linux/drivers/net/s2io.c
<<
>>
Prefs
   1/************************************************************************
   2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
   3 * Copyright(c) 2002-2010 Exar Corp.
   4 *
   5 * This software may be used and distributed according to the terms of
   6 * the GNU General Public License (GPL), incorporated herein by reference.
   7 * Drivers based on or derived from this code fall under the GPL and must
   8 * retain the authorship, copyright and license notice.  This file is not
   9 * a complete program and may only be used when the entire operating
  10 * system is licensed under the GPL.
  11 * See the file COPYING in this distribution for more information.
  12 *
  13 * Credits:
  14 * Jeff Garzik          : For pointing out the improper error condition
  15 *                        check in the s2io_xmit routine and also some
  16 *                        issues in the Tx watch dog function. Also for
  17 *                        patiently answering all those innumerable
  18 *                        questions regaring the 2.6 porting issues.
  19 * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
  20 *                        macros available only in 2.6 Kernel.
  21 * Francois Romieu      : For pointing out all code part that were
  22 *                        deprecated and also styling related comments.
  23 * Grant Grundler       : For helping me get rid of some Architecture
  24 *                        dependent code.
  25 * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
  26 *
  27 * The module loadable parameters that are supported by the driver and a brief
  28 * explanation of all the variables.
  29 *
  30 * rx_ring_num : This can be used to program the number of receive rings used
  31 * in the driver.
  32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33 *     This is also an array of size 8.
  34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35 *              values are 1, 2.
  36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38 * Tx descriptors that can be associated with each corresponding FIFO.
  39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40 *     2(MSI_X). Default value is '2(MSI_X)'
  41 * lro_max_pkts: This parameter defines maximum number of packets can be
  42 *     aggregated as a single large packet
  43 * napi: This parameter used to enable/disable NAPI (polling Rx)
  44 *     Possible values '1' for enable and '0' for disable. Default is '1'
  45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  46 *      Possible values '1' for enable and '0' for disable. Default is '0'
  47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  48 *                 Possible values '1' for enable , '0' for disable.
  49 *                 Default is '2' - which means disable in promisc mode
  50 *                 and enable in non-promiscuous mode.
  51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
  52 *      Possible values '1' for enable and '0' for disable. Default is '0'
  53 ************************************************************************/
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/errno.h>
  60#include <linux/ioport.h>
  61#include <linux/pci.h>
  62#include <linux/dma-mapping.h>
  63#include <linux/kernel.h>
  64#include <linux/netdevice.h>
  65#include <linux/etherdevice.h>
  66#include <linux/mdio.h>
  67#include <linux/skbuff.h>
  68#include <linux/init.h>
  69#include <linux/delay.h>
  70#include <linux/stddef.h>
  71#include <linux/ioctl.h>
  72#include <linux/timex.h>
  73#include <linux/ethtool.h>
  74#include <linux/workqueue.h>
  75#include <linux/if_vlan.h>
  76#include <linux/ip.h>
  77#include <linux/tcp.h>
  78#include <linux/uaccess.h>
  79#include <linux/io.h>
  80#include <linux/slab.h>
  81#include <net/tcp.h>
  82
  83#include <asm/system.h>
  84#include <asm/div64.h>
  85#include <asm/irq.h>
  86
  87/* local include */
  88#include "s2io.h"
  89#include "s2io-regs.h"
  90
  91#define DRV_VERSION "2.0.26.28"
  92
  93/* S2io Driver name & version. */
  94static const char s2io_driver_name[] = "Neterion";
  95static const char s2io_driver_version[] = DRV_VERSION;
  96
  97static const int rxd_size[2] = {32, 48};
  98static const int rxd_count[2] = {127, 85};
  99
 100static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
 101{
 102        int ret;
 103
 104        ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
 105               (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
 106
 107        return ret;
 108}
 109
 110/*
 111 * Cards with following subsystem_id have a link state indication
 112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
 113 * macro below identifies these cards given the subsystem_id.
 114 */
 115#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
 116        (dev_type == XFRAME_I_DEVICE) ?                                 \
 117        ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
 118          ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
 119
 120#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
 121                                      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
 122
 123static inline int is_s2io_card_up(const struct s2io_nic *sp)
 124{
 125        return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
 126}
 127
 128/* Ethtool related variables and Macros. */
 129static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
 130        "Register test\t(offline)",
 131        "Eeprom test\t(offline)",
 132        "Link test\t(online)",
 133        "RLDRAM test\t(offline)",
 134        "BIST Test\t(offline)"
 135};
 136
 137static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
 138        {"tmac_frms"},
 139        {"tmac_data_octets"},
 140        {"tmac_drop_frms"},
 141        {"tmac_mcst_frms"},
 142        {"tmac_bcst_frms"},
 143        {"tmac_pause_ctrl_frms"},
 144        {"tmac_ttl_octets"},
 145        {"tmac_ucst_frms"},
 146        {"tmac_nucst_frms"},
 147        {"tmac_any_err_frms"},
 148        {"tmac_ttl_less_fb_octets"},
 149        {"tmac_vld_ip_octets"},
 150        {"tmac_vld_ip"},
 151        {"tmac_drop_ip"},
 152        {"tmac_icmp"},
 153        {"tmac_rst_tcp"},
 154        {"tmac_tcp"},
 155        {"tmac_udp"},
 156        {"rmac_vld_frms"},
 157        {"rmac_data_octets"},
 158        {"rmac_fcs_err_frms"},
 159        {"rmac_drop_frms"},
 160        {"rmac_vld_mcst_frms"},
 161        {"rmac_vld_bcst_frms"},
 162        {"rmac_in_rng_len_err_frms"},
 163        {"rmac_out_rng_len_err_frms"},
 164        {"rmac_long_frms"},
 165        {"rmac_pause_ctrl_frms"},
 166        {"rmac_unsup_ctrl_frms"},
 167        {"rmac_ttl_octets"},
 168        {"rmac_accepted_ucst_frms"},
 169        {"rmac_accepted_nucst_frms"},
 170        {"rmac_discarded_frms"},
 171        {"rmac_drop_events"},
 172        {"rmac_ttl_less_fb_octets"},
 173        {"rmac_ttl_frms"},
 174        {"rmac_usized_frms"},
 175        {"rmac_osized_frms"},
 176        {"rmac_frag_frms"},
 177        {"rmac_jabber_frms"},
 178        {"rmac_ttl_64_frms"},
 179        {"rmac_ttl_65_127_frms"},
 180        {"rmac_ttl_128_255_frms"},
 181        {"rmac_ttl_256_511_frms"},
 182        {"rmac_ttl_512_1023_frms"},
 183        {"rmac_ttl_1024_1518_frms"},
 184        {"rmac_ip"},
 185        {"rmac_ip_octets"},
 186        {"rmac_hdr_err_ip"},
 187        {"rmac_drop_ip"},
 188        {"rmac_icmp"},
 189        {"rmac_tcp"},
 190        {"rmac_udp"},
 191        {"rmac_err_drp_udp"},
 192        {"rmac_xgmii_err_sym"},
 193        {"rmac_frms_q0"},
 194        {"rmac_frms_q1"},
 195        {"rmac_frms_q2"},
 196        {"rmac_frms_q3"},
 197        {"rmac_frms_q4"},
 198        {"rmac_frms_q5"},
 199        {"rmac_frms_q6"},
 200        {"rmac_frms_q7"},
 201        {"rmac_full_q0"},
 202        {"rmac_full_q1"},
 203        {"rmac_full_q2"},
 204        {"rmac_full_q3"},
 205        {"rmac_full_q4"},
 206        {"rmac_full_q5"},
 207        {"rmac_full_q6"},
 208        {"rmac_full_q7"},
 209        {"rmac_pause_cnt"},
 210        {"rmac_xgmii_data_err_cnt"},
 211        {"rmac_xgmii_ctrl_err_cnt"},
 212        {"rmac_accepted_ip"},
 213        {"rmac_err_tcp"},
 214        {"rd_req_cnt"},
 215        {"new_rd_req_cnt"},
 216        {"new_rd_req_rtry_cnt"},
 217        {"rd_rtry_cnt"},
 218        {"wr_rtry_rd_ack_cnt"},
 219        {"wr_req_cnt"},
 220        {"new_wr_req_cnt"},
 221        {"new_wr_req_rtry_cnt"},
