1
2
3
4
5
6
7
8
9
10
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/i2c.h>
14
15#include "dvb_frontend.h"
16
17#include "dib7000m.h"
18
19static int debug;
20module_param(debug, int, 0644);
21MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
22
23#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0)
24
25struct dib7000m_state {
26 struct dvb_frontend demod;
27 struct dib7000m_config cfg;
28
29 u8 i2c_addr;
30 struct i2c_adapter *i2c_adap;
31
32 struct dibx000_i2c_master i2c_master;
33
34
35 u8 reg_offs;
36
37 u16 wbd_ref;
38
39 u8 current_band;
40 fe_bandwidth_t current_bandwidth;
41 struct dibx000_agc_config *current_agc;
42 u32 timf;
43 u32 timf_default;
44 u32 internal_clk;
45
46 u8 div_force_off : 1;
47 u8 div_state : 1;
48 u16 div_sync_wait;
49
50 u16 revision;
51
52 u8 agc_state;
53};
54
55enum dib7000m_power_mode {
56 DIB7000M_POWER_ALL = 0,
57
58 DIB7000M_POWER_NO,
59 DIB7000M_POWER_INTERF_ANALOG_AGC,
60 DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
61 DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD,
62 DIB7000M_POWER_INTERFACE_ONLY,
63};
64
65static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg)
66{
67 u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
68 u8 rb[2];
69 struct i2c_msg msg[2] = {
70 { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
71 { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
72 };
73
74 if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
75 dprintk("i2c read error on %d",reg);
76
77 return (rb[0] << 8) | rb[1];
78}
79
80static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val)
81{
82 u8 b[4] = {
83 (reg >> 8) & 0xff, reg & 0xff,
84 (val >> 8) & 0xff, val & 0xff,
85 };
86 struct i2c_msg msg = {
87 .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
88 };
89 return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
90}
91static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf)
92{
93 u16 l = 0, r, *n;
94 n = buf;
95 l = *n++;
96 while (l) {
97 r = *n++;
98
99 if (state->reg_offs && (r >= 112 && r <= 331))
100 r++;
101
102 do {
103 dib7000m_write_word(state, r, *n++);
104 r++;
105 } while (--l);
106 l = *n++;
107 }
108}
109
110static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
111{
112 int ret = 0;
113 u16 outreg, fifo_threshold, smo_mode,
114 sram = 0x0005;
115
116 outreg = 0;
117 fifo_threshold = 1792;
118 smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1);
119
120 dprintk( "setting output mode for demod %p to %d", &state->demod, mode);
121
122 switch (mode) {
123 case OUTMODE_MPEG2_PAR_GATED_CLK:
124 outreg = (1 << 10);
125 break;
126 case OUTMODE_MPEG2_PAR_CONT_CLK:
127 outreg = (1 << 10) | (1 << 6);
128 break;
129 case OUTMODE_MPEG2_SERIAL:
130 outreg = (1 << 10) | (2 << 6) | (0 << 1);
131 break;
132 case OUTMODE_DIVERSITY:
133 if (state->cfg.hostbus_diversity)
134 outreg = (1 << 10) | (4 << 6);
135 else
136 sram |= 0x0c00;
137 break;
138 case OUTMODE_MPEG2_FIFO:
139 smo_mode |= (3 << 1);
140 fifo_threshold = 512;
141 outreg = (1 << 10) | (5 << 6);
142 break;
143 case OUTMODE_HIGH_Z:
144 outreg = 0;
145 break;
146 default:
147 dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
148 break;
149 }
150
151 if (state->cfg.output_mpeg2_in_188_bytes)
152 smo_mode |= (1 << 5) ;
153
154 ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode);
155 ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold);
156 ret |= dib7000m_write_word(state, 1795, outreg);
157 ret |= dib7000m_write_word(state, 1805, sram);
158
159 if (state->revision == 0x4003) {
160 u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd;
161 if (mode == OUTMODE_DIVERSITY)
162 clk_cfg1 |= (1 << 1);
163 dib7000m_write_word(state, 909, clk_cfg1);
164 }
165 return ret;
166}
167
168static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode)
169{
170
171 u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff;
172 u8 offset = 0;
173
174
175 switch (mode) {
176
177 case DIB7000M_POWER_ALL:
178 reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000;
179 break;
180
181
182 case DIB7000M_POWER_INTERFACE_ONLY:
183 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
184 break;
185
186 case DIB7000M_POWER_INTERF_ANALOG_AGC:
187 reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
188 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
189 reg_906 &= ~((1 << 0));
190 break;
191
192 case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
193 reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000;
194 break;
195
196 case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD:
197 reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000;
