linux/drivers/md/dm-table.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <asm/atomic.h>
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29/*
  30 * The table has always exactly one reference from either mapped_device->map
  31 * or hash_cell->new_map. This reference is not counted in table->holders.
  32 * A pair of dm_create_table/dm_destroy_table functions is used for table
  33 * creation/destruction.
  34 *
  35 * Temporary references from the other code increase table->holders. A pair
  36 * of dm_table_get/dm_table_put functions is used to manipulate it.
  37 *
  38 * When the table is about to be destroyed, we wait for table->holders to
  39 * drop to zero.
  40 */
  41
  42struct dm_table {
  43        struct mapped_device *md;
  44        atomic_t holders;
  45        unsigned type;
  46
  47        /* btree table */
  48        unsigned int depth;
  49        unsigned int counts[MAX_DEPTH]; /* in nodes */
  50        sector_t *index[MAX_DEPTH];
  51
  52        unsigned int num_targets;
  53        unsigned int num_allocated;
  54        sector_t *highs;
  55        struct dm_target *targets;
  56
  57        unsigned discards_supported:1;
  58        unsigned integrity_supported:1;
  59
  60        /*
  61         * Indicates the rw permissions for the new logical
  62         * device.  This should be a combination of FMODE_READ
  63         * and FMODE_WRITE.
  64         */
  65        fmode_t mode;
  66
  67        /* a list of devices used by this table */
  68        struct list_head devices;
  69
  70        /* events get handed up using this callback */
  71        void (*event_fn)(void *);
  72        void *event_context;
  73
  74        struct dm_md_mempools *mempools;
  75
  76        struct list_head target_callbacks;
  77};
  78
  79/*
  80 * Similar to ceiling(log_size(n))
  81 */
  82static unsigned int int_log(unsigned int n, unsigned int base)
  83{
  84        int result = 0;
  85
  86        while (n > 1) {
  87                n = dm_div_up(n, base);
  88                result++;
  89        }
  90
  91        return result;
  92}
  93
  94/*
  95 * Calculate the index of the child node of the n'th node k'th key.
  96 */
  97static inline unsigned int get_child(unsigned int n, unsigned int k)
  98{
  99        return (n * CHILDREN_PER_NODE) + k;
 100}
 101
 102/*
 103 * Return the n'th node of level l from table t.
 104 */
 105static inline sector_t *get_node(struct dm_table *t,
 106                                 unsigned int l, unsigned int n)
 107{
 108        return t->index[l] + (n * KEYS_PER_NODE);
 109}
 110
 111/*
 112 * Return the highest key that you could lookup from the n'th
 113 * node on level l of the btree.
 114 */
 115static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 116{
 117        for (; l < t->depth - 1; l++)
 118                n = get_child(n, CHILDREN_PER_NODE - 1);
 119
 120        if (n >= t->counts[l])
 121                return (sector_t) - 1;
 122
 123        return get_node(t, l, n)[KEYS_PER_NODE - 1];
 124}
 125
 126/*
 127 * Fills in a level of the btree based on the highs of the level
 128 * below it.
 129 */
 130static int setup_btree_index(unsigned int l, struct dm_table *t)
 131{
 132        unsigned int n, k;
 133        sector_t *node;
 134
 135        for (n = 0U; n < t->counts[l]; n++) {
 136                node = get_node(t, l, n);
 137
 138                for (k = 0U; k < KEYS_PER_NODE; k++)
 139                        node[k] = high(t, l + 1, get_child(n, k));
 140        }
 141
 142        return 0;
 143}
 144
 145void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 146{
 147        unsigned long size;
 148        void *addr;
 149
 150        /*
 151         * Check that we're not going to overflow.
 152         */
 153        if (nmemb > (ULONG_MAX / elem_size))
 154                return NULL;
 155
 156        size = nmemb * elem_size;
 157        addr = vmalloc(size);
 158        if (addr)
 159                memset(addr, 0, size);
 160
 161        return addr;
 162}
 163
 164/*
 165 * highs, and targets are managed as dynamic arrays during a
 166 * table load.
 167 */
 168static int alloc_targets(struct dm_table *t, unsigned int num)
 169{
 170        sector_t *n_highs;
 171        struct dm_target *n_targets;
 172        int n = t->num_targets;
 173
 174        /*
 175         * Allocate both the target array and offset array at once.
 176         * Append an empty entry to catch sectors beyond the end of
 177         * the device.
