linux/drivers/acpi/proc.c
<<
>>
Prefs
   1#include <linux/proc_fs.h>
   2#include <linux/seq_file.h>
   3#include <linux/suspend.h>
   4#include <linux/bcd.h>
   5#include <asm/uaccess.h>
   6
   7#include <acpi/acpi_bus.h>
   8#include <acpi/acpi_drivers.h>
   9
  10#ifdef CONFIG_X86
  11#include <linux/mc146818rtc.h>
  12#endif
  13
  14#include "sleep.h"
  15
  16#define _COMPONENT              ACPI_SYSTEM_COMPONENT
  17
  18/*
  19 * this file provides support for:
  20 * /proc/acpi/alarm
  21 * /proc/acpi/wakeup
  22 */
  23
  24ACPI_MODULE_NAME("sleep")
  25
  26#if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE) || !defined(CONFIG_X86)
  27/* use /sys/class/rtc/rtcX/wakealarm instead; it's not ACPI-specific */
  28#else
  29#define HAVE_ACPI_LEGACY_ALARM
  30#endif
  31
  32#ifdef  HAVE_ACPI_LEGACY_ALARM
  33
  34static u32 cmos_bcd_read(int offset, int rtc_control);
  35
  36static int acpi_system_alarm_seq_show(struct seq_file *seq, void *offset)
  37{
  38        u32 sec, min, hr;
  39        u32 day, mo, yr, cent = 0;
  40        u32 today = 0;
  41        unsigned char rtc_control = 0;
  42        unsigned long flags;
  43
  44        spin_lock_irqsave(&rtc_lock, flags);
  45
  46        rtc_control = CMOS_READ(RTC_CONTROL);
  47        sec = cmos_bcd_read(RTC_SECONDS_ALARM, rtc_control);
  48        min = cmos_bcd_read(RTC_MINUTES_ALARM, rtc_control);
  49        hr = cmos_bcd_read(RTC_HOURS_ALARM, rtc_control);
  50
  51        /* If we ever get an FACP with proper values... */
  52        if (acpi_gbl_FADT.day_alarm) {
  53                /* ACPI spec: only low 6 its should be cared */
  54                day = CMOS_READ(acpi_gbl_FADT.day_alarm) & 0x3F;
  55                if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  56                        day = bcd2bin(day);
  57        } else
  58                day = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
  59        if (acpi_gbl_FADT.month_alarm)
  60                mo = cmos_bcd_read(acpi_gbl_FADT.month_alarm, rtc_control);
  61        else {
  62                mo = cmos_bcd_read(RTC_MONTH, rtc_control);
  63                today = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
  64        }
  65        if (acpi_gbl_FADT.century)
  66                cent = cmos_bcd_read(acpi_gbl_FADT.century, rtc_control);
  67
  68        yr = cmos_bcd_read(RTC_YEAR, rtc_control);
  69
  70        spin_unlock_irqrestore(&rtc_lock, flags);
  71
  72        /* we're trusting the FADT (see above) */
  73        if (!acpi_gbl_FADT.century)
  74                /* If we're not trusting the FADT, we should at least make it
  75                 * right for _this_ century... ehm, what is _this_ century?
  76                 *
  77                 * TBD:
  78                 *  ASAP: find piece of code in the kernel, e.g. star tracker driver,
  79                 *        which we can trust to determine the century correctly. Atom
  80                 *        watch driver would be nice, too...
  81                 *
  82                 *  if that has not happened, change for first release in 2050:
  83                 *        if (yr<50)
  84                 *                yr += 2100;
  85                 *        else
  86                 *                yr += 2000;   // current line of code
  87                 *
  88                 *  if that has not happened either, please do on 2099/12/31:23:59:59
  89                 *        s/2000/2100
  90                 *
  91                 */
  92                yr += 2000;
  93        else
  94                yr += cent * 100;
  95
  96        /*
  97         * Show correct dates for alarms up to a month into the future.
  98         * This solves issues for nearly all situations with the common
  99         * 30-day alarm clocks in PC hardware.
