linux/drivers/gpu/drm/i915/i915_gem_tiling.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "linux/string.h"
  29#include "linux/bitops.h"
  30#include "drmP.h"
  31#include "drm.h"
  32#include "i915_drm.h"
  33#include "i915_drv.h"
  34
  35/** @file i915_gem_tiling.c
  36 *
  37 * Support for managing tiling state of buffer objects.
  38 *
  39 * The idea behind tiling is to increase cache hit rates by rearranging
  40 * pixel data so that a group of pixel accesses are in the same cacheline.
  41 * Performance improvement from doing this on the back/depth buffer are on
  42 * the order of 30%.
  43 *
  44 * Intel architectures make this somewhat more complicated, though, by
  45 * adjustments made to addressing of data when the memory is in interleaved
  46 * mode (matched pairs of DIMMS) to improve memory bandwidth.
  47 * For interleaved memory, the CPU sends every sequential 64 bytes
  48 * to an alternate memory channel so it can get the bandwidth from both.
  49 *
  50 * The GPU also rearranges its accesses for increased bandwidth to interleaved
  51 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
  52 * it does it a little differently, since one walks addresses not just in the
  53 * X direction but also Y.  So, along with alternating channels when bit
  54 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
  55 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
  56 * are common to both the 915 and 965-class hardware.
  57 *
  58 * The CPU also sometimes XORs in higher bits as well, to improve
  59 * bandwidth doing strided access like we do so frequently in graphics.  This
  60 * is called "Channel XOR Randomization" in the MCH documentation.  The result
  61 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
  62 * decode.
  63 *
  64 * All of this bit 6 XORing has an effect on our memory management,
  65 * as we need to make sure that the 3d driver can correctly address object
  66 * contents.
  67 *
  68 * If we don't have interleaved memory, all tiling is safe and no swizzling is
  69 * required.
  70 *
  71 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
  72 * 17 is not just a page offset, so as we page an objet out and back in,
  73 * individual pages in it will have different bit 17 addresses, resulting in
  74 * each 64 bytes being swapped with its neighbor!
  75 *
  76 * Otherwise, if interleaved, we have to tell the 3d driver what the address
  77 * swizzling it needs to do is, since it's writing with the CPU to the pages
  78 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
  79 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
  80 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
  81 * to match what the GPU expects.
  82 */
  83
  84/**
  85 * Detects bit 6 swizzling of address lookup between IGD access and CPU
  86 * access through main memory.
  87 */
  88void
  89i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
  90{
  91        drm_i915_private_t *dev_priv = dev->dev_private;
  92        uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  93        uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  94
  95        if (IS_GEN5(dev) || IS_GEN6(dev)) {
  96                /* On Ironlake whatever DRAM config, GPU always do
  97                 * same swizzling setup.
  98                 */
  99                swizzle_x = I915_BIT_6_SWIZZLE_9_10;
 100                swizzle_y = I915_BIT_6_SWIZZLE_9;
 101        } else if (IS_GEN2(dev)) {
 102                /* As far as we know, the 865 doesn't have these bit 6
 103                 * swizzling issues.
 104                 */
 105                swizzle_x = I915_BIT_6_SWIZZLE_NONE;
 106                swizzle_y = I915_BIT_6_SWIZZLE_NONE;
 107        } else if (IS_MOBILE(dev)) {
 108                uint32_t dcc;
 109
 110                /* On mobile 9xx chipsets, channel interleave by the CPU is
 111                 * determined by DCC.  For single-channel, neither the CPU
 112                 * nor the GPU do swizzling.  For dual channel interleaved,
 113                 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
 114                 * 9 for Y tiled.  The CPU's interleave is independent, and
 115                 * can be based on either bit 11 (haven't seen this yet) or
 116                 * bit 17 (common).
 117                 */
 118                dcc = I915_READ(DCC);
 119                switch (dcc & DCC_ADDRESSING_MODE_MASK) {
 120                case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
 121                case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
 122                        swizzle_x = I915_BIT_6_SWIZZLE_NONE;
 123                        swizzle_y = I915_BIT_6_SWIZZLE_NONE;
 124                        break;
 125                case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
 126                        if (dcc & DCC_CHANNEL_XOR_DISABLE) {
 127                                /* This is the base swizzling by the GPU for
 128                                 * tiled buffers.
