == r->end;
 403}
 404
 405static int mce_ring_get(unsigned long *pfn)
 406{
 407        struct mce_ring *r;
 408        int ret = 0;
 409
 410        *pfn = 0;
 411        get_cpu();
 412        r = &__get_cpu_var(mce_ring);
 413        if (r->start == r->end)
 414                goto out;
 415        *pfn = r->ring[r->start];
 416        r->start = (r->start + 1) % MCE_RING_SIZE;
 417        ret = 1;
 418out:
 419        put_cpu();
 420        return ret;
 421}
 422
 423/* Always runs in MCE context with preempt off */
 424static int mce_ring_add(unsigned long pfn)
 425{
 426        struct mce_ring *r = &__get_cpu_var(mce_ring);
 427        unsigned next;
 428
 429        next = (r->end + 1) % MCE_RING_SIZE;
 430        if (next == r->start)
 431                return -1;
 432        r->ring[r->end] = pfn;
 433        wmb();
 434        r->end = next;
 435        return 0;
 436}
 437
 438int mce_available(struct cpuinfo_x86 *c)
 439{
 440        if (mce_disabled)
 441                return 0;
 442        return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
 443}
 444
 445static void mce_schedule_work(void)
 446{
 447        if (!mce_ring_empty()) {
 448                struct work_struct *work = &__get_cpu_var(mce_work);
 449                if (!work_pending(work))
 450                        schedule_work(work);
 451        }
 452}
 453
 454/*
 455 * Get the address of the instruction at the time of the machine check
 456 * error.
 457 */
 458static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
 459{
 460
 461        if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
 462                m->ip = regs->ip;
 463                m->cs = regs->cs;
 464        } else {
 465                m->ip = 0;
 466                m->cs = 0;
 467        }
 468        if (rip_msr)
 469                m->ip = mce_rdmsrl(rip_msr);
 470}
 471
 472#ifdef CONFIG_X86_LOCAL_APIC
 473/*
 474 * Called after interrupts have been reenabled again
 475 * when a MCE happened during an interrupts off region
 476 * in the kernel.
 477 */
 478asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
 479{
 480        ack_APIC_irq();
 481        exit_idle();
 482        irq_enter();
 483        mce_notify_irq();
 484        mce_schedule_work();
 485        irq_exit();
 486}
 487#endif
 488
 489static void mce_report_event(struct pt_regs *regs)
 490{
 491        if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
 492                mce_notify_irq();
 493                /*
 494                 * Triggering the work queue here is just an insurance
 495                 * policy in case the syscall exit notify handler
 496                 * doesn't run soon enough or ends up running on the
 497                 * wrong CPU (can happen when audit sleeps)
 498                 */
 499                mce_schedule_work();
 500                return;
 501        }
 502
 503#ifdef CONFIG_X86_LOCAL_APIC
 504        /*
 505         * Without APIC do not notify. The event will be picked
 506         * up eventually.
 507         */
 508        if (!cpu_has_apic)
 509                return;
 510
 511        /*
 512         * When interrupts are disabled we cannot use
 513         * kernel services safely. Trigger an self interrupt
 514         * through the APIC to instead do the notification
 515         * after interrupts are reenabled again.
 516         */
 517        apic->send_IPI_self(MCE_SELF_VECTOR);
 518
 519        /*
 520         * Wait for idle afterwards again so that we don't leave the
 521         * APIC in a non idle state because the normal APIC writes
 522         * cannot exclude us.
 523         */
 524        apic_wait_icr_idle();
 525#endif
 526}
 527
 528DEFINE_PER_CPU(unsigned, mce_poll_count);
 529
 530/*
 531 * Poll for corrected events or events that happened before reset.
 532 * Those are just logged through /dev/mcelog.
 533 *
 534 * This is executed in standard interrupt context.
 535 *
 536 * Note: spec recommends to panic for fatal unsignalled
 537 * errors here. However this would be quite problematic --
 538 * we would need to reimplement the Monarch handling and
 539 * it would mess up the exclusion between exception handler
 540 * and poll hander -- * so we skip this for now.
 541 * These cases should not happen anyways, or only when the CPU
 542 * is already totally * confused. In this case it's likely it will
 543 * not fully execute the machine check handler either.
 544 */
 545void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
 546{
 547        struct mce m;
 548        int i;
 549
 550        percpu_inc(mce_poll_count);
 551
 552        mce_setup(&m);
 553
 554        m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
 555        for (i = 0; i < banks; i++) {
 556                if (!mce_banks[i].ctl || !test_bit(i, *b))
 557                        continue;
 558
 559                m.misc = 0;
 560                m.addr = 0;
 561                m.bank = i;
 562                m.tsc = 0;
 563
 564                barrier();
 565                m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
 566                if (!(m.status & MCI_STATUS_VAL))
 567                        continue;
 568
 569                /*
 570                 * Uncorrected or signalled events are handled by the exception
 571                 * handler when it is enabled, so don't process those here.
 572                 *
 573                 * TBD do the same check for MCI_STATUS_EN here?
 574                 */
 575                if (!(flags & MCP_UC) &&
 576                    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
 577                        continue;
 578
 579                if (m.status & MCI_STATUS_MISCV)
 580                        m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
 581                if (m.status & MCI_STATUS_ADDRV)
 582                        m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
 583
 584                if (!(flags & MCP_TIMESTAMP))
 585                        m.tsc = 0;
 586                /*
 587                 * Don't get the IP here because it's unlikely to
 588                 * have anything to do with the actual error location.
 589                 */
 590                if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
 591                        mce_log(&m);
 592                        atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
 593                        add_taint(TAINT_MACHINE_CHECK);
 594                }
 595
 596                /*
 597                 * Clear state for this bank.
 598                 */
 599                mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
 600        }
 601
 602        /*
 603         * Don't clear MCG_STATUS here because it's only defined for
 604         * exceptions.
 605         */
 606
 607        sync_core();
 608}
 609EXPORT_SYMBOL_GPL(machine_check_poll);
 610
 611/*
 612 * Do a quick check if any of the events requires a panic.
 613 * This decides if we keep the events around or clear them.
 614 */
 615static int mce_no_way_out(struct mce *m, char **msg)
 616{
 617        int i;
 618
 619        for (i = 0; i < banks; i++) {
 620                m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
 621                if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
 622                        return 1;
 623        }
 624        return 0;
 625}
 626
 627/*
 628 * Variable to establish order between CPUs while scanning.
 629 * Each CPU spins initially until executing is equal its number.
 630 */
 631static atomic_t mce_executing;
 632
 633/*
 634 * Defines order of CPUs on entry. First CPU becomes Monarch.
