linux/drivers/mtd/nand/cafe_nand.c
<<
>>
Prefs
   1/*
   2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
   3 *
   4 * The data sheet for this device can be found at:
   5 *    http://wiki.laptop.org/go/Datasheets 
   6 *
   7 * Copyright © 2006 Red Hat, Inc.
   8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
   9 */
  10
  11#define DEBUG
  12
  13#include <linux/device.h>
  14#undef DEBUG
  15#include <linux/mtd/mtd.h>
  16#include <linux/mtd/nand.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/rslib.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/interrupt.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/slab.h>
  24#include <asm/io.h>
  25
  26#define CAFE_NAND_CTRL1         0x00
  27#define CAFE_NAND_CTRL2         0x04
  28#define CAFE_NAND_CTRL3         0x08
  29#define CAFE_NAND_STATUS        0x0c
  30#define CAFE_NAND_IRQ           0x10
  31#define CAFE_NAND_IRQ_MASK      0x14
  32#define CAFE_NAND_DATA_LEN      0x18
  33#define CAFE_NAND_ADDR1         0x1c
  34#define CAFE_NAND_ADDR2         0x20
  35#define CAFE_NAND_TIMING1       0x24
  36#define CAFE_NAND_TIMING2       0x28
  37#define CAFE_NAND_TIMING3       0x2c
  38#define CAFE_NAND_NONMEM        0x30
  39#define CAFE_NAND_ECC_RESULT    0x3C
  40#define CAFE_NAND_DMA_CTRL      0x40
  41#define CAFE_NAND_DMA_ADDR0     0x44
  42#define CAFE_NAND_DMA_ADDR1     0x48
  43#define CAFE_NAND_ECC_SYN01     0x50
  44#define CAFE_NAND_ECC_SYN23     0x54
  45#define CAFE_NAND_ECC_SYN45     0x58
  46#define CAFE_NAND_ECC_SYN67     0x5c
  47#define CAFE_NAND_READ_DATA     0x1000
  48#define CAFE_NAND_WRITE_DATA    0x2000
  49
  50#define CAFE_GLOBAL_CTRL        0x3004
  51#define CAFE_GLOBAL_IRQ         0x3008
  52#define CAFE_GLOBAL_IRQ_MASK    0x300c
  53#define CAFE_NAND_RESET         0x3034
  54
  55/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  56#define CTRL1_CHIPSELECT        (1<<19)
  57
  58struct cafe_priv {
  59        struct nand_chip nand;
  60        struct mtd_partition *parts;
  61        struct pci_dev *pdev;
  62        void __iomem *mmio;
  63        struct rs_control *rs;
  64        uint32_t ctl1;
  65        uint32_t ctl2;
  66        int datalen;
  67        int nr_data;
  68        int data_pos;
  69        int page_addr;
  70        dma_addr_t dmaaddr;
  71        unsigned char *dmabuf;
  72};
  73
  74static int usedma = 1;
  75module_param(usedma, int, 0644);
  76
  77static int skipbbt = 0;
  78module_param(skipbbt, int, 0644);
  79
  80static int debug = 0;
  81module_param(debug, int, 0644);
  82
  83static int regdebug = 0;
  84module_param(regdebug, int, 0644);
  85
  86static int checkecc = 1;
  87module_param(checkecc, int, 0644);
  88
  89static unsigned int numtimings;
  90static int timing[3];
  91module_param_array(timing, int, &numtimings, 0644);
  92
  93#ifdef CONFIG_MTD_PARTITIONS
  94static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  95#endif
  96
  97/* Hrm. Why isn't this already conditional on something in the struct device? */
  98#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  99
 100/* Make it easier to switch to PIO if we need to */
 101#define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
 102#define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
 103
 104static int cafe_device_ready(struct mtd_info *mtd)
 105{
 106        struct cafe_priv *cafe = mtd->priv;
 107        int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
 108        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 109
 110        cafe_writel(cafe, irqs, NAND_IRQ);
 111
 112        cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
 113                result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
 114                cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 115
 116        return result;
 117}
 118
 119
 120static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 121{
 122        struct cafe_priv *cafe = mtd->priv;
 123
 124        if (usedma)
 125                memcpy(cafe->dmabuf + cafe->datalen, buf, len);
 126        else
 127                memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
 128
 129        cafe->datalen += len;
 130
 131        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
 132                len, cafe->datalen);
 133}
 134
 135static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 136{
 137        struct cafe_priv *cafe = mtd->priv;
 138
 139        if (usedma)
 140                memcpy(buf, cafe->dmabuf + cafe->datalen, len);
 141        else
 142                memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
 143
 144        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
 145                  len, cafe->datalen);