 129                                 */
 130                                swizzle_x = I915_BIT_6_SWIZZLE_9_10;
 131                                swizzle_y = I915_BIT_6_SWIZZLE_9;
 132                        } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
 133                                /* Bit 11 swizzling by the CPU in addition. */
 134                                swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
 135                                swizzle_y = I915_BIT_6_SWIZZLE_9_11;
 136                        } else {
 137                                /* Bit 17 swizzling by the CPU in addition. */
 138                                swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
 139                                swizzle_y = I915_BIT_6_SWIZZLE_9_17;
 140                        }
 141                        break;
 142                }
 143                if (dcc == 0xffffffff) {
 144                        DRM_ERROR("Couldn't read from MCHBAR.  "
 145                                  "Disabling tiling.\n");
 146                        swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
 147                        swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
 148                }
 149        } else {
 150                /* The 965, G33, and newer, have a very flexible memory
 151                 * configuration.  It will enable dual-channel mode
 152                 * (interleaving) on as much memory as it can, and the GPU
 153                 * will additionally sometimes enable different bit 6
 154                 * swizzling for tiled objects from the CPU.
 155                 *
 156                 * Here's what I found on the G965:
 157                 *    slot fill         memory size  swizzling
 158                 * 0A   0B   1A   1B    1-ch   2-ch
 159                 * 512  0    0    0     512    0     O
 160                 * 512  0    512  0     16     1008  X
 161                 * 512  0    0    512   16     1008  X
 162                 * 0    512  0    512   16     1008  X
 163                 * 1024 1024 1024 0     2048   1024  O
 164                 *
 165                 * We could probably detect this based on either the DRB
 166                 * matching, which was the case for the swizzling required in
 167                 * the table above, or from the 1-ch value being less than
 168                 * the minimum size of a rank.
 169                 */
 170                if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
 171                        swizzle_x = I915_BIT_6_SWIZZLE_NONE;
 172                        swizzle_y = I915_BIT_6_SWIZZLE_NONE;
 173                } else {
 174                        swizzle_x = I915_BIT_6_SWIZZLE_9_10;
 175                        swizzle_y = I915_BIT_6_SWIZZLE_9;
 176                }
 177        }
 178
 179        dev_priv->mm.bit_6_swizzle_x = swizzle_x;
 180        dev_priv->mm.bit_6_swizzle_y = swizzle_y;
 181}
 182
 183/* Check pitch constriants for all chips & tiling formats */
 184static bool
 185i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
 186{
 187        int tile_width;
 188
 189        /* Linear is always fine */
 190        if (tiling_mode == I915_TILING_NONE)
 191                return true;
 192
 193        if (IS_GEN2(dev) ||
 194            (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
 195                tile_width = 128;
 196        else
 197                tile_width = 512;
 198
 199        /* check maximum stride & object size */
 200        if (INTEL_INFO(dev)->gen >= 4) {
 201                /* i965 stores the end address of the gtt mapping in the fence
 202                 * reg, so dont bother to check the size */
 203                if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
 204                        return false;
 205        } else {
 206                if (stride > 8192)
 207                        return false;
 208
 209                if (IS_GEN3(dev)) {
 210                        if (size > I830_FENCE_MAX_SIZE_VAL << 20)
 211                                return false;
 212                } else {
 213                        if (size > I830_FENCE_MAX_SIZE_VAL << 19)
 214                                return false;
 215                }
 216        }
 217
 218        /* 965+ just needs multiples of tile width */
 219        if (INTEL_INFO(dev)->gen >= 4) {
 220                if (stride & (tile_width - 1))
 221                        return false;
 222                return true;
 223        }
 224
 225        /* Pre-965 needs power of two tile widths */
 226        if (stride < tile_width)
 227                return false;
 228
 229        if (stride & (stride - 1))
 230                return false;
 231
 232        return true;
 233}
 234
 235/* Is the current GTT allocation valid for the change in tiling? */
 236static bool
 237i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
 238{
 239        u32 size;
 240
 241        if (tiling_mode == I915_TILING_NONE)
 242                return true;
 243
 244        if (INTEL_INFO(obj->base.dev)->gen >= 4)
 245                return true;
 246
 247        if (INTEL_INFO(obj->base.dev)->gen == 3) {
 248                if (obj->gtt_offset & ~I915_FENCE_START_MASK)
 249                        return false;
 250        } else {
 251                if (obj->gtt_offset & ~I830_FENCE_START_MASK)
 252                        return false;
 253        }
 254
 255        /*
 256         * Previous chips need to be aligned to the size of the smallest
 257         * fence register that can contain the object.