 100         */
 101        if (day < today) {
 102                if (mo < 12) {
 103                        mo += 1;
 104                } else {
 105                        mo = 1;
 106                        yr += 1;
 107                }
 108        }
 109
 110        seq_printf(seq, "%4.4u-", yr);
 111        (mo > 12) ? seq_puts(seq, "**-") : seq_printf(seq, "%2.2u-", mo);
 112        (day > 31) ? seq_puts(seq, "** ") : seq_printf(seq, "%2.2u ", day);
 113        (hr > 23) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", hr);
 114        (min > 59) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", min);
 115        (sec > 59) ? seq_puts(seq, "**\n") : seq_printf(seq, "%2.2u\n", sec);
 116
 117        return 0;
 118}
 119
 120static int acpi_system_alarm_open_fs(struct inode *inode, struct file *file)
 121{
 122        return single_open(file, acpi_system_alarm_seq_show, PDE(inode)->data);
 123}
 124
 125static int get_date_field(char **p, u32 * value)
 126{
 127        char *next = NULL;
 128        char *string_end = NULL;
 129        int result = -EINVAL;
 130
 131        /*
 132         * Try to find delimeter, only to insert null.  The end of the
 133         * string won't have one, but is still valid.
 134         */
 135        if (*p == NULL)
 136                return result;
 137
 138        next = strpbrk(*p, "- :");
 139        if (next)
 140                *next++ = '\0';
 141
 142        *value = simple_strtoul(*p, &string_end, 10);
 143
 144        /* Signal success if we got a good digit */
 145        if (string_end != *p)
 146                result = 0;
 147
 148        if (next)
 149                *p = next;
 150        else
 151                *p = NULL;
 152
 153        return result;
 154}
 155
 156/* Read a possibly BCD register, always return binary */
 157static u32 cmos_bcd_read(int offset, int rtc_control)
 158{
 159        u32 val = CMOS_READ(offset);
 160        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 161                val = bcd2bin(val);
 162        return val;
 163}
 164
 165/* Write binary value into possibly BCD register */
 166static void cmos_bcd_write(u32 val, int offset, int rtc_control)
 167{
 168        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 169                val = bin2bcd(val);
 170        CMOS_WRITE(val, offset);
 171}
 172
 173static ssize_t
 174acpi_system_write_alarm(struct file *file,
 175                        const char __user * buffer, size_t count, loff_t * ppos)
 176{
 177        int result = 0;
 178        char alarm_string[30] = { '\0' };
 179        char *p = alarm_string;
 180        u32 sec, min, hr, day, mo, yr;
 181        int adjust = 0;
 182        unsigned char rtc_control = 0;
 183
 184        if (count > sizeof(alarm_string) - 1)
 185                return -EINVAL;
 186
 187        if (copy_from_user(alarm_string, buffer, count))
 188                return -EFAULT;
 189
 190        alarm_string[count] = '\0';
 191
 192        /* check for time adjustment */
 193        if (alarm_string[0] == '+') {
 194                p++;
 195                adjust = 1;
 196        }
 197
 198        if ((result = get_date_field(&p, &yr)))
 199                goto end;
 200        if ((result = get_date_field(&p, &mo)))
 201                goto end;
 202        if ((result = get_date_field(&p, &day)))
 203                goto end;
 204        if ((result = get_date_field(&p, &hr)))
 205                goto end;
 206        if ((result = get_date_field(&p, &min)))
 207                goto end;
 208        if ((result = get_date_field(&p, &sec)))
 209                goto end;
 210
 211        spin_lock_irq(&rtc_lock);
 212
 213        rtc_control = CMOS_READ(RTC_CONTROL);
 214
 215        if (adjust) {
 216                yr += cmos_bcd_read(RTC_YEAR, rtc_control);
