linux/drivers/media/video/cx25840/cx25840-ir.c
<<
>>
Prefs
   1/*
   2 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
   3 *
   4 *  Integrated Consumer Infrared Controller
   5 *
   6 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
   7 *
   8 *  This program is free software; you can redistribute it and/or
   9 *  modify it under the terms of the GNU General Public License
  10 *  as published by the Free Software Foundation; either version 2
  11 *  of the License, or (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License
  19 *  along with this program; if not, write to the Free Software
  20 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21 *  02110-1301, USA.
  22 */
  23
  24#include <linux/slab.h>
  25#include <linux/kfifo.h>
  26#include <media/cx25840.h>
  27#include <media/rc-core.h>
  28
  29#include "cx25840-core.h"
  30
  31static unsigned int ir_debug;
  32module_param(ir_debug, int, 0644);
  33MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
  34
  35#define CX25840_IR_REG_BASE     0x200
  36
  37#define CX25840_IR_CNTRL_REG    0x200
  38#define CNTRL_WIN_3_3   0x00000000
  39#define CNTRL_WIN_4_3   0x00000001
  40#define CNTRL_WIN_3_4   0x00000002
  41#define CNTRL_WIN_4_4   0x00000003
  42#define CNTRL_WIN       0x00000003
  43#define CNTRL_EDG_NONE  0x00000000
  44#define CNTRL_EDG_FALL  0x00000004
  45#define CNTRL_EDG_RISE  0x00000008
  46#define CNTRL_EDG_BOTH  0x0000000C
  47#define CNTRL_EDG       0x0000000C
  48#define CNTRL_DMD       0x00000010
  49#define CNTRL_MOD       0x00000020
  50#define CNTRL_RFE       0x00000040
  51#define CNTRL_TFE       0x00000080
  52#define CNTRL_RXE       0x00000100
  53#define CNTRL_TXE       0x00000200
  54#define CNTRL_RIC       0x00000400
  55#define CNTRL_TIC       0x00000800
  56#define CNTRL_CPL       0x00001000
  57#define CNTRL_LBM       0x00002000
  58#define CNTRL_R         0x00004000
  59
  60#define CX25840_IR_TXCLK_REG    0x204
  61#define TXCLK_TCD       0x0000FFFF
  62
  63#define CX25840_IR_RXCLK_REG    0x208
  64#define RXCLK_RCD       0x0000FFFF
  65
  66#define CX25840_IR_CDUTY_REG    0x20C
  67#define CDUTY_CDC       0x0000000F
  68
  69#define CX25840_IR_STATS_REG    0x210
  70#define STATS_RTO       0x00000001
  71#define STATS_ROR       0x00000002
  72#define STATS_RBY       0x00000004
  73#define STATS_TBY       0x00000008
  74#define STATS_RSR       0x00000010
  75#define STATS_TSR       0x00000020
  76
  77#define CX25840_IR_IRQEN_REG    0x214
  78#define IRQEN_RTE       0x00000001
  79#define IRQEN_ROE       0x00000002
  80#define IRQEN_RSE       0x00000010
  81#define IRQEN_TSE       0x00000020
  82#define IRQEN_MSK       0x00000033
  83
  84#define CX25840_IR_FILTR_REG    0x218
  85#define FILTR_LPF       0x0000FFFF
  86
  87#define CX25840_IR_FIFO_REG     0x23C
  88#define FIFO_RXTX       0x0000FFFF
  89#define FIFO_RXTX_LVL   0x00010000
  90#define FIFO_RXTX_RTO   0x0001FFFF
  91#define FIFO_RX_NDV     0x00020000
  92#define FIFO_RX_DEPTH   8
  93#define FIFO_TX_DEPTH   8
  94
  95#define CX25840_VIDCLK_FREQ     108000000 /* 108 MHz, BT.656 */
  96#define CX25840_IR_REFCLK_FREQ  (CX25840_VIDCLK_FREQ / 2)
  97
  98/*
  99 * We use this union internally for convenience, but callers to tx_write
 100 * and rx_read will be expecting records of type struct ir_raw_event.
 101 * Always ensure the size of this union is dictated by struct ir_raw_event.
