linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  drivers/mtd/nand.c
   3 *
   4 *  Overview:
   5 *   This is the generic MTD driver for NAND flash devices. It should be
   6 *   capable of working with almost all NAND chips currently available.
   7 *   Basic support for AG-AND chips is provided.
   8 *
   9 *      Additional technical information is available on
  10 *      http://www.linux-mtd.infradead.org/doc/nand.html
  11 *
  12 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  13 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  14 *
  15 *  Credits:
  16 *      David Woodhouse for adding multichip support
  17 *
  18 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  19 *      rework for 2K page size chips
  20 *
  21 *  TODO:
  22 *      Enable cached programming for 2k page size chips
  23 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  24 *      if we have HW ecc support.
  25 *      The AG-AND chips have nice features for speed improvement,
  26 *      which are not supported yet. Read / program 4 pages in one go.
  27 *      BBT table is not serialized, has to be fixed
  28 *
  29 * This program is free software; you can redistribute it and/or modify
  30 * it under the terms of the GNU General Public License version 2 as
  31 * published by the Free Software Foundation.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/delay.h>
  37#include <linux/errno.h>
  38#include <linux/err.h>
  39#include <linux/sched.h>
  40#include <linux/slab.h>
  41#include <linux/types.h>
  42#include <linux/mtd/mtd.h>
  43#include <linux/mtd/nand.h>
  44#include <linux/mtd/nand_ecc.h>
  45#include <linux/mtd/nand_bch.h>
  46#include <linux/interrupt.h>
  47#include <linux/bitops.h>
  48#include <linux/leds.h>
  49#include <linux/io.h>
  50
  51#ifdef CONFIG_MTD_PARTITIONS
  52#include <linux/mtd/partitions.h>
  53#endif
  54
  55/* Define default oob placement schemes for large and small page devices */
  56static struct nand_ecclayout nand_oob_8 = {
  57        .eccbytes = 3,
  58        .eccpos = {0, 1, 2},
  59        .oobfree = {
  60                {.offset = 3,
  61                 .length = 2},
  62                {.offset = 6,
  63                 .length = 2} }
  64};
  65
  66static struct nand_ecclayout nand_oob_16 = {
  67        .eccbytes = 6,
  68        .eccpos = {0, 1, 2, 3, 6, 7},
  69        .oobfree = {
  70                {.offset = 8,
  71                 . length = 8} }
  72};
  73
  74static struct nand_ecclayout nand_oob_64 = {
  75        .eccbytes = 24,
  76        .eccpos = {
  77                   40, 41, 42, 43, 44, 45, 46, 47,
  78                   48, 49, 50, 51, 52, 53, 54, 55,
  79                   56, 57, 58, 59, 60, 61, 62, 63},
  80        .oobfree = {
  81                {.offset = 2,
  82                 .length = 38} }
  83};
  84
  85static struct nand_ecclayout nand_oob_128 = {
  86        .eccbytes = 48,
  87        .eccpos = {
  88                   80, 81, 82, 83, 84, 85, 86, 87,
  89                   88, 89, 90, 91, 92, 93, 94, 95,
  90                   96, 97, 98, 99, 100, 101, 102, 103,
  91                   104, 105, 106, 107, 108, 109, 110, 111,
  92                   112, 113, 114, 115, 116, 117, 118, 119,
  93                   120, 121, 122, 123, 124, 125, 126, 127},
  94        .oobfree = {
  95                {.offset = 2,
  96                 .length = 78} }
  97};
  98
  99static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
 100                           int new_state);
 101
 102static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
 103                             struct mtd_oob_ops *ops);
 104
 105/*
 106 * For devices which display every fart in the system on a separate LED. Is
 107 * compiled away when LED support is disabled.
 108 */
 109DEFINE_LED_TRIGGER(nand_led_trigger);
 110
 111static int check_offs_len(struct mtd_info *mtd,
 112                                        loff_t ofs, uint64_t len)
 113{
 114        struct nand_chip *chip = mtd->priv;
 115        int ret = 0;
 116
 117        /* Start address must align on block boundary */
 118        if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
 119                DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
 120                ret = -EINVAL;
 121        }
 122
 123        /* Length must align on block boundary */
 124        if (len & ((1 << chip->phys_erase_shift) - 1)) {
 125                DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
 126                                        __func__);
 127                ret = -EINVAL;
 128        }
 129
 130        /* Do not allow past end of device */
 131        if (ofs + len > mtd->size) {
 132                DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
 133                                        __func__);
 134                ret = -EINVAL;
 135        }
 136
 137        return ret;
 138}
 139
 140/**
 141 * nand_release_device - [GENERIC] release chip
 142 * @mtd:        MTD device structure
 143 *
 144 * Deselect, release chip lock and wake up anyone waiting on the device
 145 */
 146static void nand_release_device(struct mtd_info *mtd)
 147{
 148        struct nand_chip *chip = mtd->priv;
 149
 150        /* De-select the NAND device */
 151        chip->select_chip(mtd, -1);
 152
 153        /* Release the controller and the chip */
 154        spin_lock(&chip->controller->lock);
 155        chip->controller->active = NULL;
 156        chip->state = FL_READY;
 157        wake_up(&chip->controller->wq);
 158        spin_unlock(&chip->controller->lock);
 159}
 160
 161/**
 162 * nand_read_byte - [DEFAULT] read one byte from the chip
 163 * @mtd:        MTD device structure
 164 *
 165 * Default read function for 8bit buswith
 166 */
 167static uint8_t nand_read_byte(struct mtd_info *mtd)
 168{
 169        struct nand_chip *chip = mtd->priv;
 170        return readb(chip->IO_ADDR_R);
 171}
 172
 173/**
 174 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
 175 * @mtd:        MTD device structure
 176 *
 177 * Default read function for 16bit buswith with
 178 * endianess conversion
 179 */
 180static uint8_t nand_read_byte16(struct mtd_info *mtd)
 181{
 182        struct nand_chip *chip = mtd->priv;
 183        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 184}
 185
 186/**
 187 * nand_read_word - [DEFAULT] read one word from the chip
 188 * @mtd:        MTD device structure
 189 *
 190 * Default read function for 16bit buswith without
 191 * endianess conversion
 192 */
 193static u16 nand_read_word(struct mtd_info *mtd)
 194{
 195        struct nand_chip *chip = mtd->priv;
 196        return readw(chip->IO_ADDR_R);
 197}
 198
 199/**
 200 * nand_select_chip - [DEFAULT] control CE line
 201 * @mtd:        MTD device structure
 202 * @chipnr:     chipnumber to select, -1 for deselect
 203 *
 204 * Default select function for 1 chip devices.
 205 */
 206static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 207{
 208        struct nand_chip *chip = mtd->priv;
 209
 210        switch (chipnr) {
 211        case -1:
 212                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 213                break;
 214        case 0:
 215                break;
 216
 217        default:
 218                BUG();
 219        }
 220}
 221
 222/**
 223 * nand_write_buf - [DEFAULT] write buffer to chip
 224 * @mtd:        MTD device structure
 225 * @buf:        data buffer
 226 * @len:        number of bytes to write
 227 *
 228 * Default write function for 8bit buswith
 229 */
 230static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 231{
 232        int i;
 233        struct nand_chip *chip = mtd->priv;
 234
 235        for (i = 0; i < len; i++)
 236                writeb(buf[i], chip->IO_ADDR_W);
 237}
 238
 239/**
 240 * nand_read_buf - [DEFAULT] read chip data into buffer
 241 * @mtd:        MTD device structure
 242 * @buf:        buffer to store date
 243 * @len:        number of bytes to read
 244 *
 245 * Default read function for 8bit buswith
 246 */
 247static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 248{
 249        int i;
 250        struct nand_chip *chip = mtd->priv;
 251
 252        for (i = 0; i < len; i++)
 253                buf[i] = readb(chip->IO_ADDR_R);
 254}
 255
 256/**
 257 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
 258 * @mtd:        MTD device structure
 259 * @buf:        buffer containing the data to compare
 260 * @len:        number of bytes to compare
 261 *
 262 * Default verify function for 8bit buswith
 263 */
 264static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 265{
 266        int i;
 267        struct nand_chip *chip = mtd->priv;
 268
 269        for (i = 0; i < len; i++)
 270                if (buf[i] != readb(chip->IO_ADDR_R))
 271                        return -EFAULT;
 272        return 0;
 273}
 274
 275/**
 276 * nand_write_buf16 - [DEFAULT] write buffer to chip
 277 * @mtd:        MTD device structure
 278 * @buf:        data buffer
 279 * @len:        number of bytes to write
 280 *
 281 * Default write function for 16bit buswith
 282 */
 283static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 284{
 285        int i;
 286        struct nand_chip *chip = mtd->priv;
 287        u16 *p = (u16 *) buf;
 288        len >>= 1;
 289
 290        for (i = 0; i < len; i++)
 291                writew(p[i], chip->IO_ADDR_W);
 292
 293}
 294
 295/**
 296 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 297 * @mtd:        MTD device structure
 298 * @buf:        buffer to store date
 299 * @len:        number of bytes to read
 300 *
 301 * Default read function for 16bit buswith
 302 */
 303static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 304{
 305        int i;
 306        struct nand_chip *chip = mtd->priv;
 307        u16 *p = (u16 *) buf;
 308        len >>= 1;
 309
 310        for (i = 0; i < len; i++)
 311                p[i] = readw(chip->IO_ADDR_R);
 312}
 313
 314/**
 315 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
 316 * @mtd:        MTD device structure
 317 * @buf:        buffer containing the data to compare
 318 * @len:        number of bytes to compare
 319 *
 320 * Default verify function for 16bit buswith
 321 */
 322static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 323{
 324        int i;
 325        struct nand_chip *chip = mtd->priv;
 326        u16 *p = (u16 *) buf;
 327        len >>= 1;
 328
 329        for (i = 0; i < len; i++)
 330                if (p[i] != readw(chip->IO_ADDR_R))
 331                        return -EFAULT;
 332
 333        return 0;
 334}
 335
 336/**
 337 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 338 * @mtd:        MTD device structure
 339 * @ofs:        offset from device start
 340 * @getchip:    0, if the chip is already selected
 341 *
 342 * Check, if the block is bad.
 343 */
 344static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 345{
 346        int page, chipnr, res = 0;
 347        struct nand_chip *chip = mtd->priv;
 348        u16 bad;
 349
 350        if (chip->options & NAND_BBT_SCANLASTPAGE)
 351                ofs += mtd->erasesize - mtd->writesize;
 352
 353        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 354
 355        if (getchip) {
 356                chipnr = (int)(ofs >> chip->chip_shift);
 357
 358                nand_get_device(chip, mtd, FL_READING);
 359
 360                /* Select the NAND device */
 361                chip->select_chip(mtd, chipnr);
 362        }
 363
 364        if (chip->options & NAND_BUSWIDTH_16) {
 365                chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
 366                              page);
 367                bad = cpu_to_le16(chip->read_word(mtd));
 368                if (chip->badblockpos & 0x1)
 369                        bad >>= 8;
 370                else
 371                        bad &= 0xFF;
 372        } else {
 373                chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
 374                bad = chip->read_byte(mtd);
 375        }
 376
 377        if (likely(chip->badblockbits == 8))
 378                res = bad != 0xFF;
 379        else
 380                res = hweight8(bad) < chip->badblockbits;
 381
 382        if (getchip)
 383                nand_release_device(mtd);
 384
 385        return res;
 386}
 387
 388/**
 389 * nand_default_block_markbad - [DEFAULT] mark a block bad
 390 * @mtd:        MTD device structure
 391 * @ofs:        offset from device start
 392 *
 393 * This is the default implementation, which can be overridden by
 394 * a hardware specific driver.
 395*/
 396static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 397{
 398        struct nand_chip *chip = mtd->priv;
 399        uint8_t buf[2] = { 0, 0 };
 400        int block, ret, i = 0;
 401
 402        if (chip->options & NAND_BBT_SCANLASTPAGE)
 403                ofs += mtd->erasesize - mtd->writesize;
 404
 405        /* Get block number */
 406        block = (int)(ofs >> chip->bbt_erase_shift);
 407        if (chip->bbt)
 408                chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 409
 410        /* Do we have a flash based bad block table ? */
 411        if (chip->options & NAND_USE_FLASH_BBT)
 412                ret = nand_update_bbt(mtd, ofs);
 413        else {
 414                nand_get_device(chip, mtd, FL_WRITING);
 415
 416                /* Write to first two pages and to byte 1 and 6 if necessary.
 417                 * If we write to more than one location, the first error
 418                 * encountered quits the procedure. We write two bytes per
 419                 * location, so we dont have to mess with 16 bit access.
 420                 */
 421                do {
 422                        chip->ops.len = chip->ops.ooblen = 2;
 423                        chip->ops.datbuf = NULL;
 424                        chip->ops.oobbuf = buf;
 425                        chip->ops.ooboffs = chip->badblockpos & ~0x01;
 426
 427                        ret = nand_do_write_oob(mtd, ofs, &chip->ops);
 428
 429                        if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
 430                                chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
 431                                        & ~0x01;
 432                                ret = nand_do_write_oob(mtd, ofs, &chip->ops);
 433                        }
 434                        i++;
 435                        ofs += mtd->writesize;
 436                } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
 437                                i < 2);
 438
 439                nand_release_device(mtd);
 440        }
 441        if (!ret)
 442                mtd->ecc_stats.badblocks++;
 443
 444        return ret;
 445}
 446
 447/**
 448 * nand_check_wp - [GENERIC] check if the chip is write protected
 449 * @mtd:        MTD device structure
 450 * Check, if the device is write protected
 451 *
 452 * The function expects, that the device is already selected
 453 */
 454static int nand_check_wp(struct mtd_info *mtd)
 455{
 456        struct nand_chip *chip = mtd->priv;
 457
 458        /* broken xD cards report WP despite being writable */
 459        if (chip->options & NAND_BROKEN_XD)
 460                return 0;
 461
 462        /* Check the WP bit */
 463        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 464        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 465}
 466
 467/**
 468 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 469 * @mtd:        MTD device structure
 470 * @ofs:        offset from device start
 471 * @getchip:    0, if the chip is already selected
 472 * @allowbbt:   1, if its allowed to access the bbt area
 473 *
 474 * Check, if the block is bad. Either by reading the bad block table or
 475 * calling of the scan function.