 222        {"wr_rtry_cnt"},
 223        {"wr_disc_cnt"},
 224        {"rd_rtry_wr_ack_cnt"},
 225        {"txp_wr_cnt"},
 226        {"txd_rd_cnt"},
 227        {"txd_wr_cnt"},
 228        {"rxd_rd_cnt"},
 229        {"rxd_wr_cnt"},
 230        {"txf_rd_cnt"},
 231        {"rxf_wr_cnt"}
 232};
 233
 234static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
 235        {"rmac_ttl_1519_4095_frms"},
 236        {"rmac_ttl_4096_8191_frms"},
 237        {"rmac_ttl_8192_max_frms"},
 238        {"rmac_ttl_gt_max_frms"},
 239        {"rmac_osized_alt_frms"},
 240        {"rmac_jabber_alt_frms"},
 241        {"rmac_gt_max_alt_frms"},
 242        {"rmac_vlan_frms"},
 243        {"rmac_len_discard"},
 244        {"rmac_fcs_discard"},
 245        {"rmac_pf_discard"},
 246        {"rmac_da_discard"},
 247        {"rmac_red_discard"},
 248        {"rmac_rts_discard"},
 249        {"rmac_ingm_full_discard"},
 250        {"link_fault_cnt"}
 251};
 252
 253static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
 254        {"\n DRIVER STATISTICS"},
 255        {"single_bit_ecc_errs"},
 256        {"double_bit_ecc_errs"},
 257        {"parity_err_cnt"},
 258        {"serious_err_cnt"},
 259        {"soft_reset_cnt"},
 260        {"fifo_full_cnt"},
 261        {"ring_0_full_cnt"},
 262        {"ring_1_full_cnt"},
 263        {"ring_2_full_cnt"},
 264        {"ring_3_full_cnt"},
 265        {"ring_4_full_cnt"},
 266        {"ring_5_full_cnt"},
 267        {"ring_6_full_cnt"},
 268        {"ring_7_full_cnt"},
 269        {"alarm_transceiver_temp_high"},
 270        {"alarm_transceiver_temp_low"},
 271        {"alarm_laser_bias_current_high"},
 272        {"alarm_laser_bias_current_low"},
 273        {"alarm_laser_output_power_high"},
 274        {"alarm_laser_output_power_low"},
 275        {"warn_transceiver_temp_high"},
 276        {"warn_transceiver_temp_low"},
 277        {"warn_laser_bias_current_high"},
 278        {"warn_laser_bias_current_low"},
 279        {"warn_laser_output_power_high"},
 280        {"warn_laser_output_power_low"},
 281        {"lro_aggregated_pkts"},
 282        {"lro_flush_both_count"},
 283        {"lro_out_of_sequence_pkts"},
 284        {"lro_flush_due_to_max_pkts"},
 285        {"lro_avg_aggr_pkts"},
 286        {"mem_alloc_fail_cnt"},
 287        {"pci_map_fail_cnt"},
 288        {"watchdog_timer_cnt"},
 289        {"mem_allocated"},
 290        {"mem_freed"},
 291        {"link_up_cnt"},
 292        {"link_down_cnt"},
 293        {"link_up_time"},
 294        {"link_down_time"},
 295        {"tx_tcode_buf_abort_cnt"},
 296        {"tx_tcode_desc_abort_cnt"},
 297        {"tx_tcode_parity_err_cnt"},
 298        {"tx_tcode_link_loss_cnt"},
 299        {"tx_tcode_list_proc_err_cnt"},
 300        {"rx_tcode_parity_err_cnt"},
 301        {"rx_tcode_abort_cnt"},
 302        {"rx_tcode_parity_abort_cnt"},
 303        {"rx_tcode_rda_fail_cnt"},
 304        {"rx_tcode_unkn_prot_cnt"},
 305        {"rx_tcode_fcs_err_cnt"},
 306        {"rx_tcode_buf_size_err_cnt"},
 307        {"rx_tcode_rxd_corrupt_cnt"},
 308        {"rx_tcode_unkn_err_cnt"},
 309        {"tda_err_cnt"},
 310        {"pfc_err_cnt"},
 311        {"pcc_err_cnt"},
 312        {"tti_err_cnt"},
 313        {"tpa_err_cnt"},
 314        {"sm_err_cnt"},
 315        {"lso_err_cnt"},
 316        {"mac_tmac_err_cnt"},
 317        {"mac_rmac_err_cnt"},
 318        {"xgxs_txgxs_err_cnt"},
 319        {"xgxs_rxgxs_err_cnt"},
 320        {"rc_err_cnt"},
 321        {"prc_pcix_err_cnt"},
 322        {"rpa_err_cnt"},
 323        {"rda_err_cnt"},
 324        {"rti_err_cnt"},
 325        {"mc_err_cnt"}
 326};
 327
 328#define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
 329#define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
 330#define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
 331
 332#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
 333#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
 334
 335#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
 336#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
 337
 338#define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
 339#define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
 340
 341#define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
 342        init_timer(&timer);                             \
 343        timer.function = handle;                        \
 344        timer.data = (unsigned long)arg;                \
 345        mod_timer(&timer, (jiffies + exp))              \
 346
 347/* copy mac addr to def_mac_addr array */
 348static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
 349{
 350        sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
 351        sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
 352        sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
 353        sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
 354        sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
 355        sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
 356}
 357
 358/* Add the vlan */
 359static void s2io_vlan_rx_register(struct net_device *dev,
 360                                  struct vlan_group *grp)
 361{
 362        int i;
 363        struct s2io_nic *nic = netdev_priv(dev);
 364        unsigned long flags[MAX_TX_FIFOS];
 365        struct config_param *config = &nic->config;
 366        struct mac_info *mac_control = &nic->mac_control;
 367
 368        for (i = 0; i < config->tx_fifo_num; i++) {
 369                struct fifo_info *fifo = &mac_control->fifos[i];
 370
 371                spin_lock_irqsave(&fifo->tx_lock, flags[i]);
 372        }
 373
 374        nic->vlgrp = grp;
 375
 376        for (i = config->tx_fifo_num - 1; i >= 0; i--) {
 377                struct fifo_info *fifo = &mac_control->fifos[i];
 378
 379                spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
 380        }
 381}
 382
 383/* Unregister the vlan */
 384static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
 385{
 386        int i;
 387        struct s2io_nic *nic = netdev_priv(dev);
 388        unsigned long flags[MAX_TX_FIFOS];
 389        struct config_param *config = &nic->config;
 390        struct mac_info *mac_control = &nic->mac_control;
 391
 392        for (i = 0; i < config->tx_fifo_num; i++) {
 393                struct fifo_info *fifo = &mac_control->fifos[i];
 394
 395                spin_lock_irqsave(&fifo->tx_lock, flags[i]);
 396        }
 397
 398        if (nic->vlgrp)
 399                vlan_group_set_device(nic->vlgrp, vid, NULL);
 400
 401        for (i = config->tx_fifo_num - 1; i >= 0; i--) {
 402                struct fifo_info *fifo = &mac_control->fifos[i];
 403
 404                spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
 405        }
 406}
 407
 408/*
 409 * Constants to be programmed into the Xena's registers, to configure
 410 * the XAUI.
 411 */
 412
 413#define END_SIGN        0x0
 414static const u64 herc_act_dtx_cfg[] = {
 415        /* Set address */
 416        0x8000051536750000ULL, 0x80000515367500E0ULL,
 417        /* Write data */
 418        0x8000051536750004ULL, 0x80000515367500E4ULL,
 419        /* Set address */
 420        0x80010515003F0000ULL, 0x80010515003F00E0ULL,
 421        /* Write data */
 422        0x80010515003F0004ULL, 0x80010515003F00E4ULL,
 423        /* Set address */
 424        0x801205150D440000ULL, 0x801205150D4400E0ULL,
 425        /* Write data */
 426        0x801205150D440004ULL, 0x801205150D4400E4ULL,
 427        /* Set address */
 428        0x80020515F2100000ULL, 0x80020515F21000E0ULL,
 429        /* Write data */
 430        0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 431        /* Done */
 432        END_SIGN
 433};
 434
 435static const u64 xena_dtx_cfg[] = {
 436        /* Set address */
 437        0x8000051500000000ULL, 0x80000515000000E0ULL,
 438        /* Write data */
 439        0x80000515D9350004ULL, 0x80000515D93500E4ULL,
 440        /* Set address */
 441        0x8001051500000000ULL, 0x80010515000000E0ULL,
 442        /* Write data */
 443        0x80010515001E0004ULL, 0x80010515001E00E4ULL,
 444        /* Set address */
 445        0x8002051500000000ULL, 0x80020515000000E0ULL,
 446        /* Write data */
 447        0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 448        END_SIGN
 449};
 450
 451/*
 452 * Constants for Fixing the MacAddress problem seen mostly on
 453 * Alpha machines.