 102 */
 103union cx25840_ir_fifo_rec {
 104        u32 hw_fifo_data;
 105        struct ir_raw_event ir_core_data;
 106};
 107
 108#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
 109#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
 110
 111struct cx25840_ir_state {
 112        struct i2c_client *c;
 113
 114        struct v4l2_subdev_ir_parameters rx_params;
 115        struct mutex rx_params_lock; /* protects Rx parameter settings cache */
 116        atomic_t rxclk_divider;
 117        atomic_t rx_invert;
 118
 119        struct kfifo rx_kfifo;
 120        spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
 121
 122        struct v4l2_subdev_ir_parameters tx_params;
 123        struct mutex tx_params_lock; /* protects Tx parameter settings cache */
 124        atomic_t txclk_divider;
 125};
 126
 127static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
 128{
 129        struct cx25840_state *state = to_state(sd);
 130        return state ? state->ir_state : NULL;
 131}
 132
 133
 134/*
 135 * Rx and Tx Clock Divider register computations
 136 *
 137 * Note the largest clock divider value of 0xffff corresponds to:
 138 *      (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
 139 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 140 */
 141static inline u16 count_to_clock_divider(unsigned int d)
 142{
 143        if (d > RXCLK_RCD + 1)
 144                d = RXCLK_RCD;
 145        else if (d < 2)
 146                d = 1;
 147        else
 148                d--;
 149        return (u16) d;
 150}
 151
 152static inline u16 ns_to_clock_divider(unsigned int ns)
 153{
 154        return count_to_clock_divider(
 155                DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 156}
 157
 158static inline unsigned int clock_divider_to_ns(unsigned int divider)
 159{
 160        /* Period of the Rx or Tx clock in ns */
 161        return DIV_ROUND_CLOSEST((divider + 1) * 1000,
 162                                 CX25840_IR_REFCLK_FREQ / 1000000);
 163}
 164
 165static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
 166{
 167        return count_to_clock_divider(
 168                          DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
 169}
 170
 171static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
 172{
 173        return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
 174}
 175
 176static inline u16 freq_to_clock_divider(unsigned int freq,
 177                                        unsigned int rollovers)
 178{
 179        return count_to_clock_divider(
 180                   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
 181}
 182
 183static inline unsigned int clock_divider_to_freq(unsigned int divider,
 184                                                 unsigned int rollovers)
 185{
 186        return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
 187                                 (divider + 1) * rollovers);
 188}
 189
 190/*
 191 * Low Pass Filter register calculations
 192 *
 193 * Note the largest count value of 0xffff corresponds to:
 194 *      0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
 195 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 196 */
 197static inline u16 count_to_lpf_count(unsigned int d)
 198{
 199        if (d > FILTR_LPF)
 200                d = FILTR_LPF;
 201        else if (d < 4)
 202                d = 0;
 203        return (u16) d;
 204}
 205
 206static inline u16 ns_to_lpf_count(unsigned int ns)
 207{
 208        return count_to_lpf_count(
 209                DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 210}
 211
 212static inline unsigned int lpf_count_to_ns(unsigned int count)
 213{
 214        /* Duration of the Low Pass Filter rejection window in ns */
 215        return DIV_ROUND_CLOSEST(count * 1000,
 216                                 CX25840_IR_REFCLK_FREQ / 1000000);
 217}
 218
 219static inline unsigned int lpf_count_to_us(unsigned int count)
 220{
 221        /* Duration of the Low Pass Filter rejection window in us */
 222        return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
 223}
 224
 225/*
 226 * FIFO register pulse width count compuations
 227 */
 228static u32 clock_divider_to_resolution(u16 divider)
 229{
 230        /*
 231         * Resolution is the duration of 1 tick of the readable portion of
 232         * of the pulse width counter as read from the FIFO.  The two lsb's are
 233         * not readable, hence the << 2.  This function returns ns.
 234         */
 235        return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
 236                                 CX25840_IR_REFCLK_FREQ / 1000000);
 237}
 238
 239static u64 pulse_width_count_to_ns(u16 count, u16 divider)
 240{
 241        u64 n;
 242        u32 rem;
 243
 244        /*
 245         * The 2 lsb's of the pulse width timer count are not readable, hence
 246         * the (count << 2) | 0x3
 247         */
 248        n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
 249        rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
 250        if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
 251                n++;
 252        return n;
 253}
 254
 255#if 0
 256/* Keep as we will need this for Transmit functionality */
 257static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
 258{
 259        u64 n;
 260        u32 d;
 261        u32 rem;
 262
 263        /*
 264         * The 2 lsb's of the pulse width timer count are not accessible, hence
 265         * the (1 << 2)
 266         */
 267        n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
 268        d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
 269        rem = do_div(n, d);
 270        if (rem >= d / 2)
 271                n++;
 272
 273        if (n > FIFO_RXTX)
 274                n = FIFO_RXTX;
 275        else if (n == 0)
 276                n = 1;
 277        return (u16) n;
 278}
 279
 280#endif
 281static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
 282{
 283        u64 n;
 284        u32 rem;
 285
 286        /*
 287         * The 2 lsb's of the pulse width timer count are not readable, hence
 288         * the (count << 2) | 0x3
 289         */
 290        n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
 291        rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
 292        if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
 293                n++;
 294        return (unsigned int) n;
 295}
 296
 297/*
 298 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
 299 *
 300 * The total pulse clock count is an 18 bit pulse width timer count as the most
 301 * significant part and (up to) 16 bit clock divider count as a modulus.
 302 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
 303 * width timer count's least significant bit.