 476 */
 477static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 478                               int allowbbt)
 479{
 480        struct nand_chip *chip = mtd->priv;
 481
 482        if (!chip->bbt)
 483                return chip->block_bad(mtd, ofs, getchip);
 484
 485        /* Return info from the table */
 486        return nand_isbad_bbt(mtd, ofs, allowbbt);
 487}
 488
 489/**
 490 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 491 * @mtd:        MTD device structure
 492 * @timeo:      Timeout
 493 *
 494 * Helper function for nand_wait_ready used when needing to wait in interrupt
 495 * context.
 496 */
 497static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 498{
 499        struct nand_chip *chip = mtd->priv;
 500        int i;
 501
 502        /* Wait for the device to get ready */
 503        for (i = 0; i < timeo; i++) {
 504                if (chip->dev_ready(mtd))
 505                        break;
 506                touch_softlockup_watchdog();
 507                mdelay(1);
 508        }
 509}
 510
 511/*
 512 * Wait for the ready pin, after a command
 513 * The timeout is catched later.
 514 */
 515void nand_wait_ready(struct mtd_info *mtd)
 516{
 517        struct nand_chip *chip = mtd->priv;
 518        unsigned long timeo = jiffies + 2;
 519
 520        /* 400ms timeout */
 521        if (in_interrupt() || oops_in_progress)
 522                return panic_nand_wait_ready(mtd, 400);
 523
 524        led_trigger_event(nand_led_trigger, LED_FULL);
 525        /* wait until command is processed or timeout occures */
 526        do {
 527                if (chip->dev_ready(mtd))
 528                        break;
 529                touch_softlockup_watchdog();
 530        } while (time_before(jiffies, timeo));
 531        led_trigger_event(nand_led_trigger, LED_OFF);
 532}
 533EXPORT_SYMBOL_GPL(nand_wait_ready);
 534
 535/**
 536 * nand_command - [DEFAULT] Send command to NAND device
 537 * @mtd:        MTD device structure
 538 * @command:    the command to be sent
 539 * @column:     the column address for this command, -1 if none
 540 * @page_addr:  the page address for this command, -1 if none
 541 *
 542 * Send command to NAND device. This function is used for small page
 543 * devices (256/512 Bytes per page)
 544 */
 545static void nand_command(struct mtd_info *mtd, unsigned int command,
 546                         int column, int page_addr)
 547{
 548        register struct nand_chip *chip = mtd->priv;
 549        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 550
 551        /*
 552         * Write out the command to the device.
 553         */
 554        if (command == NAND_CMD_SEQIN) {
 555                int readcmd;
 556
 557                if (column >= mtd->writesize) {
 558                        /* OOB area */
 559                        column -= mtd->writesize;
 560                        readcmd = NAND_CMD_READOOB;
 561                } else if (column < 256) {
 562                        /* First 256 bytes --> READ0 */
 563                        readcmd = NAND_CMD_READ0;
 564                } else {
 565                        column -= 256;
 566                        readcmd = NAND_CMD_READ1;
 567                }
 568                chip->cmd_ctrl(mtd, readcmd, ctrl);
 569                ctrl &= ~NAND_CTRL_CHANGE;
 570        }
 571        chip->cmd_ctrl(mtd, command, ctrl);
 572
 573        /*
 574         * Address cycle, when necessary
 575         */
 576        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 577        /* Serially input address */
 578        if (column != -1) {
 579                /* Adjust columns for 16 bit buswidth */
 580                if (chip->options & NAND_BUSWIDTH_16)
 581                        column >>= 1;
 582                chip->cmd_ctrl(mtd, column, ctrl);
 583                ctrl &= ~NAND_CTRL_CHANGE;
 584        }
 585        if (page_addr != -1) {
 586                chip->cmd_ctrl(mtd, page_addr, ctrl);
 587                ctrl &= ~NAND_CTRL_CHANGE;
 588                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 589                /* One more address cycle for devices > 32MiB */
 590                if (chip->chipsize > (32 << 20))
 591                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 592        }
 593        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 594
 595        /*
 596         * program and erase have their own busy handlers
 597         * status and sequential in needs no delay
 598         */
 599        switch (command) {
 600
 601        case NAND_CMD_PAGEPROG:
 602        case NAND_CMD_ERASE1:
 603        case NAND_CMD_ERASE2:
 604        case NAND_CMD_SEQIN:
 605        case NAND_CMD_STATUS:
 606                return;
 607
 608        case NAND_CMD_RESET:
 609                if (chip->dev_ready)
 610                        break;
 611                udelay(chip->chip_delay);
 612                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 613                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 614                chip->cmd_ctrl(mtd,
 615                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 616                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 617                                ;
 618                return;
 619
 620                /* This applies to read commands */
 621        default:
 622                /*
 623                 * If we don't have access to the busy pin, we apply the given
 624                 * command delay
 625                 */
 626                if (!chip->dev_ready) {
 627                        udelay(chip->chip_delay);
 628                        return;
 629                }
 630        }
 631        /* Apply this short delay always to ensure that we do wait tWB in
 632         * any case on any machine. */
 633        ndelay(100);
 634
 635        nand_wait_ready(mtd);
 636}
 637
 638/**
 639 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 640 * @mtd:        MTD device structure
 641 * @command:    the command to be sent
 642 * @column:     the column address for this command, -1 if none
 643 * @page_addr:  the page address for this command, -1 if none
 644 *
 645 * Send command to NAND device. This is the version for the new large page
 646 * devices We dont have the separate regions as we have in the small page
 647 * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
 648 */
 649static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 650                            int column, int page_addr)
 651{
 652        register struct nand_chip *chip = mtd->priv;
 653
 654        /* Emulate NAND_CMD_READOOB */
 655        if (command == NAND_CMD_READOOB) {
 656                column += mtd->writesize;
 657                command = NAND_CMD_READ0;
 658        }
 659
 660        /* Command latch cycle */
 661        chip->cmd_ctrl(mtd, command & 0xff,
 662                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 663
 664        if (column != -1 || page_addr != -1) {
 665                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 666
 667                /* Serially input address */
 668                if (column != -1) {
 669                        /* Adjust columns for 16 bit buswidth */
 670                        if (chip->options & NAND_BUSWIDTH_16)
 671                                column >>= 1;
 672                        chip->cmd_ctrl(mtd, column, ctrl);
 673                        ctrl &= ~NAND_CTRL_CHANGE;
 674                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 675                }
 676                if (page_addr != -1) {
 677                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 678                        chip->cmd_ctrl(mtd, page_addr >> 8,
 679                                       NAND_NCE | NAND_ALE);
 680                        /* One more address cycle for devices > 128MiB */
 681                        if (chip->chipsize > (128 << 20))
 682                                chip->cmd_ctrl(mtd, page_addr >> 16,
 683                                               NAND_NCE | NAND_ALE);
 684                }
 685        }
 686        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 687
 688        /*
 689         * program and erase have their own busy handlers
 690         * status, sequential in, and deplete1 need no delay
 691         */
 692        switch (command) {
 693
 694        case NAND_CMD_CACHEDPROG:
 695        case NAND_CMD_PAGEPROG:
 696        case NAND_CMD_ERASE1:
 697        case NAND_CMD_ERASE2:
 698        case NAND_CMD_SEQIN:
 699        case NAND_CMD_RNDIN:
 700        case NAND_CMD_STATUS:
 701        case NAND_CMD_DEPLETE1:
 702                return;
 703
 704                /*
 705                 * read error status commands require only a short delay
 706                 */
 707        case NAND_CMD_STATUS_ERROR:
 708        case NAND_CMD_STATUS_ERROR0:
 709        case NAND_CMD_STATUS_ERROR1:
 710        case NAND_CMD_STATUS_ERROR2:
 711        case NAND_CMD_STATUS_ERROR3:
 712                udelay(chip->chip_delay);
 713                return;
 714
 715        case NAND_CMD_RESET:
 716                if (chip->dev_ready)
 717                        break;
 718                udelay(chip->chip_delay);
 719                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 720                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 721                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 722                               NAND_NCE | NAND_CTRL_CHANGE);
 723                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 724                                ;
 725                return;
 726
 727        case NAND_CMD_RNDOUT:
 728                /* No ready / busy check necessary */
 729                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 730                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 731                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 732                               NAND_NCE | NAND_CTRL_CHANGE);
 733                return;
 734
 735        case NAND_CMD_READ0:
 736                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 737                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 738                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 739                               NAND_NCE | NAND_CTRL_CHANGE);
 740
 741                /* This applies to read commands */
 742        default:
 743                /*
 744                 * If we don't have access to the busy pin, we apply the given
 745                 * command delay
 746                 */
 747                if (!chip->dev_ready) {
 748                        udelay(chip->chip_delay);
 749                        return;
 750                }
 751        }
 752
 753        /* Apply this short delay always to ensure that we do wait tWB in
 754         * any case on any machine. */
 755        ndelay(100);
 756
 757        nand_wait_ready(mtd);
 758}
 759
 760/**
 761 * panic_nand_get_device - [GENERIC] Get chip for selected access
 762 * @chip:       the nand chip descriptor
 763 * @mtd:        MTD device structure
 764 * @new_state:  the state which is requested
 765 *
 766 * Used when in panic, no locks are taken.
 767 */
 768static void panic_nand_get_device(struct nand_chip *chip,
 769                      struct mtd_info *mtd, int new_state)
 770{
 771        /* Hardware controller shared among independend devices */
 772        chip->controller->active = chip;
 773        chip->state = new_state;
 774}
 775
 776/**
 777 * nand_get_device - [GENERIC] Get chip for selected access
 778 * @chip:       the nand chip descriptor
 779 * @mtd:        MTD device structure
 780 * @new_state:  the state which is requested
 781 *
 782 * Get the device and lock it for exclusive access
 783 */
 784static int
 785nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
 786{
 787        spinlock_t *lock = &chip->controller->lock;
 788        wait_queue_head_t *wq = &chip->controller->wq;
 789        DECLARE_WAITQUEUE(wait, current);
 790retry:
 791        spin_lock(lock);
 792
 793        /* Hardware controller shared among independent devices */
 794        if (!chip->controller->active)
 795                chip->controller->active = chip;
 796
 797        if (chip->controller->active == chip && chip->state == FL_READY) {
 798                chip->state = new_state;
 799                spin_unlock(lock);
 800                return 0;
 801        }
 802        if (new_state == FL_PM_SUSPENDED) {
 803                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 804                        chip->state = FL_PM_SUSPENDED;
 805                        spin_unlock(lock);
 806                        return 0;
 807                }
 808        }
 809        set_current_state(TASK_UNINTERRUPTIBLE);
 810        add_wait_queue(wq, &wait);
 811        spin_unlock(lock);
 812        schedule();
 813        remove_wait_queue(wq, &wait);
 814        goto retry;
 815}
 816
 817/**
 818 * panic_nand_wait - [GENERIC]  wait until the command is done
 819 * @mtd:        MTD device structure
 820 * @chip:       NAND chip structure
 821 * @timeo:      Timeout
 822 *
 823 * Wait for command done. This is a helper function for nand_wait used when
 824 * we are in interrupt context. May happen when in panic and trying to write
 825 * an oops through mtdoops.