 454 */
 455static const u64 fix_mac[] = {
 456        0x0060000000000000ULL, 0x0060600000000000ULL,
 457        0x0040600000000000ULL, 0x0000600000000000ULL,
 458        0x0020600000000000ULL, 0x0060600000000000ULL,
 459        0x0020600000000000ULL, 0x0060600000000000ULL,
 460        0x0020600000000000ULL, 0x0060600000000000ULL,
 461        0x0020600000000000ULL, 0x0060600000000000ULL,
 462        0x0020600000000000ULL, 0x0060600000000000ULL,
 463        0x0020600000000000ULL, 0x0060600000000000ULL,
 464        0x0020600000000000ULL, 0x0060600000000000ULL,
 465        0x0020600000000000ULL, 0x0060600000000000ULL,
 466        0x0020600000000000ULL, 0x0060600000000000ULL,
 467        0x0020600000000000ULL, 0x0060600000000000ULL,
 468        0x0020600000000000ULL, 0x0000600000000000ULL,
 469        0x0040600000000000ULL, 0x0060600000000000ULL,
 470        END_SIGN
 471};
 472
 473MODULE_LICENSE("GPL");
 474MODULE_VERSION(DRV_VERSION);
 475
 476
 477/* Module Loadable parameters. */
 478S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
 479S2IO_PARM_INT(rx_ring_num, 1);
 480S2IO_PARM_INT(multiq, 0);
 481S2IO_PARM_INT(rx_ring_mode, 1);
 482S2IO_PARM_INT(use_continuous_tx_intrs, 1);
 483S2IO_PARM_INT(rmac_pause_time, 0x100);
 484S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
 485S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
 486S2IO_PARM_INT(shared_splits, 0);
 487S2IO_PARM_INT(tmac_util_period, 5);
 488S2IO_PARM_INT(rmac_util_period, 5);
 489S2IO_PARM_INT(l3l4hdr_size, 128);
 490/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
 491S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
 492/* Frequency of Rx desc syncs expressed as power of 2 */
 493S2IO_PARM_INT(rxsync_frequency, 3);
 494/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
 495S2IO_PARM_INT(intr_type, 2);
 496/* Large receive offload feature */
 497
 498/* Max pkts to be aggregated by LRO at one time. If not specified,
 499 * aggregation happens until we hit max IP pkt size(64K)
 500 */
 501S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
 502S2IO_PARM_INT(indicate_max_pkts, 0);
 503
 504S2IO_PARM_INT(napi, 1);
 505S2IO_PARM_INT(ufo, 0);
 506S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
 507
 508static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
 509{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
 510static unsigned int rx_ring_sz[MAX_RX_RINGS] =
 511{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
 512static unsigned int rts_frm_len[MAX_RX_RINGS] =
 513{[0 ...(MAX_RX_RINGS - 1)] = 0 };
 514
 515module_param_array(tx_fifo_len, uint, NULL, 0);
 516module_param_array(rx_ring_sz, uint, NULL, 0);
 517module_param_array(rts_frm_len, uint, NULL, 0);
 518
 519/*
 520 * S2IO device table.
 521 * This table lists all the devices that this driver supports.
 522 */
 523static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
 524        {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
 525         PCI_ANY_ID, PCI_ANY_ID},
 526        {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
 527         PCI_ANY_ID, PCI_ANY_ID},
 528        {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
 529         PCI_ANY_ID, PCI_ANY_ID},
 530        {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
 531         PCI_ANY_ID, PCI_ANY_ID},
 532        {0,}
 533};
 534
 535MODULE_DEVICE_TABLE(pci, s2io_tbl);
 536
 537static struct pci_error_handlers s2io_err_handler = {
 538        .error_detected = s2io_io_error_detected,
 539        .slot_reset = s2io_io_slot_reset,
 540        .resume = s2io_io_resume,
 541};
 542
 543static struct pci_driver s2io_driver = {
 544        .name = "S2IO",
 545        .id_table = s2io_tbl,
 546        .probe = s2io_init_nic,
 547        .remove = __devexit_p(s2io_rem_nic),
 548        .err_handler = &s2io_err_handler,
 549};
 550
 551/* A simplifier macro used both by init and free shared_mem Fns(). */
 552#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
 553
 554/* netqueue manipulation helper functions */
 555static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
 556{
 557        if (!sp->config.multiq) {
 558                int i;
 559
 560                for (i = 0; i < sp->config.tx_fifo_num; i++)
 561                        sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
 562        }
 563        netif_tx_stop_all_queues(sp->dev);
 564}
 565
 566static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
 567{
 568        if (!sp->config.multiq)
 569                sp->mac_control.fifos[fifo_no].queue_state =
 570                        FIFO_QUEUE_STOP;
 571
 572        netif_tx_stop_all_queues(sp->dev);
 573}
 574
 575static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
 576{
 577        if (!sp->config.multiq) {
 578                int i;
 579
 580                for (i = 0; i < sp->config.tx_fifo_num; i++)
 581                        sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 582        }
 583        netif_tx_start_all_queues(sp->dev);
 584}
 585
 586static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
 587{
 588        if (!sp->config.multiq)
 589                sp->mac_control.fifos[fifo_no].queue_state =
 590                        FIFO_QUEUE_START;
 591
 592        netif_tx_start_all_queues(sp->dev);
 593}
 594
 595static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
 596{
 597        if (!sp->config.multiq) {
 598                int i;
 599
 600                for (i = 0; i < sp->config.tx_fifo_num; i++)
 601                        sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 602        }
 603        netif_tx_wake_all_queues(sp->dev);
 604}
 605
 606static inline void s2io_wake_tx_queue(
 607        struct fifo_info *fifo, int cnt, u8 multiq)
 608{
 609
 610        if (multiq) {
 611                if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
 612                        netif_wake_subqueue(fifo->dev, fifo->fifo_no);
 613        } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
 614                if (netif_queue_stopped(fifo->dev)) {
 615                        fifo->queue_state = FIFO_QUEUE_START;
 616                        netif_wake_queue(fifo->dev);
 617                }
 618        }
 619}
 620
 621/**
 622 * init_shared_mem - Allocation and Initialization of Memory
 623 * @nic: Device private variable.
 624 * Description: The function allocates all the memory areas shared
 625 * between the NIC and the driver. This includes Tx descriptors,
 626 * Rx descriptors and the statistics block.
 627 */
 628
 629static int init_shared_mem(struct s2io_nic *nic)
 630{
 631        u32 size;
 632        void *tmp_v_addr, *tmp_v_addr_next;
 633        dma_addr_t tmp_p_addr, tmp_p_addr_next;
 634        struct RxD_block *pre_rxd_blk = NULL;
 635        int i, j, blk_cnt;
 636        int lst_size, lst_per_page;
 637        struct net_device *dev = nic->dev;
 638        unsigned long tmp;
 639        struct buffAdd *ba;
 640        struct config_param *config = &nic->config;
 641        struct mac_info *mac_control = &nic->mac_control;
 642        unsigned long long mem_allocated = 0;
 643
 644        /* Allocation and initialization of TXDLs in FIFOs */
 645        size = 0;
 646        for (i = 0; i < config->tx_fifo_num; i++) {
 647                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 648
 649                size += tx_cfg->fifo_len;
 650        }
 651        if (size > MAX_AVAILABLE_TXDS) {
 652                DBG_PRINT(ERR_DBG,
 653                          "Too many TxDs requested: %d, max supported: %d\n",
 654                          size, MAX_AVAILABLE_TXDS);
 655                return -EINVAL;
 656        }
 657
 658        size = 0;
 659        for (i = 0; i < config->tx_fifo_num; i++) {
 660                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 661
 662                size = tx_cfg->fifo_len;
 663                /*
 664                 * Legal values are from 2 to 8192
 665                 */
 666                if (size < 2) {
 667                        DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
 668                                  "Valid lengths are 2 through 8192\n",
 669                                  i, size);
 670                        return -EINVAL;
 671                }
 672        }
 673
 674        lst_size = (sizeof(struct TxD) * config->max_txds);
 675        lst_per_page = PAGE_SIZE / lst_size;
 676
 677        for (i = 0; i < config->tx_fifo_num; i++) {
 678                struct fifo_info *fifo = &mac_control->fifos[i];
 679                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 680                int fifo_len = tx_cfg->fifo_len;
 681                int list_holder_size = fifo_len * sizeof(struct list_info_hold);
 682
 683                fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
 684                if (!fifo->list_info) {
 685                        DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
 686                        return -ENOMEM;
 687                }
 688                mem_allocated += list_holder_size;
 689        }
 690        for (i = 0; i < config->tx_fifo_num; i++) {
 691                int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
 692                                                lst_per_page);
 693                struct fifo_info *fifo = &mac_control->fifos[i];
 694                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 695
 696                fifo->tx_curr_put_info.offset = 0;
 697                fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
 698                fifo->tx_curr_get_info.offset = 0;
 699                fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
 700                fifo->fifo_no = i;
 701                fifo->nic = nic;
 702                fifo->max_txds = MAX_SKB_FRAGS + 2;
 703                fifo->dev = dev;
 704
 705                for (j = 0; j < page_num; j++) {
 706                        int k = 0;
 707                        dma_addr_t tmp_p;
 708                        void *tmp_v;
 709                        tmp_v = pci_alloc_consistent(nic->pdev,
 710                                                     PAGE_SIZE, &tmp_p);
 711                        if (!tmp_v) {
 712                                DBG_PRINT(INFO_DBG,
 713                                          "pci_alloc_consistent failed for TxDL\n");
 714                                return -ENOMEM;
 715                        }
 716                        /* If we got a zero DMA address(can happen on
 717                         * certain platforms like PPC), reallocate.
 718                         * Store virtual address of page we don't want,
 719                         * to be freed later.