 178         */
 179        n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 180                                          sizeof(sector_t));
 181        if (!n_highs)
 182                return -ENOMEM;
 183
 184        n_targets = (struct dm_target *) (n_highs + num);
 185
 186        if (n) {
 187                memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
 188                memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
 189        }
 190
 191        memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
 192        vfree(t->highs);
 193
 194        t->num_allocated = num;
 195        t->highs = n_highs;
 196        t->targets = n_targets;
 197
 198        return 0;
 199}
 200
 201int dm_table_create(struct dm_table **result, fmode_t mode,
 202                    unsigned num_targets, struct mapped_device *md)
 203{
 204        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 205
 206        if (!t)
 207                return -ENOMEM;
 208
 209        INIT_LIST_HEAD(&t->devices);
 210        INIT_LIST_HEAD(&t->target_callbacks);
 211        atomic_set(&t->holders, 0);
 212        t->discards_supported = 1;
 213
 214        if (!num_targets)
 215                num_targets = KEYS_PER_NODE;
 216
 217        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 218
 219        if (alloc_targets(t, num_targets)) {
 220                kfree(t);
 221                t = NULL;
 222                return -ENOMEM;
 223        }
 224
 225        t->mode = mode;
 226        t->md = md;
 227        *result = t;
 228        return 0;
 229}
 230
 231static void free_devices(struct list_head *devices)
 232{
 233        struct list_head *tmp, *next;
 234
 235        list_for_each_safe(tmp, next, devices) {
 236                struct dm_dev_internal *dd =
 237                    list_entry(tmp, struct dm_dev_internal, list);
 238                DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 239                       dd->dm_dev.name);
 240                kfree(dd);
 241        }
 242}
 243
 244void dm_table_destroy(struct dm_table *t)
 245{
 246        unsigned int i;
 247
 248        if (!t)
 249                return;
 250
 251        while (atomic_read(&t->holders))
 252                msleep(1);
 253        smp_mb();
 254
 255        /* free the indexes */
 256        if (t->depth >= 2)
 257                vfree(t->index[t->depth - 2]);
 258
 259        /* free the targets */
 260        for (i = 0; i < t->num_targets; i++) {
 261                struct dm_target *tgt = t->targets + i;
 262
 263                if (tgt->type->dtr)
 264                        tgt->type->dtr(tgt);
 265
 266                dm_put_target_type(tgt->type);
 267        }
 268
 269        vfree(t->highs);
 270
 271        /* free the device list */
 272        if (t->devices.next != &t->devices)
 273                free_devices(&t->devices);
 274
 275        dm_free_md_mempools(t->mempools);
 276
 277        kfree(t);
 278}
 279
 280void dm_table_get(struct dm_table *t)
 281{
 282        atomic_inc(&t->holders);
 283}
 284
 285void dm_table_put(struct dm_table *t)
 286{
 287        if (!t)
 288                return;
 289
 290        smp_mb__before_atomic_dec();
 291        atomic_dec(&t->holders);
 292}
 293
 294/*
 295 * Checks to see if we need to extend highs or targets.
 296 */
 297static inline int check_space(struct dm_table *t)
 298{
 299        if (t->num_targets >= t->num_allocated)
 300                return alloc_targets(t, t->num_allocated * 2);
 301
 302        return 0;
 303}
 304
 305/*
 306 * See if we've already got a device in the list.
 307 */
 308static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 309{
 310        struct dm_dev_internal *dd;
 311
 312        list_for_each_entry (dd, l, list)
 313                if (dd->dm_dev.bdev->bd_dev == dev)
 314                        return dd;
 315
 316        return NULL;
 317}
 318
 319/*
 320 * Open a device so we can use it as a map destination.
 321 */
 322static int open_dev(struct dm_dev_internal *d, dev_t dev,
 323                    struct mapped_device *md)
 324{
 325        static char *_claim_ptr = "I belong to device-mapper";
 326        struct block_device *bdev;
 327
 328        int r;
 329
 330        BUG_ON(d->dm_dev.bdev);
 331
 332        bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 333        if (IS_ERR(bdev))
 334                return PTR_ERR(bdev);
 335
 336        r = bd_link_disk_holder(bdev, dm_disk(md));
 337        if (r) {
 338                blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 339                return r;
 340        }
 341
 342        d->dm_dev.bdev = bdev;
 343        return 0;
 344}
 345
 346/*
 347 * Close a device that we've been using.
 348 */
 349static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 350{
 351        if (!d->dm_dev.bdev)
 352                return;
 353
 354        bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 355        blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 356        d->dm_dev.bdev = NULL;
 357}
 358
 359/*
 360 * If possible, this checks an area of a destination device is invalid.