 304 */
 305static u64 ns_to_pulse_clocks(u32 ns)
 306{
 307        u64 clocks;
 308        u32 rem;
 309        clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
 310        rem = do_div(clocks, 1000);                         /* /1000 = cycles */
 311        if (rem >= 1000 / 2)
 312                clocks++;
 313        return clocks;
 314}
 315
 316static u16 pulse_clocks_to_clock_divider(u64 count)
 317{
 318        u32 rem;
 319
 320        rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
 321
 322        /* net result needs to be rounded down and decremented by 1 */
 323        if (count > RXCLK_RCD + 1)
 324                count = RXCLK_RCD;
 325        else if (count < 2)
 326                count = 1;
 327        else
 328                count--;
 329        return (u16) count;
 330}
 331
 332/*
 333 * IR Control Register helpers
 334 */
 335enum tx_fifo_watermark {
 336        TX_FIFO_HALF_EMPTY = 0,
 337        TX_FIFO_EMPTY      = CNTRL_TIC,
 338};
 339
 340enum rx_fifo_watermark {
 341        RX_FIFO_HALF_FULL = 0,
 342        RX_FIFO_NOT_EMPTY = CNTRL_RIC,
 343};
 344
 345static inline void control_tx_irq_watermark(struct i2c_client *c,
 346                                            enum tx_fifo_watermark level)
 347{
 348        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
 349}
 350
 351static inline void control_rx_irq_watermark(struct i2c_client *c,
 352                                            enum rx_fifo_watermark level)
 353{
 354        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
 355}
 356
 357static inline void control_tx_enable(struct i2c_client *c, bool enable)
 358{
 359        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
 360                        enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
 361}
 362
 363static inline void control_rx_enable(struct i2c_client *c, bool enable)
 364{
 365        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
 366                        enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
 367}
 368
 369static inline void control_tx_modulation_enable(struct i2c_client *c,
 370                                                bool enable)
 371{
 372        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
 373                        enable ? CNTRL_MOD : 0);
 374}
 375
 376static inline void control_rx_demodulation_enable(struct i2c_client *c,
 377                                                  bool enable)
 378{
 379        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
 380                        enable ? CNTRL_DMD : 0);
 381}
 382
 383static inline void control_rx_s_edge_detection(struct i2c_client *c,
 384                                               u32 edge_types)
 385{
 386        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
 387                        edge_types & CNTRL_EDG_BOTH);
 388}
 389
 390static void control_rx_s_carrier_window(struct i2c_client *c,
 391                                        unsigned int carrier,
 392                                        unsigned int *carrier_range_low,
 393                                        unsigned int *carrier_range_high)
 394{
 395        u32 v;
 396        unsigned int c16 = carrier * 16;
 397
 398        if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
 399                v = CNTRL_WIN_3_4;
 400                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
 401        } else {
 402                v = CNTRL_WIN_3_3;
 403                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
 404        }
 405
 406        if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
 407                v |= CNTRL_WIN_4_3;
 408                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
 409        } else {
 410                v |= CNTRL_WIN_3_3;
 411                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
 412        }
 413        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
 414}
 415
 416static inline void control_tx_polarity_invert(struct i2c_client *c,
 417                                              bool invert)
 418{
 419        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
 420                        invert ? CNTRL_CPL : 0);
 421}
 422
 423/*
 424 * IR Rx & Tx Clock Register helpers
 425 */
 426static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
 427                                       unsigned int freq,
 428                                       u16 *divider)
 429{
 430        *divider = carrier_freq_to_clock_divider(freq);
 431        cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
 432        return clock_divider_to_carrier_freq(*divider);
 433}
 434
 435static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
 436                                       unsigned int freq,
 437                                       u16 *divider)
 438{
 439        *divider = carrier_freq_to_clock_divider(freq);
 440        cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
 441        return clock_divider_to_carrier_freq(*divider);
 442}
 443
 444static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
 445                                      u16 *divider)
 446{
 447        u64 pulse_clocks;
 448
 449        if (ns > IR_MAX_DURATION)
 450                ns = IR_MAX_DURATION;
 451        pulse_clocks = ns_to_pulse_clocks(ns);
 452        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 453        cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
 454        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 455}
 456
 457static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
 458                                      u16 *divider)
 459{
 460        u64 pulse_clocks;
 461
 462        if (ns > IR_MAX_DURATION)
 463                ns = IR_MAX_DURATION;
 464        pulse_clocks = ns_to_pulse_clocks(ns);
 465        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 466        cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
 467        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 468}
 469
 470/*
 471 * IR Tx Carrier Duty Cycle register helpers
 472 */
 473static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
 474                                          unsigned int duty_cycle)
 475{
 476        u32 n;
 477        n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
 478        if (n != 0)
 479                n--;
 480        if (n > 15)
 481                n = 15;
 482        cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
 483        return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
 484}
 485
 486/*
 487 * IR Filter Register helpers
 488 */
 489static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
 490{
 491        u32 count = ns_to_lpf_count(min_width_ns);
 492        cx25840_write4(c, CX25840_IR_FILTR_REG, count);
 493        return lpf_count_to_ns(count);
 494}
 495
 496/*
 497 * IR IRQ Enable Register helpers
 498 */
 499static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