198 break;
199 case DIB7000M_POWER_NO:
200 break;
201 }
202
203
204 if (!state->cfg.mobile_mode)
205 reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
206
207
208 if (state->revision != 0x4000)
209 reg_906 <<= 1;
210
211 if (state->revision == 0x4003)
212 offset = 1;
213
214 dib7000m_write_word(state, 903 + offset, reg_903);
215 dib7000m_write_word(state, 904 + offset, reg_904);
216 dib7000m_write_word(state, 905 + offset, reg_905);
217 dib7000m_write_word(state, 906 + offset, reg_906);
218}
219
220static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no)
221{
222 int ret = 0;
223 u16 reg_913 = dib7000m_read_word(state, 913),
224 reg_914 = dib7000m_read_word(state, 914);
225
226 switch (no) {
227 case DIBX000_SLOW_ADC_ON:
228 reg_914 |= (1 << 1) | (1 << 0);
229 ret |= dib7000m_write_word(state, 914, reg_914);
230 reg_914 &= ~(1 << 1);
231 break;
232
233 case DIBX000_SLOW_ADC_OFF:
234 reg_914 |= (1 << 1) | (1 << 0);
235 break;
236
237 case DIBX000_ADC_ON:
238 if (state->revision == 0x4000) {
239
240 dib7000m_write_word(state, 913, 0);
241 dib7000m_write_word(state, 914, reg_914 & 0x3);
242
243 dib7000m_write_word(state, 913, (1 << 15));
244 dib7000m_write_word(state, 914, reg_914 & 0x3);
245 }
246
247 reg_913 &= 0x0fff;
248 reg_914 &= 0x0003;
249 break;
250
251 case DIBX000_ADC_OFF:
252 reg_913 |= (1 << 14) | (1 << 13) | (1 << 12);
253 reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
254 break;
255
256 case DIBX000_VBG_ENABLE:
257 reg_913 &= ~(1 << 15);
258 break;
259
260 case DIBX000_VBG_DISABLE:
261 reg_913 |= (1 << 15);
262 break;
263
264 default:
265 break;
266 }
267
268
269 ret |= dib7000m_write_word(state, 913, reg_913);
270 ret |= dib7000m_write_word(state, 914, reg_914);
271
272 return ret;
273}
274
275static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw)
276{
277 u32 timf;
278
279
280 state->current_bandwidth = bw;
281
282 if (state->timf == 0) {
283 dprintk( "using default timf");
284 timf = state->timf_default;
285 } else {
286 dprintk( "using updated timf");
287 timf = state->timf;
288 }
289
290 timf = timf * (bw / 50) / 160;
291
292 dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
293 dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff));
294
295 return 0;
296}
297
298static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff)
299{
300 struct dib7000m_state *state = demod->demodulator_priv;
301
302 if (state->div_force_off) {
303 dprintk( "diversity combination deactivated - forced by COFDM parameters");
304 onoff = 0;
305 }
306 state->div_state = (u8)onoff;
307
308 if (onoff) {
309 dib7000m_write_word(state, 263 + state->reg_offs, 6);
310 dib7000m_write_word(state, 264 + state->reg_offs, 6);
311 dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
312 } else {
313 dib7000m_write_word(state, 263 + state->reg_offs, 1);
314 dib7000m_write_word(state, 264 + state->reg_offs, 0);
315 dib7000m_write_word(state, 266 + state->reg_offs, 0);
316 }
317
318 return 0;
319}
320
321static int dib7000m_sad_calib(struct dib7000m_state *state)
322{
323
324
325
326 dib7000m_write_word(state, 929, (0 << 1) | (0 << 0));
327 dib7000m_write_word(state, 930, 776);
328
329
330 dib7000m_write_word(state, 929, (1 << 0));
331 dib7000m_write_word(state, 929, (0 << 0));
332
333 msleep(1);
334
335 return 0;
336}
337
338static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw)
339{
340 dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
341 dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff));
342 dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
343 dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff));
344
345 dib7000m_write_word(state, 928, bw->sad_cfg);
346}
347
348static void dib7000m_reset_pll(struct dib7000m_state *state)
349{
350 const struct dibx000_bandwidth_config *bw = state->cfg.bw;
351 u16 reg_907,reg_910;
352
353
354 reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) |
355 (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) |
356 (bw->enable_refdiv << 1) | (0 << 0);
357 reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset;
358
359
360
361 if (!state->cfg.quartz_direct) {
362 reg_910 |= (1 << 5);
363
364
365 if(state->cfg.input_clk_is_div_2)
366 reg_907 |= (16 << 9);
367 else
368 reg_907 |= (8 << 9);
369 } else {
370 reg_907 |= (bw->pll_ratio & 0x3f) << 9;
371 reg_910 |= (bw->pll_prediv << 5);
372 }
373
374 dib7000m_write_word(state, 910, reg_910);
375 dib7000m_write_word(state, 907, reg_907);
376 dib7000m_write_word(state, 908, 0x0006);
377
378 dib7000m_reset_pll_common(state, bw);
379}
380
381static void dib7000mc_reset_pll(struct dib7000m_state *state)