 361 */
 362static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 363                                  sector_t start, sector_t len, void *data)
 364{
 365        struct queue_limits *limits = data;
 366        struct block_device *bdev = dev->bdev;
 367        sector_t dev_size =
 368                i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 369        unsigned short logical_block_size_sectors =
 370                limits->logical_block_size >> SECTOR_SHIFT;
 371        char b[BDEVNAME_SIZE];
 372
 373        if (!dev_size)
 374                return 0;
 375
 376        if ((start >= dev_size) || (start + len > dev_size)) {
 377                DMWARN("%s: %s too small for target: "
 378                       "start=%llu, len=%llu, dev_size=%llu",
 379                       dm_device_name(ti->table->md), bdevname(bdev, b),
 380                       (unsigned long long)start,
 381                       (unsigned long long)len,
 382                       (unsigned long long)dev_size);
 383                return 1;
 384        }
 385
 386        if (logical_block_size_sectors <= 1)
 387                return 0;
 388
 389        if (start & (logical_block_size_sectors - 1)) {
 390                DMWARN("%s: start=%llu not aligned to h/w "
 391                       "logical block size %u of %s",
 392                       dm_device_name(ti->table->md),
 393                       (unsigned long long)start,
 394                       limits->logical_block_size, bdevname(bdev, b));
 395                return 1;
 396        }
 397
 398        if (len & (logical_block_size_sectors - 1)) {
 399                DMWARN("%s: len=%llu not aligned to h/w "
 400                       "logical block size %u of %s",
 401                       dm_device_name(ti->table->md),
 402                       (unsigned long long)len,
 403                       limits->logical_block_size, bdevname(bdev, b));
 404                return 1;
 405        }
 406
 407        return 0;
 408}
 409
 410/*
 411 * This upgrades the mode on an already open dm_dev, being
 412 * careful to leave things as they were if we fail to reopen the
 413 * device and not to touch the existing bdev field in case
 414 * it is accessed concurrently inside dm_table_any_congested().
 415 */
 416static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 417                        struct mapped_device *md)
 418{
 419        int r;
 420        struct dm_dev_internal dd_new, dd_old;
 421
 422        dd_new = dd_old = *dd;
 423
 424        dd_new.dm_dev.mode |= new_mode;
 425        dd_new.dm_dev.bdev = NULL;
 426
 427        r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 428        if (r)
 429                return r;
 430
 431        dd->dm_dev.mode |= new_mode;
 432        close_dev(&dd_old, md);
 433
 434        return 0;
 435}
 436
 437/*
 438 * Add a device to the list, or just increment the usage count if
 439 * it's already present.
 440 */
 441static int __table_get_device(struct dm_table *t, struct dm_target *ti,
 442                      const char *path, fmode_t mode, struct dm_dev **result)
 443{
 444        int r;
 445        dev_t uninitialized_var(dev);
 446        struct dm_dev_internal *dd;
 447        unsigned int major, minor;
 448
 449        BUG_ON(!t);
 450
 451        if (sscanf(path, "%u:%u", &major, &minor) == 2) {
 452                /* Extract the major/minor numbers */
 453                dev = MKDEV(major, minor);
 454                if (MAJOR(dev) != major || MINOR(dev) != minor)
 455                        return -EOVERFLOW;
 456        } else {
 457                /* convert the path to a device */
 458                struct block_device *bdev = lookup_bdev(path);
 459
 460                if (IS_ERR(bdev))
 461                        return PTR_ERR(bdev);
 462                dev = bdev->bd_dev;
 463                bdput(bdev);
 464        }
 465
 466        dd = find_device(&t->devices, dev);
 467        if (!dd) {
 468                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 469                if (!dd)
 470                        return -ENOMEM;
 471
 472                dd->dm_dev.mode = mode;
 473                dd->dm_dev.bdev = NULL;
 474
 475                if ((r = open_dev(dd, dev, t->md))) {
 476                        kfree(dd);
 477                        return r;
 478                }
 479
 480                format_dev_t(dd->dm_dev.name, dev);
 481
 482                atomic_set(&dd->count, 0);
 483                list_add(&dd->list, &t->devices);
 484
 485        } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 486                r = upgrade_mode(dd, mode, t->md);
 487                if (r)
 488                        return r;
 489        }
 490        atomic_inc(&dd->count);
 491
 492        *result = &dd->dm_dev;
 493        return 0;
 494}
 495
 496int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 497                         sector_t start, sector_t len, void *data)
 498{
 499        struct queue_limits *limits = data;
 500        struct block_device *bdev = dev->bdev;
 501        struct request_queue *q = bdev_get_queue(bdev);
 502        char b[BDEVNAME_SIZE];
 503
 504        if (unlikely(!q)) {
 505                DMWARN("%s: Cannot set limits for nonexistent device %s",
 506                       dm_device_name(ti->table->md), bdevname(bdev, b));
 507                return 0;
 508        }
 509
 510        if (bdev_stack_limits(limits, bdev, start) < 0)
 511                DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 512                       "physical_block_size=%u, logical_block_size=%u, "
 513                       "alignment_offset=%u, start=%llu",
 514                       dm_device_name(ti->table->md), bdevname(bdev, b),
 515                       q->limits.physical_block_size,
 516                       q->limits.logical_block_size,
 517                       q->limits.alignment_offset,
 518                       (unsigned long long) start << SECTOR_SHIFT);
 519
 520        /*
 521         * Check if merge fn is supported.
 522         * If not we'll force DM to use PAGE_SIZE or
 523         * smaller I/O, just to be safe.
 524         */
 525
 526        if (q->merge_bvec_fn && !ti->type->merge)
 527                blk_limits_max_hw_sectors(limits,
 528                                          (unsigned int) (PAGE_SIZE >> 9));
 529        return 0;
 530}
 531EXPORT_SYMBOL_GPL(dm_set_device_limits);
 532
 533int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 534                  struct dm_dev **result)
 535{
 536        return __table_get_device(ti->table, ti, path, mode, result);
 537}
 538
 539
 540/*
 541 * Decrement a devices use count and remove it if necessary.