 720                         */
 721                        if (!tmp_p) {
 722                                mac_control->zerodma_virt_addr = tmp_v;
 723                                DBG_PRINT(INIT_DBG,
 724                                          "%s: Zero DMA address for TxDL. "
 725                                          "Virtual address %p\n",
 726                                          dev->name, tmp_v);
 727                                tmp_v = pci_alloc_consistent(nic->pdev,
 728                                                             PAGE_SIZE, &tmp_p);
 729                                if (!tmp_v) {
 730                                        DBG_PRINT(INFO_DBG,
 731                                                  "pci_alloc_consistent failed for TxDL\n");
 732                                        return -ENOMEM;
 733                                }
 734                                mem_allocated += PAGE_SIZE;
 735                        }
 736                        while (k < lst_per_page) {
 737                                int l = (j * lst_per_page) + k;
 738                                if (l == tx_cfg->fifo_len)
 739                                        break;
 740                                fifo->list_info[l].list_virt_addr =
 741                                        tmp_v + (k * lst_size);
 742                                fifo->list_info[l].list_phy_addr =
 743                                        tmp_p + (k * lst_size);
 744                                k++;
 745                        }
 746                }
 747        }
 748
 749        for (i = 0; i < config->tx_fifo_num; i++) {
 750                struct fifo_info *fifo = &mac_control->fifos[i];
 751                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 752
 753                size = tx_cfg->fifo_len;
 754                fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
 755                if (!fifo->ufo_in_band_v)
 756                        return -ENOMEM;
 757                mem_allocated += (size * sizeof(u64));
 758        }
 759
 760        /* Allocation and initialization of RXDs in Rings */
 761        size = 0;
 762        for (i = 0; i < config->rx_ring_num; i++) {
 763                struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 764                struct ring_info *ring = &mac_control->rings[i];
 765
 766                if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
 767                        DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
 768                                  "multiple of RxDs per Block\n",
 769                                  dev->name, i);
 770                        return FAILURE;
 771                }
 772                size += rx_cfg->num_rxd;
 773                ring->block_count = rx_cfg->num_rxd /
 774                        (rxd_count[nic->rxd_mode] + 1);
 775                ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
 776        }
 777        if (nic->rxd_mode == RXD_MODE_1)
 778                size = (size * (sizeof(struct RxD1)));
 779        else
 780                size = (size * (sizeof(struct RxD3)));
 781
 782        for (i = 0; i < config->rx_ring_num; i++) {
 783                struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 784                struct ring_info *ring = &mac_control->rings[i];
 785
 786                ring->rx_curr_get_info.block_index = 0;
 787                ring->rx_curr_get_info.offset = 0;
 788                ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
 789                ring->rx_curr_put_info.block_index = 0;
 790                ring->rx_curr_put_info.offset = 0;
 791                ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
 792                ring->nic = nic;
 793                ring->ring_no = i;
 794
 795                blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
 796                /*  Allocating all the Rx blocks */
 797                for (j = 0; j < blk_cnt; j++) {
 798                        struct rx_block_info *rx_blocks;
 799                        int l;
 800
 801                        rx_blocks = &ring->rx_blocks[j];
 802                        size = SIZE_OF_BLOCK;   /* size is always page size */
 803                        tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
 804                                                          &tmp_p_addr);
 805                        if (tmp_v_addr == NULL) {
 806                                /*
 807                                 * In case of failure, free_shared_mem()
 808                                 * is called, which should free any
 809                                 * memory that was alloced till the
 810                                 * failure happened.
 811                                 */
 812                                rx_blocks->block_virt_addr = tmp_v_addr;
 813                                return -ENOMEM;
 814                        }
 815                        mem_allocated += size;
 816                        memset(tmp_v_addr, 0, size);
 817
 818                        size = sizeof(struct rxd_info) *
 819                                rxd_count[nic->rxd_mode];
 820                        rx_blocks->block_virt_addr = tmp_v_addr;
 821                        rx_blocks->block_dma_addr = tmp_p_addr;
 822                        rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
 823                        if (!rx_blocks->rxds)
 824                                return -ENOMEM;
 825                        mem_allocated += size;
 826                        for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
 827                                rx_blocks->rxds[l].virt_addr =
 828                                        rx_blocks->block_virt_addr +
 829                                        (rxd_size[nic->rxd_mode] * l);
 830                                rx_blocks->rxds[l].dma_addr =
 831                                        rx_blocks->block_dma_addr +
 832                                        (rxd_size[nic->rxd_mode] * l);
 833                        }
 834                }
 835                /* Interlinking all Rx Blocks */
 836                for (j = 0; j < blk_cnt; j++) {
 837                        int next = (j + 1) % blk_cnt;
 838                        tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 839                        tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
 840                        tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 841                        tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
 842
 843                        pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
 844                        pre_rxd_blk->reserved_2_pNext_RxD_block =
 845                                (unsigned long)tmp_v_addr_next;
 846                        pre_rxd_blk->pNext_RxD_Blk_physical =
 847                                (u64)tmp_p_addr_next;
 848                }
 849        }
 850        if (nic->rxd_mode == RXD_MODE_3B) {
 851                /*
 852                 * Allocation of Storages for buffer addresses in 2BUFF mode
 853                 * and the buffers as well.
 854                 */
 855                for (i = 0; i < config->rx_ring_num; i++) {
 856                        struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 857                        struct ring_info *ring = &mac_control->rings[i];
 858
 859                        blk_cnt = rx_cfg->num_rxd /
 860                                (rxd_count[nic->rxd_mode] + 1);
 861                        size = sizeof(struct buffAdd *) * blk_cnt;
 862                        ring->ba = kmalloc(size, GFP_KERNEL);
 863                        if (!ring->ba)
 864                                return -ENOMEM;
 865                        mem_allocated += size;
 866                        for (j = 0; j < blk_cnt; j++) {
 867                                int k = 0;
 868
 869                                size = sizeof(struct buffAdd) *
 870                                        (rxd_count[nic->rxd_mode] + 1);
 871                                ring->ba[j] = kmalloc(size, GFP_KERNEL);
 872                                if (!ring->ba[j])
 873                                        return -ENOMEM;
 874                                mem_allocated += size;
 875                                while (k != rxd_count[nic->rxd_mode]) {
 876                                        ba = &ring->ba[j][k];
 877                                        size = BUF0_LEN + ALIGN_SIZE;
 878                                        ba->ba_0_org = kmalloc(size, GFP_KERNEL);
 879                                        if (!ba->ba_0_org)
 880                                                return -ENOMEM;
 881                                        mem_allocated += size;
 882                                        tmp = (unsigned long)ba->ba_0_org;
 883                                        tmp += ALIGN_SIZE;
 884                                        tmp &= ~((unsigned long)ALIGN_SIZE);
 885                                        ba->ba_0 = (void *)tmp;
 886
 887                                        size = BUF1_LEN + ALIGN_SIZE;
 888                                        ba->ba_1_org = kmalloc(size, GFP_KERNEL);
 889                                        if (!ba->ba_1_org)
 890                                                return -ENOMEM;
 891                                        mem_allocated += size;
 892                                        tmp = (unsigned long)ba->ba_1_org;
 893                                        tmp += ALIGN_SIZE;
 894                                        tmp &= ~((unsigned long)ALIGN_SIZE);
 895                                        ba->ba_1 = (void *)tmp;
 896                                        k++;
 897                                }
 898                        }
 899                }
 900        }
 901
 902        /* Allocation and initialization of Statistics block */
 903        size = sizeof(struct stat_block);
 904        mac_control->stats_mem =
 905                pci_alloc_consistent(nic->pdev, size,
 906                                     &mac_control->stats_mem_phy);
 907
 908        if (!mac_control->stats_mem) {
 909                /*
 910                 * In case of failure, free_shared_mem() is called, which
 911                 * should free any memory that was alloced till the
 912                 * failure happened.
 913                 */
 914                return -ENOMEM;
 915        }
 916        mem_allocated += size;
 917        mac_control->stats_mem_sz = size;
 918
 919        tmp_v_addr = mac_control->stats_mem;
 920        mac_control->stats_info = (struct stat_block *)tmp_v_addr;
 921        memset(tmp_v_addr, 0, size);
 922        DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
 923                dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
 924        mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
 925        return SUCCESS;
 926}
 927
 928/**
 929 * free_shared_mem - Free the allocated Memory
 930 * @nic:  Device private variable.
 931 * Description: This function is to free all memory locations allocated by
 932 * the init_shared_mem() function and return it to the kernel.