 826 */
 827static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 828                            unsigned long timeo)
 829{
 830        int i;
 831        for (i = 0; i < timeo; i++) {
 832                if (chip->dev_ready) {
 833                        if (chip->dev_ready(mtd))
 834                                break;
 835                } else {
 836                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 837                                break;
 838                }
 839                mdelay(1);
 840        }
 841}
 842
 843/**
 844 * nand_wait - [DEFAULT]  wait until the command is done
 845 * @mtd:        MTD device structure
 846 * @chip:       NAND chip structure
 847 *
 848 * Wait for command done. This applies to erase and program only
 849 * Erase can take up to 400ms and program up to 20ms according to
 850 * general NAND and SmartMedia specs
 851 */
 852static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 853{
 854
 855        unsigned long timeo = jiffies;
 856        int status, state = chip->state;
 857
 858        if (state == FL_ERASING)
 859                timeo += (HZ * 400) / 1000;
 860        else
 861                timeo += (HZ * 20) / 1000;
 862
 863        led_trigger_event(nand_led_trigger, LED_FULL);
 864
 865        /* Apply this short delay always to ensure that we do wait tWB in
 866         * any case on any machine. */
 867        ndelay(100);
 868
 869        if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
 870                chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
 871        else
 872                chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 873
 874        if (in_interrupt() || oops_in_progress)
 875                panic_nand_wait(mtd, chip, timeo);
 876        else {
 877                while (time_before(jiffies, timeo)) {
 878                        if (chip->dev_ready) {
 879                                if (chip->dev_ready(mtd))
 880                                        break;
 881                        } else {
 882                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
 883                                        break;
 884                        }
 885                        cond_resched();
 886                }
 887        }
 888        led_trigger_event(nand_led_trigger, LED_OFF);
 889
 890        status = (int)chip->read_byte(mtd);
 891        return status;
 892}
 893
 894/**
 895 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 896 *
 897 * @mtd: mtd info
 898 * @ofs: offset to start unlock from
 899 * @len: length to unlock
 900 * @invert:   when = 0, unlock the range of blocks within the lower and
 901 *                      upper boundary address
 902 *            when = 1, unlock the range of blocks outside the boundaries
 903 *                      of the lower and upper boundary address
 904 *
 905 * return - unlock status
 906 */
 907static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 908                                        uint64_t len, int invert)
 909{
 910        int ret = 0;
 911        int status, page;
 912        struct nand_chip *chip = mtd->priv;
 913
 914        /* Submit address of first page to unlock */
 915        page = ofs >> chip->page_shift;
 916        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 917
 918        /* Submit address of last page to unlock */
 919        page = (ofs + len) >> chip->page_shift;
 920        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 921                                (page | invert) & chip->pagemask);
 922
 923        /* Call wait ready function */
 924        status = chip->waitfunc(mtd, chip);
 925        udelay(1000);
 926        /* See if device thinks it succeeded */
 927        if (status & 0x01) {
 928                DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
 929                                        __func__, status);
 930                ret = -EIO;
 931        }
 932
 933        return ret;
 934}
 935
 936/**
 937 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 938 *
 939 * @mtd: mtd info
 940 * @ofs: offset to start unlock from
 941 * @len: length to unlock
 942 *
 943 * return - unlock status
 944 */
 945int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 946{
 947        int ret = 0;
 948        int chipnr;
 949        struct nand_chip *chip = mtd->priv;
 950
 951        DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
 952                        __func__, (unsigned long long)ofs, len);
 953
 954        if (check_offs_len(mtd, ofs, len))
 955                ret = -EINVAL;
 956
 957        /* Align to last block address if size addresses end of the device */
 958        if (ofs + len == mtd->size)
 959                len -= mtd->erasesize;
 960
 961        nand_get_device(chip, mtd, FL_UNLOCKING);
 962
 963        /* Shift to get chip number */
 964        chipnr = ofs >> chip->chip_shift;
 965
 966        chip->select_chip(mtd, chipnr);
 967
 968        /* Check, if it is write protected */
 969        if (nand_check_wp(mtd)) {
 970                DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
 971                                        __func__);
 972                ret = -EIO;
 973                goto out;
 974        }
 975
 976        ret = __nand_unlock(mtd, ofs, len, 0);
 977
 978out:
 979        /* de-select the NAND device */
 980        chip->select_chip(mtd, -1);
 981
 982        nand_release_device(mtd);
 983
 984        return ret;
 985}
 986EXPORT_SYMBOL(nand_unlock);
 987
 988/**
 989 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 990 *
 991 * @mtd: mtd info
 992 * @ofs: offset to start unlock from
 993 * @len: length to unlock
 994 *
 995 * return - lock status
 996 *
 997 * This feature is not supported in many NAND parts. 'Micron' NAND parts
 998 * do have this feature, but it allows only to lock all blocks, not for
 999 * specified range for block.
1000 *
1001 * Implementing 'lock' feature by making use of 'unlock', for now.
1002 */
1003int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1004{
1005        int ret = 0;
1006        int chipnr, status, page;
1007        struct nand_chip *chip = mtd->priv;
1008
1009        DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1010                        __func__, (unsigned long long)ofs, len);
1011
1012        if (check_offs_len(mtd, ofs, len))
1013                ret = -EINVAL;
1014
1015        nand_get_device(chip, mtd, FL_LOCKING);
1016
1017        /* Shift to get chip number */
1018        chipnr = ofs >> chip->chip_shift;
1019
1020        chip->select_chip(mtd, chipnr);
1021
1022        /* Check, if it is write protected */
1023        if (nand_check_wp(mtd)) {
1024                DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1025                                        __func__);
1026                status = MTD_ERASE_FAILED;
1027                ret = -EIO;
1028                goto out;
1029        }
1030
1031        /* Submit address of first page to lock */
1032        page = ofs >> chip->page_shift;
1033        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1034
1035        /* Call wait ready function */
1036        status = chip->waitfunc(mtd, chip);
1037        udelay(1000);
1038        /* See if device thinks it succeeded */
1039        if (status & 0x01) {
1040                DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1041                                        __func__, status);
1042                ret = -EIO;
1043                goto out;
1044        }
1045
1046        ret = __nand_unlock(mtd, ofs, len, 0x1);
1047
1048out:
1049        /* de-select the NAND device */
1050        chip->select_chip(mtd, -1);
1051
1052        nand_release_device(mtd);
1053
1054        return ret;
1055}
1056EXPORT_SYMBOL(nand_lock);
1057
1058/**
1059 * nand_read_page_raw - [Intern] read raw page data without ecc
1060 * @mtd:        mtd info structure
1061 * @chip:       nand chip info structure
1062 * @buf:        buffer to store read data
1063 * @page:       page number to read
1064 *
1065 * Not for syndrome calculating ecc controllers, which use a special oob layout
1066 */
1067static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1068                              uint8_t *buf, int page)
1069{
1070        chip->read_buf(mtd, buf, mtd->writesize);
1071        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1072        return 0;
1073}
1074
1075/**
1076 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1077 * @mtd:        mtd info structure
1078 * @chip:       nand chip info structure
1079 * @buf:        buffer to store read data
1080 * @page:       page number to read
1081 *
1082 * We need a special oob layout and handling even when OOB isn't used.
1083 */
1084static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1085                                        struct nand_chip *chip,
1086                                        uint8_t *buf, int page)
1087{
1088        int eccsize = chip->ecc.size;
1089        int eccbytes = chip->ecc.bytes;
1090        uint8_t *oob = chip->oob_poi;
1091        int steps, size;
1092
1093        for (steps = chip->ecc.steps; steps > 0; steps--) {
1094                chip->read_buf(mtd, buf, eccsize);
1095                buf += eccsize;
1096
1097                if (chip->ecc.prepad) {
1098                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1099                        oob += chip->ecc.prepad;
1100                }
1101
1102                chip->read_buf(mtd, oob, eccbytes);
1103                oob += eccbytes;
1104
1105                if (chip->ecc.postpad) {
1106                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1107                        oob += chip->ecc.postpad;
1108                }
1109        }
1110
1111        size = mtd->oobsize - (oob - chip->oob_poi);
1112        if (size)
1113                chip->read_buf(mtd, oob, size);
1114
1115        return 0;
1116}
1117
1118/**
1119 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1120 * @mtd:        mtd info structure
1121 * @chip:       nand chip info structure
1122 * @buf:        buffer to store read data
1123 * @page:       page number to read
1124 */
1125static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1126                                uint8_t *buf, int page)
1127{
1128        int i, eccsize = chip->ecc.size;
1129        int eccbytes = chip->ecc.bytes;
1130        int eccsteps = chip->ecc.steps;
1131        uint8_t *p = buf;
1132        uint8_t *ecc_calc = chip->buffers->ecccalc;
1133        uint8_t *ecc_code = chip->buffers->ecccode;
1134        uint32_t *eccpos = chip->ecc.layout->eccpos;
1135
1136        chip->ecc.read_page_raw(mtd, chip, buf, page);
1137
1138        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1139                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1140
1141        for (i = 0; i < chip->ecc.total; i++)
1142                ecc_code[i] = chip->oob_poi[eccpos[i]];
1143
1144        eccsteps = chip->ecc.steps;
1145        p = buf;
1146
1147        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1148                int stat;
1149
1150                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1151                if (stat < 0)
1152                        mtd->ecc_stats.failed++;
1153                else
1154                        mtd->ecc_stats.corrected += stat;
1155        }
1156        return 0;
1157}
1158
1159/**
1160 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1161 * @mtd:        mtd info structure
1162 * @chip:       nand chip info structure
1163 * @data_offs:  offset of requested data within the page
1164 * @readlen:    data length
1165 * @bufpoi:     buffer to store read data
1166 */
1167static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1168                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1169{
1170        int start_step, end_step, num_steps;
1171        uint32_t *eccpos = chip->ecc.layout->eccpos;
1172        uint8_t *p;
1173        int data_col_addr, i, gaps = 0;
1174        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1175        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1176        int index = 0;
1177
1178        /* Column address wihin the page aligned to ECC size (256bytes). */
1179        start_step = data_offs / chip->ecc.size;
1180        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1181        num_steps = end_step - start_step + 1;
1182
1183        /* Data size aligned to ECC ecc.size*/
1184        datafrag_len = num_steps * chip->ecc.size;
1185        eccfrag_len = num_steps * chip->ecc.bytes;
1186
1187        data_col_addr = start_step * chip->ecc.size;
1188        /* If we read not a page aligned data */
1189        if (data_col_addr != 0)
1190                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1191
1192        p = bufpoi + data_col_addr;
1193        chip->read_buf(mtd, p, datafrag_len);
1194
1195        /* Calculate  ECC */
1196        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1197                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1198
1199        /* The performance is faster if to position offsets
1200           according to ecc.pos. Let make sure here that
1201           there are no gaps in ecc positions */
1202        for (i = 0; i < eccfrag_len - 1; i++) {
1203                if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1204                        eccpos[i + start_step * chip->ecc.bytes + 1]) {
1205                        gaps = 1;
1206                        break;
1207                }
1208        }
1209        if (gaps) {
1210                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1211                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1212        } else {
1213                /* send the command to read the particular ecc bytes */
1214                /* take care about buswidth alignment in read_buf */
1215                index = start_step * chip->ecc.bytes;
1216
1217                aligned_pos = eccpos[index] & ~(busw - 1);
1218                aligned_len = eccfrag_len;
1219                if (eccpos[index] & (busw - 1))
1220                        aligned_len++;
1221                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1222                        aligned_len++;
1223
1224                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1225                                        mtd->writesize + aligned_pos, -1);
1226                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1227        }
1228
1229        for (i = 0; i < eccfrag_len; i++)
1230                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1231
1232        p = bufpoi + data_col_addr;
1233        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1234                int stat;
1235
1236                stat = chip->ecc.correct(mtd, p,
1237                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1238                if (stat < 0)
1239                        mtd->ecc_stats.failed++;
1240                else
1241                        mtd->ecc_stats.corrected += stat;
1242        }
1243        return 0;
1244}
1245
1246/**
1247 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1248 * @mtd:        mtd info structure
1249 * @chip:       nand chip info structure
1250 * @buf:        buffer to store read data
1251 * @page:       page number to read
1252 *
1253 * Not for syndrome calculating ecc controllers which need a special oob layout
1254 */
1255static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1256                                uint8_t *buf, int page)
1257{
1258        int i, eccsize = chip->ecc.size;
1259        int eccbytes = chip->ecc.bytes;
1260        int eccsteps = chip->ecc.steps;
1261        uint8_t *p = buf;
1262        uint8_t *ecc_calc = chip->buffers->ecccalc;
1263        uint8_t *ecc_code = chip->buffers->ecccode;
1264        uint32_t *eccpos = chip->ecc.layout->eccpos;
1265
1266        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1267                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1268                chip->read_buf(mtd, p, eccsize);
1269                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1270        }
1271        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1272
1273        for (i = 0; i < chip->ecc.total; i++)
1274                ecc_code[i] = chip->oob_poi[eccpos[i]];
1275
1276        eccsteps = chip->ecc.steps;
1277        p = buf;
1278
1279        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1280                int stat;
1281
1282                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1283                if (stat < 0)
1284                        mtd->ecc_stats.failed++;
1285                else
1286                        mtd->ecc_stats.corrected += stat;
1287        }
1288        return 0;
1289}
1290
1291/**
1292 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1293 * @mtd:        mtd info structure
1294 * @chip:       nand chip info structure
1295 * @buf:        buffer to store read data
1296 * @page:       page number to read
1297 *
1298 * Hardware ECC for large page chips, require OOB to be read first.
1299 * For this ECC mode, the write_page method is re-used from ECC_HW.
1300 * These methods read/write ECC from the OOB area, unlike the
1301 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1302 * "infix ECC" scheme and reads/writes ECC from the data area, by
1303 * overwriting the NAND manufacturer bad block markings.
1304 */
1305static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1306        struct nand_chip *chip, uint8_t *buf, int page)
1307{
1308        int i, eccsize = chip->ecc.size;
1309        int eccbytes = chip->ecc.bytes;
1310        int eccsteps = chip->ecc.steps;
1311        uint8_t *p = buf;
1312        uint8_t *ecc_code = chip->buffers->ecccode;
1313        uint32_t *eccpos = chip->ecc.layout->eccpos;
1314        uint8_t *ecc_calc = chip->buffers->ecccalc;
1315
1316        /* Read the OOB area first */
1317        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1318        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1319        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1320
1321        for (i = 0; i < chip->ecc.total; i++)
1322                ecc_code[i] = chip->oob_poi[eccpos[i]];
1323
1324        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1325                int stat;
1326
1327                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1328                chip->read_buf(mtd, p, eccsize);
1329                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1330
1331                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1332                if (stat < 0)
1333                        mtd->ecc_stats.failed++;
1334                else
1335                        mtd->ecc_stats.corrected += stat;
1336        }
1337        return 0;
1338}
1339
1340/**
1341 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1342 * @mtd:        mtd info structure
1343 * @chip:       nand chip info structure
1344 * @buf:        buffer to store read data
1345 * @page:       page number to read
1346 *
1347 * The hw generator calculates the error syndrome automatically. Therefor
1348 * we need a special oob layout and handling.