 217                mo += cmos_bcd_read(RTC_MONTH, rtc_control);
 218                day += cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
 219                hr += cmos_bcd_read(RTC_HOURS, rtc_control);
 220                min += cmos_bcd_read(RTC_MINUTES, rtc_control);
 221                sec += cmos_bcd_read(RTC_SECONDS, rtc_control);
 222        }
 223
 224        spin_unlock_irq(&rtc_lock);
 225
 226        if (sec > 59) {
 227                min += sec/60;
 228                sec = sec%60;
 229        }
 230        if (min > 59) {
 231                hr += min/60;
 232                min = min%60;
 233        }
 234        if (hr > 23) {
 235                day += hr/24;
 236                hr = hr%24;
 237        }
 238        if (day > 31) {
 239                mo += day/32;
 240                day = day%32;
 241        }
 242        if (mo > 12) {
 243                yr += mo/13;
 244                mo = mo%13;
 245        }
 246
 247        spin_lock_irq(&rtc_lock);
 248        /*
 249         * Disable alarm interrupt before setting alarm timer or else
 250         * when ACPI_EVENT_RTC is enabled, a spurious ACPI interrupt occurs
 251         */
 252        rtc_control &= ~RTC_AIE;
 253        CMOS_WRITE(rtc_control, RTC_CONTROL);
 254        CMOS_READ(RTC_INTR_FLAGS);
 255
 256        /* write the fields the rtc knows about */
 257        cmos_bcd_write(hr, RTC_HOURS_ALARM, rtc_control);
 258        cmos_bcd_write(min, RTC_MINUTES_ALARM, rtc_control);
 259        cmos_bcd_write(sec, RTC_SECONDS_ALARM, rtc_control);
 260
 261        /*
 262         * If the system supports an enhanced alarm it will have non-zero
 263         * offsets into the CMOS RAM here -- which for some reason are pointing
 264         * to the RTC area of memory.
 265         */
 266        if (acpi_gbl_FADT.day_alarm)
 267                cmos_bcd_write(day, acpi_gbl_FADT.day_alarm, rtc_control);
 268        if (acpi_gbl_FADT.month_alarm)
 269                cmos_bcd_write(mo, acpi_gbl_FADT.month_alarm, rtc_control);
 270        if (acpi_gbl_FADT.century) {
 271                if (adjust)
 272                        yr += cmos_bcd_read(acpi_gbl_FADT.century, rtc_control) * 100;
 273                cmos_bcd_write(yr / 100, acpi_gbl_FADT.century, rtc_control);
 274        }
 275        /* enable the rtc alarm interrupt */
 276        rtc_control |= RTC_AIE;
 277        CMOS_WRITE(rtc_control, RTC_CONTROL);
 278        CMOS_READ(RTC_INTR_FLAGS);
 279
 280        spin_unlock_irq(&rtc_lock);
 281
 282        acpi_clear_event(ACPI_EVENT_RTC);
 283        acpi_enable_event(ACPI_EVENT_RTC, 0);
 284
 285        *ppos += count;
 286
 287        result = 0;
 288      end:
 289        return result ? result : count;
 290}
 291#endif                          /* HAVE_ACPI_LEGACY_ALARM */
 292
 293static int
 294acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset)
 295{
 296        struct list_head *node, *next;
 297
 298        seq_printf(seq, "Device\tS-state\t  Status   Sysfs node\n");
 299
 300        mutex_lock(&acpi_device_lock);
 301        list_for_each_safe(node, next, &acpi_wakeup_device_list) {
 302                struct acpi_device *dev =
 303                    container_of(node, struct acpi_device, wakeup_list);
 304                struct device *ldev;
 305
 306                if (!dev->wakeup.flags.valid)
 307                        continue;
 308
 309                ldev = acpi_get_physical_device(dev->handle);
 310                seq_printf(seq, "%s\t  S%d\t%c%-8s  ",
 311                           dev->pnp.bus_id,
 312                           (u32) dev->wakeup.sleep_state,
 313                           dev->wakeup.flags.run_wake ? '*' : ' ',
 314                           (device_may_wakeup(&dev->dev)
 315                             || (ldev && device_may_wakeup(ldev))) ?