 542 */
 543void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 544{
 545        struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 546                                                  dm_dev);
 547
 548        if (atomic_dec_and_test(&dd->count)) {
 549                close_dev(dd, ti->table->md);
 550                list_del(&dd->list);
 551                kfree(dd);
 552        }
 553}
 554
 555/*
 556 * Checks to see if the target joins onto the end of the table.
 557 */
 558static int adjoin(struct dm_table *table, struct dm_target *ti)
 559{
 560        struct dm_target *prev;
 561
 562        if (!table->num_targets)
 563                return !ti->begin;
 564
 565        prev = &table->targets[table->num_targets - 1];
 566        return (ti->begin == (prev->begin + prev->len));
 567}
 568
 569/*
 570 * Used to dynamically allocate the arg array.
 571 */
 572static char **realloc_argv(unsigned *array_size, char **old_argv)
 573{
 574        char **argv;
 575        unsigned new_size;
 576
 577        new_size = *array_size ? *array_size * 2 : 64;
 578        argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
 579        if (argv) {
 580                memcpy(argv, old_argv, *array_size * sizeof(*argv));
 581                *array_size = new_size;
 582        }
 583
 584        kfree(old_argv);
 585        return argv;
 586}
 587
 588/*
 589 * Destructively splits up the argument list to pass to ctr.
 590 */
 591int dm_split_args(int *argc, char ***argvp, char *input)
 592{
 593        char *start, *end = input, *out, **argv = NULL;
 594        unsigned array_size = 0;
 595
 596        *argc = 0;
 597
 598        if (!input) {
 599                *argvp = NULL;
 600                return 0;
 601        }
 602
 603        argv = realloc_argv(&array_size, argv);
 604        if (!argv)
 605                return -ENOMEM;
 606
 607        while (1) {
 608                /* Skip whitespace */
 609                start = skip_spaces(end);
 610
 611                if (!*start)
 612                        break;  /* success, we hit the end */
 613
 614                /* 'out' is used to remove any back-quotes */
 615                end = out = start;
 616                while (*end) {
 617                        /* Everything apart from '\0' can be quoted */
 618                        if (*end == '\\' && *(end + 1)) {
 619                                *out++ = *(end + 1);
 620                                end += 2;
 621                                continue;
 622                        }
 623
 624                        if (isspace(*end))
 625                                break;  /* end of token */
 626
 627                        *out++ = *end++;
 628                }
 629
 630                /* have we already filled the array ? */
 631                if ((*argc + 1) > array_size) {
 632                        argv = realloc_argv(&array_size, argv);
 633                        if (!argv)
 634                                return -ENOMEM;
 635                }
 636
 637                /* we know this is whitespace */
 638                if (*end)
 639                        end++;
 640
 641                /* terminate the string and put it in the array */
 642                *out = '\0';
 643                argv[*argc] = start;
 644                (*argc)++;
 645        }
 646
 647        *argvp = argv;
 648        return 0;
 649}
 650
 651/*
 652 * Impose necessary and sufficient conditions on a devices's table such
 653 * that any incoming bio which respects its logical_block_size can be
 654 * processed successfully.  If it falls across the boundary between
 655 * two or more targets, the size of each piece it gets split into must
 656 * be compatible with the logical_block_size of the target processing it.
 657 */
 658static int validate_hardware_logical_block_alignment(struct dm_table *table,
 659                                                 struct queue_limits *limits)
 660{
 661        /*
 662         * This function uses arithmetic modulo the logical_block_size
 663         * (in units of 512-byte sectors).
 664         */
 665        unsigned short device_logical_block_size_sects =
 666                limits->logical_block_size >> SECTOR_SHIFT;
 667
 668        /*
 669         * Offset of the start of the next table entry, mod logical_block_size.
 670         */
 671        unsigned short next_target_start = 0;
 672
 673        /*
 674         * Given an aligned bio that extends beyond the end of a
 675         * target, how many sectors must the next target handle?
 676         */
 677        unsigned short remaining = 0;
 678
 679        struct dm_target *uninitialized_var(ti);
 680        struct queue_limits ti_limits;
 681        unsigned i = 0;
 682
 683        /*
 684         * Check each entry in the table in turn.
 685         */
 686        while (i < dm_table_get_num_targets(table)) {
 687                ti = dm_table_get_target(table, i++);
 688
 689                blk_set_default_limits(&ti_limits);
 690
 691                /* combine all target devices' limits */
 692                if (ti->type->iterate_devices)
 693                        ti->type->iterate_devices(ti, dm_set_device_limits,
 694                                                  &ti_limits);
 695
 696                /*
 697                 * If the remaining sectors fall entirely within this
 698                 * table entry are they compatible with its logical_block_size?
 699                 */
 700                if (remaining < ti->len &&
 701                    remaining & ((ti_limits.logical_block_size >>
 702                                  SECTOR_SHIFT) - 1))
 703                        break;  /* Error */
 704
 705                next_target_start =
 706                    (unsigned short) ((next_target_start + ti->len) &
 707                                      (device_logical_block_size_sects - 1));
 708                remaining = next_target_start ?