 146        cafe->datalen += len;
 147}
 148
 149static uint8_t cafe_read_byte(struct mtd_info *mtd)
 150{
 151        struct cafe_priv *cafe = mtd->priv;
 152        uint8_t d;
 153
 154        cafe_read_buf(mtd, &d, 1);
 155        cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 156
 157        return d;
 158}
 159
 160static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
 161                              int column, int page_addr)
 162{
 163        struct cafe_priv *cafe = mtd->priv;
 164        int adrbytes = 0;
 165        uint32_t ctl1;
 166        uint32_t doneint = 0x80000000;
 167
 168        cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
 169                command, column, page_addr);
 170
 171        if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
 172                /* Second half of a command we already calculated */
 173                cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
 174                ctl1 = cafe->ctl1;
 175                cafe->ctl2 &= ~(1<<30);
 176                cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
 177                          cafe->ctl1, cafe->nr_data);
 178                goto do_command;
 179        }
 180        /* Reset ECC engine */
 181        cafe_writel(cafe, 0, NAND_CTRL2);
 182
 183        /* Emulate NAND_CMD_READOOB on large-page chips */
 184        if (mtd->writesize > 512 &&
 185            command == NAND_CMD_READOOB) {
 186                column += mtd->writesize;
 187                command = NAND_CMD_READ0;
 188        }
 189
 190        /* FIXME: Do we need to send read command before sending data
 191           for small-page chips, to position the buffer correctly? */
 192
 193        if (column != -1) {
 194                cafe_writel(cafe, column, NAND_ADDR1);
 195                adrbytes = 2;
 196                if (page_addr != -1)
 197                        goto write_adr2;
 198        } else if (page_addr != -1) {
 199                cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
 200                page_addr >>= 16;
 201        write_adr2:
 202                cafe_writel(cafe, page_addr, NAND_ADDR2);
 203                adrbytes += 2;
 204                if (mtd->size > mtd->writesize << 16)
 205                        adrbytes++;
 206        }
 207
 208        cafe->data_pos = cafe->datalen = 0;
 209
 210        /* Set command valid bit, mask in the chip select bit  */
 211        ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
 212
 213        /* Set RD or WR bits as appropriate */
 214        if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
 215                ctl1 |= (1<<26); /* rd */
 216                /* Always 5 bytes, for now */
 217                cafe->datalen = 4;
 218                /* And one address cycle -- even for STATUS, since the controller doesn't work without */
 219                adrbytes = 1;
 220        } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 221                   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
 222                ctl1 |= 1<<26; /* rd */
 223                /* For now, assume just read to end of page */
 224                cafe->datalen = mtd->writesize + mtd->oobsize - column;
 225        } else if (command == NAND_CMD_SEQIN)
 226                ctl1 |= 1<<25; /* wr */
 227
 228        /* Set number of address bytes */
 229        if (adrbytes)
 230                ctl1 |= ((adrbytes-1)|8) << 27;
 231
 232        if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
 233                /* Ignore the first command of a pair; the hardware
 234                   deals with them both at once, later */
 235                cafe->ctl1 = ctl1;
 236                cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
 237                          cafe->ctl1, cafe->datalen);
 238                return;
 239        }
 240        /* RNDOUT and READ0 commands need a following byte */
 241        if (command == NAND_CMD_RNDOUT)
 242                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
 243        else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
 244                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
 245
 246 do_command:
 247        cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
 248                cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
 249
 250        /* NB: The datasheet lies -- we really should be subtracting 1 here */
 251        cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
 252        cafe_writel(cafe, 0x90000000, NAND_IRQ);
 253        if (usedma && (ctl1 & (3<<25))) {
 254                uint32_t dmactl = 0xc0000000 + cafe->datalen;
 255                /* If WR or RD bits set, set up DMA */