 316                               "enabled" : "disabled");
 317                if (ldev)
 318                        seq_printf(seq, "%s:%s",
 319                                   ldev->bus ? ldev->bus->name : "no-bus",
 320                                   dev_name(ldev));
 321                seq_printf(seq, "\n");
 322                put_device(ldev);
 323
 324        }
 325        mutex_unlock(&acpi_device_lock);
 326        return 0;
 327}
 328
 329static void physical_device_enable_wakeup(struct acpi_device *adev)
 330{
 331        struct device *dev = acpi_get_physical_device(adev->handle);
 332
 333        if (dev && device_can_wakeup(dev)) {
 334                bool enable = !device_may_wakeup(dev);
 335                device_set_wakeup_enable(dev, enable);
 336        }
 337}
 338
 339static ssize_t
 340acpi_system_write_wakeup_device(struct file *file,
 341                                const char __user * buffer,
 342                                size_t count, loff_t * ppos)
 343{
 344        struct list_head *node, *next;
 345        char strbuf[5];
 346        char str[5] = "";
 347        unsigned int len = count;
 348
 349        if (len > 4)
 350                len = 4;
 351        if (len < 0)
 352                return -EFAULT;
 353
 354        if (copy_from_user(strbuf, buffer, len))
 355                return -EFAULT;
 356        strbuf[len] = '\0';
 357        sscanf(strbuf, "%s", str);
 358
 359        mutex_lock(&acpi_device_lock);
 360        list_for_each_safe(node, next, &acpi_wakeup_device_list) {
 361                struct acpi_device *dev =
 362                    container_of(node, struct acpi_device, wakeup_list);
 363                if (!dev->wakeup.flags.valid)
 364                        continue;
 365
 366                if (!strncmp(dev->pnp.bus_id, str, 4)) {
 367                        if (device_can_wakeup(&dev->dev)) {
 368                                bool enable = !device_may_wakeup(&dev->dev);
 369                                device_set_wakeup_enable(&dev->dev, enable);
 370                        } else {
 371                                physical_device_enable_wakeup(dev);
 372                        }
 373                        break;
 374                }
 375        }
 376        mutex_unlock(&acpi_device_lock);
 377        return count;
 378}
 379
 380static int
 381acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file)
 382{
 383        return single_open(file, acpi_system_wakeup_device_seq_show,
 384                           PDE(inode)->data);
 385}
 386
 387static const struct file_operations acpi_system_wakeup_device_fops = {
 388        .owner = THIS_MODULE,
 389        .open = acpi_system_wakeup_device_open_fs,
 390        .read = seq_read,
 391        .write = acpi_system_write_wakeup_device,
 392        .llseek = seq_lseek,
 393        .release = single_release,
 394};
 395
 396#ifdef  HAVE_ACPI_LEGACY_ALARM
 397static const struct file_operations acpi_system_alarm_fops = {
 398        .owner = THIS_MODULE,
 399        .open = acpi_system_alarm_open_fs,
 400        .read = seq_read,
 401        .write = acpi_system_write_alarm,
 402        .llseek = seq_lseek,
 403        .release = single_release,
 404};
 405
 406static u32 rtc_handler(void *context)
 407{
 408        acpi_clear_event(ACPI_EVENT_RTC);
 409        acpi_disable_event(ACPI_EVENT_RTC, 0);
 410
 411        return ACPI_INTERRUPT_HANDLED;
 412}
 413#endif                          /* HAVE_ACPI_LEGACY_ALARM */
 414
 415int __init acpi_sleep_proc_init(void)
 416{
 417#ifdef  HAVE_ACPI_LEGACY_ALARM
 418        /* 'alarm' [R/W] */
 419        proc_create("alarm", S_IFREG | S_IRUGO | S_IWUSR,
 420                    acpi_root_dir, &acpi_system_alarm_fops);
 421
 422        acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
 423        /*
 424         * Disable the RTC event after installing RTC handler.
 425         * Only when RTC alarm is set will it be enabled.
 426         */
 427        acpi_clear_event(ACPI_EVENT_RTC);
 428        acpi_disable_event(ACPI_EVENT_RTC, 0);
 429#endif                          /* HAVE_ACPI_LEGACY_ALARM */
 430
 431        /* 'wakeup device' [R/W] */
 432        proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR,
 433                    acpi_root_dir, &acpi_system_wakeup_device_fops);
 434
 435        return 0;
 436}
 437