382{
383 const struct dibx000_bandwidth_config *bw = state->cfg.bw;
384 u16 clk_cfg1;
385
386
387 dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0));
388
389
390
391 clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) |
392 (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) |
393 (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0);
394 dib7000m_write_word(state, 908, clk_cfg1);
395 clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3);
396 dib7000m_write_word(state, 908, clk_cfg1);
397
398
399 dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7));
400
401 dib7000m_reset_pll_common(state, bw);
402}
403
404static int dib7000m_reset_gpio(struct dib7000m_state *st)
405{
406
407 dib7000m_write_word(st, 773, st->cfg.gpio_dir);
408 dib7000m_write_word(st, 774, st->cfg.gpio_val);
409
410
411
412 dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos);
413
414 dib7000m_write_word(st, 780, st->cfg.pwm_freq_div);
415 return 0;
416}
417
418static u16 dib7000m_defaults_common[] =
419
420{
421
422 3, 2,
423 0x0004,
424 0x1000,
425 0x0814,
426
427 12, 6,
428 0x001b,
429 0x7740,
430 0x005b,
431 0x8d80,
432 0x01c9,
433 0xc380,
434 0x0000,
435 0x0080,
436 0x0000,
437 0x0090,
438 0x0001,
439 0xd4c0,
440
441 1, 26,
442 0x6680,
443
444 1, 170,
445 0x0410,
446
447 8, 173,
448 0,
449 0,
450 0,
451 0,
452 0,
453 0,
454 0,
455 0,
456
457 1, 182,
458 8192,
459
460 2, 195,
461 0x0ccd,
462 0,
463
464 1, 205,
465 0x200f,
466
467 5, 214,
468 0x023d,
469 0x00a4,
470 0x00a4,
471 0x7ff0,
472 0x3ccc,
473
474 1, 226,
475 0,
476
477 1, 255,
478 0x800,
479
480 1, 263,
481 0x0001,
482
483 1, 281,
484 0x0010,
485
486 1, 294,
487 0x0062,
488
489 0
490};
491
492static u16 dib7000m_defaults[] =
493
494{
495
496 11, 76,
497 (1 << 13) - 825 - 117,
498 (1 << 13) - 837 - 117,
499 (1 << 13) - 811 - 117,
500 (1 << 13) - 766 - 117,
501 (1 << 13) - 737 - 117,
502 (1 << 13) - 693 - 117,
503 (1 << 13) - 648 - 117,
504 (1 << 13) - 619 - 117,
505 (1 << 13) - 575 - 117,
506 (1 << 13) - 531 - 117,
507 (1 << 13) - 501 - 117,
508
509
510 1, 912,
511 0x2c8a,
512
513 1, 1817,
514 1,
515
516 0,
517};
518
519static int dib7000m_demod_reset(struct dib7000m_state *state)
520{
521 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
522
523
524 dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE);
525
526
527 dib7000m_write_word(state, 898, 0xffff);
528 dib7000m_write_word(state, 899, 0xffff);
529 dib7000m_write_word(state, 900, 0xff0f);
530 dib7000m_write_word(state, 901, 0xfffc);
531
532 dib7000m_write_word(state, 898, 0);
533 dib7000m_write_word(state, 899, 0);
534 dib7000m_write_word(state, 900, 0);
535 dib7000m_write_word(state, 901, 0);
536
537 if (state->revision == 0x4000)
538 dib7000m_reset_pll(state);
539 else
540 dib7000mc_reset_pll(state);
541
542 if (dib7000m_reset_gpio(state) != 0)
543 dprintk( "GPIO reset was not successful.");
544
545 if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
546 dprintk( "OUTPUT_MODE could not be reset.");
547
548
549 dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) );
550
551 dib7000m_set_bandwidth(state, 8000);
552
553 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON);
554 dib7000m_sad_calib(state);
555 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
556
557 if (state->cfg.dvbt_mode)
558 dib7000m_write_word(state, 1796, 0x0);
559
560 if (state->cfg.mobile_mode)
561 dib7000m_write_word(state, 261 + state->reg_offs, 2);
562 else
563 dib7000m_write_word(state, 224 + state->reg_offs, 1);
564
565
566 if(state->cfg.tuner_is_baseband)
567 dib7000m_write_word(state, 36, 0x0755);
568 else
569 dib7000m_write_word(state, 36, 0x1f55);
570
571
572 if (state->revision == 0x4000)
573 dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
574 else
575 dib7000m_write_word(state, 909, (3 << 4) | 1);
576
577 dib7000m_write_tab(state, dib7000m_defaults_common);
578 dib7000m_write_tab(state, dib7000m_defaults);
579
580 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY);
581
582 state->internal_clk = state->cfg.bw->internal;
583
584 return 0;
585}
586
587static void dib7000m_restart_agc(struct dib7000m_state *state)
588{
589
590 dib7000m_write_word(state, 898, 0x0c00);
591 dib7000m_write_word(state, 898, 0x0000);
592}
593
594static int dib7000m_agc_soft_split(struct dib7000m_state *state)
595{
596 u16 agc,split_offset;
597
598 if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
599 return 0;
600
601
602 agc = dib7000m_read_word(state, 390);
603
604 if (agc > state->current_agc->split.min_thres)
605 split_offset = state->current_agc->split.min;
606 else if (agc < state->current_agc->split.max_thres)