1349 */
1350static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1351                                   uint8_t *buf, int page)
1352{
1353        int i, eccsize = chip->ecc.size;
1354        int eccbytes = chip->ecc.bytes;
1355        int eccsteps = chip->ecc.steps;
1356        uint8_t *p = buf;
1357        uint8_t *oob = chip->oob_poi;
1358
1359        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1360                int stat;
1361
1362                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1363                chip->read_buf(mtd, p, eccsize);
1364
1365                if (chip->ecc.prepad) {
1366                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1367                        oob += chip->ecc.prepad;
1368                }
1369
1370                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1371                chip->read_buf(mtd, oob, eccbytes);
1372                stat = chip->ecc.correct(mtd, p, oob, NULL);
1373
1374                if (stat < 0)
1375                        mtd->ecc_stats.failed++;
1376                else
1377                        mtd->ecc_stats.corrected += stat;
1378
1379                oob += eccbytes;
1380
1381                if (chip->ecc.postpad) {
1382                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1383                        oob += chip->ecc.postpad;
1384                }
1385        }
1386
1387        /* Calculate remaining oob bytes */
1388        i = mtd->oobsize - (oob - chip->oob_poi);
1389        if (i)
1390                chip->read_buf(mtd, oob, i);
1391
1392        return 0;
1393}
1394
1395/**
1396 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1397 * @chip:       nand chip structure
1398 * @oob:        oob destination address
1399 * @ops:        oob ops structure
1400 * @len:        size of oob to transfer
1401 */
1402static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1403                                  struct mtd_oob_ops *ops, size_t len)
1404{
1405        switch (ops->mode) {
1406
1407        case MTD_OOB_PLACE:
1408        case MTD_OOB_RAW:
1409                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1410                return oob + len;
1411
1412        case MTD_OOB_AUTO: {
1413                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1414                uint32_t boffs = 0, roffs = ops->ooboffs;
1415                size_t bytes = 0;
1416
1417                for (; free->length && len; free++, len -= bytes) {
1418                        /* Read request not from offset 0 ? */
1419                        if (unlikely(roffs)) {
1420                                if (roffs >= free->length) {
1421                                        roffs -= free->length;
1422                                        continue;
1423                                }
1424                                boffs = free->offset + roffs;
1425                                bytes = min_t(size_t, len,
1426                                              (free->length - roffs));
1427                                roffs = 0;
1428                        } else {
1429                                bytes = min_t(size_t, len, free->length);
1430                                boffs = free->offset;
1431                        }
1432                        memcpy(oob, chip->oob_poi + boffs, bytes);
1433                        oob += bytes;
1434                }
1435                return oob;
1436        }
1437        default:
1438                BUG();
1439        }
1440        return NULL;
1441}
1442
1443/**
1444 * nand_do_read_ops - [Internal] Read data with ECC
1445 *
1446 * @mtd:        MTD device structure
1447 * @from:       offset to read from
1448 * @ops:        oob ops structure
1449 *
1450 * Internal function. Called with chip held.
1451 */
1452static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1453                            struct mtd_oob_ops *ops)
1454{
1455        int chipnr, page, realpage, col, bytes, aligned;
1456        struct nand_chip *chip = mtd->priv;
1457        struct mtd_ecc_stats stats;
1458        int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1459        int sndcmd = 1;
1460        int ret = 0;
1461        uint32_t readlen = ops->len;
1462        uint32_t oobreadlen = ops->ooblen;
1463        uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1464                mtd->oobavail : mtd->oobsize;
1465
1466        uint8_t *bufpoi, *oob, *buf;
1467
1468        stats = mtd->ecc_stats;
1469
1470        chipnr = (int)(from >> chip->chip_shift);
1471        chip->select_chip(mtd, chipnr);
1472
1473        realpage = (int)(from >> chip->page_shift);
1474        page = realpage & chip->pagemask;
1475
1476        col = (int)(from & (mtd->writesize - 1));
1477
1478        buf = ops->datbuf;
1479        oob = ops->oobbuf;
1480
1481        while (1) {
1482                bytes = min(mtd->writesize - col, readlen);
1483                aligned = (bytes == mtd->writesize);
1484
1485                /* Is the current page in the buffer ? */
1486                if (realpage != chip->pagebuf || oob) {
1487                        bufpoi = aligned ? buf : chip->buffers->databuf;
1488
1489                        if (likely(sndcmd)) {
1490                                chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1491                                sndcmd = 0;
1492                        }
1493
1494                        /* Now read the page into the buffer */
1495                        if (unlikely(ops->mode == MTD_OOB_RAW))
1496                                ret = chip->ecc.read_page_raw(mtd, chip,
1497                                                              bufpoi, page);
1498                        else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1499                                ret = chip->ecc.read_subpage(mtd, chip,
1500                                                        col, bytes, bufpoi);
1501                        else
1502                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1503                                                          page);
1504                        if (ret < 0)
1505                                break;
1506
1507                        /* Transfer not aligned data */
1508                        if (!aligned) {
1509                                if (!NAND_SUBPAGE_READ(chip) && !oob &&
1510                                    !(mtd->ecc_stats.failed - stats.failed))
1511                                        chip->pagebuf = realpage;
1512                                memcpy(buf, chip->buffers->databuf + col, bytes);
1513                        }
1514
1515                        buf += bytes;
1516
1517                        if (unlikely(oob)) {
1518
1519                                int toread = min(oobreadlen, max_oobsize);
1520
1521                                if (toread) {
1522                                        oob = nand_transfer_oob(chip,
1523                                                oob, ops, toread);
1524                                        oobreadlen -= toread;
1525                                }
1526                        }
1527
1528                        if (!(chip->options & NAND_NO_READRDY)) {
1529                                /*
1530                                 * Apply delay or wait for ready/busy pin. Do
1531                                 * this before the AUTOINCR check, so no
1532                                 * problems arise if a chip which does auto
1533                                 * increment is marked as NOAUTOINCR by the
1534                                 * board driver.
1535                                 */
1536                                if (!chip->dev_ready)
1537                                        udelay(chip->chip_delay);
1538                                else
1539                                        nand_wait_ready(mtd);
1540                        }
1541                } else {
1542                        memcpy(buf, chip->buffers->databuf + col, bytes);
1543                        buf += bytes;
1544                }
1545
1546                readlen -= bytes;
1547
1548                if (!readlen)
1549                        break;
1550
1551                /* For subsequent reads align to page boundary. */
1552                col = 0;
1553                /* Increment page address */
1554                realpage++;
1555
1556                page = realpage & chip->pagemask;
1557                /* Check, if we cross a chip boundary */
1558                if (!page) {
1559                        chipnr++;
1560                        chip->select_chip(mtd, -1);
1561                        chip->select_chip(mtd, chipnr);
1562                }
1563
1564                /* Check, if the chip supports auto page increment
1565                 * or if we have hit a block boundary.
1566                 */
1567                if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1568                        sndcmd = 1;
1569        }
1570
1571        ops->retlen = ops->len - (size_t) readlen;
1572        if (oob)
1573                ops->oobretlen = ops->ooblen - oobreadlen;
1574
1575        if (ret)
1576                return ret;
1577
1578        if (mtd->ecc_stats.failed - stats.failed)
1579                return -EBADMSG;
1580
1581        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1582}
1583
1584/**
1585 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1586 * @mtd:        MTD device structure
1587 * @from:       offset to read from
1588 * @len:        number of bytes to read
1589 * @retlen:     pointer to variable to store the number of read bytes
1590 * @buf:        the databuffer to put data
1591 *
1592 * Get hold of the chip and call nand_do_read
1593 */
1594static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1595                     size_t *retlen, uint8_t *buf)
1596{
1597        struct nand_chip *chip = mtd->priv;
1598        int ret;
1599
1600        /* Do not allow reads past end of device */
1601        if ((from + len) > mtd->size)
1602                return -EINVAL;
1603        if (!len)
1604                return 0;
1605
1606        nand_get_device(chip, mtd, FL_READING);
1607
1608        chip->ops.len = len;
1609        chip->ops.datbuf = buf;
1610        chip->ops.oobbuf = NULL;
1611
1612        ret = nand_do_read_ops(mtd, from, &chip->ops);
1613
1614        *retlen = chip->ops.retlen;
1615
1616        nand_release_device(mtd);
1617
1618        return ret;
1619}
1620
1621/**
1622 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1623 * @mtd:        mtd info structure
1624 * @chip:       nand chip info structure
1625 * @page:       page number to read
1626 * @sndcmd:     flag whether to issue read command or not
1627 */
1628static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1629                             int page, int sndcmd)
1630{
1631        if (sndcmd) {
1632                chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1633                sndcmd = 0;
1634        }
1635        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1636        return sndcmd;
1637}
1638
1639/**
1640 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1641 *                          with syndromes
1642 * @mtd:        mtd info structure
1643 * @chip:       nand chip info structure
1644 * @page:       page number to read
1645 * @sndcmd:     flag whether to issue read command or not
1646 */
1647static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1648                                  int page, int sndcmd)
1649{
1650        uint8_t *buf = chip->oob_poi;
1651        int length = mtd->oobsize;
1652        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1653        int eccsize = chip->ecc.size;
1654        uint8_t *bufpoi = buf;
1655        int i, toread, sndrnd = 0, pos;
1656
1657        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1658        for (i = 0; i < chip->ecc.steps; i++) {
1659                if (sndrnd) {
1660                        pos = eccsize + i * (eccsize + chunk);
1661                        if (mtd->writesize > 512)
1662                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1663                        else
1664                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1665                } else
1666                        sndrnd = 1;
1667                toread = min_t(int, length, chunk);
1668                chip->read_buf(mtd, bufpoi, toread);
1669                bufpoi += toread;
1670                length -= toread;
1671        }
1672        if (length > 0)
1673                chip->read_buf(mtd, bufpoi, length);
1674
1675        return 1;
1676}
1677
1678/**
1679 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1680 * @mtd:        mtd info structure
1681 * @chip:       nand chip info structure
1682 * @page:       page number to write
1683 */
1684static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1685                              int page)
1686{
1687        int status = 0;
1688        const uint8_t *buf = chip->oob_poi;
1689        int length = mtd->oobsize;
1690
1691        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1692        chip->write_buf(mtd, buf, length);
1693        /* Send command to program the OOB data */
1694        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1695
1696        status = chip->waitfunc(mtd, chip);
1697
1698        return status & NAND_STATUS_FAIL ? -EIO : 0;
1699}
1700
1701/**
1702 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1703 *                           with syndrome - only for large page flash !
1704 * @mtd:        mtd info structure
1705 * @chip:       nand chip info structure
1706 * @page:       page number to write
1707 */
1708static int nand_write_oob_syndrome(struct mtd_info *mtd,
1709                                   struct nand_chip *chip, int page)
1710{
1711        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1712        int eccsize = chip->ecc.size, length = mtd->oobsize;
1713        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1714        const uint8_t *bufpoi = chip->oob_poi;
1715
1716        /*
1717         * data-ecc-data-ecc ... ecc-oob
1718         * or
1719         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1720         */
1721        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1722                pos = steps * (eccsize + chunk);
1723                steps = 0;
1724        } else
1725                pos = eccsize;
1726
1727        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1728        for (i = 0; i < steps; i++) {
1729                if (sndcmd) {
1730                        if (mtd->writesize <= 512) {
1731                                uint32_t fill = 0xFFFFFFFF;
1732
1733                                len = eccsize;
1734                                while (len > 0) {
1735                                        int num = min_t(int, len, 4);
1736                                        chip->write_buf(mtd, (uint8_t *)&fill,
1737                                                        num);
1738                                        len -= num;
1739                                }
1740                        } else {
1741                                pos = eccsize + i * (eccsize + chunk);
1742                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1743                        }
1744                } else
1745                        sndcmd = 1;
1746                len = min_t(int, length, chunk);
1747                chip->write_buf(mtd, bufpoi, len);
1748                bufpoi += len;
1749                length -= len;
1750        }
1751        if (length > 0)
1752                chip->write_buf(mtd, bufpoi, length);
1753
1754        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1755        status = chip->waitfunc(mtd, chip);
1756
1757        return status & NAND_STATUS_FAIL ? -EIO : 0;
1758}
1759
1760/**
1761 * nand_do_read_oob - [Intern] NAND read out-of-band
1762 * @mtd:        MTD device structure
1763 * @from:       offset to read from
1764 * @ops:        oob operations description structure
1765 *
1766 * NAND read out-of-band data from the spare area
1767 */
1768static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1769                            struct mtd_oob_ops *ops)
1770{
1771        int page, realpage, chipnr, sndcmd = 1;
1772        struct nand_chip *chip = mtd->priv;
1773        int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1774        int readlen = ops->ooblen;
1775        int len;
1776        uint8_t *buf = ops->oobbuf;
1777
1778        DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1779                        __func__, (unsigned long long)from, readlen);
1780
1781        if (ops->mode == MTD_OOB_AUTO)
1782                len = chip->ecc.layout->oobavail;
1783        else
1784                len = mtd->oobsize;
1785
1786        if (unlikely(ops->ooboffs >= len)) {
1787                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1788                                        "outside oob\n", __func__);
1789                return -EINVAL;
1790        }
1791
1792        /* Do not allow reads past end of device */
1793        if (unlikely(from >= mtd->size ||
1794                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1795                                        (from >> chip->page_shift)) * len)) {
1796                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1797                                        "of device\n", __func__);
1798                return -EINVAL;
1799        }
1800
1801        chipnr = (int)(from >> chip->chip_shift);
1802        chip->select_chip(mtd, chipnr);
1803
1804        /* Shift to get page */
1805        realpage = (int)(from >> chip->page_shift);
1806        page = realpage & chip->pagemask;
1807
1808        while (1) {
1809                sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1810
1811                len = min(len, readlen);
1812                buf = nand_transfer_oob(chip, buf, ops, len);
1813
1814                if (!(chip->options & NAND_NO_READRDY)) {
1815                        /*
1816                         * Apply delay or wait for ready/busy pin. Do this
1817                         * before the AUTOINCR check, so no problems arise if a
1818                         * chip which does auto increment is marked as
1819                         * NOAUTOINCR by the board driver.
1820                         */
1821                        if (!chip->dev_ready)
1822                                udelay(chip->chip_delay);
1823                        else
1824                                nand_wait_ready(mtd);
1825                }
1826
1827                readlen -= len;
1828                if (!readlen)
1829                        break;
1830
1831                /* Increment page address */
1832                realpage++;
1833
1834                page = realpage & chip->pagemask;
1835                /* Check, if we cross a chip boundary */
1836                if (!page) {
1837                        chipnr++;
1838                        chip->select_chip(mtd, -1);
1839                        chip->select_chip(mtd, chipnr);
1840                }
1841
1842                /* Check, if the chip supports auto page increment
1843                 * or if we have hit a block boundary.