 635 */
 636static atomic_t mce_callin;
 637
 638/*
 639 * Check if a timeout waiting for other CPUs happened.
 640 */
 641static int mce_timed_out(u64 *t)
 642{
 643        /*
 644         * The others already did panic for some reason.
 645         * Bail out like in a timeout.
 646         * rmb() to tell the compiler that system_state
 647         * might have been modified by someone else.
 648         */
 649        rmb();
 650        if (atomic_read(&mce_paniced))
 651                wait_for_panic();
 652        if (!monarch_timeout)
 653                goto out;
 654        if ((s64)*t < SPINUNIT) {
 655                /* CHECKME: Make panic default for 1 too? */
 656                if (tolerant < 1)
 657                        mce_panic("Timeout synchronizing machine check over CPUs",
 658                                  NULL, NULL);
 659                cpu_missing = 1;
 660                return 1;
 661        }
 662        *t -= SPINUNIT;
 663out:
 664        touch_nmi_watchdog();
 665        return 0;
 666}
 667
 668/*
 669 * The Monarch's reign.  The Monarch is the CPU who entered
 670 * the machine check handler first. It waits for the others to
 671 * raise the exception too and then grades them. When any
 672 * error is fatal panic. Only then let the others continue.
 673 *
 674 * The other CPUs entering the MCE handler will be controlled by the
 675 * Monarch. They are called Subjects.
 676 *
 677 * This way we prevent any potential data corruption in a unrecoverable case
 678 * and also makes sure always all CPU's errors are examined.
 679 *
 680 * Also this detects the case of a machine check event coming from outer
 681 * space (not detected by any CPUs) In this case some external agent wants
 682 * us to shut down, so panic too.
 683 *
 684 * The other CPUs might still decide to panic if the handler happens
 685 * in a unrecoverable place, but in this case the system is in a semi-stable
 686 * state and won't corrupt anything by itself. It's ok to let the others
 687 * continue for a bit first.
 688 *
 689 * All the spin loops have timeouts; when a timeout happens a CPU
 690 * typically elects itself to be Monarch.
 691 */
 692static void mce_reign(void)
 693{
 694        int cpu;
 695        struct mce *m = NULL;
 696        int global_worst = 0;
 697        char *msg = NULL;
 698        char *nmsg = NULL;
 699
 700        /*
 701         * This CPU is the Monarch and the other CPUs have run
 702         * through their handlers.
 703         * Grade the severity of the errors of all the CPUs.
 704         */
 705        for_each_possible_cpu(cpu) {
 706                int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
 707                                            &nmsg);
 708                if (severity > global_worst) {
 709                        msg = nmsg;
 710                        global_worst = severity;
 711                        m = &per_cpu(mces_seen, cpu);
 712                }
 713        }
 714
 715        /*
 716         * Cannot recover? Panic here then.
 717         * This dumps all the mces in the log buffer and stops the
 718         * other CPUs.
 719         */
 720        if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
 721                mce_panic("Fatal Machine check", m, msg);
 722
 723        /*
 724         * For UC somewhere we let the CPU who detects it handle it.
 725         * Also must let continue the others, otherwise the handling
 726         * CPU could deadlock on a lock.
 727         */
 728
 729        /*
 730         * No machine check event found. Must be some external
 731         * source or one CPU is hung. Panic.
 732         */
 733        if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
 734                mce_panic("Machine check from unknown source", NULL, NULL);
 735
 736        /*
 737         * Now clear all the mces_seen so that they don't reappear on
 738         * the next mce.
 739         */
 740        for_each_possible_cpu(cpu)
 741                memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
 742}
 743
 744static atomic_t global_nwo;
 745
 746/*
 747 * Start of Monarch synchronization. This waits until all CPUs have
 748 * entered the exception handler and then determines if any of them
 749 * saw a fatal event that requires panic. Then it executes them
 750 * in the entry order.
 751 * TBD double check parallel CPU hotunplug
 752 */
 753static int mce_start(int *no_way_out)
 754{
 755        int order;
 756        int cpus = num_online_cpus();
 757        u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
 758
 759        if (!timeout)
 760                return -1;
 761
 762        atomic_add(*no_way_out, &global_nwo);
 763        /*
 764         * global_nwo should be updated before mce_callin
 765         */
 766        smp_wmb();
 767        order = atomic_inc_return(&mce_callin);
 768
 769        /*
 770         * Wait for everyone.
 771         */
 772        while (atomic_read(&mce_callin) != cpus) {
 773                if (mce_timed_out(&timeout)) {
 774                        atomic_set(&global_nwo, 0);
 775                        return -1;
 776                }
 777                ndelay(SPINUNIT);
 778        }
 779
 780        /*
 781         * mce_callin should be read before global_nwo
 782         */
 783        smp_rmb();
 784
 785        if (order == 1) {
 786                /*
 787                 * Monarch: Starts executing now, the others wait.
 788                 */
 789                atomic_set(&mce_executing, 1);
 790        } else {
 791                /*
 792                 * Subject: Now start the scanning loop one by one in
 793                 * the original callin order.
 794                 * This way when there are any shared banks it will be
 795                 * only seen by one CPU before cleared, avoiding duplicates.
 796                 */
 797                while (atomic_read(&mce_executing) < order) {
 798                        if (mce_timed_out(&timeout)) {
 799                                atomic_set(&global_nwo, 0);
 800                                return -1;
 801                        }
 802                        ndelay(SPINUNIT);
 803                }
 804        }
 805
 806        /*
 807         * Cache the global no_way_out state.
 808         */
 809        *no_way_out = atomic_read(&global_nwo);
 810
 811        return order;
 812}
 813
 814/*
 815 * Synchronize between CPUs after main scanning loop.
 816 * This invokes the bulk of the Monarch processing.
 817 */
 818static int mce_end(int order)
 819{
 820        int ret = -1;
 821        u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
 822
 823        if (!timeout)
 824                goto reset;
 825        if (order < 0)
 826                goto reset;
 827
 828        /*
 829         * Allow others to run.
 830         */
 831        atomic_inc(&mce_executing);
 832
 833        if (order == 1) {
 834                /* CHECKME: Can this race with a parallel hotplug? */
 835                int cpus = num_online_cpus();
 836
 837                /*
 838                 * Monarch: Wait for everyone to go through their scanning
 839                 * loops.
 840                 */
 841                while (atomic_read(&mce_executing) <= cpus) {
 842                        if (mce_timed_out(&timeout))
 843                                goto reset;
 844                        ndelay(SPINUNIT);
 845                }
 846
 847                mce_reign();
 848                barrier();
 849                ret = 0;
 850        } else {
 851                /*
 852                 * Subject: Wait for Monarch to finish.