 500{
 501        struct cx25840_state *state = to_state(sd);
 502
 503        if (is_cx23885(state) || is_cx23887(state))
 504                mask ^= IRQEN_MSK;
 505        mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
 506        cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
 507                        ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
 508}
 509
 510static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
 511{
 512        struct cx25840_state *state = to_state(sd);
 513
 514        if (is_cx23885(state) || is_cx23887(state))
 515                mask ^= IRQEN_MSK;
 516        mask &= IRQEN_TSE;
 517        cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
 518}
 519
 520/*
 521 * V4L2 Subdevice IR Ops
 522 */
 523int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
 524{
 525        struct cx25840_state *state = to_state(sd);
 526        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 527        struct i2c_client *c = NULL;
 528        unsigned long flags;
 529
 530        union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
 531        unsigned int i, j, k;
 532        u32 events, v;
 533        int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
 534        u32 cntrl, irqen, stats;
 535
 536        *handled = false;
 537        if (ir_state == NULL)
 538                return -ENODEV;
 539
 540        c = ir_state->c;
 541
 542        /* Only support the IR controller for the CX2388[57] AV Core for now */
 543        if (!(is_cx23885(state) || is_cx23887(state)))
 544                return -ENODEV;
 545
 546        cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
 547        irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
 548        if (is_cx23885(state) || is_cx23887(state))
 549                irqen ^= IRQEN_MSK;
 550        stats = cx25840_read4(c, CX25840_IR_STATS_REG);
 551
 552        tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
 553        rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
 554        rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
 555        ror = stats & STATS_ROR; /* Rx FIFO Over Run */
 556
 557        tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
 558        rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
 559        rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
 560        roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
 561
 562        v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
 563                 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
 564                 rto ? "rto" : "   ", ror ? "ror" : "   ",
 565                 stats & STATS_TBY ? "tby" : "   ",
 566                 stats & STATS_RBY ? "rby" : "   ");
 567
 568        v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
 569                 tse ? "tse" : "   ", rse ? "rse" : "   ",
 570                 rte ? "rte" : "   ", roe ? "roe" : "   ");
 571
 572        /*
 573         * Transmitter interrupt service
 574         */
 575        if (tse && tsr) {
 576                /*
 577                 * TODO:
 578                 * Check the watermark threshold setting
 579                 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
 580                 * Push the data to the hardware FIFO.
 581                 * If there was nothing more to send in the tx_kfifo, disable
 582                 *      the TSR IRQ and notify the v4l2_device.
 583                 * If there was something in the tx_kfifo, check the tx_kfifo
 584                 *      level and notify the v4l2_device, if it is low.
 585                 */
 586                /* For now, inhibit TSR interrupt until Tx is implemented */
 587                irqenable_tx(sd, 0);
 588                events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
 589                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
 590                *handled = true;
 591        }
 592
 593        /*
 594         * Receiver interrupt service
 595         */
 596        kror = 0;
 597        if ((rse && rsr) || (rte && rto)) {
 598                /*
 599                 * Receive data on RSR to clear the STATS_RSR.
 600                 * Receive data on RTO, since we may not have yet hit the RSR
 601                 * watermark when we receive the RTO.
 602                 */
 603                for (i = 0, v = FIFO_RX_NDV;
 604                     (v & FIFO_RX_NDV) && !kror; i = 0) {
 605                        for (j = 0;
 606                             (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
 607                                v = cx25840_read4(c, CX25840_IR_FIFO_REG);
 608                                rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
 609                                i++;
 610                        }
 611                        if (i == 0)
 612                                break;
 613                        j = i * sizeof(union cx25840_ir_fifo_rec);
 614                        k = kfifo_in_locked(&ir_state->rx_kfifo,
 615                                            (unsigned char *) rx_data, j,
 616                                            &ir_state->rx_kfifo_lock);
 617                        if (k != j)
 618                                kror++; /* rx_kfifo over run */
 619                }
 620                *handled = true;
 621        }
 622
 623        events = 0;
 624        v = 0;
 625        if (kror) {
 626                events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
 627                v4l2_err(sd, "IR receiver software FIFO overrun\n");
 628        }
 629        if (roe && ror) {
 630                /*
 631                 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
 632                 * the Rx FIFO Over Run status (STATS_ROR)
 633                 */
 634                v |= CNTRL_RFE;
 635                events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
 636                v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
 637        }
 638        if (rte && rto) {
 639                /*
 640                 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
 641                 * the Rx Pulse Width Timer Time Out (STATS_RTO)
 642                 */
 643                v |= CNTRL_RXE;
 644                events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
 645        }
 646        if (v) {
 647                /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
 648                cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
 649                cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
 650                *handled = true;
 651        }
 652        spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
 653        if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
 654                events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
 655        spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