 256                if (ctl1 & (1<<26)) {
 257                        /* It's a read */
 258                        dmactl |= (1<<29);
 259                        /* ... so it's done when the DMA is done, not just
 260                           the command. */
 261                        doneint = 0x10000000;
 262                }
 263                cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
 264        }
 265        cafe->datalen = 0;
 266
 267        if (unlikely(regdebug)) {
 268                int i;
 269                printk("About to write command %08x to register 0\n", ctl1);
 270                for (i=4; i< 0x5c; i+=4)
 271                        printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 272        }
 273
 274        cafe_writel(cafe, ctl1, NAND_CTRL1);
 275        /* Apply this short delay always to ensure that we do wait tWB in
 276         * any case on any machine. */
 277        ndelay(100);
 278
 279        if (1) {
 280                int c;
 281                uint32_t irqs;
 282
 283                for (c = 500000; c != 0; c--) {
 284                        irqs = cafe_readl(cafe, NAND_IRQ);
 285                        if (irqs & doneint)
 286                                break;
 287                        udelay(1);
 288                        if (!(c % 100000))
 289                                cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
 290                        cpu_relax();
 291                }
 292                cafe_writel(cafe, doneint, NAND_IRQ);
 293                cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
 294                             command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
 295        }
 296
 297        WARN_ON(cafe->ctl2 & (1<<30));
 298
 299        switch (command) {
 300
 301        case NAND_CMD_CACHEDPROG:
 302        case NAND_CMD_PAGEPROG:
 303        case NAND_CMD_ERASE1:
 304        case NAND_CMD_ERASE2:
 305        case NAND_CMD_SEQIN:
 306        case NAND_CMD_RNDIN:
 307        case NAND_CMD_STATUS:
 308        case NAND_CMD_DEPLETE1:
 309        case NAND_CMD_RNDOUT:
 310        case NAND_CMD_STATUS_ERROR:
 311        case NAND_CMD_STATUS_ERROR0:
 312        case NAND_CMD_STATUS_ERROR1:
 313        case NAND_CMD_STATUS_ERROR2:
 314        case NAND_CMD_STATUS_ERROR3:
 315                cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 316                return;
 317        }
 318        nand_wait_ready(mtd);
 319        cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 320}
 321
 322static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
 323{
 324        struct cafe_priv *cafe = mtd->priv;
 325
 326        cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
 327
 328        /* Mask the appropriate bit into the stored value of ctl1
 329           which will be used by cafe_nand_cmdfunc() */
 330        if (chipnr)
 331                cafe->ctl1 |= CTRL1_CHIPSELECT;
 332        else
 333                cafe->ctl1 &= ~CTRL1_CHIPSELECT;
 334}
 335
 336static irqreturn_t cafe_nand_interrupt(int irq, void *id)
 337{
 338        struct mtd_info *mtd = id;
 339        struct cafe_priv *cafe = mtd->priv;
 340        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 341        cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
 342        if (!irqs)
 343                return IRQ_NONE;
 344
 345        cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
 346        return IRQ_HANDLED;
 347}
 348
 349static void cafe_nand_bug(struct mtd_info *mtd)
 350{
 351        BUG();
 352}
 353
 354static int cafe_nand_write_oob(struct mtd_info *mtd,
 355                               struct nand_chip *chip, int page)
 356{
 357        int status = 0;
 358
 359        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 360        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 361        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 362        status = chip->waitfunc(mtd, chip);
 363
 364        return status & NAND_STATUS_FAIL ? -EIO : 0;
 365}
 366
 367/* Don't use -- use nand_read_oob_std for now */
 368static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 369                              int page, int sndcmd)
 370{
 371        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 372        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 373        return 1;
 374}
 375/**
 376 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 377 * @mtd:        mtd info structure
 378 * @chip:       nand chip info structure
 379 * @buf:        buffer to store read data
 380 *
 381 * The hw generator calculates the error syndrome automatically. Therefor
 382 * we need a special oob layout and handling.