 709                    device_logical_block_size_sects - next_target_start : 0;
 710        }
 711
 712        if (remaining) {
 713                DMWARN("%s: table line %u (start sect %llu len %llu) "
 714                       "not aligned to h/w logical block size %u",
 715                       dm_device_name(table->md), i,
 716                       (unsigned long long) ti->begin,
 717                       (unsigned long long) ti->len,
 718                       limits->logical_block_size);
 719                return -EINVAL;
 720        }
 721
 722        return 0;
 723}
 724
 725int dm_table_add_target(struct dm_table *t, const char *type,
 726                        sector_t start, sector_t len, char *params)
 727{
 728        int r = -EINVAL, argc;
 729        char **argv;
 730        struct dm_target *tgt;
 731
 732        if ((r = check_space(t)))
 733                return r;
 734
 735        tgt = t->targets + t->num_targets;
 736        memset(tgt, 0, sizeof(*tgt));
 737
 738        if (!len) {
 739                DMERR("%s: zero-length target", dm_device_name(t->md));
 740                return -EINVAL;
 741        }
 742
 743        tgt->type = dm_get_target_type(type);
 744        if (!tgt->type) {
 745                DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 746                      type);
 747                return -EINVAL;
 748        }
 749
 750        tgt->table = t;
 751        tgt->begin = start;
 752        tgt->len = len;
 753        tgt->error = "Unknown error";
 754
 755        /*
 756         * Does this target adjoin the previous one ?
 757         */
 758        if (!adjoin(t, tgt)) {
 759                tgt->error = "Gap in table";
 760                r = -EINVAL;
 761                goto bad;
 762        }
 763
 764        r = dm_split_args(&argc, &argv, params);
 765        if (r) {
 766                tgt->error = "couldn't split parameters (insufficient memory)";
 767                goto bad;
 768        }
 769
 770        r = tgt->type->ctr(tgt, argc, argv);
 771        kfree(argv);
 772        if (r)
 773                goto bad;
 774
 775        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 776
 777        if (!tgt->num_discard_requests)
 778                t->discards_supported = 0;
 779
 780        return 0;
 781
 782 bad:
 783        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 784        dm_put_target_type(tgt->type);
 785        return r;
 786}
 787
 788static int dm_table_set_type(struct dm_table *t)
 789{
 790        unsigned i;
 791        unsigned bio_based = 0, request_based = 0;
 792        struct dm_target *tgt;
 793        struct dm_dev_internal *dd;
 794        struct list_head *devices;
 795
 796        for (i = 0; i < t->num_targets; i++) {
 797                tgt = t->targets + i;
 798                if (dm_target_request_based(tgt))
 799                        request_based = 1;
 800                else
 801                        bio_based = 1;
 802
 803                if (bio_based && request_based) {
 804                        DMWARN("Inconsistent table: different target types"
 805                               " can't be mixed up");
 806                        return -EINVAL;
 807                }
 808        }
 809
 810        if (bio_based) {
 811                /* We must use this table as bio-based */
 812                t->type = DM_TYPE_BIO_BASED;
 813                return 0;
 814        }
 815
 816        BUG_ON(!request_based); /* No targets in this table */
 817
 818        /* Non-request-stackable devices can't be used for request-based dm */
 819        devices = dm_table_get_devices(t);
 820        list_for_each_entry(dd, devices, list) {
 821                if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 822                        DMWARN("table load rejected: including"
 823                               " non-request-stackable devices");
 824                        return -EINVAL;
 825                }
 826        }
 827
 828        /*
 829         * Request-based dm supports only tables that have a single target now.
 830         * To support multiple targets, request splitting support is needed,
 831         * and that needs lots of changes in the block-layer.
 832         * (e.g. request completion process for partial completion.)
 833         */
 834        if (t->num_targets > 1) {
 835                DMWARN("Request-based dm doesn't support multiple targets yet");
 836                return -EINVAL;
 837        }
 838
 839        t->type = DM_TYPE_REQUEST_BASED;
 840
 841        return 0;
 842}
 843
 844unsigned dm_table_get_type(struct dm_table *t)
 845{
 846        return t->type;
 847}
 848
 849bool dm_table_request_based(struct dm_table *t)
 850{
 851        return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 852}
 853
 854int dm_table_alloc_md_mempools(struct dm_table *t)
 855{
 856        unsigned type = dm_table_get_type(t);
 857
 858        if (unlikely(type == DM_TYPE_NONE)) {
 859                DMWARN("no table type is set, can't allocate mempools");
 860                return -EINVAL;
 861        }
 862
 863        t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
 864        if (!t->mempools)
 865                return -ENOMEM;
 866
 867        return 0;
 868}
 869
 870void dm_table_free_md_mempools(struct dm_table *t)
 871{
 872        dm_free_md_mempools(t->mempools);
 873        t->mempools = NULL;
 874}
 875
 876struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 877{
 878        return t->mempools;
 879}
 880
 881static int setup_indexes(struct dm_table *t)
 882{
 883        int i;
 884        unsigned int total = 0;
 885        sector_t *indexes;
 886
 887        /* allocate the space for *all* the indexes */
 888        for (i = t->depth - 2; i >= 0; i--) {
 889                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 890                total += t->counts[i];
 891        }
 892
 893        indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 894        if (!indexes)
 895                return -ENOMEM;
 896
 897        /* set up internal nodes, bottom-up */
 898        for (i = t->depth - 2; i >= 0; i--) {
 899                t->index[i] = indexes;
 900                indexes += (KEYS_PER_NODE * t->counts[i]);
 901                setup_btree_index(i, t);
 902        }
 903
 904        return 0;
 905}
 906
 907/*
 908 * Builds the btree to index the map.