 656
 657        if (events)
 658                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
 659        return 0;
 660}
 661
 662/* Receiver */
 663static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
 664                              ssize_t *num)
 665{
 666        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 667        bool invert;
 668        u16 divider;
 669        unsigned int i, n;
 670        union cx25840_ir_fifo_rec *p;
 671        unsigned u, v;
 672
 673        if (ir_state == NULL)
 674                return -ENODEV;
 675
 676        invert = (bool) atomic_read(&ir_state->rx_invert);
 677        divider = (u16) atomic_read(&ir_state->rxclk_divider);
 678
 679        n = count / sizeof(union cx25840_ir_fifo_rec)
 680                * sizeof(union cx25840_ir_fifo_rec);
 681        if (n == 0) {
 682                *num = 0;
 683                return 0;
 684        }
 685
 686        n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
 687                             &ir_state->rx_kfifo_lock);
 688
 689        n /= sizeof(union cx25840_ir_fifo_rec);
 690        *num = n * sizeof(union cx25840_ir_fifo_rec);
 691
 692        for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
 693
 694                if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
 695                        /* Assume RTO was because of no IR light input */
 696                        u = 0;
 697                        v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
 698                } else {
 699                        u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
 700                        if (invert)
 701                                u = u ? 0 : 1;
 702                }
 703
 704                v = (unsigned) pulse_width_count_to_ns(
 705                                  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
 706                if (v > IR_MAX_DURATION)
 707                        v = IR_MAX_DURATION;
 708
 709                init_ir_raw_event(&p->ir_core_data);
 710                p->ir_core_data.pulse = u;
 711                p->ir_core_data.duration = v;
 712
 713                v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s\n",
 714                         v, u ? "mark" : "space");
 715        }
 716        return 0;
 717}
 718
 719static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
 720                                      struct v4l2_subdev_ir_parameters *p)
 721{
 722        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 723
 724        if (ir_state == NULL)
 725                return -ENODEV;
 726
 727        mutex_lock(&ir_state->rx_params_lock);
 728        memcpy(p, &ir_state->rx_params,
 729                                      sizeof(struct v4l2_subdev_ir_parameters));
 730        mutex_unlock(&ir_state->rx_params_lock);
 731        return 0;
 732}
 733
 734static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
 735{
 736        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 737        struct i2c_client *c;
 738
 739        if (ir_state == NULL)
 740                return -ENODEV;
 741
 742        c = ir_state->c;
 743        mutex_lock(&ir_state->rx_params_lock);
 744
 745        /* Disable or slow down all IR Rx circuits and counters */
 746        irqenable_rx(sd, 0);
 747        control_rx_enable(c, false);
 748        control_rx_demodulation_enable(c, false);
 749        control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
 750        filter_rx_s_min_width(c, 0);
 751        cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
 752
 753        ir_state->rx_params.shutdown = true;
 754
 755        mutex_unlock(&ir_state->rx_params_lock);
 756        return 0;
 757}
 758
 759static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
 760                                      struct v4l2_subdev_ir_parameters *p)
 761{
 762        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 763        struct i2c_client *c;
 764        struct v4l2_subdev_ir_parameters *o;
 765        u16 rxclk_divider;
 766
 767        if (ir_state == NULL)
 768                return -ENODEV;
 769
 770        if (p->shutdown)
 771                return cx25840_ir_rx_shutdown(sd);
 772
 773        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 774                return -ENOSYS;
 775
 776        c = ir_state->c;
 777        o = &ir_state->rx_params;
 778
 779        mutex_lock(&ir_state->rx_params_lock);
 780
 781        o->shutdown = p->shutdown;
 782
 783        p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 784        o->mode = p->mode;
 785
 786        p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
 787        o->bytes_per_data_element = p->bytes_per_data_element;
 788
 789        /* Before we tweak the hardware, we have to disable the receiver */
 790        irqenable_rx(sd, 0);
 791        control_rx_enable(c, false);
 792
 793        control_rx_demodulation_enable(c, p->modulation);
 794        o->modulation = p->modulation;
 795
 796        if (p->modulation) {
 797                p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
 798                                                     &rxclk_divider);
 799
 800                o->carrier_freq = p->carrier_freq;
 801
 802                p->duty_cycle = 50;
 803                o->duty_cycle = p->duty_cycle;
 804
 805                control_rx_s_carrier_window(c, p->carrier_freq,
 806                                            &p->carrier_range_lower,
 807                                            &p->carrier_range_upper);
 808                o->carrier_range_lower = p->carrier_range_lower;
 809                o->carrier_range_upper = p->carrier_range_upper;
 810
 811                p->max_pulse_width =
 812                        (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
 813        } else {
 814                p->max_pulse_width =
 815                            rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
 816                                                       &rxclk_divider);
 817        }
 818        o->max_pulse_width = p->max_pulse_width;
 819        atomic_set(&ir_state->rxclk_divider, rxclk_divider);
 820
 821        p->noise_filter_min_width =
 822                            filter_rx_s_min_width(c, p->noise_filter_min_width);
 823        o->noise_filter_min_width = p->noise_filter_min_width;
 824
 825        p->resolution = clock_divider_to_resolution(rxclk_divider);
 826        o->resolution = p->resolution;
 827
 828        /* FIXME - make this dependent on resolution for better performance */
 829        control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
 830
 831        control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
 832
 833        o->invert_level = p->invert_level;
 834        atomic_set(&ir_state->rx_invert, p->invert_level);
 835
 836        o->interrupt_enable = p->interrupt_enable;
 837        o->enable = p->enable;
 838        if (p->enable) {