 258         */
 259        if (INTEL_INFO(obj->base.dev)->gen == 3)
 260                size = 1024*1024;
 261        else
 262                size = 512*1024;
 263
 264        while (size < obj->base.size)
 265                size <<= 1;
 266
 267        if (obj->gtt_space->size != size)
 268                return false;
 269
 270        if (obj->gtt_offset & (size - 1))
 271                return false;
 272
 273        return true;
 274}
 275
 276/**
 277 * Sets the tiling mode of an object, returning the required swizzling of
 278 * bit 6 of addresses in the object.
 279 */
 280int
 281i915_gem_set_tiling(struct drm_device *dev, void *data,
 282                   struct drm_file *file)
 283{
 284        struct drm_i915_gem_set_tiling *args = data;
 285        drm_i915_private_t *dev_priv = dev->dev_private;
 286        struct drm_i915_gem_object *obj;
 287        int ret = 0;
 288
 289        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 290        if (&obj->base == NULL)
 291                return -ENOENT;
 292
 293        if (!i915_tiling_ok(dev,
 294                            args->stride, obj->base.size, args->tiling_mode)) {
 295                drm_gem_object_unreference_unlocked(&obj->base);
 296                return -EINVAL;
 297        }
 298
 299        if (obj->pin_count) {
 300                drm_gem_object_unreference_unlocked(&obj->base);
 301                return -EBUSY;
 302        }
 303
 304        if (args->tiling_mode == I915_TILING_NONE) {
 305                args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
 306                args->stride = 0;
 307        } else {
 308                if (args->tiling_mode == I915_TILING_X)
 309                        args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
 310                else
 311                        args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
 312
 313                /* Hide bit 17 swizzling from the user.  This prevents old Mesa
 314                 * from aborting the application on sw fallbacks to bit 17,
 315                 * and we use the pread/pwrite bit17 paths to swizzle for it.
 316                 * If there was a user that was relying on the swizzle
 317                 * information for drm_intel_bo_map()ed reads/writes this would
 318                 * break it, but we don't have any of those.
 319                 */
 320                if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
 321                        args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
 322                if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
 323                        args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
 324
 325                /* If we can't handle the swizzling, make it untiled. */
 326                if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
 327                        args->tiling_mode = I915_TILING_NONE;
 328                        args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
 329                        args->stride = 0;
 330                }
 331        }
 332
 333        mutex_lock(&dev->struct_mutex);
 334        if (args->tiling_mode != obj->tiling_mode ||
 335            args->stride != obj->stride) {
 336                /* We need to rebind the object if its current allocation
 337                 * no longer meets the alignment restrictions for its new
 338                 * tiling mode. Otherwise we can just leave it alone, but
 339                 * need to ensure that any fence register is cleared.
 340                 */
 341                i915_gem_release_mmap(obj);
 342
 343                obj->map_and_fenceable =
 344                        obj->gtt_space == NULL ||
 345                        (obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
 346                         i915_gem_object_fence_ok(obj, args->tiling_mode));
 347
 348                /* Rebind if we need a change of alignment */
 349                if (!obj->map_and_fenceable) {
 350                        u32 unfenced_alignment =
 351                                i915_gem_get_unfenced_gtt_alignment(obj);
 352                        if (obj->gtt_offset & (unfenced_alignment - 1))
 353                                ret = i915_gem_object_unbind(obj);
 354                }
 355
 356                if (ret == 0) {
 357                        obj->tiling_changed = true;
 358                        obj->tiling_mode = args->tiling_mode;
 359                        obj->stride = args->stride;
 360                }
 361        }
 362        /* we have to maintain this existing ABI... */
 363        args->stride = obj->stride;
 364        args->tiling_mode = obj->tiling_mode;
 365        drm_gem_object_unreference(&obj->base);
 366        mutex_unlock(&dev->struct_mutex);
 367
 368        return ret;
 369}
 370
 371/**
 372 * Returns the current tiling mode and required bit 6 swizzling for the object.