 383 */
 384static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 385                               uint8_t *buf, int page)
 386{
 387        struct cafe_priv *cafe = mtd->priv;
 388
 389        cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
 390                     cafe_readl(cafe, NAND_ECC_RESULT),
 391                     cafe_readl(cafe, NAND_ECC_SYN01));
 392
 393        chip->read_buf(mtd, buf, mtd->writesize);
 394        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 395
 396        if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 397                unsigned short syn[8], pat[4];
 398                int pos[4];
 399                u8 *oob = chip->oob_poi;
 400                int i, n;
 401
 402                for (i=0; i<8; i+=2) {
 403                        uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
 404                        syn[i] = cafe->rs->index_of[tmp & 0xfff];
 405                        syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
 406                }
 407
 408                n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
 409                                pat);
 410
 411                for (i = 0; i < n; i++) {
 412                        int p = pos[i];
 413
 414                        /* The 12-bit symbols are mapped to bytes here */
 415
 416                        if (p > 1374) {
 417                                /* out of range */
 418                                n = -1374;
 419                        } else if (p == 0) {
 420                                /* high four bits do not correspond to data */
 421                                if (pat[i] > 0xff)
 422                                        n = -2048;
 423                                else
 424                                        buf[0] ^= pat[i];
 425                        } else if (p == 1365) {
 426                                buf[2047] ^= pat[i] >> 4;
 427                                oob[0] ^= pat[i] << 4;
 428                        } else if (p > 1365) {
 429                                if ((p & 1) == 1) {
 430                                        oob[3*p/2 - 2048] ^= pat[i] >> 4;
 431                                        oob[3*p/2 - 2047] ^= pat[i] << 4;
 432                                } else {
 433                                        oob[3*p/2 - 2049] ^= pat[i] >> 8;
 434                                        oob[3*p/2 - 2048] ^= pat[i];
 435                                }
 436                        } else if ((p & 1) == 1) {
 437                                buf[3*p/2] ^= pat[i] >> 4;
 438                                buf[3*p/2 + 1] ^= pat[i] << 4;
 439                        } else {
 440                                buf[3*p/2 - 1] ^= pat[i] >> 8;
 441                                buf[3*p/2] ^= pat[i];
 442                        }
 443                }
 444
 445                if (n < 0) {
 446                        dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
 447                                cafe_readl(cafe, NAND_ADDR2) * 2048);
 448                        for (i = 0; i < 0x5c; i += 4)
 449                                printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 450                        mtd->ecc_stats.failed++;
 451                } else {
 452                        dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
 453                        mtd->ecc_stats.corrected += n;
 454                }
 455        }
 456
 457        return 0;
 458}
 459
 460static struct nand_ecclayout cafe_oobinfo_2048 = {
 461        .eccbytes = 14,
 462        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 463        .oobfree = {{14, 50}}
 464};
 465
 466/* Ick. The BBT code really ought to be able to work this bit out
 467   for itself from the above, at least for the 2KiB case */
 468static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
 469static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
 470
 471static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
 472static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
 473
 474
 475static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
 476        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 477                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 478        .offs = 14,
 479        .len = 4,
 480        .veroffs = 18,
 481        .maxblocks = 4,
 482        .pattern = cafe_bbt_pattern_2048
 483};
 484
 485static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
 486        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 487                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 488        .offs = 14,
 489        .len = 4,
 490        .veroffs = 18,
 491        .maxblocks = 4,
 492        .pattern = cafe_mirror_pattern_2048
 493};
 494
 495static struct nand_ecclayout cafe_oobinfo_512 = {
 496        .eccbytes = 14,
 497        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 498        .oobfree = {{14, 2}}
 499};
 500
 501static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
 502        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 503                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 504        .offs = 14,