 909 */
 910static int dm_table_build_index(struct dm_table *t)
 911{
 912        int r = 0;
 913        unsigned int leaf_nodes;
 914
 915        /* how many indexes will the btree have ? */
 916        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
 917        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
 918
 919        /* leaf layer has already been set up */
 920        t->counts[t->depth - 1] = leaf_nodes;
 921        t->index[t->depth - 1] = t->highs;
 922
 923        if (t->depth >= 2)
 924                r = setup_indexes(t);
 925
 926        return r;
 927}
 928
 929/*
 930 * Get a disk whose integrity profile reflects the table's profile.
 931 * If %match_all is true, all devices' profiles must match.
 932 * If %match_all is false, all devices must at least have an
 933 * allocated integrity profile; but uninitialized is ok.
 934 * Returns NULL if integrity support was inconsistent or unavailable.
 935 */
 936static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
 937                                                    bool match_all)
 938{
 939        struct list_head *devices = dm_table_get_devices(t);
 940        struct dm_dev_internal *dd = NULL;
 941        struct gendisk *prev_disk = NULL, *template_disk = NULL;
 942
 943        list_for_each_entry(dd, devices, list) {
 944                template_disk = dd->dm_dev.bdev->bd_disk;
 945                if (!blk_get_integrity(template_disk))
 946                        goto no_integrity;
 947                if (!match_all && !blk_integrity_is_initialized(template_disk))
 948                        continue; /* skip uninitialized profiles */
 949                else if (prev_disk &&
 950                         blk_integrity_compare(prev_disk, template_disk) < 0)
 951                        goto no_integrity;
 952                prev_disk = template_disk;
 953        }
 954
 955        return template_disk;
 956
 957no_integrity:
 958        if (prev_disk)
 959                DMWARN("%s: integrity not set: %s and %s profile mismatch",
 960                       dm_device_name(t->md),
 961                       prev_disk->disk_name,
 962                       template_disk->disk_name);
 963        return NULL;
 964}
 965
 966/*
 967 * Register the mapped device for blk_integrity support if
 968 * the underlying devices have an integrity profile.  But all devices
 969 * may not have matching profiles (checking all devices isn't reliable
 970 * during table load because this table may use other DM device(s) which
 971 * must be resumed before they will have an initialized integity profile).
 972 * Stacked DM devices force a 2 stage integrity profile validation:
 973 * 1 - during load, validate all initialized integrity profiles match
 974 * 2 - during resume, validate all integrity profiles match
 975 */
 976static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
 977{
 978        struct gendisk *template_disk = NULL;
 979
 980        template_disk = dm_table_get_integrity_disk(t, false);
 981        if (!template_disk)
 982                return 0;
 983
 984        if (!blk_integrity_is_initialized(dm_disk(md))) {
 985                t->integrity_supported = 1;
 986                return blk_integrity_register(dm_disk(md), NULL);
 987        }
 988
 989        /*
 990         * If DM device already has an initalized integrity
 991         * profile the new profile should not conflict.
 992         */
 993        if (blk_integrity_is_initialized(template_disk) &&
 994            blk_integrity_compare(dm_disk(md), template_disk) < 0) {
 995                DMWARN("%s: conflict with existing integrity profile: "
 996                       "%s profile mismatch",
 997                       dm_device_name(t->md),
 998                       template_disk->disk_name);
 999                return 1;
1000        }
1001
1002        /* Preserve existing initialized integrity profile */
1003        t->integrity_supported = 1;
1004        return 0;
1005}
1006
1007/*
1008 * Prepares the table for use by building the indices,
1009 * setting the type, and allocating mempools.