607 split_offset = state->current_agc->split.max;
608 else
609 split_offset = state->current_agc->split.max *
610 (agc - state->current_agc->split.min_thres) /
611 (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
612
613 dprintk( "AGC split_offset: %d",split_offset);
614
615
616 return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset);
617}
618
619static int dib7000m_update_lna(struct dib7000m_state *state)
620{
621 u16 dyn_gain;
622
623 if (state->cfg.update_lna) {
624
625 dyn_gain = dib7000m_read_word(state, 390);
626
627 if (state->cfg.update_lna(&state->demod,dyn_gain)) {
628 dib7000m_restart_agc(state);
629 return 1;
630 }
631 }
632 return 0;
633}
634
635static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
636{
637 struct dibx000_agc_config *agc = NULL;
638 int i;
639 if (state->current_band == band && state->current_agc != NULL)
640 return 0;
641 state->current_band = band;
642
643 for (i = 0; i < state->cfg.agc_config_count; i++)
644 if (state->cfg.agc[i].band_caps & band) {
645 agc = &state->cfg.agc[i];
646 break;
647 }
648
649 if (agc == NULL) {
650 dprintk( "no valid AGC configuration found for band 0x%02x",band);
651 return -EINVAL;
652 }
653
654 state->current_agc = agc;
655
656
657 dib7000m_write_word(state, 72 , agc->setup);
658 dib7000m_write_word(state, 73 , agc->inv_gain);
659 dib7000m_write_word(state, 74 , agc->time_stabiliz);
660 dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock);
661
662
663 dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp);
664 dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp);
665
666 dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
667 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
668
669
670 if (state->wbd_ref != 0)
671 dib7000m_write_word(state, 102, state->wbd_ref);
672 else
673 dib7000m_write_word(state, 102, agc->wbd_ref);
674
675 dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
676 dib7000m_write_word(state, 104, agc->agc1_max);
677 dib7000m_write_word(state, 105, agc->agc1_min);
678 dib7000m_write_word(state, 106, agc->agc2_max);
679 dib7000m_write_word(state, 107, agc->agc2_min);
680 dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
681 dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
682 dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
683 dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
684
685 if (state->revision > 0x4000) {
686 dib7000m_write_word(state, 71, agc->agc1_pt3);
687
688
689 dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
690 } else {
691
692 u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 };
693 for (i = 0; i < 9; i++)
694 dib7000m_write_word(state, 88 + i, b[i]);
695 }
696 return 0;
697}
698
699static void dib7000m_update_timf(struct dib7000m_state *state)
700{
701 u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437);
702 state->timf = timf * 160 / (state->current_bandwidth / 50);
703 dib7000m_write_word(state, 23, (u16) (timf >> 16));
704 dib7000m_write_word(state, 24, (u16) (timf & 0xffff));
705 dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default);
706}
707
708static int dib7000m_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
709{
710 struct dib7000m_state *state = demod->demodulator_priv;
711 u16 cfg_72 = dib7000m_read_word(state, 72);
712 int ret = -1;
713 u8 *agc_state = &state->agc_state;
714 u8 agc_split;
715
716 switch (state->agc_state) {
717 case 0:
718
719 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
720 dib7000m_set_adc_state(state, DIBX000_ADC_ON);
721
722 if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
723 return -1;
724
725 ret = 7;
726 (*agc_state)++;
727 break;
728
729 case 1:
730
731 if (state->cfg.agc_control)
732 state->cfg.agc_control(&state->demod, 1);
733
734 dib7000m_write_word(state, 75, 32768);
735 if (!state->current_agc->perform_agc_softsplit) {
736
737 dib7000m_write_word(state, 103, 1 << 8);
738 (*agc_state)++;
739 ret = 5;
740 } else {
741
742 (*agc_state) = 4;
743
744 ret = 7;
745 }
746
747 dib7000m_restart_agc(state);
748 break;
749
750 case 2:
751 dib7000m_write_word(state, 72, cfg_72 | (1 << 4));
752 dib7000m_write_word(state, 103, 2 << 9);
753 (*agc_state)++;
754 ret = 14;
755 break;
756
757 case 3:
758 agc_split = (u8)dib7000m_read_word(state, 392);
759 dib7000m_write_word(state, 75, dib7000m_read_word(state, 390));
760
761 dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4));
762 dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split);
763
764 dib7000m_restart_agc(state);
765
766 dprintk( "SPLIT %p: %hd", demod, agc_split);
767
768 (*agc_state)++;
769 ret = 5;