 505        .len = 1,
 506        .veroffs = 15,
 507        .maxblocks = 4,
 508        .pattern = cafe_bbt_pattern_512
 509};
 510
 511static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
 512        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 513                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 514        .offs = 14,
 515        .len = 1,
 516        .veroffs = 15,
 517        .maxblocks = 4,
 518        .pattern = cafe_mirror_pattern_512
 519};
 520
 521
 522static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
 523                                          struct nand_chip *chip, const uint8_t *buf)
 524{
 525        struct cafe_priv *cafe = mtd->priv;
 526
 527        chip->write_buf(mtd, buf, mtd->writesize);
 528        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 529
 530        /* Set up ECC autogeneration */
 531        cafe->ctl2 |= (1<<30);
 532}
 533
 534static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 535                                const uint8_t *buf, int page, int cached, int raw)
 536{
 537        int status;
 538
 539        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
 540
 541        if (unlikely(raw))
 542                chip->ecc.write_page_raw(mtd, chip, buf);
 543        else
 544                chip->ecc.write_page(mtd, chip, buf);
 545
 546        /*
 547         * Cached progamming disabled for now, Not sure if its worth the
 548         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
 549         */
 550        cached = 0;
 551
 552        if (!cached || !(chip->options & NAND_CACHEPRG)) {
 553
 554                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 555                status = chip->waitfunc(mtd, chip);
 556                /*
 557                 * See if operation failed and additional status checks are
 558                 * available
 559                 */
 560                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
 561                        status = chip->errstat(mtd, chip, FL_WRITING, status,
 562                                               page);
 563
 564                if (status & NAND_STATUS_FAIL)
 565                        return -EIO;
 566        } else {
 567                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
 568                status = chip->waitfunc(mtd, chip);
 569        }
 570
 571#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
 572        /* Send command to read back the data */
 573        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 574
 575        if (chip->verify_buf(mtd, buf, mtd->writesize))
 576                return -EIO;
 577#endif
 578        return 0;
 579}
 580
 581static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 582{
 583        return 0;
 584}
 585
 586/* F_2[X]/(X**6+X+1)  */
 587static unsigned short __devinit gf64_mul(u8 a, u8 b)
 588{
 589        u8 c;
 590        unsigned int i;
 591
 592        c = 0;
 593        for (i = 0; i < 6; i++) {
 594                if (a & 1)
 595                        c ^= b;
 596                a >>= 1;
 597                b <<= 1;
 598                if ((b & 0x40) != 0)
 599                        b ^= 0x43;
 600        }
 601
 602        return c;
 603}
 604
 605/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
 606static u16 __devinit gf4096_mul(u16 a, u16 b)
 607{
 608        u8 ah, al, bh, bl, ch, cl;
 609
 610        ah = a >> 6;
 611        al = a & 0x3f;
 612        bh = b >> 6;
 613        bl = b & 0x3f;
 614
 615        ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
 616        cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
 617
 618        return (ch << 6) ^ cl;
 619}
 620
 621static int __devinit cafe_mul(int x)
 622{
 623        if (x == 0)
 624                return 1;
 625        return gf4096_mul(x, 0xe01);
 626}
 627
 628static int __devinit cafe_nand_probe(struct pci_dev *pdev,
 629                                     const struct pci_device_id *ent)
 630{
 631        struct mtd_info *mtd;
 632        struct cafe_priv *cafe;
 633        uint32_t ctrl;
 634        int err = 0;
 635#ifdef CONFIG_MTD_PARTITIONS
 636        struct mtd_partition *parts;
 637        int nr_parts;
 638#endif
 639
 640        /* Very old versions shared the same PCI ident for all three
 641           functions on the chip. Verify the class too... */
 642        if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
 643                return -ENODEV;
 644
 645        err = pci_enable_device(pdev);
 646        if (err)
 647                return err;
 648
 649        pci_set_master(pdev);
 650
 651        mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
 652        if (!mtd) {
 653                dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
 654                return  -ENOMEM;
 655        }
 656        cafe = (void *)(&mtd[1]);
 657
 658        mtd->dev.parent = &pdev->dev;
 659        mtd->priv = cafe;
 660        mtd->owner = THIS_MODULE;
 661
 662        cafe->pdev = pdev;
 663        cafe->mmio = pci_iomap(pdev, 0, 0);
 664        if (!cafe->mmio) {
 665                dev_warn(&pdev->dev, "failed to iomap\n");