 853                 */
 854                while (atomic_read(&mce_executing) != 0) {
 855                        if (mce_timed_out(&timeout))
 856                                goto reset;
 857                        ndelay(SPINUNIT);
 858                }
 859
 860                /*
 861                 * Don't reset anything. That's done by the Monarch.
 862                 */
 863                return 0;
 864        }
 865
 866        /*
 867         * Reset all global state.
 868         */
 869reset:
 870        atomic_set(&global_nwo, 0);
 871        atomic_set(&mce_callin, 0);
 872        barrier();
 873
 874        /*
 875         * Let others run again.
 876         */
 877        atomic_set(&mce_executing, 0);
 878        return ret;
 879}
 880
 881/*
 882 * Check if the address reported by the CPU is in a format we can parse.
 883 * It would be possible to add code for most other cases, but all would
 884 * be somewhat complicated (e.g. segment offset would require an instruction
 885 * parser). So only support physical addresses up to page granuality for now.
 886 */
 887static int mce_usable_address(struct mce *m)
 888{
 889        if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
 890                return 0;
 891        if ((m->misc & 0x3f) > PAGE_SHIFT)
 892                return 0;
 893        if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
 894                return 0;
 895        return 1;
 896}
 897
 898static void mce_clear_state(unsigned long *toclear)
 899{
 900        int i;
 901
 902        for (i = 0; i < banks; i++) {
 903                if (test_bit(i, toclear))
 904                        mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
 905        }
 906}
 907
 908/*
 909 * The actual machine check handler. This only handles real
 910 * exceptions when something got corrupted coming in through int 18.
 911 *
 912 * This is executed in NMI context not subject to normal locking rules. This
 913 * implies that most kernel services cannot be safely used. Don't even
 914 * think about putting a printk in there!
 915 *
 916 * On Intel systems this is entered on all CPUs in parallel through
 917 * MCE broadcast. However some CPUs might be broken beyond repair,
 918 * so be always careful when synchronizing with others.
 919 */
 920void do_machine_check(struct pt_regs *regs, long error_code)
 921{
 922        struct mce m, *final;
 923        int i;
 924        int worst = 0;
 925        int severity;
 926        /*
 927         * Establish sequential order between the CPUs entering the machine
 928         * check handler.
 929         */
 930        int order;
 931        /*
 932         * If no_way_out gets set, there is no safe way to recover from this
 933         * MCE.  If tolerant is cranked up, we'll try anyway.
 934         */
 935        int no_way_out = 0;
 936        /*
 937         * If kill_it gets set, there might be a way to recover from this
 938         * error.
 939         */
 940        int kill_it = 0;
 941        DECLARE_BITMAP(toclear, MAX_NR_BANKS);
 942        char *msg = "Unknown";
 943
 944        atomic_inc(&mce_entry);
 945
 946        percpu_inc(mce_exception_count);
 947
 948        if (notify_die(DIE_NMI, "machine check", regs, error_code,
 949                           18, SIGKILL) == NOTIFY_STOP)
 950                goto out;
 951        if (!banks)
 952                goto out;
 953
 954        mce_setup(&m);
 955
 956        m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
 957        final = &__get_cpu_var(mces_seen);
 958        *final = m;
 959
 960        no_way_out = mce_no_way_out(&m, &msg);
 961
 962        barrier();
 963
 964        /*
 965         * When no restart IP must always kill or panic.
 966         */
 967        if (!(m.mcgstatus & MCG_STATUS_RIPV))
 968                kill_it = 1;
 969
 970        /*
 971         * Go through all the banks in exclusion of the other CPUs.
 972         * This way we don't report duplicated events on shared banks
 973         * because the first one to see it will clear it.
 974         */
 975        order = mce_start(&no_way_out);
 976        for (i = 0; i < banks; i++) {
 977                __clear_bit(i, toclear);
 978                if (!mce_banks[i].ctl)
 979                        continue;
 980
 981                m.misc = 0;
 982                m.addr = 0;
 983                m.bank = i;
 984
 985                m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
 986                if ((m.status & MCI_STATUS_VAL) == 0)
 987                        continue;
 988
 989                /*
 990                 * Non uncorrected or non signaled errors are handled by
 991                 * machine_check_poll. Leave them alone, unless this panics.
 992                 */
 993                if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
 994                        !no_way_out)
 995                        continue;
 996
 997                /*
 998                 * Set taint even when machine check was not enabled.
 999                 */
1000                add_taint(TAINT_MACHINE_CHECK);
1001
1002                severity = mce_severity(&m, tolerant, NULL);
1003
1004                /*
1005                 * When machine check was for corrected handler don't touch,
1006                 * unless we're panicing.
1007                 */
1008                if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1009                        continue;
1010                __set_bit(i, toclear);
1011                if (severity == MCE_NO_SEVERITY) {
1012                        /*
1013                         * Machine check event was not enabled. Clear, but
1014                         * ignore.
1015                         */
1016                        continue;
1017                }
1018
1019                /*
1020                 * Kill on action required.
1021                 */
1022                if (severity == MCE_AR_SEVERITY)
1023                        kill_it = 1;
1024
1025                if (m.status & MCI_STATUS_MISCV)
1026                        m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1027                if (m.status & MCI_STATUS_ADDRV)
1028                        m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1029
1030                /*
1031                 * Action optional error. Queue address for later processing.
1032                 * When the ring overflows we just ignore the AO error.
1033                 * RED-PEN add some logging mechanism when
1034                 * usable_address or mce_add_ring fails.
1035                 * RED-PEN don't ignore overflow for tolerant == 0
1036                 */
1037                if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1038                        mce_ring_add(m.addr >> PAGE_SHIFT);
1039
1040                mce_get_rip(&m, regs);
1041                mce_log(&m);
1042
1043                if (severity > worst) {
1044                        *final = m;
1045                        worst = severity;
1046                }
1047        }
1048
1049        if (!no_way_out)
1050                mce_clear_state(toclear);
1051
1052        /*
1053         * Do most of the synchronization with other CPUs.
1054         * When there's any problem use only local no_way_out state.
1055         */
1056        if (mce_end(order) < 0)
1057                no_way_out = worst >= MCE_PANIC_SEVERITY;
1058
1059        /*
1060         * If we have decided that we just CAN'T continue, and the user
1061         * has not set tolerant to an insane level, give up and die.
1062         *
1063         * This is mainly used in the case when the system doesn't
1064         * support MCE broadcasting or it has been disabled.