1844                 */
1845                if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1846                        sndcmd = 1;
1847        }
1848
1849        ops->oobretlen = ops->ooblen;
1850        return 0;
1851}
1852
1853/**
1854 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1855 * @mtd:        MTD device structure
1856 * @from:       offset to read from
1857 * @ops:        oob operation description structure
1858 *
1859 * NAND read data and/or out-of-band data
1860 */
1861static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1862                         struct mtd_oob_ops *ops)
1863{
1864        struct nand_chip *chip = mtd->priv;
1865        int ret = -ENOTSUPP;
1866
1867        ops->retlen = 0;
1868
1869        /* Do not allow reads past end of device */
1870        if (ops->datbuf && (from + ops->len) > mtd->size) {
1871                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1872                                "beyond end of device\n", __func__);
1873                return -EINVAL;
1874        }
1875
1876        nand_get_device(chip, mtd, FL_READING);
1877
1878        switch (ops->mode) {
1879        case MTD_OOB_PLACE:
1880        case MTD_OOB_AUTO:
1881        case MTD_OOB_RAW:
1882                break;
1883
1884        default:
1885                goto out;
1886        }
1887
1888        if (!ops->datbuf)
1889                ret = nand_do_read_oob(mtd, from, ops);
1890        else
1891                ret = nand_do_read_ops(mtd, from, ops);
1892
1893out:
1894        nand_release_device(mtd);
1895        return ret;
1896}
1897
1898
1899/**
1900 * nand_write_page_raw - [Intern] raw page write function
1901 * @mtd:        mtd info structure
1902 * @chip:       nand chip info structure
1903 * @buf:        data buffer
1904 *
1905 * Not for syndrome calculating ecc controllers, which use a special oob layout
1906 */
1907static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1908                                const uint8_t *buf)
1909{
1910        chip->write_buf(mtd, buf, mtd->writesize);
1911        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1912}
1913
1914/**
1915 * nand_write_page_raw_syndrome - [Intern] raw page write function
1916 * @mtd:        mtd info structure
1917 * @chip:       nand chip info structure
1918 * @buf:        data buffer
1919 *
1920 * We need a special oob layout and handling even when ECC isn't checked.
1921 */
1922static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1923                                        struct nand_chip *chip,
1924                                        const uint8_t *buf)
1925{
1926        int eccsize = chip->ecc.size;
1927        int eccbytes = chip->ecc.bytes;
1928        uint8_t *oob = chip->oob_poi;
1929        int steps, size;
1930
1931        for (steps = chip->ecc.steps; steps > 0; steps--) {
1932                chip->write_buf(mtd, buf, eccsize);
1933                buf += eccsize;
1934
1935                if (chip->ecc.prepad) {
1936                        chip->write_buf(mtd, oob, chip->ecc.prepad);
1937                        oob += chip->ecc.prepad;
1938                }
1939
1940                chip->read_buf(mtd, oob, eccbytes);
1941                oob += eccbytes;
1942
1943                if (chip->ecc.postpad) {
1944                        chip->write_buf(mtd, oob, chip->ecc.postpad);
1945                        oob += chip->ecc.postpad;
1946                }
1947        }
1948
1949        size = mtd->oobsize - (oob - chip->oob_poi);
1950        if (size)
1951                chip->write_buf(mtd, oob, size);
1952}
1953/**
1954 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1955 * @mtd:        mtd info structure
1956 * @chip:       nand chip info structure
1957 * @buf:        data buffer
1958 */
1959static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1960                                  const uint8_t *buf)
1961{
1962        int i, eccsize = chip->ecc.size;
1963        int eccbytes = chip->ecc.bytes;
1964        int eccsteps = chip->ecc.steps;
1965        uint8_t *ecc_calc = chip->buffers->ecccalc;
1966        const uint8_t *p = buf;
1967        uint32_t *eccpos = chip->ecc.layout->eccpos;
1968
1969        /* Software ecc calculation */
1970        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1971                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1972
1973        for (i = 0; i < chip->ecc.total; i++)
1974                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1975
1976        chip->ecc.write_page_raw(mtd, chip, buf);
1977}
1978
1979/**
1980 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1981 * @mtd:        mtd info structure
1982 * @chip:       nand chip info structure
1983 * @buf:        data buffer
1984 */
1985static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1986                                  const uint8_t *buf)
1987{
1988        int i, eccsize = chip->ecc.size;
1989        int eccbytes = chip->ecc.bytes;
1990        int eccsteps = chip->ecc.steps;
1991        uint8_t *ecc_calc = chip->buffers->ecccalc;
1992        const uint8_t *p = buf;
1993        uint32_t *eccpos = chip->ecc.layout->eccpos;
1994
1995        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1996                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1997                chip->write_buf(mtd, p, eccsize);
1998                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1999        }
2000
2001        for (i = 0; i < chip->ecc.total; i++)
2002                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2003
2004        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2005}
2006
2007/**
2008 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2009 * @mtd:        mtd info structure
2010 * @chip:       nand chip info structure
2011 * @buf:        data buffer
2012 *
2013 * The hw generator calculates the error syndrome automatically. Therefor
2014 * we need a special oob layout and handling.
2015 */
2016static void nand_write_page_syndrome(struct mtd_info *mtd,
2017                                    struct nand_chip *chip, const uint8_t *buf)
2018{
2019        int i, eccsize = chip->ecc.size;
2020        int eccbytes = chip->ecc.bytes;
2021        int eccsteps = chip->ecc.steps;
2022        const uint8_t *p = buf;
2023        uint8_t *oob = chip->oob_poi;
2024
2025        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2026
2027                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2028                chip->write_buf(mtd, p, eccsize);
2029
2030                if (chip->ecc.prepad) {
2031                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2032                        oob += chip->ecc.prepad;
2033                }
2034
2035                chip->ecc.calculate(mtd, p, oob);
2036                chip->write_buf(mtd, oob, eccbytes);
2037                oob += eccbytes;
2038
2039                if (chip->ecc.postpad) {
2040                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2041                        oob += chip->ecc.postpad;
2042                }
2043        }
2044
2045        /* Calculate remaining oob bytes */
2046        i = mtd->oobsize - (oob - chip->oob_poi);
2047        if (i)
2048                chip->write_buf(mtd, oob, i);
2049}
2050
2051/**
2052 * nand_write_page - [REPLACEABLE] write one page
2053 * @mtd:        MTD device structure
2054 * @chip:       NAND chip descriptor
2055 * @buf:        the data to write
2056 * @page:       page number to write
2057 * @cached:     cached programming
2058 * @raw:        use _raw version of write_page
2059 */
2060static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2061                           const uint8_t *buf, int page, int cached, int raw)
2062{
2063        int status;
2064
2065        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2066
2067        if (unlikely(raw))
2068                chip->ecc.write_page_raw(mtd, chip, buf);
2069        else
2070                chip->ecc.write_page(mtd, chip, buf);
2071
2072        /*
2073         * Cached progamming disabled for now, Not sure if its worth the
2074         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2075         */
2076        cached = 0;
2077
2078        if (!cached || !(chip->options & NAND_CACHEPRG)) {
2079
2080                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2081                status = chip->waitfunc(mtd, chip);
2082                /*
2083                 * See if operation failed and additional status checks are
2084                 * available
2085                 */
2086                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2087                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2088                                               page);
2089
2090                if (status & NAND_STATUS_FAIL)
2091                        return -EIO;
2092        } else {
2093                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2094                status = chip->waitfunc(mtd, chip);
2095        }
2096
2097#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2098        /* Send command to read back the data */
2099        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2100
2101        if (chip->verify_buf(mtd, buf, mtd->writesize))
2102                return -EIO;
2103#endif
2104        return 0;
2105}
2106
2107/**
2108 * nand_fill_oob - [Internal] Transfer client buffer to oob
2109 * @chip:       nand chip structure
2110 * @oob:        oob data buffer
2111 * @len:        oob data write length
2112 * @ops:        oob ops structure
2113 */
2114static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2115                                                struct mtd_oob_ops *ops)
2116{
2117        switch (ops->mode) {
2118
2119        case MTD_OOB_PLACE:
2120        case MTD_OOB_RAW:
2121                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2122                return oob + len;
2123
2124        case MTD_OOB_AUTO: {
2125                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2126                uint32_t boffs = 0, woffs = ops->ooboffs;
2127                size_t bytes = 0;
2128
2129                for (; free->length && len; free++, len -= bytes) {
2130                        /* Write request not from offset 0 ? */
2131                        if (unlikely(woffs)) {
2132                                if (woffs >= free->length) {
2133                                        woffs -= free->length;
2134                                        continue;
2135                                }
2136                                boffs = free->offset + woffs;
2137                                bytes = min_t(size_t, len,
2138                                              (free->length - woffs));
2139                                woffs = 0;
2140                        } else {
2141                                bytes = min_t(size_t, len, free->length);
2142                                boffs = free->offset;
2143                        }
2144                        memcpy(chip->oob_poi + boffs, oob, bytes);
2145                        oob += bytes;
2146                }
2147                return oob;
2148        }
2149        default:
2150                BUG();
2151        }
2152        return NULL;
2153}
2154
2155#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2156
2157/**
2158 * nand_do_write_ops - [Internal] NAND write with ECC
2159 * @mtd:        MTD device structure
2160 * @to:         offset to write to
2161 * @ops:        oob operations description structure
2162 *
2163 * NAND write with ECC
2164 */
2165static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2166                             struct mtd_oob_ops *ops)
2167{
2168        int chipnr, realpage, page, blockmask, column;
2169        struct nand_chip *chip = mtd->priv;
2170        uint32_t writelen = ops->len;
2171
2172        uint32_t oobwritelen = ops->ooblen;
2173        uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2174                                mtd->oobavail : mtd->oobsize;
2175
2176        uint8_t *oob = ops->oobbuf;
2177        uint8_t *buf = ops->datbuf;
2178        int ret, subpage;
2179
2180        ops->retlen = 0;
2181        if (!writelen)
2182                return 0;
2183
2184        /* reject writes, which are not page aligned */
2185        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2186                printk(KERN_NOTICE "%s: Attempt to write not "
2187                                "page aligned data\n", __func__);
2188                return -EINVAL;
2189        }
2190
2191        column = to & (mtd->writesize - 1);
2192        subpage = column || (writelen & (mtd->writesize - 1));
2193
2194        if (subpage && oob)
2195                return -EINVAL;
2196
2197        chipnr = (int)(to >> chip->chip_shift);
2198        chip->select_chip(mtd, chipnr);
2199
2200        /* Check, if it is write protected */
2201        if (nand_check_wp(mtd))
2202                return -EIO;
2203
2204        realpage = (int)(to >> chip->page_shift);
2205        page = realpage & chip->pagemask;
2206        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2207
2208        /* Invalidate the page cache, when we write to the cached page */
2209        if (to <= (chip->pagebuf << chip->page_shift) &&
2210            (chip->pagebuf << chip->page_shift) < (to + ops->len))
2211                chip->pagebuf = -1;
2212
2213        /* If we're not given explicit OOB data, let it be 0xFF */
2214        if (likely(!oob))
2215                memset(chip->oob_poi, 0xff, mtd->oobsize);
2216
2217        /* Don't allow multipage oob writes with offset */
2218        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2219                return -EINVAL;
2220
2221        while (1) {
2222                int bytes = mtd->writesize;
2223                int cached = writelen > bytes && page != blockmask;
2224                uint8_t *wbuf = buf;
2225
2226                /* Partial page write ? */
2227                if (unlikely(column || writelen < (mtd->writesize - 1))) {
2228                        cached = 0;
2229                        bytes = min_t(int, bytes - column, (int) writelen);
2230                        chip->pagebuf = -1;
2231                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2232                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2233                        wbuf = chip->buffers->databuf;
2234                }
2235
2236                if (unlikely(oob)) {
2237                        size_t len = min(oobwritelen, oobmaxlen);
2238                        oob = nand_fill_oob(chip, oob, len, ops);
2239                        oobwritelen -= len;
2240                }
2241
2242                ret = chip->write_page(mtd, chip, wbuf, page, cached,
2243                                       (ops->mode == MTD_OOB_RAW));
2244                if (ret)
2245                        break;
2246
2247                writelen -= bytes;
2248                if (!writelen)
2249                        break;
2250
2251                column = 0;
2252                buf += bytes;
2253                realpage++;
2254
2255                page = realpage & chip->pagemask;
2256                /* Check, if we cross a chip boundary */
2257                if (!page) {
2258                        chipnr++;
2259                        chip->select_chip(mtd, -1);
2260                        chip->select_chip(mtd, chipnr);
2261                }
2262        }
2263
2264        ops->retlen = ops->len - writelen;
2265        if (unlikely(oob))
2266                ops->oobretlen = ops->ooblen;
2267        return ret;
2268}
2269
2270/**
2271 * panic_nand_write - [MTD Interface] NAND write with ECC
2272 * @mtd:        MTD device structure
2273 * @to:         offset to write to
2274 * @len:        number of bytes to write
2275 * @retlen:     pointer to variable to store the number of written bytes
2276 * @buf:        the data to write
2277 *
2278 * NAND write with ECC. Used when performing writes in interrupt context, this
2279 * may for example be called by mtdoops when writing an oops while in panic.