 933 */
 934
 935static void free_shared_mem(struct s2io_nic *nic)
 936{
 937        int i, j, blk_cnt, size;
 938        void *tmp_v_addr;
 939        dma_addr_t tmp_p_addr;
 940        int lst_size, lst_per_page;
 941        struct net_device *dev;
 942        int page_num = 0;
 943        struct config_param *config;
 944        struct mac_info *mac_control;
 945        struct stat_block *stats;
 946        struct swStat *swstats;
 947
 948        if (!nic)
 949                return;
 950
 951        dev = nic->dev;
 952
 953        config = &nic->config;
 954        mac_control = &nic->mac_control;
 955        stats = mac_control->stats_info;
 956        swstats = &stats->sw_stat;
 957
 958        lst_size = sizeof(struct TxD) * config->max_txds;
 959        lst_per_page = PAGE_SIZE / lst_size;
 960
 961        for (i = 0; i < config->tx_fifo_num; i++) {
 962                struct fifo_info *fifo = &mac_control->fifos[i];
 963                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 964
 965                page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
 966                for (j = 0; j < page_num; j++) {
 967                        int mem_blks = (j * lst_per_page);
 968                        struct list_info_hold *fli;
 969
 970                        if (!fifo->list_info)
 971                                return;
 972
 973                        fli = &fifo->list_info[mem_blks];
 974                        if (!fli->list_virt_addr)
 975                                break;
 976                        pci_free_consistent(nic->pdev, PAGE_SIZE,
 977                                            fli->list_virt_addr,
 978                                            fli->list_phy_addr);
 979                        swstats->mem_freed += PAGE_SIZE;
 980                }
 981                /* If we got a zero DMA address during allocation,
 982                 * free the page now
 983                 */
 984                if (mac_control->zerodma_virt_addr) {
 985                        pci_free_consistent(nic->pdev, PAGE_SIZE,
 986                                            mac_control->zerodma_virt_addr,
 987                                            (dma_addr_t)0);
 988                        DBG_PRINT(INIT_DBG,
 989                                  "%s: Freeing TxDL with zero DMA address. "
 990                                  "Virtual address %p\n",
 991                                  dev->name, mac_control->zerodma_virt_addr);
 992                        swstats->mem_freed += PAGE_SIZE;
 993                }
 994                kfree(fifo->list_info);
 995                swstats->mem_freed += tx_cfg->fifo_len *
 996                        sizeof(struct list_info_hold);
 997        }
 998
 999        size = SIZE_OF_BLOCK;
1000        for (i = 0; i < config->rx_ring_num; i++) {
1001                struct ring_info *ring = &mac_control->rings[i];
1002
1003                blk_cnt = ring->block_count;
1004                for (j = 0; j < blk_cnt; j++) {
1005                        tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1006                        tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1007                        if (tmp_v_addr == NULL)
1008                                break;
1009                        pci_free_consistent(nic->pdev, size,
1010                                            tmp_v_addr, tmp_p_addr);
1011                        swstats->mem_freed += size;
1012                        kfree(ring->rx_blocks[j].rxds);
1013                        swstats->mem_freed += sizeof(struct rxd_info) *
1014                                rxd_count[nic->rxd_mode];
1015                }
1016        }
1017
1018        if (nic->rxd_mode == RXD_MODE_3B) {
1019                /* Freeing buffer storage addresses in 2BUFF mode. */
1020                for (i = 0; i < config->rx_ring_num; i++) {
1021                        struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1022                        struct ring_info *ring = &mac_control->rings[i];
1023
1024                        blk_cnt = rx_cfg->num_rxd /
1025                                (rxd_count[nic->rxd_mode] + 1);
1026                        for (j = 0; j < blk_cnt; j++) {
1027                                int k = 0;
1028                                if (!ring->ba[j])
1029                                        continue;
1030                                while (k != rxd_count[nic->rxd_mode]) {
1031                                        struct buffAdd *ba = &ring->ba[j][k];
1032                                        kfree(ba->ba_0_org);
1033                                        swstats->mem_freed +=
1034                                                BUF0_LEN + ALIGN_SIZE;
1035                                        kfree(ba->ba_1_org);
1036                                        swstats->mem_freed +=
1037                                                BUF1_LEN + ALIGN_SIZE;
1038                                        k++;
1039                                }
1040                                kfree(ring->ba[j]);
1041                                swstats->mem_freed += sizeof(struct buffAdd) *
1042                                        (rxd_count[nic->rxd_mode] + 1);
1043                        }
1044                        kfree(ring->ba);
1045                        swstats->mem_freed += sizeof(struct buffAdd *) *
1046                                blk_cnt;
1047                }
1048        }
1049
1050        for (i = 0; i < nic->config.tx_fifo_num; i++) {
1051                struct fifo_info *fifo = &mac_control->fifos[i];
1052                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1053
1054                if (fifo->ufo_in_band_v) {
1055                        swstats->mem_freed += tx_cfg->fifo_len *
1056                                sizeof(u64);
1057                        kfree(fifo->ufo_in_band_v);
1058                }
1059        }
1060
1061        if (mac_control->stats_mem) {
1062                swstats->mem_freed += mac_control->stats_mem_sz;
1063                pci_free_consistent(nic->pdev,
1064                                    mac_control->stats_mem_sz,
1065                                    mac_control->stats_mem,
1066                                    mac_control->stats_mem_phy);
1067        }
1068}
1069
1070/**
1071 * s2io_verify_pci_mode -
1072 */
1073
1074static int s2io_verify_pci_mode(struct s2io_nic *nic)
1075{
1076        struct XENA_dev_config __iomem *bar0 = nic->bar0;
1077        register u64 val64 = 0;
1078        int     mode;
1079
1080        val64 = readq(&bar0->pci_mode);
1081        mode = (u8)GET_PCI_MODE(val64);
1082
1083        if (val64 & PCI_MODE_UNKNOWN_MODE)
1084                return -1;      /* Unknown PCI mode */
1085        return mode;
1086}
1087
1088#define NEC_VENID   0x1033
1089#define NEC_DEVID   0x0125
1090static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1091{
1092        struct pci_dev *tdev = NULL;
1093        while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1094                if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1095                        if (tdev->bus == s2io_pdev->bus->parent) {
1096                                pci_dev_put(tdev);
1097                                return 1;
1098                        }
1099                }
1100        }
1101        return 0;
1102}
1103
1104static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1105/**
1106 * s2io_print_pci_mode -
1107 */
1108static int s2io_print_pci_mode(struct s2io_nic *nic)
1109{
1110        struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111        register u64 val64 = 0;
1112        int     mode;
1113        struct config_param *config = &nic->config;
1114        const char *pcimode;
1115
1116        val64 = readq(&bar0->pci_mode);
1117        mode = (u8)GET_PCI_MODE(val64);
1118
1119        if (val64 & PCI_MODE_UNKNOWN_MODE)
1120                return -1;      /* Unknown PCI mode */
1121
1122        config->bus_speed = bus_speed[mode];
1123
1124        if (s2io_on_nec_bridge(nic->pdev)) {
1125                DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1126                          nic->dev->name);
1127                return mode;
1128        }
1129
1130        switch (mode) {
1131        case PCI_MODE_PCI_33:
1132                pcimode = "33MHz PCI bus";
1133                break;
1134        case PCI_MODE_PCI_66:
1135                pcimode = "66MHz PCI bus";
1136                break;
1137        case PCI_MODE_PCIX_M1_66:
1138                pcimode = "66MHz PCIX(M1) bus";
1139                break;
1140        case PCI_MODE_PCIX_M1_100:
1141                pcimode = "100MHz PCIX(M1) bus";
1142                break;
1143        case PCI_MODE_PCIX_M1_133:
1144                pcimode = "133MHz PCIX(M1) bus";
1145                break;
1146        case PCI_MODE_PCIX_M2_66:
1147                pcimode = "133MHz PCIX(M2) bus";
1148                break;
1149        case PCI_MODE_PCIX_M2_100:
1150                pcimode = "200MHz PCIX(M2) bus";
1151                break;
1152        case PCI_MODE_PCIX_M2_133:
1153                pcimode = "266MHz PCIX(M2) bus";
1154                break;
1155        default:
1156                pcimode = "unsupported bus!";
1157                mode = -1;
1158        }
1159
1160        DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1161                  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1162
1163        return mode;
1164}
1165
1166/**
1167 *  init_tti - Initialization transmit traffic interrupt scheme
1168 *  @nic: device private variable
1169 *  @link: link status (UP/DOWN) used to enable/disable continuous
1170 *  transmit interrupts
1171 *  Description: The function configures transmit traffic interrupts
1172 *  Return Value:  SUCCESS on success and
1173 *  '-1' on failure
1174 */
1175
1176static int init_tti(struct s2io_nic *nic, int link)
1177{
1178        struct XENA_dev_config __iomem *bar0 = nic->bar0;
1179        register u64 val64 = 0;
1180        int i;
1181        struct config_param *config = &nic->config;
1182
1183        for (i = 0; i < config->tx_fifo_num; i++) {
1184                /*
1185                 * TTI Initialization. Default Tx timer gets us about
1186                 * 250 interrupts per sec. Continuous interrupts are enabled
1187                 * by default.