 839                unsigned long flags;
 840
 841                spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
 842                kfifo_reset(&ir_state->rx_kfifo);
 843                spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
 844                if (p->interrupt_enable)
 845                        irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
 846                control_rx_enable(c, p->enable);
 847        }
 848
 849        mutex_unlock(&ir_state->rx_params_lock);
 850        return 0;
 851}
 852
 853/* Transmitter */
 854static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
 855                               ssize_t *num)
 856{
 857        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 858        struct i2c_client *c;
 859
 860        if (ir_state == NULL)
 861                return -ENODEV;
 862
 863        c = ir_state->c;
 864#if 0
 865        /*
 866         * FIXME - the code below is an incomplete and untested sketch of what
 867         * may need to be done.  The critical part is to get 4 (or 8) pulses
 868         * from the tx_kfifo, or converted from ns to the proper units from the
 869         * input, and push them off to the hardware Tx FIFO right away, if the
 870         * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
 871         * a less critical timeframe.  Also watch out for overruning the
 872         * tx_kfifo - don't let it happen and let the caller know not all his
 873         * pulses were written.
 874         */
 875        u32 *ns_pulse = (u32 *) buf;
 876        unsigned int n;
 877        u32 fifo_pulse[FIFO_TX_DEPTH];
 878        u32 mark;
 879
 880        /* Compute how much we can fit in the tx kfifo */
 881        n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
 882        n = min(n, (unsigned int) count);
 883        n /= sizeof(u32);
 884
 885        /* FIXME - turn on Tx Fifo service interrupt
 886         * check hardware fifo level, and other stuff
 887         */
 888        for (i = 0; i < n; ) {
 889                for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
 890                        mark = ns_pulse[i] & LEVEL_MASK;
 891                        fifo_pulse[j] = ns_to_pulse_width_count(
 892                                         ns_pulse[i] &
 893                                               ~LEVEL_MASK,
 894                                         ir_state->txclk_divider);
 895                        if (mark)
 896                                fifo_pulse[j] &= FIFO_RXTX_LVL;
 897                        i++;
 898                }
 899                kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
 900                                                               j * sizeof(u32));
 901        }
 902        *num = n * sizeof(u32);
 903#else
 904        /* For now enable the Tx FIFO Service interrupt & pretend we did work */
 905        irqenable_tx(sd, IRQEN_TSE);
 906        *num = count;
 907#endif
 908        return 0;
 909}
 910
 911static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
 912                                      struct v4l2_subdev_ir_parameters *p)
 913{
 914        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 915
 916        if (ir_state == NULL)
 917                return -ENODEV;
 918
 919        mutex_lock(&ir_state->tx_params_lock);
 920        memcpy(p, &ir_state->tx_params,
 921                                      sizeof(struct v4l2_subdev_ir_parameters));
 922        mutex_unlock(&ir_state->tx_params_lock);
 923        return 0;
 924}
 925
 926static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
 927{
 928        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 929        struct i2c_client *c;
 930
 931        if (ir_state == NULL)
 932                return -ENODEV;
 933
 934        c = ir_state->c;
 935        mutex_lock(&ir_state->tx_params_lock);
 936
 937        /* Disable or slow down all IR Tx circuits and counters */
 938        irqenable_tx(sd, 0);
 939        control_tx_enable(c, false);
 940        control_tx_modulation_enable(c, false);
 941        cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
 942
 943        ir_state->tx_params.shutdown = true;
 944
 945        mutex_unlock(&ir_state->tx_params_lock);
 946        return 0;
 947}
 948
 949static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
 950                                      struct v4l2_subdev_ir_parameters *p)
 951{
 952        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 953        struct i2c_client *c;
 954        struct v4l2_subdev_ir_parameters *o;
 955        u16 txclk_divider;
 956
 957        if (ir_state == NULL)
 958                return -ENODEV;
 959
 960        if (p->shutdown)
 961                return cx25840_ir_tx_shutdown(sd);
 962
 963        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 964                return -ENOSYS;
 965
 966        c = ir_state->c;
 967        o = &ir_state->tx_params;
 968        mutex_lock(&ir_state->tx_params_lock);
 969
 970        o->shutdown = p->shutdown;
 971
 972        p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 973        o->mode = p->mode;
 974
 975        p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
 976        o->bytes_per_data_element = p->bytes_per_data_element;
 977
 978        /* Before we tweak the hardware, we have to disable the transmitter */
 979        irqenable_tx(sd, 0);
 980        control_tx_enable(c, false);
 981
 982        control_tx_modulation_enable(c, p->modulation);
 983        o->modulation = p->modulation;
 984
 985        if (p->modulation) {
 986                p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
 987                                                     &txclk_divider);
 988                o->carrier_freq = p->carrier_freq;
 989
 990                p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
 991                o->duty_cycle = p->duty_cycle;
 992
 993                p->max_pulse_width =
 994                        (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
 995        } else {
 996                p->max_pulse_width =
 997                            txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
 998                                                       &txclk_divider);
 999        }
1000        o->max_pulse_width = p->max_pulse_width;
1001        atomic_set(&ir_state->txclk_divider, txclk_divider);
1002
1003        p->resolution = clock_divider_to_resolution(txclk_divider);
1004        o->resolution = p->resolution;
1005
1006        /* FIXME - make this dependent on resolution for better performance */
1007        control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1008
1009        control_tx_polarity_invert(c, p->invert_carrier_sense);
1010        o->invert_carrier_sense = p->invert_carrier_sense;
1011
1012        /*
1013         * FIXME: we don't have hardware help for IO pin level inversion
1014         * here like we have on the CX23888.