2280 */
2281static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2282                            size_t *retlen, const uint8_t *buf)
2283{
2284        struct nand_chip *chip = mtd->priv;
2285        int ret;
2286
2287        /* Do not allow reads past end of device */
2288        if ((to + len) > mtd->size)
2289                return -EINVAL;
2290        if (!len)
2291                return 0;
2292
2293        /* Wait for the device to get ready.  */
2294        panic_nand_wait(mtd, chip, 400);
2295
2296        /* Grab the device.  */
2297        panic_nand_get_device(chip, mtd, FL_WRITING);
2298
2299        chip->ops.len = len;
2300        chip->ops.datbuf = (uint8_t *)buf;
2301        chip->ops.oobbuf = NULL;
2302
2303        ret = nand_do_write_ops(mtd, to, &chip->ops);
2304
2305        *retlen = chip->ops.retlen;
2306        return ret;
2307}
2308
2309/**
2310 * nand_write - [MTD Interface] NAND write with ECC
2311 * @mtd:        MTD device structure
2312 * @to:         offset to write to
2313 * @len:        number of bytes to write
2314 * @retlen:     pointer to variable to store the number of written bytes
2315 * @buf:        the data to write
2316 *
2317 * NAND write with ECC
2318 */
2319static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2320                          size_t *retlen, const uint8_t *buf)
2321{
2322        struct nand_chip *chip = mtd->priv;
2323        int ret;
2324
2325        /* Do not allow reads past end of device */
2326        if ((to + len) > mtd->size)
2327                return -EINVAL;
2328        if (!len)
2329                return 0;
2330
2331        nand_get_device(chip, mtd, FL_WRITING);
2332
2333        chip->ops.len = len;
2334        chip->ops.datbuf = (uint8_t *)buf;
2335        chip->ops.oobbuf = NULL;
2336
2337        ret = nand_do_write_ops(mtd, to, &chip->ops);
2338
2339        *retlen = chip->ops.retlen;
2340
2341        nand_release_device(mtd);
2342
2343        return ret;
2344}
2345
2346/**
2347 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2348 * @mtd:        MTD device structure
2349 * @to:         offset to write to
2350 * @ops:        oob operation description structure
2351 *
2352 * NAND write out-of-band
2353 */
2354static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2355                             struct mtd_oob_ops *ops)
2356{
2357        int chipnr, page, status, len;
2358        struct nand_chip *chip = mtd->priv;
2359
2360        DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2361                         __func__, (unsigned int)to, (int)ops->ooblen);
2362
2363        if (ops->mode == MTD_OOB_AUTO)
2364                len = chip->ecc.layout->oobavail;
2365        else
2366                len = mtd->oobsize;
2367
2368        /* Do not allow write past end of page */
2369        if ((ops->ooboffs + ops->ooblen) > len) {
2370                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2371                                "past end of page\n", __func__);
2372                return -EINVAL;
2373        }
2374
2375        if (unlikely(ops->ooboffs >= len)) {
2376                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2377                                "write outside oob\n", __func__);
2378                return -EINVAL;
2379        }
2380
2381        /* Do not allow write past end of device */
2382        if (unlikely(to >= mtd->size ||
2383                     ops->ooboffs + ops->ooblen >
2384                        ((mtd->size >> chip->page_shift) -
2385                         (to >> chip->page_shift)) * len)) {
2386                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2387                                "end of device\n", __func__);
2388                return -EINVAL;
2389        }
2390
2391        chipnr = (int)(to >> chip->chip_shift);
2392        chip->select_chip(mtd, chipnr);
2393
2394        /* Shift to get page */
2395        page = (int)(to >> chip->page_shift);
2396
2397        /*
2398         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2399         * of my DiskOnChip 2000 test units) will clear the whole data page too
2400         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2401         * it in the doc2000 driver in August 1999.  dwmw2.
2402         */
2403        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2404
2405        /* Check, if it is write protected */
2406        if (nand_check_wp(mtd))
2407                return -EROFS;
2408
2409        /* Invalidate the page cache, if we write to the cached page */
2410        if (page == chip->pagebuf)
2411                chip->pagebuf = -1;
2412
2413        memset(chip->oob_poi, 0xff, mtd->oobsize);
2414        nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2415        status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2416        memset(chip->oob_poi, 0xff, mtd->oobsize);
2417
2418        if (status)
2419                return status;
2420
2421        ops->oobretlen = ops->ooblen;
2422
2423        return 0;
2424}
2425
2426/**
2427 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2428 * @mtd:        MTD device structure
2429 * @to:         offset to write to
2430 * @ops:        oob operation description structure
2431 */
2432static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2433                          struct mtd_oob_ops *ops)
2434{
2435        struct nand_chip *chip = mtd->priv;
2436        int ret = -ENOTSUPP;
2437
2438        ops->retlen = 0;
2439
2440        /* Do not allow writes past end of device */
2441        if (ops->datbuf && (to + ops->len) > mtd->size) {
2442                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2443                                "end of device\n", __func__);
2444                return -EINVAL;
2445        }
2446
2447        nand_get_device(chip, mtd, FL_WRITING);
2448
2449        switch (ops->mode) {
2450        case MTD_OOB_PLACE:
2451        case MTD_OOB_AUTO:
2452        case MTD_OOB_RAW:
2453                break;
2454
2455        default:
2456                goto out;
2457        }
2458
2459        if (!ops->datbuf)
2460                ret = nand_do_write_oob(mtd, to, ops);
2461        else
2462                ret = nand_do_write_ops(mtd, to, ops);
2463
2464out:
2465        nand_release_device(mtd);
2466        return ret;
2467}
2468
2469/**
2470 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2471 * @mtd:        MTD device structure
2472 * @page:       the page address of the block which will be erased
2473 *
2474 * Standard erase command for NAND chips
2475 */
2476static void single_erase_cmd(struct mtd_info *mtd, int page)
2477{
2478        struct nand_chip *chip = mtd->priv;
2479        /* Send commands to erase a block */
2480        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2481        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2482}
2483
2484/**
2485 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2486 * @mtd:        MTD device structure
2487 * @page:       the page address of the block which will be erased
2488 *
2489 * AND multi block erase command function
2490 * Erase 4 consecutive blocks
2491 */
2492static void multi_erase_cmd(struct mtd_info *mtd, int page)
2493{
2494        struct nand_chip *chip = mtd->priv;
2495        /* Send commands to erase a block */
2496        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2497        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2498        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2499        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2500        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2501}
2502
2503/**
2504 * nand_erase - [MTD Interface] erase block(s)
2505 * @mtd:        MTD device structure
2506 * @instr:      erase instruction
2507 *
2508 * Erase one ore more blocks
2509 */
2510static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2511{
2512        return nand_erase_nand(mtd, instr, 0);
2513}
2514
2515#define BBT_PAGE_MASK   0xffffff3f
2516/**
2517 * nand_erase_nand - [Internal] erase block(s)
2518 * @mtd:        MTD device structure
2519 * @instr:      erase instruction
2520 * @allowbbt:   allow erasing the bbt area
2521 *
2522 * Erase one ore more blocks
2523 */
2524int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2525                    int allowbbt)
2526{
2527        int page, status, pages_per_block, ret, chipnr;
2528        struct nand_chip *chip = mtd->priv;
2529        loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2530        unsigned int bbt_masked_page = 0xffffffff;
2531        loff_t len;
2532
2533        DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2534                                __func__, (unsigned long long)instr->addr,
2535                                (unsigned long long)instr->len);
2536
2537        if (check_offs_len(mtd, instr->addr, instr->len))
2538                return -EINVAL;
2539
2540        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2541
2542        /* Grab the lock and see if the device is available */
2543        nand_get_device(chip, mtd, FL_ERASING);
2544
2545        /* Shift to get first page */
2546        page = (int)(instr->addr >> chip->page_shift);
2547        chipnr = (int)(instr->addr >> chip->chip_shift);
2548
2549        /* Calculate pages in each block */
2550        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2551
2552        /* Select the NAND device */
2553        chip->select_chip(mtd, chipnr);
2554
2555        /* Check, if it is write protected */
2556        if (nand_check_wp(mtd)) {
2557                DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2558                                        __func__);
2559                instr->state = MTD_ERASE_FAILED;
2560                goto erase_exit;
2561        }
2562
2563        /*
2564         * If BBT requires refresh, set the BBT page mask to see if the BBT
2565         * should be rewritten. Otherwise the mask is set to 0xffffffff which
2566         * can not be matched. This is also done when the bbt is actually
2567         * erased to avoid recusrsive updates
2568         */
2569        if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2570                bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2571
2572        /* Loop through the pages */
2573        len = instr->len;
2574
2575        instr->state = MTD_ERASING;
2576
2577        while (len) {
2578                /*
2579                 * heck if we have a bad block, we do not erase bad blocks !
2580                 */
2581                if (nand_block_checkbad(mtd, ((loff_t) page) <<
2582                                        chip->page_shift, 0, allowbbt)) {
2583                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2584                                        "at page 0x%08x\n", __func__, page);
2585                        instr->state = MTD_ERASE_FAILED;
2586                        goto erase_exit;
2587                }
2588
2589                /*
2590                 * Invalidate the page cache, if we erase the block which
2591                 * contains the current cached page
2592                 */
2593                if (page <= chip->pagebuf && chip->pagebuf <
2594                    (page + pages_per_block))
2595                        chip->pagebuf = -1;
2596
2597                chip->erase_cmd(mtd, page & chip->pagemask);
2598
2599                status = chip->waitfunc(mtd, chip);
2600
2601                /*
2602                 * See if operation failed and additional status checks are
2603                 * available
2604                 */
2605                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2606                        status = chip->errstat(mtd, chip, FL_ERASING,
2607                                               status, page);
2608
2609                /* See if block erase succeeded */
2610                if (status & NAND_STATUS_FAIL) {
2611                        DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2612                                        "page 0x%08x\n", __func__, page);
2613                        instr->state = MTD_ERASE_FAILED;
2614                        instr->fail_addr =
2615                                ((loff_t)page << chip->page_shift);
2616                        goto erase_exit;
2617                }
2618
2619                /*
2620                 * If BBT requires refresh, set the BBT rewrite flag to the
2621                 * page being erased
2622                 */
2623                if (bbt_masked_page != 0xffffffff &&
2624                    (page & BBT_PAGE_MASK) == bbt_masked_page)
2625                            rewrite_bbt[chipnr] =
2626                                        ((loff_t)page << chip->page_shift);
2627
2628                /* Increment page address and decrement length */
2629                len -= (1 << chip->phys_erase_shift);
2630                page += pages_per_block;
2631
2632                /* Check, if we cross a chip boundary */
2633                if (len && !(page & chip->pagemask)) {
2634                        chipnr++;
2635                        chip->select_chip(mtd, -1);
2636                        chip->select_chip(mtd, chipnr);
2637
2638                        /*
2639                         * If BBT requires refresh and BBT-PERCHIP, set the BBT
2640                         * page mask to see if this BBT should be rewritten
2641                         */
2642                        if (bbt_masked_page != 0xffffffff &&
2643                            (chip->bbt_td->options & NAND_BBT_PERCHIP))
2644                                bbt_masked_page = chip->bbt_td->pages[chipnr] &
2645                                        BBT_PAGE_MASK;
2646                }
2647        }
2648        instr->state = MTD_ERASE_DONE;
2649
2650erase_exit:
2651
2652        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2653
2654        /* Deselect and wake up anyone waiting on the device */
2655        nand_release_device(mtd);
2656
2657        /* Do call back function */
2658        if (!ret)
2659                mtd_erase_callback(instr);
2660
2661        /*
2662         * If BBT requires refresh and erase was successful, rewrite any
2663         * selected bad block tables
2664         */
2665        if (bbt_masked_page == 0xffffffff || ret)
2666                return ret;
2667
2668        for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2669                if (!rewrite_bbt[chipnr])
2670                        continue;
2671                /* update the BBT for chip */
2672                DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2673                        "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2674                        rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2675                nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2676        }
2677
2678        /* Return more or less happy */
2679        return ret;
2680}
2681
2682/**
2683 * nand_sync - [MTD Interface] sync
2684 * @mtd:        MTD device structure
2685 *
2686 * Sync is actually a wait for chip ready function
2687 */
2688static void nand_sync(struct mtd_info *mtd)
2689{
2690        struct nand_chip *chip = mtd->priv;
2691
2692        DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2693
2694        /* Grab the lock and see if the device is available */
2695        nand_get_device(chip, mtd, FL_SYNCING);
2696        /* Release it and go back */
2697        nand_release_device(mtd);
2698}
2699
2700/**
2701 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2702 * @mtd:        MTD device structure
2703 * @offs:       offset relative to mtd start
2704 */
2705static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2706{
2707        /* Check for invalid offset */
2708        if (offs > mtd->size)
2709                return -EINVAL;
2710
2711        return nand_block_checkbad(mtd, offs, 1, 0);
2712}
2713
2714/**
2715 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2716 * @mtd:        MTD device structure
2717 * @ofs:        offset relative to mtd start
2718 */
2719static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2720{
2721        struct nand_chip *chip = mtd->priv;
2722        int ret;
2723
2724        ret = nand_block_isbad(mtd, ofs);
2725        if (ret) {
2726                /* If it was bad already, return success and do nothing. */
2727                if (ret > 0)
2728                        return 0;
2729                return ret;
2730        }
2731
2732        return chip->block_markbad(mtd, ofs);
2733}
2734
2735/**
2736 * nand_suspend - [MTD Interface] Suspend the NAND flash
2737 * @mtd:        MTD device structure
2738 */
2739static int nand_suspend(struct mtd_info *mtd)
2740{
2741        struct nand_chip *chip = mtd->priv;
2742
2743        return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2744}
2745
2746/**
2747 * nand_resume - [MTD Interface] Resume the NAND flash
2748 * @mtd:        MTD device structure
2749 */
2750static void nand_resume(struct mtd_info *mtd)
2751{
2752        struct nand_chip *chip = mtd->priv;
2753
2754        if (chip->state == FL_PM_SUSPENDED)
2755                nand_release_device(mtd);
2756        else
2757                printk(KERN_ERR "%s called for a chip which is not "
2758                       "in suspended state\n", __func__);
2759}
2760
2761/*
2762 * Set default functions
2763 */