1188                 */
1189                if (nic->device_type == XFRAME_II_DEVICE) {
1190                        int count = (nic->config.bus_speed * 125)/2;
1191                        val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1192                } else
1193                        val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1194
1195                val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196                        TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197                        TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198                        TTI_DATA1_MEM_TX_TIMER_AC_EN;
1199                if (i == 0)
1200                        if (use_continuous_tx_intrs && (link == LINK_UP))
1201                                val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1202                writeq(val64, &bar0->tti_data1_mem);
1203
1204                if (nic->config.intr_type == MSI_X) {
1205                        val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206                                TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207                                TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208                                TTI_DATA2_MEM_TX_UFC_D(0x300);
1209                } else {
1210                        if ((nic->config.tx_steering_type ==
1211                             TX_DEFAULT_STEERING) &&
1212                            (config->tx_fifo_num > 1) &&
1213                            (i >= nic->udp_fifo_idx) &&
1214                            (i < (nic->udp_fifo_idx +
1215                                  nic->total_udp_fifos)))
1216                                val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217                                        TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218                                        TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219                                        TTI_DATA2_MEM_TX_UFC_D(0x120);
1220                        else
1221                                val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222                                        TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223                                        TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224                                        TTI_DATA2_MEM_TX_UFC_D(0x80);
1225                }
1226
1227                writeq(val64, &bar0->tti_data2_mem);
1228
1229                val64 = TTI_CMD_MEM_WE |
1230                        TTI_CMD_MEM_STROBE_NEW_CMD |
1231                        TTI_CMD_MEM_OFFSET(i);
1232                writeq(val64, &bar0->tti_command_mem);
1233
1234                if (wait_for_cmd_complete(&bar0->tti_command_mem,
1235                                          TTI_CMD_MEM_STROBE_NEW_CMD,
1236                                          S2IO_BIT_RESET) != SUCCESS)
1237                        return FAILURE;
1238        }
1239
1240        return SUCCESS;
1241}
1242
1243/**
1244 *  init_nic - Initialization of hardware
1245 *  @nic: device private variable
1246 *  Description: The function sequentially configures every block
1247 *  of the H/W from their reset values.
1248 *  Return Value:  SUCCESS on success and
1249 *  '-1' on failure (endian settings incorrect).
1250 */
1251
1252static int init_nic(struct s2io_nic *nic)
1253{
1254        struct XENA_dev_config __iomem *bar0 = nic->bar0;
1255        struct net_device *dev = nic->dev;
1256        register u64 val64 = 0;
1257        void __iomem *add;
1258        u32 time;
1259        int i, j;
1260        int dtx_cnt = 0;
1261        unsigned long long mem_share;
1262        int mem_size;
1263        struct config_param *config = &nic->config;
1264        struct mac_info *mac_control = &nic->mac_control;
1265
1266        /* to set the swapper controle on the card */
1267        if (s2io_set_swapper(nic)) {
1268                DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1269                return -EIO;
1270        }
1271
1272        /*
1273         * Herc requires EOI to be removed from reset before XGXS, so..
1274         */
1275        if (nic->device_type & XFRAME_II_DEVICE) {
1276                val64 = 0xA500000000ULL;
1277                writeq(val64, &bar0->sw_reset);
1278                msleep(500);
1279                val64 = readq(&bar0->sw_reset);
1280        }
1281
1282        /* Remove XGXS from reset state */
1283        val64 = 0;
1284        writeq(val64, &bar0->sw_reset);
1285        msleep(500);
1286        val64 = readq(&bar0->sw_reset);
1287
1288        /* Ensure that it's safe to access registers by checking
1289         * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1290         */
1291        if (nic->device_type == XFRAME_II_DEVICE) {
1292                for (i = 0; i < 50; i++) {
1293                        val64 = readq(&bar0->adapter_status);
1294                        if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1295                                break;
1296                        msleep(10);
1297                }
1298                if (i == 50)
1299                        return -ENODEV;
1300        }
1301
1302        /*  Enable Receiving broadcasts */
1303        add = &bar0->mac_cfg;
1304        val64 = readq(&bar0->mac_cfg);
1305        val64 |= MAC_RMAC_BCAST_ENABLE;
1306        writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1307        writel((u32)val64, add);
1308        writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1309        writel((u32) (val64 >> 32), (add + 4));
1310
1311        /* Read registers in all blocks */
1312        val64 = readq(&bar0->mac_int_mask);
1313        val64 = readq(&bar0->mc_int_mask);
1314        val64 = readq(&bar0->xgxs_int_mask);
1315
1316        /*  Set MTU */
1317        val64 = dev->mtu;
1318        writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1319
1320        if (nic->device_type & XFRAME_II_DEVICE) {
1321                while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1322                        SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1323                                          &bar0->dtx_control, UF);
1324                        if (dtx_cnt & 0x1)
1325                                msleep(1); /* Necessary!! */
1326                        dtx_cnt++;
1327                }
1328        } else {
1329                while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1330                        SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1331                                          &bar0->dtx_control, UF);
1332                        val64 = readq(&bar0->dtx_control);
1333                        dtx_cnt++;
1334                }
1335        }
1336
1337        /*  Tx DMA Initialization */
1338        val64 = 0;
1339        writeq(val64, &bar0->tx_fifo_partition_0);
1340        writeq(val64, &bar0->tx_fifo_partition_1);
1341        writeq(val64, &bar0->tx_fifo_partition_2);
1342        writeq(val64, &bar0->tx_fifo_partition_3);
1343
1344        for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1345                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1346
1347                val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1348                        vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1349
1350                if (i == (config->tx_fifo_num - 1)) {
1351                        if (i % 2 == 0)
1352                                i++;
1353                }
1354
1355                switch (i) {
1356                case 1:
1357                        writeq(val64, &bar0->tx_fifo_partition_0);
1358                        val64 = 0;
1359                        j = 0;
1360                        break;
1361                case 3:
1362                        writeq(val64, &bar0->tx_fifo_partition_1);
1363                        val64 = 0;
1364                        j = 0;
1365                        break;
1366                case 5:
1367                        writeq(val64, &bar0->tx_fifo_partition_2);
1368                        val64 = 0;
1369                        j = 0;
1370                        break;
1371                case 7:
1372                        writeq(val64, &bar0->tx_fifo_partition_3);
1373                        val64 = 0;
1374                        j = 0;
1375                        break;
1376                default:
1377                        j++;
1378                        break;
1379                }
1380        }
1381
1382        /*
1383         * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384         * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1385         */
1386        if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1387                writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388
1389        val64 = readq(&bar0->tx_fifo_partition_0);
1390        DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1391                  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1392
1393        /*
1394         * Initialization of Tx_PA_CONFIG register to ignore packet
1395         * integrity checking.
1396         */
1397        val64 = readq(&bar0->tx_pa_cfg);
1398        val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1399                TX_PA_CFG_IGNORE_SNAP_OUI |
1400                TX_PA_CFG_IGNORE_LLC_CTRL |
1401                TX_PA_CFG_IGNORE_L2_ERR;
1402        writeq(val64, &bar0->tx_pa_cfg);
1403
1404        /* Rx DMA intialization. */
1405        val64 = 0;
1406        for (i = 0; i < config->rx_ring_num; i++) {
1407                struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1408
1409                val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1410        }
1411        writeq(val64, &bar0->rx_queue_priority);
1412
1413        /*
1414         * Allocating equal share of memory to all the
1415         * configured Rings.