1015         * Act on this with some mix of logical inversion of data levels,
1016         * carrier polarity, and carrier duty cycle.
1017         */
1018        o->invert_level = p->invert_level;
1019
1020        o->interrupt_enable = p->interrupt_enable;
1021        o->enable = p->enable;
1022        if (p->enable) {
1023                /* reset tx_fifo here */
1024                if (p->interrupt_enable)
1025                        irqenable_tx(sd, IRQEN_TSE);
1026                control_tx_enable(c, p->enable);
1027        }
1028
1029        mutex_unlock(&ir_state->tx_params_lock);
1030        return 0;
1031}
1032
1033
1034/*
1035 * V4L2 Subdevice Core Ops support
1036 */
1037int cx25840_ir_log_status(struct v4l2_subdev *sd)
1038{
1039        struct cx25840_state *state = to_state(sd);
1040        struct i2c_client *c = state->c;
1041        char *s;
1042        int i, j;
1043        u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1044
1045        /* The CX23888 chip doesn't have an IR controller on the A/V core */
1046        if (is_cx23888(state))
1047                return 0;
1048
1049        cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1050        txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1051        rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1052        cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1053        stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1054        irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1055        if (is_cx23885(state) || is_cx23887(state))
1056                irqen ^= IRQEN_MSK;
1057        filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1058
1059        v4l2_info(sd, "IR Receiver:\n");
1060        v4l2_info(sd, "\tEnabled:                           %s\n",
1061                  cntrl & CNTRL_RXE ? "yes" : "no");
1062        v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
1063                  cntrl & CNTRL_DMD ? "enabled" : "disabled");
1064        v4l2_info(sd, "\tFIFO:                              %s\n",
1065                  cntrl & CNTRL_RFE ? "enabled" : "disabled");
1066        switch (cntrl & CNTRL_EDG) {
1067        case CNTRL_EDG_NONE:
1068                s = "disabled";
1069                break;
1070        case CNTRL_EDG_FALL:
1071                s = "falling edge";
1072                break;
1073        case CNTRL_EDG_RISE:
1074                s = "rising edge";
1075                break;
1076        case CNTRL_EDG_BOTH:
1077                s = "rising & falling edges";
1078                break;
1079        default:
1080                s = "??? edge";
1081                break;
1082        }
1083        v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
1084        v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1085                  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1086        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1087                  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1088        v4l2_info(sd, "\tLoopback mode:                     %s\n",
1089                  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1090        if (cntrl & CNTRL_DMD) {
1091                v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1092                          clock_divider_to_carrier_freq(rxclk));
1093                switch (cntrl & CNTRL_WIN) {
1094                case CNTRL_WIN_3_3:
1095                        i = 3;
1096                        j = 3;
1097                        break;
1098                case CNTRL_WIN_4_3:
1099                        i = 4;
1100                        j = 3;
1101                        break;
1102                case CNTRL_WIN_3_4:
1103                        i = 3;
1104                        j = 4;
1105                        break;
1106                case CNTRL_WIN_4_4:
1107                        i = 4;
1108                        j = 4;
1109                        break;
1110                default:
1111                        i = 0;
1112                        j = 0;
1113                        break;
1114                }
1115                v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1116                          "-%1d/+%1d, %u to %u Hz\n", i, j,
1117                          clock_divider_to_freq(rxclk, 16 + j),
1118                          clock_divider_to_freq(rxclk, 16 - i));
1119        }
1120        v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1121                  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1122                  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1123        v4l2_info(sd, "\tLow pass filter:                   %s\n",
1124                  filtr ? "enabled" : "disabled");
1125        if (filtr)
1126                v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1127                          "%u ns\n",
1128                          lpf_count_to_us(filtr),
1129                          lpf_count_to_ns(filtr));
1130        v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1131                  stats & STATS_RTO ? "yes" : "no");
1132        v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1133                  irqen & IRQEN_RTE ? "enabled" : "disabled");
1134        v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1135                  stats & STATS_ROR ? "yes" : "no");
1136        v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1137                  irqen & IRQEN_ROE ? "enabled" : "disabled");
1138        v4l2_info(sd, "\tBusy:                              %s\n",
1139                  stats & STATS_RBY ? "yes" : "no");
1140        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1141                  stats & STATS_RSR ? "yes" : "no");