1065         */
1066        if (no_way_out && tolerant < 3)
1067                mce_panic("Fatal machine check on current CPU", final, msg);
1068
1069        /*
1070         * If the error seems to be unrecoverable, something should be
1071         * done.  Try to kill as little as possible.  If we can kill just
1072         * one task, do that.  If the user has set the tolerance very
1073         * high, don't try to do anything at all.
1074         */
1075
1076        if (kill_it && tolerant < 3)
1077                force_sig(SIGBUS, current);
1078
1079        /* notify userspace ASAP */
1080        set_thread_flag(TIF_MCE_NOTIFY);
1081
1082        if (worst > 0)
1083                mce_report_event(regs);
1084        mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1085out:
1086        atomic_dec(&mce_entry);
1087        sync_core();
1088}
1089EXPORT_SYMBOL_GPL(do_machine_check);
1090
1091/* dummy to break dependency. actual code is in mm/memory-failure.c */
1092void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1093{
1094        printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1095}
1096
1097/*
1098 * Called after mce notification in process context. This code
1099 * is allowed to sleep. Call the high level VM handler to process
1100 * any corrupted pages.
1101 * Assume that the work queue code only calls this one at a time
1102 * per CPU.
1103 * Note we don't disable preemption, so this code might run on the wrong
1104 * CPU. In this case the event is picked up by the scheduled work queue.
1105 * This is merely a fast path to expedite processing in some common
1106 * cases.
1107 */
1108void mce_notify_process(void)
1109{
1110        unsigned long pfn;
1111        mce_notify_irq();
1112        while (mce_ring_get(&pfn))
1113                memory_failure(pfn, MCE_VECTOR);
1114}
1115
1116static void mce_process_work(struct work_struct *dummy)
1117{
1118        mce_notify_process();
1119}
1120
1121#ifdef CONFIG_X86_MCE_INTEL
1122/***
1123 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1124 * @cpu: The CPU on which the event occurred.
1125 * @status: Event status information
1126 *
1127 * This function should be called by the thermal interrupt after the
1128 * event has been processed and the decision was made to log the event
1129 * further.
1130 *
1131 * The status parameter will be saved to the 'status' field of 'struct mce'
1132 * and historically has been the register value of the
1133 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1134 */
1135void mce_log_therm_throt_event(__u64 status)
1136{
1137        struct mce m;
1138
1139        mce_setup(&m);
1140        m.bank = MCE_THERMAL_BANK;
1141        m.status = status;
1142        mce_log(&m);
1143}
1144#endif /* CONFIG_X86_MCE_INTEL */
1145
1146/*
1147 * Periodic polling timer for "silent" machine check errors.  If the
1148 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1149 * errors, poll 2x slower (up to check_interval seconds).
1150 */
1151static int check_interval = 5 * 60; /* 5 minutes */
1152
1153static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1154static DEFINE_PER_CPU(struct timer_list, mce_timer);
1155
1156static void mce_start_timer(unsigned long data)
1157{
1158        struct timer_list *t = &per_cpu(mce_timer, data);
1159        int *n;
1160
1161        WARN_ON(smp_processor_id() != data);
1162
1163        if (mce_available(__this_cpu_ptr(&cpu_info))) {
1164                machine_check_poll(MCP_TIMESTAMP,
1165                                &__get_cpu_var(mce_poll_banks));
1166        }
1167
1168        /*
1169         * Alert userspace if needed.  If we logged an MCE, reduce the
1170         * polling interval, otherwise increase the polling interval.
1171         */
1172        n = &__get_cpu_var(mce_next_interval);
1173        if (mce_notify_irq())
1174                *n = max(*n/2, HZ/100);
1175        else
1176                *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1177
1178        t->expires = jiffies + *n;
1179        add_timer_on(t, smp_processor_id());
1180}
1181
1182static void mce_do_trigger(struct work_struct *work)
1183{
1184        call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1185}
1186
1187static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1188
1189/*
1190 * Notify the user(s) about new machine check events.
1191 * Can be called from interrupt context, but not from machine check/NMI
1192 * context.
1193 */
1194int mce_notify_irq(void)
1195{
1196        /* Not more than two messages every minute */
1197        static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1198
1199        clear_thread_flag(TIF_MCE_NOTIFY);
1200
1201        if (test_and_clear_bit(0, &mce_need_notify)) {
1202                wake_up_interruptible(&mce_wait);
1203
1204                /*
1205                 * There is no risk of missing notifications because
1206                 * work_pending is always cleared before the function is
1207                 * executed.
1208                 */
1209                if (mce_helper[0] && !work_pending(&mce_trigger_work))
1210                        schedule_work(&mce_trigger_work);
1211
1212                if (__ratelimit(&ratelimit))
1213                        pr_info(HW_ERR "Machine check events logged\n");
1214
1215                return 1;
1216        }
1217        return 0;
1218}
1219EXPORT_SYMBOL_GPL(mce_notify_irq);
1220
1221static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1222{
1223        int i;
1224
1225        mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1226        if (!mce_banks)
1227                return -ENOMEM;
1228        for (i = 0; i < banks; i++) {
1229                struct mce_bank *b = &mce_banks[i];
1230
1231                b->ctl = -1ULL;
1232                b->init = 1;
1233        }
1234        return 0;
1235}
1236
1237/*
1238 * Initialize Machine Checks for a CPU.
1239 */
1240static int __cpuinit __mcheck_cpu_cap_init(void)
1241{
1242        unsigned b;
1243        u64 cap;
1244
1245        rdmsrl(MSR_IA32_MCG_CAP, cap);
1246
1247        b = cap & MCG_BANKCNT_MASK;
1248        if (!banks)
1249                printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1250
1251        if (b > MAX_NR_BANKS) {
1252                printk(KERN_WARNING
1253                       "MCE: Using only %u machine check banks out of %u\n",
1254                        MAX_NR_BANKS, b);
1255                b = MAX_NR_BANKS;
1256        }
1257
1258        /* Don't support asymmetric configurations today */
1259        WARN_ON(banks != 0 && b != banks);
1260        banks = b;
1261        if (!mce_banks) {
1262                int err = __mcheck_cpu_mce_banks_init();
1263
1264                if (err)
1265                        return err;
1266        }
1267
1268        /* Use accurate RIP reporting if available. */
1269        if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1270                rip_msr = MSR_IA32_MCG_EIP;
1271
1272        if (cap & MCG_SER_P)
1273                mce_ser = 1;
1274
1275        return 0;
1276}
1277
1278static void __mcheck_cpu_init_generic(void)
1279{
1280        mce_banks_t all_banks;
1281        u64 cap;
1282        int i;
1283
1284        /*
1285         * Log the machine checks left over from the previous reset.