1416         */
1417        val64 = 0;
1418        if (nic->device_type & XFRAME_II_DEVICE)
1419                mem_size = 32;
1420        else
1421                mem_size = 64;
1422
1423        for (i = 0; i < config->rx_ring_num; i++) {
1424                switch (i) {
1425                case 0:
1426                        mem_share = (mem_size / config->rx_ring_num +
1427                                     mem_size % config->rx_ring_num);
1428                        val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1429                        continue;
1430                case 1:
1431                        mem_share = (mem_size / config->rx_ring_num);
1432                        val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1433                        continue;
1434                case 2:
1435                        mem_share = (mem_size / config->rx_ring_num);
1436                        val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1437                        continue;
1438                case 3:
1439                        mem_share = (mem_size / config->rx_ring_num);
1440                        val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1441                        continue;
1442                case 4:
1443                        mem_share = (mem_size / config->rx_ring_num);
1444                        val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1445                        continue;
1446                case 5:
1447                        mem_share = (mem_size / config->rx_ring_num);
1448                        val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1449                        continue;
1450                case 6:
1451                        mem_share = (mem_size / config->rx_ring_num);
1452                        val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1453                        continue;
1454                case 7:
1455                        mem_share = (mem_size / config->rx_ring_num);
1456                        val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457                        continue;
1458                }
1459        }
1460        writeq(val64, &bar0->rx_queue_cfg);
1461
1462        /*
1463         * Filling Tx round robin registers
1464         * as per the number of FIFOs for equal scheduling priority
1465         */
1466        switch (config->tx_fifo_num) {
1467        case 1:
1468                val64 = 0x0;
1469                writeq(val64, &bar0->tx_w_round_robin_0);
1470                writeq(val64, &bar0->tx_w_round_robin_1);
1471                writeq(val64, &bar0->tx_w_round_robin_2);
1472                writeq(val64, &bar0->tx_w_round_robin_3);
1473                writeq(val64, &bar0->tx_w_round_robin_4);
1474                break;
1475        case 2:
1476                val64 = 0x0001000100010001ULL;
1477                writeq(val64, &bar0->tx_w_round_robin_0);
1478                writeq(val64, &bar0->tx_w_round_robin_1);
1479                writeq(val64, &bar0->tx_w_round_robin_2);
1480                writeq(val64, &bar0->tx_w_round_robin_3);
1481                val64 = 0x0001000100000000ULL;
1482                writeq(val64, &bar0->tx_w_round_robin_4);
1483                break;
1484        case 3:
1485                val64 = 0x0001020001020001ULL;
1486                writeq(val64, &bar0->tx_w_round_robin_0);
1487                val64 = 0x0200010200010200ULL;
1488                writeq(val64, &bar0->tx_w_round_robin_1);
1489                val64 = 0x0102000102000102ULL;
1490                writeq(val64, &bar0->tx_w_round_robin_2);
1491                val64 = 0x0001020001020001ULL;
1492                writeq(val64, &bar0->tx_w_round_robin_3);
1493                val64 = 0x0200010200000000ULL;
1494                writeq(val64, &bar0->tx_w_round_robin_4);
1495                break;
1496        case 4:
1497                val64 = 0x0001020300010203ULL;
1498                writeq(val64, &bar0->tx_w_round_robin_0);
1499                writeq(val64, &bar0->tx_w_round_robin_1);
1500                writeq(val64, &bar0->tx_w_round_robin_2);
1501                writeq(val64, &bar0->tx_w_round_robin_3);
1502                val64 = 0x0001020300000000ULL;
1503                writeq(val64, &bar0->tx_w_round_robin_4);
1504                break;
1505        case 5:
1506                val64 = 0x0001020304000102ULL;
1507                writeq(val64, &bar0->tx_w_round_robin_0);
1508                val64 = 0x0304000102030400ULL;
1509                writeq(val64, &bar0->tx_w_round_robin_1);
1510                val64 = 0x0102030400010203ULL;
1511                writeq(val64, &bar0->tx_w_round_robin_2);
1512                val64 = 0x0400010203040001ULL;
1513                writeq(val64, &bar0->tx_w_round_robin_3);
1514                val64 = 0x0203040000000000ULL;
1515                writeq(val64, &bar0->tx_w_round_robin_4);
1516                break;
1517        case 6:
1518                val64 = 0x0001020304050001ULL;
1519                writeq(val64, &bar0->tx_w_round_robin_0);
1520                val64 = 0x0203040500010203ULL;
1521                writeq(val64, &bar0->tx_w_round_robin_1);
1522                val64 = 0x0405000102030405ULL;
1523                writeq(val64, &bar0->tx_w_round_robin_2);
1524                val64 = 0x0001020304050001ULL;
1525                writeq(val64, &bar0->tx_w_round_robin_3);
1526                val64 = 0x0203040500000000ULL;
1527                writeq(val64, &bar0->tx_w_round_robin_4);
1528                break;
1529        case 7:
1530                val64 = 0x0001020304050600ULL;
1531                writeq(val64, &bar0->tx_w_round_robin_0);
1532                val64 = 0x0102030405060001ULL;
1533                writeq(val64, &bar0->tx_w_round_robin_1);
1534                val64 = 0x0203040506000102ULL;
1535                writeq(val64, &bar0->tx_w_round_robin_2);
1536                val64 = 0x0304050600010203ULL;
1537                writeq(val64, &bar0->tx_w_round_robin_3);
1538                val64 = 0x0405060000000000ULL;
1539                writeq(val64, &bar0->tx_w_round_robin_4);
1540                break;
1541        case 8:
1542                val64 = 0x0001020304050607ULL;
1543                writeq(val64, &bar0->tx_w_round_robin_0);
1544                writeq(val64, &bar0->tx_w_round_robin_1);
1545                writeq(val64, &bar0->tx_w_round_robin_2);
1546                writeq(val64, &bar0->tx_w_round_robin_3);
1547                val64 = 0x0001020300000000ULL;
1548                writeq(val64, &bar0->tx_w_round_robin_4);
1549                break;
1550        }
1551
1552        /* Enable all configured Tx FIFO partitions */
1553        val64 = readq(&bar0->tx_fifo_partition_0);
1554        val64 |= (TX_FIFO_PARTITION_EN);
1555        writeq(val64, &bar0->tx_fifo_partition_0);
1556
1557        /* Filling the Rx round robin registers as per the
1558         * number of Rings and steering based on QoS with
1559         * equal priority.
1560         */
1561        switch (config->rx_ring_num) {
1562        case 1:
1563                val64 = 0x0;
1564                writeq(val64, &bar0->rx_w_round_robin_0);
1565                writeq(val64, &bar0->rx_w_round_robin_1);
1566                writeq(val64, &bar0->rx_w_round_robin_2);
1567                writeq(val64, &bar0->rx_w_round_robin_3);
1568                writeq(val64, &bar0->rx_w_round_robin_4);
1569
1570                val64 = 0x8080808080808080ULL;
1571                writeq(val64, &bar0->rts_qos_steering);
1572                break;
1573        case 2:
1574                val64 = 0x0001000100010001ULL;
1575                writeq(val64, &bar0->rx_w_round_robin_0);
1576                writeq(val64, &bar0->rx_w_round_robin_1);
1577                writeq(val64, &bar0->rx_w_round_robin_2);
1578                writeq(val64, &bar0->rx_w_round_robin_3);
1579                val64 = 0x0001000100000000ULL;
1580                writeq(val64, &bar0->rx_w_round_robin_4);
1581
1582                val64 = 0x8080808040404040ULL;
1583                writeq(val64, &bar0->rts_qos_steering);
1584                break;
1585        case 3:
1586                val64 = 0x0001020001020001ULL;
1587                writeq(val64, &bar0->rx_w_round_robin_0);
1588                val64 = 0x0200010200010200ULL;
1589                writeq(val64, &bar0->rx_w_round_robin_1);
1590                val64 = 0x0102000102000102ULL;
1591                writeq(val64, &bar0->rx_w_round_robin_2);
1592                val64 = 0x0001020001020001ULL;
1593                writeq(val64, &bar0->rx_w_round_robin_3);
1594                val64 = 0x0200010200000000ULL;
1595                writeq(val64, &bar0->rx_w_round_robin_4);
1596
1597                val64 = 0x8080804040402020ULL;
1598                writeq(val64, &bar0->rts_qos_steering);
1599                break;
1600        case 4:
1601                val64 = 0x0001020300010203ULL;
1602                writeq(val64, &bar0->rx_w_round_robin_0);
1603                writeq(val64, &bar0->rx_w_round_robin_1);
1604                writeq(val64, &bar0->rx_w_round_robin_2);
1605                writeq(val64, &bar0->rx_w_round_robin_3);
1606                val64 = 0x0001020300000000ULL;
1607                writeq(val64, &bar0->rx_w_round_robin_4);
1608
1609                val64 = 0x8080404020201010ULL;
1610                writeq(val64, &bar0->rts_qos_steering);
1611                break;
1612        case 5:
1613                val64 = 0x0001020304000102ULL;
1614                writeq(val64, &bar0->rx_w_round_robin_0);
1615                val64 = 0x0304000102030400ULL;
1616                writeq(val64, &bar0->rx_w_round_robin_1);
1617                val64 = 0x0102030400010203ULL;
1618                writeq(val64, &bar0->rx_w_round_robin_2);
1619                val64 = 0x0400010203040001ULL;
1620                writeq(val64, &bar0->rx_w_round_robin_3);
1621                val64 = 0x0203040000000000ULL;
1622                writeq(val64, &bar0->rx_w_round_robin_4);
1623
1624                val64 = 0x8080404020201008ULL;
1625                writeq(val64, &bar0->rts_qos_steering);
1626                break;
1627        case 6:
1628                val64 = 0x0001020304050001ULL;
1629                writeq(val64, &bar0->rx_w_round_robin_0);
1630                val64 = 0x0203040500010203ULL;
1631                writeq(val64, &bar0->rx_w_round_robin_1);
1632                val64 = 0x0405000102030405ULL;
1633                writeq(val64, &bar0->rx_w_round_robin_2);
1634                val64 = 0x0001020304050001ULL;
1635                writeq(val64, &bar0->rx_w_round_robin_3);
1636                val64 = 0x0203040500000000ULL;
1637                writeq(val64, &bar0->rx_w_round_robin_4);
1638
1639                val64 = 0x8080404020100804ULL;
1640                writeq(val64, &bar0->rts_qos_steering);
1641                break;
1642        case 7:
1643                val64 = 0x0001020304050600ULL;
1644                writeq(val64, &bar0->rx_w_round_robin_0);
1645                val64 = 0x0102030405060001ULL;
1646                writeq(val64, &bar0->rx_w_round_robin_1);
1647                val64 = 0x0203040506000102ULL;
1648                writeq(val64, &bar0->rx_w_round_robin_2);
1649                val64 = 0x0304050600010203ULL;
1650                writeq(val64, &bar0->rx_w_round_robin_3);
1651                val64 = 0x0405060000000000ULL;
1652                writeq(val64, &bar0->rx_w_round_robin_4);
1653
1654                val64 = 0x8080402010080402ULL;
1655                writeq(val64, &bar0->rts_qos_steering);
1656                break;
1657        case 8:
1658                val64 = 0x0001020304050607ULL;
1659                writeq(val64, &bar0->rx_w_round_robin_0);
1660                writeq(val64, &bar0->rx_w_round_robin_1);
1661                writeq(val64, &bar0->rx_w_round_robin_2);
1662                writeq(val64, &bar0->rx_w_round_robin_3);
1663                val64 = 0x0001020300000000ULL;
1664                writeq(val64, &bar0->rx_w_round_robin_4);
1665
1666                val64 = 0x8040201008040201ULL;
1667                writeq(val64, &bar0->rts_qos_steering);
1668                break;
1669        }
1670
1671        /* UDP Fix */
1672        val64 = 0;
1673        for (i = 0; i < 8; i++)
1674                writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676        /* Set the default rts frame length for the rings configured */
1677        val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1678        for (i = 0 ; i < config->rx_ring_num ; i++)
1679                writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681        /* Set the frame length for the configured rings
1682         * desired by the user
1683         */
1684        for (i = 0; i < config->rx_ring_num; i++) {
1685                /* If rts_frm_len[i] == 0 then it is assumed that user not
1686                 * specified frame length steering.