 666                err = -ENOMEM;
 667                goto out_free_mtd;
 668        }
 669        cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
 670                                          &cafe->dmaaddr, GFP_KERNEL);
 671        if (!cafe->dmabuf) {
 672                err = -ENOMEM;
 673                goto out_ior;
 674        }
 675        cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
 676
 677        cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
 678        if (!cafe->rs) {
 679                err = -ENOMEM;
 680                goto out_ior;
 681        }
 682
 683        cafe->nand.cmdfunc = cafe_nand_cmdfunc;
 684        cafe->nand.dev_ready = cafe_device_ready;
 685        cafe->nand.read_byte = cafe_read_byte;
 686        cafe->nand.read_buf = cafe_read_buf;
 687        cafe->nand.write_buf = cafe_write_buf;
 688        cafe->nand.select_chip = cafe_select_chip;
 689
 690        cafe->nand.chip_delay = 0;
 691
 692        /* Enable the following for a flash based bad block table */
 693        cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
 694
 695        if (skipbbt) {
 696                cafe->nand.options |= NAND_SKIP_BBTSCAN;
 697                cafe->nand.block_bad = cafe_nand_block_bad;
 698        }
 699
 700        if (numtimings && numtimings != 3) {
 701                dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
 702        }
 703
 704        if (numtimings == 3) {
 705                cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
 706                             timing[0], timing[1], timing[2]);
 707        } else {
 708                timing[0] = cafe_readl(cafe, NAND_TIMING1);
 709                timing[1] = cafe_readl(cafe, NAND_TIMING2);
 710                timing[2] = cafe_readl(cafe, NAND_TIMING3);
 711
 712                if (timing[0] | timing[1] | timing[2]) {
 713                        cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
 714                                     timing[0], timing[1], timing[2]);
 715                } else {
 716                        dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
 717                        timing[0] = timing[1] = timing[2] = 0xffffffff;
 718                }
 719        }
 720
 721        /* Start off by resetting the NAND controller completely */
 722        cafe_writel(cafe, 1, NAND_RESET);
 723        cafe_writel(cafe, 0, NAND_RESET);
 724
 725        cafe_writel(cafe, timing[0], NAND_TIMING1);
 726        cafe_writel(cafe, timing[1], NAND_TIMING2);
 727        cafe_writel(cafe, timing[2], NAND_TIMING3);
 728
 729        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 730        err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
 731                          "CAFE NAND", mtd);
 732        if (err) {
 733                dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
 734                goto out_free_dma;
 735        }
 736
 737        /* Disable master reset, enable NAND clock */
 738        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 739        ctrl &= 0xffffeff0;
 740        ctrl |= 0x00007000;
 741        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 742        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 743        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 744
 745        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 746        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 747
 748        /* Set up DMA address */
 749        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 750        if (sizeof(cafe->dmaaddr) > 4)
 751                /* Shift in two parts to shut the compiler up */
 752                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 753        else
 754                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 755
 756        cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
 757                cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
 758
 759        /* Enable NAND IRQ in global IRQ mask register */
 760        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 761        cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
 762                cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 763
 764        /* Scan to find existence of the device */
 765        if (nand_scan_ident(mtd, 2, NULL)) {
 766                err = -ENXIO;
 767                goto out_irq;
 768        }
 769
 770        cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
 771        if (mtd->writesize == 2048)
 772                cafe->ctl2 |= 1<<29; /* 2KiB page size */
 773
 774        /* Set up ECC according to the type of chip we found */
 775        if (mtd->writesize == 2048) {
 776                cafe->nand.ecc.layout = &cafe_oobinfo_2048;
 777                cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
 778                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
 779        } else if (mtd->writesize == 512) {
 780                cafe->nand.ecc.layout = &cafe_oobinfo_512;
 781                cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 782                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 783        } else {