1010 */
1011int dm_table_complete(struct dm_table *t)
1012{
1013        int r;
1014
1015        r = dm_table_set_type(t);
1016        if (r) {
1017                DMERR("unable to set table type");
1018                return r;
1019        }
1020
1021        r = dm_table_build_index(t);
1022        if (r) {
1023                DMERR("unable to build btrees");
1024                return r;
1025        }
1026
1027        r = dm_table_prealloc_integrity(t, t->md);
1028        if (r) {
1029                DMERR("could not register integrity profile.");
1030                return r;
1031        }
1032
1033        r = dm_table_alloc_md_mempools(t);
1034        if (r)
1035                DMERR("unable to allocate mempools");
1036
1037        return r;
1038}
1039
1040static DEFINE_MUTEX(_event_lock);
1041void dm_table_event_callback(struct dm_table *t,
1042                             void (*fn)(void *), void *context)
1043{
1044        mutex_lock(&_event_lock);
1045        t->event_fn = fn;
1046        t->event_context = context;
1047        mutex_unlock(&_event_lock);
1048}
1049
1050void dm_table_event(struct dm_table *t)
1051{
1052        /*
1053         * You can no longer call dm_table_event() from interrupt
1054         * context, use a bottom half instead.
1055         */
1056        BUG_ON(in_interrupt());
1057
1058        mutex_lock(&_event_lock);
1059        if (t->event_fn)
1060                t->event_fn(t->event_context);
1061        mutex_unlock(&_event_lock);
1062}
1063
1064sector_t dm_table_get_size(struct dm_table *t)
1065{
1066        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1067}
1068
1069struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1070{
1071        if (index >= t->num_targets)
1072                return NULL;
1073
1074        return t->targets + index;
1075}
1076
1077/*
1078 * Search the btree for the correct target.
1079 *
1080 * Caller should check returned pointer with dm_target_is_valid()
1081 * to trap I/O beyond end of device.
1082 */
1083struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1084{
1085        unsigned int l, n = 0, k = 0;
1086        sector_t *node;
1087
1088        for (l = 0; l < t->depth; l++) {
1089                n = get_child(n, k);
1090                node = get_node(t, l, n);
1091
1092                for (k = 0; k < KEYS_PER_NODE; k++)
1093                        if (node[k] >= sector)
1094                                break;
1095        }
1096
1097        return &t->targets[(KEYS_PER_NODE * n) + k];
1098}
1099
1100/*
1101 * Establish the new table's queue_limits and validate them.
1102 */
1103int dm_calculate_queue_limits(struct dm_table *table,
1104                              struct queue_limits *limits)
1105{
1106        struct dm_target *uninitialized_var(ti);
1107        struct queue_limits ti_limits;
1108        unsigned i = 0;
1109
1110        blk_set_default_limits(limits);
1111
1112        while (i < dm_table_get_num_targets(table)) {
1113                blk_set_default_limits(&ti_limits);
1114
1115                ti = dm_table_get_target(table, i++);
1116
1117                if (!ti->type->iterate_devices)
1118                        goto combine_limits;
1119
1120                /*
1121                 * Combine queue limits of all the devices this target uses.
1122                 */
1123                ti->type->iterate_devices(ti, dm_set_device_limits,
1124                                          &ti_limits);
1125
1126                /* Set I/O hints portion of queue limits */
1127                if (ti->type->io_hints)
1128                        ti->type->io_hints(ti, &ti_limits);
1129
1130                /*
1131                 * Check each device area is consistent with the target's
1132                 * overall queue limits.
1133                 */
1134                if (ti->type->iterate_devices(ti, device_area_is_invalid,
1135                                              &ti_limits))
1136                        return -EINVAL;
1137
1138combine_limits:
1139                /*
1140                 * Merge this target's queue limits into the overall limits
1141                 * for the table.
1142                 */
1143                if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1144                        DMWARN("%s: adding target device "
1145                               "(start sect %llu len %llu) "
1146                               "caused an alignment inconsistency",
1147                               dm_device_name(table->md),
1148                               (unsigned long long) ti->begin,
1149                               (unsigned long long) ti->len);
1150        }
1151
1152        return validate_hardware_logical_block_alignment(table, limits);
1153}
1154
1155/*
1156 * Set the integrity profile for this device if all devices used have
1157 * matching profiles.  We're quite deep in the resume path but still
1158 * don't know if all devices (particularly DM devices this device
1159 * may be stacked on) have matching profiles.  Even if the profiles
1160 * don't match we have no way to fail (to resume) at this point.
1161 */
1162static void dm_table_set_integrity(struct dm_table *t)
1163{
1164        struct gendisk *template_disk = NULL;
1165
1166        if (!blk_get_integrity(dm_disk(t->md)))
1167                return;
1168
1169        template_disk = dm_table_get_integrity_disk(t, true);
1170        if (!template_disk &&
1171            blk_integrity_is_initialized(dm_disk(t->md))) {
1172                DMWARN("%s: device no longer has a valid integrity profile",
1173                       dm_device_name(t->md));
1174                return;
1175        }
1176        blk_integrity_register(dm_disk(t->md),
1177                               blk_get_integrity(template_disk));
1178}
1179
1180void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1181                               struct queue_limits *limits)
1182{
1183        /*
1184         * Copy table's limits to the DM device's request_queue
1185         */
1186        q->limits = *limits;
1187
1188        if (!dm_table_supports_discards(t))
1189                queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1190        else
1191                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1192
1193        dm_table_set_integrity(t);
1194
1195        /*
1196         * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1197         * visible to other CPUs because, once the flag is set, incoming bios
1198         * are processed by request-based dm, which refers to the queue
1199         * settings.