1286         */
1287        bitmap_fill(all_banks, MAX_NR_BANKS);
1288        machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1289
1290        set_in_cr4(X86_CR4_MCE);
1291
1292        rdmsrl(MSR_IA32_MCG_CAP, cap);
1293        if (cap & MCG_CTL_P)
1294                wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1295
1296        for (i = 0; i < banks; i++) {
1297                struct mce_bank *b = &mce_banks[i];
1298
1299                if (!b->init)
1300                        continue;
1301                wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1302                wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1303        }
1304}
1305
1306/* Add per CPU specific workarounds here */
1307static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1308{
1309        if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1310                pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1311                return -EOPNOTSUPP;
1312        }
1313
1314        /* This should be disabled by the BIOS, but isn't always */
1315        if (c->x86_vendor == X86_VENDOR_AMD) {
1316                if (c->x86 == 15 && banks > 4) {
1317                        /*
1318                         * disable GART TBL walk error reporting, which
1319                         * trips off incorrectly with the IOMMU & 3ware
1320                         * & Cerberus:
1321                         */
1322                        clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1323                }
1324                if (c->x86 <= 17 && mce_bootlog < 0) {
1325                        /*
1326                         * Lots of broken BIOS around that don't clear them
1327                         * by default and leave crap in there. Don't log:
1328                         */
1329                        mce_bootlog = 0;
1330                }
1331                /*
1332                 * Various K7s with broken bank 0 around. Always disable
1333                 * by default.
1334                 */
1335                 if (c->x86 == 6 && banks > 0)
1336                        mce_banks[0].ctl = 0;
1337        }
1338
1339        if (c->x86_vendor == X86_VENDOR_INTEL) {
1340                /*
1341                 * SDM documents that on family 6 bank 0 should not be written
1342                 * because it aliases to another special BIOS controlled
1343                 * register.
1344                 * But it's not aliased anymore on model 0x1a+
1345                 * Don't ignore bank 0 completely because there could be a
1346                 * valid event later, merely don't write CTL0.
1347                 */
1348
1349                if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1350                        mce_banks[0].init = 0;
1351
1352                /*
1353                 * All newer Intel systems support MCE broadcasting. Enable
1354                 * synchronization with a one second timeout.
1355                 */
1356                if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1357                        monarch_timeout < 0)
1358                        monarch_timeout = USEC_PER_SEC;
1359
1360                /*
1361                 * There are also broken BIOSes on some Pentium M and
1362                 * earlier systems:
1363                 */
1364                if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1365                        mce_bootlog = 0;
1366        }
1367        if (monarch_timeout < 0)
1368                monarch_timeout = 0;
1369        if (mce_bootlog != 0)
1370                mce_panic_timeout = 30;
1371
1372        return 0;
1373}
1374
1375static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1376{
1377        if (c->x86 != 5)
1378                return;
1379        switch (c->x86_vendor) {
1380        case X86_VENDOR_INTEL:
1381                intel_p5_mcheck_init(c);
1382                break;
1383        case X86_VENDOR_CENTAUR:
1384                winchip_mcheck_init(c);
1385                break;
1386        }
1387}
1388
1389static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1390{
1391        switch (c->x86_vendor) {
1392        case X86_VENDOR_INTEL:
1393                mce_intel_feature_init(c);
1394                break;
1395        case X86_VENDOR_AMD:
1396                mce_amd_feature_init(c);
1397                break;
1398        default:
1399                break;
1400        }
1401}
1402
1403static void __mcheck_cpu_init_timer(void)
1404{
1405        struct timer_list *t = &__get_cpu_var(mce_timer);
1406        int *n = &__get_cpu_var(mce_next_interval);
1407
1408        setup_timer(t, mce_start_timer, smp_processor_id());
1409
1410        if (mce_ignore_ce)
1411                return;
1412
1413        *n = check_interval * HZ;
1414        if (!*n)
1415                return;
1416        t->expires = round_jiffies(jiffies + *n);
1417        add_timer_on(t, smp_processor_id());
1418}
1419
1420/* Handle unconfigured int18 (should never happen) */
1421static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1422{
1423        printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1424               smp_processor_id());
1425}
1426
1427/* Call the installed machine check handler for this CPU setup. */
1428void (*machine_check_vector)(struct pt_regs *, long error_code) =
1429                                                unexpected_machine_check;
1430
1431/*
1432 * Called for each booted CPU to set up machine checks.
1433 * Must be called with preempt off:
1434 */
1435void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1436{
1437        if (mce_disabled)
1438                return;
1439
1440        __mcheck_cpu_ancient_init(c);
1441
1442        if (!mce_available(c))
1443                return;
1444
1445        if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1446                mce_disabled = 1;
1447                return;
1448        }
1449
1450        machine_check_vector = do_machine_check;
1451
1452        __mcheck_cpu_init_generic();
1453        __mcheck_cpu_init_vendor(c);
1454        __mcheck_cpu_init_timer();
1455        INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1456
1457}
1458
1459/*
1460 * Character device to read and clear the MCE log.
1461 */
1462
1463static DEFINE_SPINLOCK(mce_state_lock);
1464static int              open_count;             /* #times opened */
1465static int              open_exclu;             /* already open exclusive? */
1466
1467static int mce_open(struct inode *inode, struct file *file)
1468{
1469        spin_lock(&mce_state_lock);
1470
1471        if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1472                spin_unlock(&mce_state_lock);
1473
1474                return -EBUSY;
1475        }
1476
1477        if (file->f_flags & O_EXCL)
1478                open_exclu = 1;
1479        open_count++;
1480
1481        spin_unlock(&mce_state_lock);
1482
1483        return nonseekable_open(inode, file);
1484}
1485
1486static int mce_release(struct inode *inode, struct file *file)
1487{
1488        spin_lock(&mce_state_lock);
1489
1490        open_count--;
1491        open_exclu = 0;
1492
1493        spin_unlock(&mce_state_lock);
1494
1495        return 0;
1496}
1497
1498static void collect_tscs(void *data)
1499{
1500        unsigned long *cpu_tsc = (unsigned long *)data;
1501
1502        rdtscll(cpu_tsc[smp_processor_id()]);
1503}
1504
1505static int mce_apei_read_done;
1506
1507/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1508static int __mce_read_apei(char __user **ubuf, size_t usize)
1509{
1510        int rc;
1511        u64 record_id;
1512        struct mce m;
1513
1514        if (usize < sizeof(struct mce))
1515                return -EINVAL;
1516
1517        rc = apei_read_mce(&m, &record_id);
1518        /* Error or no more MCE record */
1519        if (rc <= 0) {
1520                mce_apei_read_done = 1;
1521                return rc;
1522        }
1523        rc = -EFAULT;
1524        if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1525                return rc;
1526        /*
1527         * In fact, we should have cleared the record after that has
1528         * been flushed to the disk or sent to network in
1529         * /sbin/mcelog, but we have no interface to support that now,
1530         * so just clear it to avoid duplication.