 784                printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
 785                       mtd->writesize);
 786                goto out_irq;
 787        }
 788        cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 789        cafe->nand.ecc.size = mtd->writesize;
 790        cafe->nand.ecc.bytes = 14;
 791        cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
 792        cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
 793        cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
 794        cafe->nand.write_page = cafe_nand_write_page;
 795        cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
 796        cafe->nand.ecc.write_oob = cafe_nand_write_oob;
 797        cafe->nand.ecc.read_page = cafe_nand_read_page;
 798        cafe->nand.ecc.read_oob = cafe_nand_read_oob;
 799
 800        err = nand_scan_tail(mtd);
 801        if (err)
 802                goto out_irq;
 803
 804        pci_set_drvdata(pdev, mtd);
 805
 806        /* We register the whole device first, separate from the partitions */
 807        add_mtd_device(mtd);
 808
 809#ifdef CONFIG_MTD_PARTITIONS
 810#ifdef CONFIG_MTD_CMDLINE_PARTS
 811        mtd->name = "cafe_nand";
 812#endif
 813        nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
 814        if (nr_parts > 0) {
 815                cafe->parts = parts;
 816                dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
 817                add_mtd_partitions(mtd, parts, nr_parts);
 818        }
 819#endif
 820        goto out;
 821
 822 out_irq:
 823        /* Disable NAND IRQ in global IRQ mask register */
 824        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 825        free_irq(pdev->irq, mtd);
 826 out_free_dma:
 827        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 828 out_ior:
 829        pci_iounmap(pdev, cafe->mmio);
 830 out_free_mtd:
 831        kfree(mtd);
 832 out:
 833        return err;
 834}
 835
 836static void __devexit cafe_nand_remove(struct pci_dev *pdev)
 837{
 838        struct mtd_info *mtd = pci_get_drvdata(pdev);
 839        struct cafe_priv *cafe = mtd->priv;
 840
 841        del_mtd_device(mtd);
 842        /* Disable NAND IRQ in global IRQ mask register */
 843        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 844        free_irq(pdev->irq, mtd);
 845        nand_release(mtd);
 846        free_rs(cafe->rs);
 847        pci_iounmap(pdev, cafe->mmio);
 848        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 849        kfree(mtd);
 850}
 851
 852static const struct pci_device_id cafe_nand_tbl[] = {
 853        { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
 854          PCI_ANY_ID, PCI_ANY_ID },
 855        { }
 856};
 857
 858MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
 859
 860static int cafe_nand_resume(struct pci_dev *pdev)
 861{
 862        uint32_t ctrl;
 863        struct mtd_info *mtd = pci_get_drvdata(pdev);
 864        struct cafe_priv *cafe = mtd->priv;
 865
 866       /* Start off by resetting the NAND controller completely */
 867        cafe_writel(cafe, 1, NAND_RESET);
 868        cafe_writel(cafe, 0, NAND_RESET);
 869        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 870
 871        /* Restore timing configuration */
 872        cafe_writel(cafe, timing[0], NAND_TIMING1);
 873        cafe_writel(cafe, timing[1], NAND_TIMING2);
 874        cafe_writel(cafe, timing[2], NAND_TIMING3);
 875
 876        /* Disable master reset, enable NAND clock */
 877        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 878        ctrl &= 0xffffeff0;
 879        ctrl |= 0x00007000;
 880        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 881        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 882        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 883        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 884        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 885
 886        /* Set up DMA address */
 887        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 888        if (sizeof(cafe->dmaaddr) > 4)
 889        /* Shift in two parts to shut the compiler up */
 890                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 891        else
 892                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 893
 894        /* Enable NAND IRQ in global IRQ mask register */
 895        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 896        return 0;
 897}
 898
 899static struct pci_driver cafe_nand_pci_driver = {
 900        .name = "CAFÉ NAND",
 901        .id_table = cafe_nand_tbl,
 902        .probe = cafe_nand_probe,
 903        .remove = __devexit_p(cafe_nand_remove),
 904        .resume = cafe_nand_resume,
 905};
 906
 907static int __init cafe_nand_init(void)
 908{
 909        return pci_register_driver(&cafe_nand_pci_driver);
 910}
 911
 912static void __exit cafe_nand_exit(void)
 913{
 914        pci_unregister_driver(&cafe_nand_pci_driver);
 915}
 916module_init(cafe_nand_init);
 917module_exit(cafe_nand_exit);
 918
 919MODULE_LICENSE("GPL");
 920MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
 921MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
 922