1142        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1143                  irqen & IRQEN_RSE ? "enabled" : "disabled");
1144
1145        v4l2_info(sd, "IR Transmitter:\n");
1146        v4l2_info(sd, "\tEnabled:                           %s\n",
1147                  cntrl & CNTRL_TXE ? "yes" : "no");
1148        v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1149                  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1150        v4l2_info(sd, "\tFIFO:                              %s\n",
1151                  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1152        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1153                  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1154        v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1155                  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1156                                    : "space:noburst mark:burst");
1157        if (cntrl & CNTRL_MOD) {
1158                v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1159                          clock_divider_to_carrier_freq(txclk));
1160                v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1161                          cduty + 1);
1162        }
1163        v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1164                  pulse_width_count_to_us(FIFO_RXTX, txclk),
1165                  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1166        v4l2_info(sd, "\tBusy:                              %s\n",
1167                  stats & STATS_TBY ? "yes" : "no");
1168        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1169                  stats & STATS_TSR ? "yes" : "no");
1170        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1171                  irqen & IRQEN_TSE ? "enabled" : "disabled");
1172
1173        return 0;
1174}
1175
1176
1177const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1178        .rx_read = cx25840_ir_rx_read,
1179        .rx_g_parameters = cx25840_ir_rx_g_parameters,
1180        .rx_s_parameters = cx25840_ir_rx_s_parameters,
1181
1182        .tx_write = cx25840_ir_tx_write,
1183        .tx_g_parameters = cx25840_ir_tx_g_parameters,
1184        .tx_s_parameters = cx25840_ir_tx_s_parameters,
1185};
1186
1187
1188static const struct v4l2_subdev_ir_parameters default_rx_params = {
1189        .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1190        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1191
1192        .enable = false,
1193        .interrupt_enable = false,
1194        .shutdown = true,
1195
1196        .modulation = true,
1197        .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1198
1199        /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1200        /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1201        .noise_filter_min_width = 333333, /* ns */
1202        .carrier_range_lower = 35000,
1203        .carrier_range_upper = 37000,
1204        .invert_level = false,
1205};
1206
1207static const struct v4l2_subdev_ir_parameters default_tx_params = {
1208        .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1209        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1210
1211        .enable = false,
1212        .interrupt_enable = false,
1213        .shutdown = true,
1214
1215        .modulation = true,
1216        .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1217        .duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1218        .invert_level = false,
1219        .invert_carrier_sense = false,
1220};
1221
1222int cx25840_ir_probe(struct v4l2_subdev *sd)
1223{
1224        struct cx25840_state *state = to_state(sd);
1225        struct cx25840_ir_state *ir_state;
1226        struct v4l2_subdev_ir_parameters default_params;
1227
1228        /* Only init the IR controller for the CX2388[57] AV Core for now */
1229        if (!(is_cx23885(state) || is_cx23887(state)))
1230                return 0;
1231
1232        ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1233        if (ir_state == NULL)
1234                return -ENOMEM;
1235
1236        spin_lock_init(&ir_state->rx_kfifo_lock);
1237        if (kfifo_alloc(&ir_state->rx_kfifo,
1238                        CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1239                kfree(ir_state);
1240                return -ENOMEM;
1241        }
1242
1243        ir_state->c = state->c;
1244        state->ir_state = ir_state;
1245
1246        /* Ensure no interrupts arrive yet */
1247        if (is_cx23885(state) || is_cx23887(state))
1248                cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1249        else
1250                cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1251
1252        mutex_init(&ir_state->rx_params_lock);
1253        memcpy(&default_params, &default_rx_params,
1254                       sizeof(struct v4l2_subdev_ir_parameters));
1255        v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1256
1257        mutex_init(&ir_state->tx_params_lock);
1258        memcpy(&default_params, &default_tx_params,
1259                       sizeof(struct v4l2_subdev_ir_parameters));
1260        v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1261
1262        return 0;
1263}
1264
1265int cx25840_ir_remove(struct v4l2_subdev *sd)
1266{
1267        struct cx25840_state *state = to_state(sd);
1268        struct cx25840_ir_state *ir_state = to_ir_state(sd);
1269
1270        if (ir_state == NULL)
1271                return -ENODEV;
1272
1273        cx25840_ir_rx_shutdown(sd);
1274        cx25840_ir_tx_shutdown(sd);
1275
1276        kfifo_free(&ir_state->rx_kfifo);
1277        kfree(ir_state);
1278        state->ir_state = NULL;
1279        return 0;
1280}
1281