1531         */
1532        rc = apei_clear_mce(record_id);
1533        if (rc) {
1534                mce_apei_read_done = 1;
1535                return rc;
1536        }
1537        *ubuf += sizeof(struct mce);
1538
1539        return 0;
1540}
1541
1542static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1543                        loff_t *off)
1544{
1545        char __user *buf = ubuf;
1546        unsigned long *cpu_tsc;
1547        unsigned prev, next;
1548        int i, err;
1549
1550        cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1551        if (!cpu_tsc)
1552                return -ENOMEM;
1553
1554        mutex_lock(&mce_read_mutex);
1555
1556        if (!mce_apei_read_done) {
1557                err = __mce_read_apei(&buf, usize);
1558                if (err || buf != ubuf)
1559                        goto out;
1560        }
1561
1562        next = rcu_dereference_check_mce(mcelog.next);
1563
1564        /* Only supports full reads right now */
1565        err = -EINVAL;
1566        if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1567                goto out;
1568
1569        err = 0;
1570        prev = 0;
1571        do {
1572                for (i = prev; i < next; i++) {
1573                        unsigned long start = jiffies;
1574
1575                        while (!mcelog.entry[i].finished) {
1576                                if (time_after_eq(jiffies, start + 2)) {
1577                                        memset(mcelog.entry + i, 0,
1578                                               sizeof(struct mce));
1579                                        goto timeout;
1580                                }
1581                                cpu_relax();
1582                        }
1583                        smp_rmb();
1584                        err |= copy_to_user(buf, mcelog.entry + i,
1585                                            sizeof(struct mce));
1586                        buf += sizeof(struct mce);
1587timeout:
1588                        ;
1589                }
1590
1591                memset(mcelog.entry + prev, 0,
1592                       (next - prev) * sizeof(struct mce));
1593                prev = next;
1594                next = cmpxchg(&mcelog.next, prev, 0);
1595        } while (next != prev);
1596
1597        synchronize_sched();
1598
1599        /*
1600         * Collect entries that were still getting written before the
1601         * synchronize.
1602         */
1603        on_each_cpu(collect_tscs, cpu_tsc, 1);
1604
1605        for (i = next; i < MCE_LOG_LEN; i++) {
1606                if (mcelog.entry[i].finished &&
1607                    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1608                        err |= copy_to_user(buf, mcelog.entry+i,
1609                                            sizeof(struct mce));
1610                        smp_rmb();
1611                        buf += sizeof(struct mce);
1612                        memset(&mcelog.entry[i], 0, sizeof(struct mce));
1613                }
1614        }
1615
1616        if (err)
1617                err = -EFAULT;
1618
1619out:
1620        mutex_unlock(&mce_read_mutex);
1621        kfree(cpu_tsc);
1622
1623        return err ? err : buf - ubuf;
1624}
1625
1626static unsigned int mce_poll(struct file *file, poll_table *wait)
1627{
1628        poll_wait(file, &mce_wait, wait);
1629        if (rcu_access_index(mcelog.next))
1630                return POLLIN | POLLRDNORM;
1631        if (!mce_apei_read_done && apei_check_mce())
1632                return POLLIN | POLLRDNORM;
1633        return 0;
1634}
1635
1636static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1637{
1638        int __user *p = (int __user *)arg;
1639
1640        if (!capable(CAP_SYS_ADMIN))
1641                return -EPERM;
1642
1643        switch (cmd) {
1644        case MCE_GET_RECORD_LEN:
1645                return put_user(sizeof(struct mce), p);
1646        case MCE_GET_LOG_LEN:
1647                return put_user(MCE_LOG_LEN, p);
1648        case MCE_GETCLEAR_FLAGS: {
1649                unsigned flags;
1650
1651                do {
1652                        flags = mcelog.flags;
1653                } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1654
1655                return put_user(flags, p);
1656        }
1657        default:
1658                return -ENOTTY;
1659        }
1660}
1661
1662/* Modified in mce-inject.c, so not static or const */
1663struct file_operations mce_chrdev_ops = {
1664        .open                   = mce_open,
1665        .release                = mce_release,
1666        .read                   = mce_read,
1667        .poll                   = mce_poll,
1668        .unlocked_ioctl         = mce_ioctl,
1669        .llseek         = no_llseek,
1670};
1671EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1672
1673static struct miscdevice mce_log_device = {
1674        MISC_MCELOG_MINOR,
1675        "mcelog",
1676        &mce_chrdev_ops,
1677};
1678
1679/*
1680 * mce=off Disables machine check
1681 * mce=no_cmci Disables CMCI
1682 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1683 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1684 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1685 *      monarchtimeout is how long to wait for other CPUs on machine
1686 *      check, or 0 to not wait
1687 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1688 * mce=nobootlog Don't log MCEs from before booting.
1689 */
1690static int __init mcheck_enable(char *str)
1691{
1692        if (*str == 0) {
1693                enable_p5_mce();
1694                return 1;
1695        }
1696        if (*str == '=')
1697                str++;
1698        if (!strcmp(str, "off"))
1699                mce_disabled = 1;
1700        else if (!strcmp(str, "no_cmci"))
1701                mce_cmci_disabled = 1;
1702        else if (!strcmp(str, "dont_log_ce"))
1703                mce_dont_log_ce = 1;
1704        else if (!strcmp(str, "ignore_ce"))
1705                mce_ignore_ce = 1;
1706        else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1707                mce_bootlog = (str[0] == 'b');
1708        else if (isdigit(str[0])) {
1709                get_option(&str, &tolerant);
1710                if (*str == ',') {
1711                        ++str;
1712                        get_option(&str, &monarch_timeout);
1713                }
1714        } else {
1715                printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1716                       str);
1717                return 0;
1718        }
1719        return 1;
1720}
1721__setup("mce", mcheck_enable);
1722
1723int __init mcheck_init(void)
1724{
1725        atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1726
1727        mcheck_intel_therm_init();
1728
1729        return 0;
1730}
1731
1732/*
1733 * Sysfs support
1734 */
1735
1736/*
1737 * Disable machine checks on suspend and shutdown. We can't really handle
1738 * them later.