 373 */
 374int
 375i915_gem_get_tiling(struct drm_device *dev, void *data,
 376                   struct drm_file *file)
 377{
 378        struct drm_i915_gem_get_tiling *args = data;
 379        drm_i915_private_t *dev_priv = dev->dev_private;
 380        struct drm_i915_gem_object *obj;
 381
 382        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 383        if (&obj->base == NULL)
 384                return -ENOENT;
 385
 386        mutex_lock(&dev->struct_mutex);
 387
 388        args->tiling_mode = obj->tiling_mode;
 389        switch (obj->tiling_mode) {
 390        case I915_TILING_X:
 391                args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
 392                break;
 393        case I915_TILING_Y:
 394                args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
 395                break;
 396        case I915_TILING_NONE:
 397                args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
 398                break;
 399        default:
 400                DRM_ERROR("unknown tiling mode\n");
 401        }
 402
 403        /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
 404        if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
 405                args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
 406        if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
 407                args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
 408
 409        drm_gem_object_unreference(&obj->base);
 410        mutex_unlock(&dev->struct_mutex);
 411
 412        return 0;
 413}
 414
 415/**
 416 * Swap every 64 bytes of this page around, to account for it having a new
 417 * bit 17 of its physical address and therefore being interpreted differently
 418 * by the GPU.
 419 */
 420static void
 421i915_gem_swizzle_page(struct page *page)
 422{
 423        char temp[64];
 424        char *vaddr;
 425        int i;
 426
 427        vaddr = kmap(page);
 428
 429        for (i = 0; i < PAGE_SIZE; i += 128) {
 430                memcpy(temp, &vaddr[i], 64);
 431                memcpy(&vaddr[i], &vaddr[i + 64], 64);
 432                memcpy(&vaddr[i + 64], temp, 64);
 433        }
 434
 435        kunmap(page);
 436}
 437
 438void
 439i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
 440{
 441        struct drm_device *dev = obj->base.dev;
 442        drm_i915_private_t *dev_priv = dev->dev_private;
 443        int page_count = obj->base.size >> PAGE_SHIFT;
 444        int i;
 445
 446        if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
 447                return;
 448
 449        if (obj->bit_17 == NULL)
 450                return;
 451
 452        for (i = 0; i < page_count; i++) {
 453                char new_bit_17 = page_to_phys(obj->pages[i]) >> 17;
 454                if ((new_bit_17 & 0x1) !=
 455                    (test_bit(i, obj->bit_17) != 0)) {
 456                        i915_gem_swizzle_page(obj->pages[i]);
 457                        set_page_dirty(obj->pages[i]);
 458                }
 459        }
 460}
 461
 462void
 463i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
 464{
 465        struct drm_device *dev = obj->base.dev;
 466        drm_i915_private_t *dev_priv = dev->dev_private;
 467        int page_count = obj->base.size >> PAGE_SHIFT;
 468        int i;
 469
 470        if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
 471                return;
 472
 473        if (obj->bit_17 == NULL) {
 474                obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
 475                                           sizeof(long), GFP_KERNEL);
 476                if (obj->bit_17 == NULL) {
 477                        DRM_ERROR("Failed to allocate memory for bit 17 "
 478                                  "record\n");
 479                        return;
 480                }
 481        }
 482
 483        for (i = 0; i < page_count; i++) {
 484                if (page_to_phys(obj->pages[i]) & (1 << 17))
 485                        __set_bit(i, obj->bit_17);
 486                else
 487                        __clear_bit(i, obj->bit_17);
 488        }
 489}
 490