770 break;
771
772 case 4:
773
774 ret = 7;
775
776 if (dib7000m_update_lna(state))
777
778 ret = 5;
779 else
780 (*agc_state)++;
781 break;
782
783 case 5:
784 dib7000m_agc_soft_split(state);
785
786 if (state->cfg.agc_control)
787 state->cfg.agc_control(&state->demod, 0);
788
789 (*agc_state)++;
790 break;
791
792 default:
793 break;
794 }
795 return ret;
796}
797
798static void dib7000m_set_channel(struct dib7000m_state *state, struct dvb_frontend_parameters *ch, u8 seq)
799{
800 u16 value, est[4];
801
802 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
803
804
805 value = 0;
806 switch (ch->u.ofdm.transmission_mode) {
807 case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
808 case TRANSMISSION_MODE_4K: value |= (2 << 7); break;
809 default:
810 case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
811 }
812 switch (ch->u.ofdm.guard_interval) {
813 case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
814 case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
815 case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
816 default:
817 case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
818 }
819 switch (ch->u.ofdm.constellation) {
820 case QPSK: value |= (0 << 3); break;
821 case QAM_16: value |= (1 << 3); break;
822 default:
823 case QAM_64: value |= (2 << 3); break;
824 }
825 switch (HIERARCHY_1) {
826 case HIERARCHY_2: value |= 2; break;
827 case HIERARCHY_4: value |= 4; break;
828 default:
829 case HIERARCHY_1: value |= 1; break;
830 }
831 dib7000m_write_word(state, 0, value);
832 dib7000m_write_word(state, 5, (seq << 4));
833
834
835 value = 0;
836 if (1 != 0)
837 value |= (1 << 6);
838 if (ch->u.ofdm.hierarchy_information == 1)
839 value |= (1 << 4);
840 if (1 == 1)
841 value |= 1;
842 switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
843 case FEC_2_3: value |= (2 << 1); break;
844 case FEC_3_4: value |= (3 << 1); break;
845 case FEC_5_6: value |= (5 << 1); break;
846 case FEC_7_8: value |= (7 << 1); break;
847 default:
848 case FEC_1_2: value |= (1 << 1); break;
849 }
850 dib7000m_write_word(state, 267 + state->reg_offs, value);
851
852
853
854
855 dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80);
856
857
858 dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3));
859
860
861 dib7000m_write_word(state, 32, (0 << 4) | 0x3);
862
863
864 dib7000m_write_word(state, 33, (0 << 4) | 0x5);
865
866
867 switch (ch->u.ofdm.transmission_mode) {
868 case TRANSMISSION_MODE_8K: value = 256; break;
869 case TRANSMISSION_MODE_4K: value = 128; break;
870 case TRANSMISSION_MODE_2K:
871 default: value = 64; break;
872 }
873 switch (ch->u.ofdm.guard_interval) {
874 case GUARD_INTERVAL_1_16: value *= 2; break;
875 case GUARD_INTERVAL_1_8: value *= 4; break;
876 case GUARD_INTERVAL_1_4: value *= 8; break;
877 default:
878 case GUARD_INTERVAL_1_32: value *= 1; break;
879 }
880 state->div_sync_wait = (value * 3) / 2 + 32;
881
882
883
884 if (1 == 1 || state->revision > 0x4000)
885 state->div_force_off = 0;
886 else
887 state->div_force_off = 1;
888 dib7000m_set_diversity_in(&state->demod, state->div_state);
889
890
891 switch (ch->u.ofdm.constellation) {
892 case QAM_64:
893 est[0] = 0x0148;
894 est[1] = 0xfff0;
895 est[2] = 0x00a4;
896 est[3] = 0xfff8;
897 break;
898 case QAM_16:
899 est[0] = 0x023d;
900 est[1] = 0xffdf;
901 est[2] = 0x00a4;
902 est[3] = 0xfff0;
903 break;
904 default:
905 est[0] = 0x099a;
906 est[1] = 0xffae;
907 est[2] = 0x0333;
908 est[3] = 0xfff8;
909 break;
910 }
911 for (value = 0; value < 4; value++)
912 dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]);
913
914
915 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD);
916}
917
918static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
919{
920 struct dib7000m_state *state = demod->demodulator_priv;
921 struct dvb_frontend_parameters schan;
922 int ret = 0;
923 u32 value, factor;
924
925 schan = *ch;
926
927 schan.u.ofdm.constellation = QAM_64;
928 schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
929 schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
930 schan.u.ofdm.code_rate_HP = FEC_2_3;
931 schan.u.ofdm.code_rate_LP = FEC_3_4;
932 schan.u.ofdm.hierarchy_information = 0;
933
934 dib7000m_set_channel(state, &schan, 7);
935
936 factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
937 if (factor >= 5000)
938 factor = 1;
939 else
940 factor = 6;
941
942
943 value = 30 * state->internal_clk * factor;
944 ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
945 ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff));
946 value = 100 * state->internal_clk * factor;