2764static void nand_set_defaults(struct nand_chip *chip, int busw)
2765{
2766        /* check for proper chip_delay setup, set 20us if not */
2767        if (!chip->chip_delay)
2768                chip->chip_delay = 20;
2769
2770        /* check, if a user supplied command function given */
2771        if (chip->cmdfunc == NULL)
2772                chip->cmdfunc = nand_command;
2773
2774        /* check, if a user supplied wait function given */
2775        if (chip->waitfunc == NULL)
2776                chip->waitfunc = nand_wait;
2777
2778        if (!chip->select_chip)
2779                chip->select_chip = nand_select_chip;
2780        if (!chip->read_byte)
2781                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2782        if (!chip->read_word)
2783                chip->read_word = nand_read_word;
2784        if (!chip->block_bad)
2785                chip->block_bad = nand_block_bad;
2786        if (!chip->block_markbad)
2787                chip->block_markbad = nand_default_block_markbad;
2788        if (!chip->write_buf)
2789                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2790        if (!chip->read_buf)
2791                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2792        if (!chip->verify_buf)
2793                chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2794        if (!chip->scan_bbt)
2795                chip->scan_bbt = nand_default_bbt;
2796
2797        if (!chip->controller) {
2798                chip->controller = &chip->hwcontrol;
2799                spin_lock_init(&chip->controller->lock);
2800                init_waitqueue_head(&chip->controller->wq);
2801        }
2802
2803}
2804
2805/*
2806 * sanitize ONFI strings so we can safely print them
2807 */
2808static void sanitize_string(uint8_t *s, size_t len)
2809{
2810        ssize_t i;
2811
2812        /* null terminate */
2813        s[len - 1] = 0;
2814
2815        /* remove non printable chars */
2816        for (i = 0; i < len - 1; i++) {
2817                if (s[i] < ' ' || s[i] > 127)
2818                        s[i] = '?';
2819        }
2820
2821        /* remove trailing spaces */
2822        strim(s);
2823}
2824
2825static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2826{
2827        int i;
2828        while (len--) {
2829                crc ^= *p++ << 8;
2830                for (i = 0; i < 8; i++)
2831                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2832        }
2833
2834        return crc;
2835}
2836
2837/*
2838 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2839 */
2840static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2841                                        int busw)
2842{
2843        struct nand_onfi_params *p = &chip->onfi_params;
2844        int i;
2845        int val;
2846
2847        /* try ONFI for unknow chip or LP */
2848        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2849        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2850                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2851                return 0;
2852
2853        printk(KERN_INFO "ONFI flash detected\n");
2854        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2855        for (i = 0; i < 3; i++) {
2856                chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2857                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2858                                le16_to_cpu(p->crc)) {
2859                        printk(KERN_INFO "ONFI param page %d valid\n", i);
2860                        break;
2861                }
2862        }
2863
2864        if (i == 3)
2865                return 0;
2866
2867        /* check version */
2868        val = le16_to_cpu(p->revision);
2869        if (val & (1 << 5))
2870                chip->onfi_version = 23;
2871        else if (val & (1 << 4))
2872                chip->onfi_version = 22;
2873        else if (val & (1 << 3))
2874                chip->onfi_version = 21;
2875        else if (val & (1 << 2))
2876                chip->onfi_version = 20;
2877        else if (val & (1 << 1))
2878                chip->onfi_version = 10;
2879        else
2880                chip->onfi_version = 0;
2881
2882        if (!chip->onfi_version) {
2883                printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2884                                                                __func__, val);
2885                return 0;
2886        }
2887
2888        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2889        sanitize_string(p->model, sizeof(p->model));
2890        if (!mtd->name)
2891                mtd->name = p->model;
2892        mtd->writesize = le32_to_cpu(p->byte_per_page);
2893        mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2894        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2895        chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2896        busw = 0;
2897        if (le16_to_cpu(p->features) & 1)
2898                busw = NAND_BUSWIDTH_16;
2899
2900        chip->options &= ~NAND_CHIPOPTIONS_MSK;
2901        chip->options |= (NAND_NO_READRDY |
2902                        NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2903
2904        return 1;
2905}
2906
2907/*
2908 * Get the flash and manufacturer id and lookup if the type is supported
2909 */
2910static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2911                                                  struct nand_chip *chip,
2912                                                  int busw,
2913                                                  int *maf_id, int *dev_id,
2914                                                  struct nand_flash_dev *type)
2915{
2916        int i, maf_idx;
2917        u8 id_data[8];
2918        int ret;
2919
2920        /* Select the device */
2921        chip->select_chip(mtd, 0);
2922
2923        /*
2924         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2925         * after power-up
2926         */
2927        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2928
2929        /* Send the command for reading device ID */
2930        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2931
2932        /* Read manufacturer and device IDs */
2933        *maf_id = chip->read_byte(mtd);
2934        *dev_id = chip->read_byte(mtd);
2935
2936        /* Try again to make sure, as some systems the bus-hold or other
2937         * interface concerns can cause random data which looks like a
2938         * possibly credible NAND flash to appear. If the two results do
2939         * not match, ignore the device completely.
2940         */
2941
2942        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2943
2944        for (i = 0; i < 2; i++)
2945                id_data[i] = chip->read_byte(mtd);
2946
2947        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2948                printk(KERN_INFO "%s: second ID read did not match "
2949                       "%02x,%02x against %02x,%02x\n", __func__,
2950                       *maf_id, *dev_id, id_data[0], id_data[1]);
2951                return ERR_PTR(-ENODEV);
2952        }
2953
2954        if (!type)
2955                type = nand_flash_ids;
2956
2957        for (; type->name != NULL; type++)
2958                if (*dev_id == type->id)
2959                        break;
2960
2961        chip->onfi_version = 0;
2962        if (!type->name || !type->pagesize) {
2963                /* Check is chip is ONFI compliant */
2964                ret = nand_flash_detect_onfi(mtd, chip, busw);
2965                if (ret)
2966                        goto ident_done;
2967        }
2968
2969        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2970
2971        /* Read entire ID string */
2972
2973        for (i = 0; i < 8; i++)
2974                id_data[i] = chip->read_byte(mtd);
2975
2976        if (!type->name)
2977                return ERR_PTR(-ENODEV);
2978
2979        if (!mtd->name)
2980                mtd->name = type->name;
2981
2982        chip->chipsize = (uint64_t)type->chipsize << 20;
2983
2984        if (!type->pagesize && chip->init_size) {
2985                /* set the pagesize, oobsize, erasesize by the driver*/
2986                busw = chip->init_size(mtd, chip, id_data);
2987        } else if (!type->pagesize) {
2988                int extid;
2989                /* The 3rd id byte holds MLC / multichip data */
2990                chip->cellinfo = id_data[2];
2991                /* The 4th id byte is the important one */
2992                extid = id_data[3];
2993
2994                /*
2995                 * Field definitions are in the following datasheets:
2996                 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2997                 * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
2998                 *
2999                 * Check for wraparound + Samsung ID + nonzero 6th byte
3000                 * to decide what to do.
3001                 */
3002                if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3003                                id_data[0] == NAND_MFR_SAMSUNG &&
3004                                (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3005                                id_data[5] != 0x00) {
3006                        /* Calc pagesize */
3007                        mtd->writesize = 2048 << (extid & 0x03);
3008                        extid >>= 2;
3009                        /* Calc oobsize */
3010                        switch (extid & 0x03) {
3011                        case 1:
3012                                mtd->oobsize = 128;
3013                                break;
3014                        case 2:
3015                                mtd->oobsize = 218;
3016                                break;
3017                        case 3:
3018                                mtd->oobsize = 400;
3019                                break;
3020                        default:
3021                                mtd->oobsize = 436;
3022                                break;
3023                        }
3024                        extid >>= 2;
3025                        /* Calc blocksize */
3026                        mtd->erasesize = (128 * 1024) <<
3027                                (((extid >> 1) & 0x04) | (extid & 0x03));
3028                        busw = 0;
3029                } else {
3030                        /* Calc pagesize */
3031                        mtd->writesize = 1024 << (extid & 0x03);
3032                        extid >>= 2;
3033                        /* Calc oobsize */
3034                        mtd->oobsize = (8 << (extid & 0x01)) *
3035                                (mtd->writesize >> 9);
3036                        extid >>= 2;
3037                        /* Calc blocksize. Blocksize is multiples of 64KiB */
3038                        mtd->erasesize = (64 * 1024) << (extid & 0x03);
3039                        extid >>= 2;
3040                        /* Get buswidth information */
3041                        busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3042                }
3043        } else {
3044                /*
3045                 * Old devices have chip data hardcoded in the device id table
3046                 */
3047                mtd->erasesize = type->erasesize;
3048                mtd->writesize = type->pagesize;
3049                mtd->oobsize = mtd->writesize / 32;
3050                busw = type->options & NAND_BUSWIDTH_16;
3051
3052                /*
3053                 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3054                 * some Spansion chips have erasesize that conflicts with size
3055                 * listed in nand_ids table
3056                 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3057                 */
3058                if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3059                                id_data[5] == 0x00 && id_data[6] == 0x00 &&
3060                                id_data[7] == 0x00 && mtd->writesize == 512) {
3061                        mtd->erasesize = 128 * 1024;
3062                        mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3063                }
3064        }
3065        /* Get chip options, preserve non chip based options */
3066        chip->options &= ~NAND_CHIPOPTIONS_MSK;
3067        chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3068
3069        /* Check if chip is a not a samsung device. Do not clear the
3070         * options for chips which are not having an extended id.
3071         */
3072        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3073                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3074ident_done:
3075
3076        /*
3077         * Set chip as a default. Board drivers can override it, if necessary
3078         */
3079        chip->options |= NAND_NO_AUTOINCR;
3080
3081        /* Try to identify manufacturer */
3082        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3083                if (nand_manuf_ids[maf_idx].id == *maf_id)
3084                        break;
3085        }
3086
3087        /*
3088         * Check, if buswidth is correct. Hardware drivers should set
3089         * chip correct !
3090         */
3091        if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3092                printk(KERN_INFO "NAND device: Manufacturer ID:"
3093                       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3094                       *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3095                printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3096                       (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3097                       busw ? 16 : 8);
3098                return ERR_PTR(-EINVAL);
3099        }
3100
3101        /* Calculate the address shift from the page size */
3102        chip->page_shift = ffs(mtd->writesize) - 1;
3103        /* Convert chipsize to number of pages per chip -1. */
3104        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3105
3106        chip->bbt_erase_shift = chip->phys_erase_shift =
3107                ffs(mtd->erasesize) - 1;
3108        if (chip->chipsize & 0xffffffff)
3109                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3110        else {
3111                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3112                chip->chip_shift += 32 - 1;
3113        }
3114
3115        /* Set the bad block position */
3116        if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3117                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3118        else
3119                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3120
3121        /*
3122         * Bad block marker is stored in the last page of each block
3123         * on Samsung and Hynix MLC devices; stored in first two pages
3124         * of each block on Micron devices with 2KiB pages and on
3125         * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3126         * only the first page.
3127         */
3128        if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3129                        (*maf_id == NAND_MFR_SAMSUNG ||
3130                         *maf_id == NAND_MFR_HYNIX))
3131                chip->options |= NAND_BBT_SCANLASTPAGE;
3132        else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3133                                (*maf_id == NAND_MFR_SAMSUNG ||
3134                                 *maf_id == NAND_MFR_HYNIX ||
3135                                 *maf_id == NAND_MFR_TOSHIBA ||
3136                                 *maf_id == NAND_MFR_AMD)) ||
3137                        (mtd->writesize == 2048 &&
3138                         *maf_id == NAND_MFR_MICRON))
3139                chip->options |= NAND_BBT_SCAN2NDPAGE;
3140
3141        /*
3142         * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3143         */
3144        if (!(busw & NAND_BUSWIDTH_16) &&
3145                        *maf_id == NAND_MFR_STMICRO &&
3146                        mtd->writesize == 2048) {
3147                chip->options |= NAND_BBT_SCANBYTE1AND6;
3148                chip->badblockpos = 0;
3149        }
3150
3151        /* Check for AND chips with 4 page planes */
3152        if (chip->options & NAND_4PAGE_ARRAY)
3153                chip->erase_cmd = multi_erase_cmd;
3154        else
3155                chip->erase_cmd = single_erase_cmd;
3156
3157        /* Do not replace user supplied command function ! */
3158        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3159                chip->cmdfunc = nand_command_lp;
3160
3161        /* TODO onfi flash name */
3162        printk(KERN_INFO "NAND device: Manufacturer ID:"
3163                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3164                nand_manuf_ids[maf_idx].name,
3165                chip->onfi_version ? chip->onfi_params.model : type->name);
3166
3167        return type;
3168}
3169
3170/**
3171 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3172 * @mtd:             MTD device structure
3173 * @maxchips:        Number of chips to scan for
3174 * @table:           Alternative NAND ID table
3175 *
3176 * This is the first phase of the normal nand_scan() function. It
3177 * reads the flash ID and sets up MTD fields accordingly.
3178 *
3179 * The mtd->owner field must be set to the module of the caller.