1739 */
1740static int mce_disable_error_reporting(void)
1741{
1742        int i;
1743
1744        for (i = 0; i < banks; i++) {
1745                struct mce_bank *b = &mce_banks[i];
1746
1747                if (b->init)
1748                        wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1749        }
1750        return 0;
1751}
1752
1753static int mce_suspend(void)
1754{
1755        return mce_disable_error_reporting();
1756}
1757
1758static void mce_shutdown(void)
1759{
1760        mce_disable_error_reporting();
1761}
1762
1763/*
1764 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1765 * Only one CPU is active at this time, the others get re-added later using
1766 * CPU hotplug:
1767 */
1768static void mce_resume(void)
1769{
1770        __mcheck_cpu_init_generic();
1771        __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1772}
1773
1774static struct syscore_ops mce_syscore_ops = {
1775        .suspend        = mce_suspend,
1776        .shutdown       = mce_shutdown,
1777        .resume         = mce_resume,
1778};
1779
1780static void mce_cpu_restart(void *data)
1781{
1782        del_timer_sync(&__get_cpu_var(mce_timer));
1783        if (!mce_available(__this_cpu_ptr(&cpu_info)))
1784                return;
1785        __mcheck_cpu_init_generic();
1786        __mcheck_cpu_init_timer();
1787}
1788
1789/* Reinit MCEs after user configuration changes */
1790static void mce_restart(void)
1791{
1792        on_each_cpu(mce_cpu_restart, NULL, 1);
1793}
1794
1795/* Toggle features for corrected errors */
1796static void mce_disable_ce(void *all)
1797{
1798        if (!mce_available(__this_cpu_ptr(&cpu_info)))
1799                return;
1800        if (all)
1801                del_timer_sync(&__get_cpu_var(mce_timer));
1802        cmci_clear();
1803}
1804
1805static void mce_enable_ce(void *all)
1806{
1807        if (!mce_available(__this_cpu_ptr(&cpu_info)))
1808                return;
1809        cmci_reenable();
1810        cmci_recheck();
1811        if (all)
1812                __mcheck_cpu_init_timer();
1813}
1814
1815static struct sysdev_class mce_sysclass = {
1816        .name           = "machinecheck",
1817};
1818
1819DEFINE_PER_CPU(struct sys_device, mce_dev);
1820
1821__cpuinitdata
1822void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1823
1824static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1825{
1826        return container_of(attr, struct mce_bank, attr);
1827}
1828
1829static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1830                         char *buf)
1831{
1832        return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1833}
1834
1835static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1836                        const char *buf, size_t size)
1837{
1838        u64 new;
1839
1840        if (strict_strtoull(buf, 0, &new) < 0)
1841                return -EINVAL;
1842
1843        attr_to_bank(attr)->ctl = new;
1844        mce_restart();
1845
1846        return size;
1847}
1848
1849static ssize_t
1850show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1851{
1852        strcpy(buf, mce_helper);
1853        strcat(buf, "\n");
1854        return strlen(mce_helper) + 1;
1855}
1856
1857static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1858                                const char *buf, size_t siz)
1859{
1860        char *p;
1861
1862        strncpy(mce_helper, buf, sizeof(mce_helper));
1863        mce_helper[sizeof(mce_helper)-1] = 0;
1864        p = strchr(mce_helper, '\n');
1865
1866        if (p)
1867                *p = 0;
1868
1869        return strlen(mce_helper) + !!p;
1870}
1871
1872static ssize_t set_ignore_ce(struct sys_device *s,
1873                             struct sysdev_attribute *attr,
1874                             const char *buf, size_t size)
1875{
1876        u64 new;
1877
1878        if (strict_strtoull(buf, 0, &new) < 0)
1879                return -EINVAL;
1880
1881        if (mce_ignore_ce ^ !!new) {
1882                if (new) {
1883                        /* disable ce features */
1884                        on_each_cpu(mce_disable_ce, (void *)1, 1);
1885                        mce_ignore_ce = 1;
1886                } else {
1887                        /* enable ce features */
1888                        mce_ignore_ce = 0;
1889                        on_each_cpu(mce_enable_ce, (void *)1, 1);
1890                }
1891        }
1892        return size;
1893}
1894
1895static ssize_t set_cmci_disabled(struct sys_device *s,
1896                                 struct sysdev_attribute *attr,
1897                                 const char *buf, size_t size)
1898{
1899        u64 new;
1900
1901        if (strict_strtoull(buf, 0, &new) < 0)
1902                return -EINVAL;
1903
1904        if (mce_cmci_disabled ^ !!new) {
1905                if (new) {
1906                        /* disable cmci */
1907                        on_each_cpu(mce_disable_ce, NULL, 1);
1908                        mce_cmci_disabled = 1;
1909                } else {
1910                        /* enable cmci */
1911                        mce_cmci_disabled = 0;
1912                        on_each_cpu(mce_enable_ce, NULL, 1);
1913                }
1914        }
1915        return size;
1916}
1917
1918static ssize_t store_int_with_restart(struct sys_device *s,
1919                                      struct sysdev_attribute *attr,
1920                                      const char *buf, size_t size)
1921{
1922        ssize_t ret = sysdev_store_int(s, attr, buf, size);
1923        mce_restart();
1924        return ret;
1925}
1926
1927static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1928static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1929static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1930static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1931
1932static struct sysdev_ext_attribute attr_check_interval = {
1933        _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1934                     store_int_with_restart),
1935        &check_interval
1936};
1937
1938static struct sysdev_ext_attribute attr_ignore_ce = {
1939        _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1940        &mce_ignore_ce
1941};
1942
1943static struct sysdev_ext_attribute attr_cmci_disabled = {
1944        _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1945        &mce_cmci_disabled
1946};
1947
1948static struct sysdev_attribute *mce_attrs[] = {
1949        &attr_tolerant.attr,
1950        &attr_check_interval.attr,
1951        &attr_trigger,
1952        &attr_monarch_timeout.attr,
1953        &attr_dont_log_ce.attr,
1954        &attr_ignore_ce.attr,
1955        &attr_cmci_disabled.attr,
1956        NULL
1957};
1958
1959static cpumask_var_t mce_dev_initialized;
1960
1961/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1962static __cpuinit int mce_create_device(unsigned int cpu)
1963{
1964        int err;
1965        int i, j;
1966
1967        if (!mce_available(&boot_cpu_data))
1968                return -EIO;
1969
1970        memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1971        per_cpu(mce_dev, cpu).id        = cpu;
1972        per_cpu(mce_dev, cpu).cls       = &mce_sysclass;
1973
1974        err = sysdev_register(&per_cpu(mce_dev, cpu));
1975        if (err)
1976                return err;
1977