947 ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
948 ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff));
949 value = 500 * state->internal_clk * factor;
950 ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
951 ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff));
952
953
954 value = dib7000m_read_word(state, 0);
955 ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9)));
956
957
958 if (state->revision == 0x4000)
959 dib7000m_write_word(state, 1793, 0);
960 else
961 dib7000m_read_word(state, 537);
962
963 ret |= dib7000m_write_word(state, 0, (u16) value);
964
965 return ret;
966}
967
968static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg)
969{
970 u16 irq_pending = dib7000m_read_word(state, reg);
971
972 if (irq_pending & 0x1) {
973 dprintk( "autosearch failed");
974 return 1;
975 }
976
977 if (irq_pending & 0x2) {
978 dprintk( "autosearch succeeded");
979 return 2;
980 }
981 return 0;
982}
983
984static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod)
985{
986 struct dib7000m_state *state = demod->demodulator_priv;
987 if (state->revision == 0x4000)
988 return dib7000m_autosearch_irq(state, 1793);
989 else
990 return dib7000m_autosearch_irq(state, 537);
991}
992
993static int dib7000m_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
994{
995 struct dib7000m_state *state = demod->demodulator_priv;
996 int ret = 0;
997 u16 value;
998
999
1000 if (ch != NULL)
1001 dib7000m_set_channel(state, ch, 0);
1002 else
1003 return -EINVAL;
1004
1005
1006 ret |= dib7000m_write_word(state, 898, 0x4000);
1007 ret |= dib7000m_write_word(state, 898, 0x0000);
1008 msleep(45);
1009
1010 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD);
1011
1012 ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
1013
1014
1015 if (state->timf == 0)
1016 msleep(200);
1017
1018
1019
1020 value = (6 << 8) | 0x80;
1021 switch (ch->u.ofdm.transmission_mode) {
1022 case TRANSMISSION_MODE_2K: value |= (7 << 12); break;
1023 case TRANSMISSION_MODE_4K: value |= (8 << 12); break;
1024 default:
1025 case TRANSMISSION_MODE_8K: value |= (9 << 12); break;
1026 }
1027 ret |= dib7000m_write_word(state, 26, value);
1028
1029
1030 value = (0 << 4);
1031 switch (ch->u.ofdm.transmission_mode) {
1032 case TRANSMISSION_MODE_2K: value |= 0x6; break;
1033 case TRANSMISSION_MODE_4K: value |= 0x7; break;
1034 default:
1035 case TRANSMISSION_MODE_8K: value |= 0x8; break;
1036 }
1037 ret |= dib7000m_write_word(state, 32, value);
1038
1039
1040 value = (0 << 4);
1041 switch (ch->u.ofdm.transmission_mode) {
1042 case TRANSMISSION_MODE_2K: value |= 0x6; break;
1043 case TRANSMISSION_MODE_4K: value |= 0x7; break;
1044 default:
1045 case TRANSMISSION_MODE_8K: value |= 0x8; break;
1046 }
1047 ret |= dib7000m_write_word(state, 33, value);
1048
1049
1050 if ((dib7000m_read_word(state, 535) >> 6) & 0x1)
1051 dib7000m_update_timf(state);
1052
1053 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
1054 return ret;
1055}
1056
1057static int dib7000m_wakeup(struct dvb_frontend *demod)
1058{
1059 struct dib7000m_state *state = demod->demodulator_priv;
1060
1061 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
1062
1063 if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
1064 dprintk( "could not start Slow ADC");
1065
1066 return 0;
1067}
1068
1069static int dib7000m_sleep(struct dvb_frontend *demod)
1070{
1071 struct dib7000m_state *st = demod->demodulator_priv;
1072 dib7000m_set_output_mode(st, OUTMODE_HIGH_Z);
1073 dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY);
1074 return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) |
1075 dib7000m_set_adc_state(st, DIBX000_ADC_OFF);
1076}
1077
1078static int dib7000m_identify(struct dib7000m_state *state)
1079{
1080 u16 value;
1081
1082 if ((value = dib7000m_read_word(state, 896)) != 0x01b3) {
1083 dprintk( "wrong Vendor ID (0x%x)",value);
1084 return -EREMOTEIO;
1085 }
1086
1087 state->revision = dib7000m_read_word(state, 897);
1088 if (state->revision != 0x4000 &&
1089 state->revision != 0x4001 &&
1090 state->revision != 0x4002 &&
1091 state->revision != 0x4003) {
1092 dprintk( "wrong Device ID (0x%x)",value);
1093 return -EREMOTEIO;
1094 }
1095
1096
1097 if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) {
1098 dprintk( "this driver does not work with DiB7000PC");
1099 return -EREMOTEIO;
1100 }
1101
1102 switch (state->revision) {
1103 case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break;
1104 case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break;
1105 case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break;
1106 case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break;