1200         * Until the flag set, bios are passed to bio-based dm and queued to
1201         * md->deferred where queue settings are not needed yet.
1202         * Those bios are passed to request-based dm at the resume time.
1203         */
1204        smp_mb();
1205        if (dm_table_request_based(t))
1206                queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1207}
1208
1209unsigned int dm_table_get_num_targets(struct dm_table *t)
1210{
1211        return t->num_targets;
1212}
1213
1214struct list_head *dm_table_get_devices(struct dm_table *t)
1215{
1216        return &t->devices;
1217}
1218
1219fmode_t dm_table_get_mode(struct dm_table *t)
1220{
1221        return t->mode;
1222}
1223
1224static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1225{
1226        int i = t->num_targets;
1227        struct dm_target *ti = t->targets;
1228
1229        while (i--) {
1230                if (postsuspend) {
1231                        if (ti->type->postsuspend)
1232                                ti->type->postsuspend(ti);
1233                } else if (ti->type->presuspend)
1234                        ti->type->presuspend(ti);
1235
1236                ti++;
1237        }
1238}
1239
1240void dm_table_presuspend_targets(struct dm_table *t)
1241{
1242        if (!t)
1243                return;
1244
1245        suspend_targets(t, 0);
1246}
1247
1248void dm_table_postsuspend_targets(struct dm_table *t)
1249{
1250        if (!t)
1251                return;
1252
1253        suspend_targets(t, 1);
1254}
1255
1256int dm_table_resume_targets(struct dm_table *t)
1257{
1258        int i, r = 0;
1259
1260        for (i = 0; i < t->num_targets; i++) {
1261                struct dm_target *ti = t->targets + i;
1262
1263                if (!ti->type->preresume)
1264                        continue;
1265
1266                r = ti->type->preresume(ti);
1267                if (r)
1268                        return r;
1269        }
1270
1271        for (i = 0; i < t->num_targets; i++) {
1272                struct dm_target *ti = t->targets + i;
1273
1274                if (ti->type->resume)
1275                        ti->type->resume(ti);
1276        }
1277
1278        return 0;
1279}
1280
1281void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1282{
1283        list_add(&cb->list, &t->target_callbacks);
1284}
1285EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1286
1287int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1288{
1289        struct dm_dev_internal *dd;
1290        struct list_head *devices = dm_table_get_devices(t);
1291        struct dm_target_callbacks *cb;
1292        int r = 0;
1293
1294        list_for_each_entry(dd, devices, list) {
1295                struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1296                char b[BDEVNAME_SIZE];
1297
1298                if (likely(q))
1299                        r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1300                else
1301                        DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1302                                     dm_device_name(t->md),
1303                                     bdevname(dd->dm_dev.bdev, b));
1304        }
1305
1306        list_for_each_entry(cb, &t->target_callbacks, list)
1307                if (cb->congested_fn)
1308                        r |= cb->congested_fn(cb, bdi_bits);
1309
1310        return r;
1311}
1312
1313int dm_table_any_busy_target(struct dm_table *t)
1314{
1315        unsigned i;
1316        struct dm_target *ti;
1317
1318        for (i = 0; i < t->num_targets; i++) {
1319                ti = t->targets + i;
1320                if (ti->type->busy && ti->type->busy(ti))
1321                        return 1;
1322        }
1323
1324        return 0;
1325}
1326
1327struct mapped_device *dm_table_get_md(struct dm_table *t)
1328{
1329        return t->md;
1330}
1331
1332static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1333                                  sector_t start, sector_t len, void *data)
1334{
1335        struct request_queue *q = bdev_get_queue(dev->bdev);
1336
1337        return q && blk_queue_discard(q);
1338}
1339
1340bool dm_table_supports_discards(struct dm_table *t)
1341{
1342        struct dm_target *ti;
1343        unsigned i = 0;
1344
1345        if (!t->discards_supported)
1346                return 0;
1347
1348        /*
1349         * Ensure that at least one underlying device supports discards.
1350         * t->devices includes internal dm devices such as mirror logs
1351         * so we need to use iterate_devices here, which targets
1352         * supporting discard must provide.
1353         */
1354        while (i < dm_table_get_num_targets(t)) {
1355                ti = dm_table_get_target(t, i++);
1356
1357                if (ti->type->iterate_devices &&
1358                    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1359                        return 1;
1360        }
1361
1362        return 0;
1363}
1364
1365EXPORT_SYMBOL(dm_vcalloc);
1366EXPORT_SYMBOL(dm_get_device);
1367EXPORT_SYMBOL(dm_put_device);
1368EXPORT_SYMBOL(dm_table_event);
1369EXPORT_SYMBOL(dm_table_get_size);
1370EXPORT_SYMBOL(dm_table_get_mode);
1371EXPORT_SYMBOL(dm_table_get_md);
1372EXPORT_SYMBOL(dm_table_put);
1373EXPORT_SYMBOL(dm_table_get);
1374