1978        for (i = 0; mce_attrs[i]; i++) {
1979                err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1980                if (err)
1981                        goto error;
1982        }
1983        for (j = 0; j < banks; j++) {
1984                err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1985                                        &mce_banks[j].attr);
1986                if (err)
1987                        goto error2;
1988        }
1989        cpumask_set_cpu(cpu, mce_dev_initialized);
1990
1991        return 0;
1992error2:
1993        while (--j >= 0)
1994                sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1995error:
1996        while (--i >= 0)
1997                sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1998
1999        sysdev_unregister(&per_cpu(mce_dev, cpu));
2000
2001        return err;
2002}
2003
2004static __cpuinit void mce_remove_device(unsigned int cpu)
2005{
2006        int i;
2007
2008        if (!cpumask_test_cpu(cpu, mce_dev_initialized))
2009                return;
2010
2011        for (i = 0; mce_attrs[i]; i++)
2012                sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2013
2014        for (i = 0; i < banks; i++)
2015                sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
2016
2017        sysdev_unregister(&per_cpu(mce_dev, cpu));
2018        cpumask_clear_cpu(cpu, mce_dev_initialized);
2019}
2020
2021/* Make sure there are no machine checks on offlined CPUs. */
2022static void __cpuinit mce_disable_cpu(void *h)
2023{
2024        unsigned long action = *(unsigned long *)h;
2025        int i;
2026
2027        if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028                return;
2029
2030        if (!(action & CPU_TASKS_FROZEN))
2031                cmci_clear();
2032        for (i = 0; i < banks; i++) {
2033                struct mce_bank *b = &mce_banks[i];
2034
2035                if (b->init)
2036                        wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2037        }
2038}
2039
2040static void __cpuinit mce_reenable_cpu(void *h)
2041{
2042        unsigned long action = *(unsigned long *)h;
2043        int i;
2044
2045        if (!mce_available(__this_cpu_ptr(&cpu_info)))
2046                return;
2047
2048        if (!(action & CPU_TASKS_FROZEN))
2049                cmci_reenable();
2050        for (i = 0; i < banks; i++) {
2051                struct mce_bank *b = &mce_banks[i];
2052
2053                if (b->init)
2054                        wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2055        }
2056}
2057
2058/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2059static int __cpuinit
2060mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2061{
2062        unsigned int cpu = (unsigned long)hcpu;
2063        struct timer_list *t = &per_cpu(mce_timer, cpu);
2064
2065        switch (action) {
2066        case CPU_ONLINE:
2067        case CPU_ONLINE_FROZEN:
2068                mce_create_device(cpu);
2069                if (threshold_cpu_callback)
2070                        threshold_cpu_callback(action, cpu);
2071                break;
2072        case CPU_DEAD:
2073        case CPU_DEAD_FROZEN:
2074                if (threshold_cpu_callback)
2075                        threshold_cpu_callback(action, cpu);
2076                mce_remove_device(cpu);
2077                break;
2078        case CPU_DOWN_PREPARE:
2079        case CPU_DOWN_PREPARE_FROZEN:
2080                del_timer_sync(t);
2081                smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2082                break;
2083        case CPU_DOWN_FAILED:
2084        case CPU_DOWN_FAILED_FROZEN:
2085                if (!mce_ignore_ce && check_interval) {
2086                        t->expires = round_jiffies(jiffies +
2087                                           __get_cpu_var(mce_next_interval));
2088                        add_timer_on(t, cpu);
2089                }
2090                smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2091                break;
2092        case CPU_POST_DEAD:
2093                /* intentionally ignoring frozen here */
2094                cmci_rediscover(cpu);
2095                break;
2096        }
2097        return NOTIFY_OK;
2098}
2099
2100static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2101        .notifier_call = mce_cpu_callback,
2102};
2103
2104static __init void mce_init_banks(void)
2105{
2106        int i;
2107
2108        for (i = 0; i < banks; i++) {
2109                struct mce_bank *b = &mce_banks[i];
2110                struct sysdev_attribute *a = &b->attr;
2111
2112                sysfs_attr_init(&a->attr);
2113                a->attr.name    = b->attrname;
2114                snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2115
2116                a->attr.mode    = 0644;
2117                a->show         = show_bank;
2118                a->store        = set_bank;
2119        }
2120}
2121
2122static __init int mcheck_init_device(void)
2123{
2124        int err;
2125        int i = 0;
2126
2127        if (!mce_available(&boot_cpu_data))
2128                return -EIO;
2129
2130        zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2131
2132        mce_init_banks();
2133
2134        err = sysdev_class_register(&mce_sysclass);
2135        if (err)
2136                return err;
2137
2138        for_each_online_cpu(i) {
2139                err = mce_create_device(i);
2140                if (err)
2141                        return err;
2142        }
2143
2144        register_syscore_ops(&mce_syscore_ops);
2145        register_hotcpu_notifier(&mce_cpu_notifier);
2146        misc_register(&mce_log_device);
2147
2148        return err;
2149}
2150
2151device_initcall(mcheck_init_device);
2152
2153/*
2154 * Old style boot options parsing. Only for compatibility.
2155 */
2156static int __init mcheck_disable(char *str)
2157{
2158        mce_disabled = 1;
2159        return 1;
2160}
2161__setup("nomce", mcheck_disable);
2162
2163#ifdef CONFIG_DEBUG_FS
2164struct dentry *mce_get_debugfs_dir(void)
2165{
2166        static struct dentry *dmce;
2167
2168        if (!dmce)
2169                dmce = debugfs_create_dir("mce", NULL);
2170
2171        return dmce;
2172}
2173
2174static void mce_reset(void)
2175{
2176        cpu_missing = 0;
2177        atomic_set(&mce_fake_paniced, 0);
2178        atomic_set(&mce_executing, 0);
2179        atomic_set(&mce_callin, 0);
2180        atomic_set(&global_nwo, 0);
2181}
2182
2183static int fake_panic_get(void *data, u64 *val)
2184{
2185        *val = fake_panic;
2186        return 0;
2187}
2188
2189static int fake_panic_set(void *data, u64 val)
2190{
2191        mce_reset();
2192        fake_panic = val;
2193        return 0;
2194}
2195
2196DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2197                        fake_panic_set, "%llu\n");
2198
2199static int __init mcheck_debugfs_init(void)
2200{
2201        struct dentry *dmce, *ffake_panic;
2202
2203        dmce = mce_get_debugfs_dir();
2204        if (!dmce)
2205                return -ENOMEM;
2206        ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2207                                          &fake_panic_fops);
2208        if (!ffake_panic)
2209                return -ENOMEM;
2210
2211        return 0;
2212}
2213late_initcall(mcheck_debugfs_init);
2214#endif
2215