1107 }
1108
1109 return 0;
1110}
1111
1112
1113static int dib7000m_get_frontend(struct dvb_frontend* fe,
1114 struct dvb_frontend_parameters *fep)
1115{
1116 struct dib7000m_state *state = fe->demodulator_priv;
1117 u16 tps = dib7000m_read_word(state,480);
1118
1119 fep->inversion = INVERSION_AUTO;
1120
1121 fep->u.ofdm.bandwidth = state->current_bandwidth;
1122
1123 switch ((tps >> 8) & 0x3) {
1124 case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
1125 case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
1126
1127 }
1128
1129 switch (tps & 0x3) {
1130 case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
1131 case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
1132 case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
1133 case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
1134 }
1135
1136 switch ((tps >> 14) & 0x3) {
1137 case 0: fep->u.ofdm.constellation = QPSK; break;
1138 case 1: fep->u.ofdm.constellation = QAM_16; break;
1139 case 2:
1140 default: fep->u.ofdm.constellation = QAM_64; break;
1141 }
1142
1143
1144
1145
1146 fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
1147 switch ((tps >> 5) & 0x7) {
1148 case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
1149 case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
1150 case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
1151 case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
1152 case 7:
1153 default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
1154
1155 }
1156
1157 switch ((tps >> 2) & 0x7) {
1158 case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
1159 case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
1160 case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
1161 case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
1162 case 7:
1163 default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
1164 }
1165
1166
1167
1168 return 0;
1169}
1170
1171static int dib7000m_set_frontend(struct dvb_frontend* fe,
1172 struct dvb_frontend_parameters *fep)
1173{
1174 struct dib7000m_state *state = fe->demodulator_priv;
1175 int time, ret;
1176
1177 dib7000m_set_output_mode(state, OUTMODE_HIGH_Z);
1178
1179 state->current_bandwidth = fep->u.ofdm.bandwidth;
1180 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
1181
1182 if (fe->ops.tuner_ops.set_params)
1183 fe->ops.tuner_ops.set_params(fe, fep);
1184
1185
1186 state->agc_state = 0;
1187 do {
1188 time = dib7000m_agc_startup(fe, fep);
1189 if (time != -1)
1190 msleep(time);
1191 } while (time != -1);
1192
1193 if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
1194 fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
1195 fep->u.ofdm.constellation == QAM_AUTO ||
1196 fep->u.ofdm.code_rate_HP == FEC_AUTO) {
1197 int i = 800, found;
1198
1199 dib7000m_autosearch_start(fe, fep);
1200 do {
1201 msleep(1);
1202 found = dib7000m_autosearch_is_irq(fe);
1203 } while (found == 0 && i--);
1204
1205 dprintk("autosearch returns: %d",found);
1206 if (found == 0 || found == 1)
1207 return 0;
1208
1209 dib7000m_get_frontend(fe, fep);
1210 }
1211
1212 ret = dib7000m_tune(fe, fep);
1213
1214
1215 dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO);
1216 return ret;
1217}
1218
1219static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat)
1220{
1221 struct dib7000m_state *state = fe->demodulator_priv;
1222 u16 lock = dib7000m_read_word(state, 535);
1223
1224 *stat = 0;
1225
1226 if (lock & 0x8000)
1227 *stat |= FE_HAS_SIGNAL;
1228 if (lock & 0x3000)
1229 *stat |= FE_HAS_CARRIER;
1230 if (lock & 0x0100)
1231 *stat |= FE_HAS_VITERBI;
1232 if (lock & 0x0010)
1233 *stat |= FE_HAS_SYNC;
1234 if (lock & 0x0008)
1235 *stat |= FE_HAS_LOCK;
1236
1237 return 0;
1238}
1239
1240static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber)
1241{
1242 struct dib7000m_state *state = fe->demodulator_priv;
1243 *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527);
1244 return 0;
1245}
1246
1247static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
1248{
1249 struct dib7000m_state *state = fe->demodulator_priv;
1250 *unc = dib7000m_read_word(state, 534);
1251 return 0;
1252}
1253
1254static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1255{
1256 struct dib7000m_state *state = fe->demodulator_priv;
1257 u16 val = dib7000m_read_word(state, 390);
1258 *strength = 65535 - val;
1259 return 0;
1260}
1261
1262static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr)
1263{
1264 *snr = 0x0000;
1265 return 0;
1266}
1267
1268static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
1269{
1270 tune->min_delay_ms = 1000;