3180 */
3181int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3182                    struct nand_flash_dev *table)
3183{
3184        int i, busw, nand_maf_id, nand_dev_id;
3185        struct nand_chip *chip = mtd->priv;
3186        struct nand_flash_dev *type;
3187
3188        /* Get buswidth to select the correct functions */
3189        busw = chip->options & NAND_BUSWIDTH_16;
3190        /* Set the default functions */
3191        nand_set_defaults(chip, busw);
3192
3193        /* Read the flash type */
3194        type = nand_get_flash_type(mtd, chip, busw,
3195                                &nand_maf_id, &nand_dev_id, table);
3196
3197        if (IS_ERR(type)) {
3198                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3199                        printk(KERN_WARNING "No NAND device found.\n");
3200                chip->select_chip(mtd, -1);
3201                return PTR_ERR(type);
3202        }
3203
3204        /* Check for a chip array */
3205        for (i = 1; i < maxchips; i++) {
3206                chip->select_chip(mtd, i);
3207                /* See comment in nand_get_flash_type for reset */
3208                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3209                /* Send the command for reading device ID */
3210                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3211                /* Read manufacturer and device IDs */
3212                if (nand_maf_id != chip->read_byte(mtd) ||
3213                    nand_dev_id != chip->read_byte(mtd))
3214                        break;
3215        }
3216        if (i > 1)
3217                printk(KERN_INFO "%d NAND chips detected\n", i);
3218
3219        /* Store the number of chips and calc total size for mtd */
3220        chip->numchips = i;
3221        mtd->size = i * chip->chipsize;
3222
3223        return 0;
3224}
3225EXPORT_SYMBOL(nand_scan_ident);
3226
3227
3228/**
3229 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3230 * @mtd:            MTD device structure
3231 *
3232 * This is the second phase of the normal nand_scan() function. It
3233 * fills out all the uninitialized function pointers with the defaults
3234 * and scans for a bad block table if appropriate.
3235 */
3236int nand_scan_tail(struct mtd_info *mtd)
3237{
3238        int i;
3239        struct nand_chip *chip = mtd->priv;
3240
3241        if (!(chip->options & NAND_OWN_BUFFERS))
3242                chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3243        if (!chip->buffers)
3244                return -ENOMEM;
3245
3246        /* Set the internal oob buffer location, just after the page data */
3247        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3248
3249        /*
3250         * If no default placement scheme is given, select an appropriate one
3251         */
3252        if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3253                switch (mtd->oobsize) {
3254                case 8:
3255                        chip->ecc.layout = &nand_oob_8;
3256                        break;
3257                case 16:
3258                        chip->ecc.layout = &nand_oob_16;
3259                        break;
3260                case 64:
3261                        chip->ecc.layout = &nand_oob_64;
3262                        break;
3263                case 128:
3264                        chip->ecc.layout = &nand_oob_128;
3265                        break;
3266                default:
3267                        printk(KERN_WARNING "No oob scheme defined for "
3268                               "oobsize %d\n", mtd->oobsize);
3269                        BUG();
3270                }
3271        }
3272
3273        if (!chip->write_page)
3274                chip->write_page = nand_write_page;
3275
3276        /*
3277         * check ECC mode, default to software if 3byte/512byte hardware ECC is
3278         * selected and we have 256 byte pagesize fallback to software ECC
3279         */
3280
3281        switch (chip->ecc.mode) {
3282        case NAND_ECC_HW_OOB_FIRST:
3283                /* Similar to NAND_ECC_HW, but a separate read_page handle */
3284                if (!chip->ecc.calculate || !chip->ecc.correct ||
3285                     !chip->ecc.hwctl) {
3286                        printk(KERN_WARNING "No ECC functions supplied; "
3287                               "Hardware ECC not possible\n");
3288                        BUG();
3289                }
3290                if (!chip->ecc.read_page)
3291                        chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3292
3293        case NAND_ECC_HW:
3294                /* Use standard hwecc read page function ? */
3295                if (!chip->ecc.read_page)
3296                        chip->ecc.read_page = nand_read_page_hwecc;
3297                if (!chip->ecc.write_page)
3298                        chip->ecc.write_page = nand_write_page_hwecc;
3299                if (!chip->ecc.read_page_raw)
3300                        chip->ecc.read_page_raw = nand_read_page_raw;
3301                if (!chip->ecc.write_page_raw)
3302                        chip->ecc.write_page_raw = nand_write_page_raw;
3303                if (!chip->ecc.read_oob)
3304                        chip->ecc.read_oob = nand_read_oob_std;
3305                if (!chip->ecc.write_oob)
3306                        chip->ecc.write_oob = nand_write_oob_std;
3307
3308        case NAND_ECC_HW_SYNDROME:
3309                if ((!chip->ecc.calculate || !chip->ecc.correct ||
3310                     !chip->ecc.hwctl) &&
3311                    (!chip->ecc.read_page ||
3312                     chip->ecc.read_page == nand_read_page_hwecc ||
3313                     !chip->ecc.write_page ||
3314                     chip->ecc.write_page == nand_write_page_hwecc)) {
3315                        printk(KERN_WARNING "No ECC functions supplied; "
3316                               "Hardware ECC not possible\n");
3317                        BUG();
3318                }
3319                /* Use standard syndrome read/write page function ? */
3320                if (!chip->ecc.read_page)
3321                        chip->ecc.read_page = nand_read_page_syndrome;
3322                if (!chip->ecc.write_page)
3323                        chip->ecc.write_page = nand_write_page_syndrome;
3324                if (!chip->ecc.read_page_raw)
3325                        chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3326                if (!chip->ecc.write_page_raw)
3327                        chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3328                if (!chip->ecc.read_oob)
3329                        chip->ecc.read_oob = nand_read_oob_syndrome;
3330                if (!chip->ecc.write_oob)
3331                        chip->ecc.write_oob = nand_write_oob_syndrome;
3332
3333                if (mtd->writesize >= chip->ecc.size)
3334                        break;
3335                printk(KERN_WARNING "%d byte HW ECC not possible on "
3336                       "%d byte page size, fallback to SW ECC\n",
3337                       chip->ecc.size, mtd->writesize);
3338                chip->ecc.mode = NAND_ECC_SOFT;
3339
3340        case NAND_ECC_SOFT:
3341                chip->ecc.calculate = nand_calculate_ecc;
3342                chip->ecc.correct = nand_correct_data;
3343                chip->ecc.read_page = nand_read_page_swecc;
3344                chip->ecc.read_subpage = nand_read_subpage;
3345                chip->ecc.write_page = nand_write_page_swecc;
3346                chip->ecc.read_page_raw = nand_read_page_raw;
3347                chip->ecc.write_page_raw = nand_write_page_raw;
3348                chip->ecc.read_oob = nand_read_oob_std;
3349                chip->ecc.write_oob = nand_write_oob_std;
3350                if (!chip->ecc.size)
3351                        chip->ecc.size = 256;
3352                chip->ecc.bytes = 3;
3353                break;
3354
3355        case NAND_ECC_SOFT_BCH:
3356                if (!mtd_nand_has_bch()) {
3357                        printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n");
3358                        BUG();
3359                }
3360                chip->ecc.calculate = nand_bch_calculate_ecc;
3361                chip->ecc.correct = nand_bch_correct_data;
3362                chip->ecc.read_page = nand_read_page_swecc;
3363                chip->ecc.read_subpage = nand_read_subpage;
3364                chip->ecc.write_page = nand_write_page_swecc;
3365                chip->ecc.read_page_raw = nand_read_page_raw;
3366                chip->ecc.write_page_raw = nand_write_page_raw;
3367                chip->ecc.read_oob = nand_read_oob_std;
3368                chip->ecc.write_oob = nand_write_oob_std;
3369                /*
3370                 * Board driver should supply ecc.size and ecc.bytes values to
3371                 * select how many bits are correctable; see nand_bch_init()
3372                 * for details.
3373                 * Otherwise, default to 4 bits for large page devices
3374                 */
3375                if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3376                        chip->ecc.size = 512;
3377                        chip->ecc.bytes = 7;
3378                }
3379                chip->ecc.priv = nand_bch_init(mtd,
3380                                               chip->ecc.size,
3381                                               chip->ecc.bytes,
3382                                               &chip->ecc.layout);
3383                if (!chip->ecc.priv) {
3384                        printk(KERN_WARNING "BCH ECC initialization failed!\n");
3385                        BUG();
3386                }
3387                break;
3388
3389        case NAND_ECC_NONE:
3390                printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3391                       "This is not recommended !!\n");
3392                chip->ecc.read_page = nand_read_page_raw;
3393                chip->ecc.write_page = nand_write_page_raw;
3394                chip->ecc.read_oob = nand_read_oob_std;
3395                chip->ecc.read_page_raw = nand_read_page_raw;
3396                chip->ecc.write_page_raw = nand_write_page_raw;
3397                chip->ecc.write_oob = nand_write_oob_std;
3398                chip->ecc.size = mtd->writesize;
3399                chip->ecc.bytes = 0;
3400                break;
3401
3402        default:
3403                printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3404                       chip->ecc.mode);
3405                BUG();
3406        }
3407
3408        /*
3409         * The number of bytes available for a client to place data into
3410         * the out of band area
3411         */
3412        chip->ecc.layout->oobavail = 0;
3413        for (i = 0; chip->ecc.layout->oobfree[i].length
3414                        && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3415                chip->ecc.layout->oobavail +=
3416                        chip->ecc.layout->oobfree[i].length;
3417        mtd->oobavail = chip->ecc.layout->oobavail;
3418
3419        /*
3420         * Set the number of read / write steps for one page depending on ECC
3421         * mode
3422         */
3423        chip->ecc.steps = mtd->writesize / chip->ecc.size;
3424        if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3425                printk(KERN_WARNING "Invalid ecc parameters\n");
3426                BUG();
3427        }
3428        chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3429
3430        /*
3431         * Allow subpage writes up to ecc.steps. Not possible for MLC
3432         * FLASH.
3433         */
3434        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3435            !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3436                switch (chip->ecc.steps) {
3437                case 2:
3438                        mtd->subpage_sft = 1;
3439                        break;
3440                case 4:
3441                case 8:
3442                case 16:
3443                        mtd->subpage_sft = 2;
3444                        break;
3445                }
3446        }
3447        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3448
3449        /* Initialize state */
3450        chip->state = FL_READY;
3451
3452        /* De-select the device */
3453        chip->select_chip(mtd, -1);
3454
3455        /* Invalidate the pagebuffer reference */
3456        chip->pagebuf = -1;
3457
3458        /* Fill in remaining MTD driver data */
3459        mtd->type = MTD_NANDFLASH;
3460        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3461                                                MTD_CAP_NANDFLASH;
3462        mtd->erase = nand_erase;
3463        mtd->point = NULL;
3464        mtd->unpoint = NULL;
3465        mtd->read = nand_read;
3466        mtd->write = nand_write;
3467        mtd->panic_write = panic_nand_write;
3468        mtd->read_oob = nand_read_oob;
3469        mtd->write_oob = nand_write_oob;
3470        mtd->sync = nand_sync;
3471        mtd->lock = NULL;
3472        mtd->unlock = NULL;
3473        mtd->suspend = nand_suspend;
3474        mtd->resume = nand_resume;
3475        mtd->block_isbad = nand_block_isbad;
3476        mtd->block_markbad = nand_block_markbad;
3477        mtd->writebufsize = mtd->writesize;
3478
3479        /* propagate ecc.layout to mtd_info */
3480        mtd->ecclayout = chip->ecc.layout;
3481
3482        /* Check, if we should skip the bad block table scan */
3483        if (chip->options & NAND_SKIP_BBTSCAN)
3484                return 0;
3485
3486        /* Build bad block table */
3487        return chip->scan_bbt(mtd);
3488}
3489EXPORT_SYMBOL(nand_scan_tail);
3490
3491/* is_module_text_address() isn't exported, and it's mostly a pointless
3492 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3493 * to call us from in-kernel code if the core NAND support is modular. */
3494#ifdef MODULE
3495#define caller_is_module() (1)
3496#else
3497#define caller_is_module() \
3498        is_module_text_address((unsigned long)__builtin_return_address(0))
3499#endif
3500
3501/**
3502 * nand_scan - [NAND Interface] Scan for the NAND device
3503 * @mtd:        MTD device structure
3504 * @maxchips:   Number of chips to scan for
3505 *
3506 * This fills out all the uninitialized function pointers
3507 * with the defaults.
3508 * The flash ID is read and the mtd/chip structures are
3509 * filled with the appropriate values.
3510 * The mtd->owner field must be set to the module of the caller
3511 *
3512 */
3513int nand_scan(struct mtd_info *mtd, int maxchips)
3514{
3515        int ret;
3516
3517        /* Many callers got this wrong, so check for it for a while... */
3518        if (!mtd->owner && caller_is_module()) {
3519                printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3520                                __func__);
3521                BUG();
3522        }
3523
3524        ret = nand_scan_ident(mtd, maxchips, NULL);
3525        if (!ret)
3526                ret = nand_scan_tail(mtd);
3527        return ret;
3528}
3529EXPORT_SYMBOL(nand_scan);
3530
3531/**
3532 * nand_release - [NAND Interface] Free resources held by the NAND device
3533 * @mtd:        MTD device structure
3534*/
3535void nand_release(struct mtd_info *mtd)
3536{
3537        struct nand_chip *chip = mtd->priv;
3538
3539        if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3540                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3541
3542#ifdef CONFIG_MTD_PARTITIONS
3543        /* Deregister partitions */
3544        del_mtd_partitions(mtd);
3545#endif
3546        /* Deregister the device */
3547        del_mtd_device(mtd);
3548
3549        /* Free bad block table memory */
3550        kfree(chip->bbt);
3551        if (!(chip->options & NAND_OWN_BUFFERS))
3552                kfree(chip->buffers);
3553
3554        /* Free bad block descriptor memory */
3555        if (chip->badblock_pattern && chip->badblock_pattern->options
3556                        & NAND_BBT_DYNAMICSTRUCT)
3557                kfree(chip->badblock_pattern);
3558}
3559EXPORT_SYMBOL_GPL(nand_release);
3560
3561static int __init nand_base_init(void)
3562{
3563        led_trigger_register_simple("nand-disk", &nand_led_trigger);
3564        return 0;
3565}
3566
3567static void __exit nand_base_exit(void)
3568{
3569        led_trigger_unregister_simple(nand_led_trigger);
3570}
3571
3572module_init(nand_base_init);
3573module_exit(nand_base_exit);
3574
3575MODULE_LICENSE("GPL");
3576MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3577MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3578MODULE_DESCRIPTION("Generic NAND flash driver code");
3579