1271 return 0;
1272}
1273
1274static void dib7000m_release(struct dvb_frontend *demod)
1275{
1276 struct dib7000m_state *st = demod->demodulator_priv;
1277 dibx000_exit_i2c_master(&st->i2c_master);
1278 kfree(st);
1279}
1280
1281struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
1282{
1283 struct dib7000m_state *st = demod->demodulator_priv;
1284 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
1285}
1286EXPORT_SYMBOL(dib7000m_get_i2c_master);
1287
1288int dib7000m_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
1289{
1290 struct dib7000m_state *state = fe->demodulator_priv;
1291 u16 val = dib7000m_read_word(state, 294 + state->reg_offs) & 0xffef;
1292 val |= (onoff & 0x1) << 4;
1293 dprintk("PID filter enabled %d", onoff);
1294 return dib7000m_write_word(state, 294 + state->reg_offs, val);
1295}
1296EXPORT_SYMBOL(dib7000m_pid_filter_ctrl);
1297
1298int dib7000m_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
1299{
1300 struct dib7000m_state *state = fe->demodulator_priv;
1301 dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
1302 return dib7000m_write_word(state, 300 + state->reg_offs + id,
1303 onoff ? (1 << 13) | pid : 0);
1304}
1305EXPORT_SYMBOL(dib7000m_pid_filter);
1306
1307#if 0
1308
1309int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods,
1310 u8 default_addr, struct dib7000m_config cfg[])
1311{
1312 struct dib7000m_state st = { .i2c_adap = i2c };
1313 int k = 0;
1314 u8 new_addr = 0;
1315
1316 for (k = no_of_demods-1; k >= 0; k--) {
1317 st.cfg = cfg[k];
1318
1319
1320 new_addr = (0x40 + k) << 1;
1321 st.i2c_addr = new_addr;
1322 if (dib7000m_identify(&st) != 0) {
1323 st.i2c_addr = default_addr;
1324 if (dib7000m_identify(&st) != 0) {
1325 dprintk("DiB7000M #%d: not identified", k);
1326 return -EIO;
1327 }
1328 }
1329
1330
1331 dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY);
1332
1333 dib7000m_write_word(&st, 1796, 0x0);
1334
1335
1336 dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2);
1337
1338 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
1339 }
1340
1341 for (k = 0; k < no_of_demods; k++) {
1342 st.cfg = cfg[k];
1343 st.i2c_addr = (0x40 + k) << 1;
1344
1345
1346 dib7000m_write_word(&st,1794, st.i2c_addr << 2);
1347
1348
1349 dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z);
1350 }
1351
1352 return 0;
1353}
1354EXPORT_SYMBOL(dib7000m_i2c_enumeration);
1355#endif
1356
1357static struct dvb_frontend_ops dib7000m_ops;
1358struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg)
1359{
1360 struct dvb_frontend *demod;
1361 struct dib7000m_state *st;
1362 st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL);
1363 if (st == NULL)
1364 return NULL;
1365
1366 memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config));
1367 st->i2c_adap = i2c_adap;
1368 st->i2c_addr = i2c_addr;
1369
1370 demod = &st->demod;
1371 demod->demodulator_priv = st;
1372 memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops));
1373
1374 st->timf_default = cfg->bw->timf;
1375
1376 if (dib7000m_identify(st) != 0)
1377 goto error;
1378
1379 if (st->revision == 0x4000)
1380 dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr);
1381 else
1382 dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr);
1383
1384 dib7000m_demod_reset(st);
1385
1386 return demod;
1387
1388error:
1389 kfree(st);
1390 return NULL;
1391}
1392EXPORT_SYMBOL(dib7000m_attach);
1393
1394static struct dvb_frontend_ops dib7000m_ops = {
1395 .info = {
1396 .name = "DiBcom 7000MA/MB/PA/PB/MC",
1397 .type = FE_OFDM,
1398 .frequency_min = 44250000,
1399 .frequency_max = 867250000,
1400 .frequency_stepsize = 62500,
1401 .caps = FE_CAN_INVERSION_AUTO |
1402 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1403 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1404 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1405 FE_CAN_TRANSMISSION_MODE_AUTO |
1406 FE_CAN_GUARD_INTERVAL_AUTO |
1407 FE_CAN_RECOVER |
1408 FE_CAN_HIERARCHY_AUTO,
1409 },
1410
1411 .release = dib7000m_release,
1412
1413 .init = dib7000m_wakeup,
1414 .sleep = dib7000m_sleep,
1415
1416 .set_frontend = dib7000m_set_frontend,
1417 .get_tune_settings = dib7000m_fe_get_tune_settings,
1418 .get_frontend = dib7000m_get_frontend,
1419
1420 .read_status = dib7000m_read_status,
1421 .read_ber = dib7000m_read_ber,
1422 .read_signal_strength = dib7000m_read_signal_strength,
1423 .read_snr = dib7000m_read_snr,
1424 .read_ucblocks = dib7000m_read_unc_blocks,
1425};
1426
1427MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
1428MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator");
1429MODULE_LICENSE("GPL");
1430