1687                 * If the user provides the frame length then program
1688                 * the rts_frm_len register for those values or else
1689                 * leave it as it is.
1690                 */
1691                if (rts_frm_len[i] != 0) {
1692                        writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1693                               &bar0->rts_frm_len_n[i]);
1694                }
1695        }
1696
1697        /* Disable differentiated services steering logic */
1698        for (i = 0; i < 64; i++) {
1699                if (rts_ds_steer(nic, i, 0) == FAILURE) {
1700                        DBG_PRINT(ERR_DBG,
1701                                  "%s: rts_ds_steer failed on codepoint %d\n",
1702                                  dev->name, i);
1703                        return -ENODEV;
1704                }
1705        }
1706
1707        /* Program statistics memory */
1708        writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1709
1710        if (nic->device_type == XFRAME_II_DEVICE) {
1711                val64 = STAT_BC(0x320);
1712                writeq(val64, &bar0->stat_byte_cnt);
1713        }
1714
1715        /*
1716         * Initializing the sampling rate for the device to calculate the
1717         * bandwidth utilization.
1718         */
1719        val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1720                MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1721        writeq(val64, &bar0->mac_link_util);
1722
1723        /*
1724         * Initializing the Transmit and Receive Traffic Interrupt
1725         * Scheme.
1726         */
1727
1728        /* Initialize TTI */
1729        if (SUCCESS != init_tti(nic, nic->last_link_state))
1730                return -ENODEV;
1731
1732        /* RTI Initialization */
1733        if (nic->device_type == XFRAME_II_DEVICE) {
1734                /*
1735                 * Programmed to generate Apprx 500 Intrs per
1736                 * second
1737                 */
1738                int count = (nic->config.bus_speed * 125)/4;
1739                val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1740        } else
1741                val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742        val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743                RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744                RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745                RTI_DATA1_MEM_RX_TIMER_AC_EN;
1746
1747        writeq(val64, &bar0->rti_data1_mem);
1748
1749        val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750                RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751        if (nic->config.intr_type == MSI_X)
1752                val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753                          RTI_DATA2_MEM_RX_UFC_D(0x40));
1754        else
1755                val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756                          RTI_DATA2_MEM_RX_UFC_D(0x80));
1757        writeq(val64, &bar0->rti_data2_mem);
1758
1759        for (i = 0; i < config->rx_ring_num; i++) {
1760                val64 = RTI_CMD_MEM_WE |
1761                        RTI_CMD_MEM_STROBE_NEW_CMD |
1762                        RTI_CMD_MEM_OFFSET(i);
1763                writeq(val64, &bar0->rti_command_mem);
1764
1765                /*
1766                 * Once the operation completes, the Strobe bit of the
1767                 * command register will be reset. We poll for this
1768                 * particular condition. We wait for a maximum of 500ms
1769                 * for the operation to complete, if it's not complete
1770                 * by then we return error.
1771                 */
1772                time = 0;
1773                while (true) {
1774                        val64 = readq(&bar0->rti_command_mem);
1775                        if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1776                                break;
1777
1778                        if (time > 10) {
1779                                DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1780                                          dev->name);
1781                                return -ENODEV;
1782                        }
1783                        time++;
1784                        msleep(50);
1785                }
1786        }
1787
1788        /*
1789         * Initializing proper values as Pause threshold into all
1790         * the 8 Queues on Rx side.
1791         */
1792        writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1793        writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1794
1795        /* Disable RMAC PAD STRIPPING */
1796        add = &bar0->mac_cfg;
1797        val64 = readq(&bar0->mac_cfg);
1798        val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1799        writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1800        writel((u32) (val64), add);
1801        writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1802        writel((u32) (val64 >> 32), (add + 4));
1803        val64 = readq(&bar0->mac_cfg);
1804
1805        /* Enable FCS stripping by adapter */
1806        add = &bar0->mac_cfg;
1807        val64 = readq(&bar0->mac_cfg);
1808        val64 |= MAC_CFG_RMAC_STRIP_FCS;
1809        if (nic->device_type == XFRAME_II_DEVICE)
1810                writeq(val64, &bar0->mac_cfg);
1811        else {
1812                writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1813                writel((u32) (val64), add);
1814                writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1815                writel((u32) (val64 >> 32), (add + 4));
1816        }
1817
1818        /*
1819         * Set the time value to be inserted in the pause frame
1820         * generated by xena.
1821         */
1822        val64 = readq(&bar0->rmac_pause_cfg);
1823        val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824        val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1825        writeq(val64, &bar0->rmac_pause_cfg);
1826
1827        /*
1828         * Set the Threshold Limit for Generating the pause frame
1829         * If the amount of data in any Queue exceeds ratio of
1830         * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831         * pause frame is generated
1832         */
1833        val64 = 0;
1834        for (i = 0; i < 4; i++) {
1835                val64 |= (((u64)0xFF00 |
1836                           nic->mac_control.mc_pause_threshold_q0q3)
1837                          << (i * 2 * 8));
1838        }
1839        writeq(val64, &bar0->mc_pause_thresh_q0q3);
1840
1841        val64 = 0;
1842        for (i = 0; i < 4; i++) {
1843                val64 |= (((u64)0xFF00 |
1844                           nic->mac_control.mc_pause_threshold_q4q7)
1845                          << (i * 2 * 8));
1846        }
1847        writeq(val64, &bar0->mc_pause_thresh_q4q7);
1848
1849        /*
1850         * TxDMA will stop Read request if the number of read split has
1851         * exceeded the limit pointed by shared_splits
1852         */
1853        val64 = readq(&bar0->pic_control);
1854        val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1855        writeq(val64, &bar0->pic_control);
1856
1857        if (nic->config.bus_speed == 266) {
1858                writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1859                writeq(0x0, &bar0->read_retry_delay);
1860                writeq(0x0, &bar0->write_retry_delay);
1861        }
1862
1863        /*
1864         * Programming the Herc to split every write transaction
1865         * that does not start on an ADB to reduce disconnects.
1866         */
1867        if (nic->device_type == XFRAME_II_DEVICE) {
1868                val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1869                        MISC_LINK_STABILITY_PRD(3);
1870                writeq(val64, &bar0->misc_control);
1871                val64 = readq(&bar0->pic_control2);
1872                val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873                writeq(val64, &bar0->pic_control2);
1874        }
1875        if (strstr(nic->product_name, "CX4")) {
1876                val64 = TMAC_AVG_IPG(0x17);
1877                writeq(val64, &bar0->tmac_avg_ipg);
1878        }
1879
1880        return SUCCESS;
1881}
1882#define LINK_UP_DOWN_INTERRUPT          1
1883#define MAC_RMAC_ERR_TIMER              2
1884
1885static int s2io_link_fault_indication(struct s2io_nic *nic)
1886{
1887        if (nic->device_type == XFRAME_II_DEVICE)
1888                return LINK_UP_DOWN_INTERRUPT;
1889        else
1890                return MAC_RMAC_ERR_TIMER;
1891}
1892
1893/**
1894 *  do_s2io_write_bits -  update alarm bits in alarm register
1895 *  @value: alarm bits
1896 *  @flag: interrupt status
1897 *  @addr: address value
1898 *  Description: update alarm bits in alarm register
1899 *  Return Value:
1900 *  NONE.
1901 */
1902static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903{
1904        u64 temp64;
1905
1906        temp64 = readq(addr);
1907
1908        if (flag == ENABLE_INTRS)
1909                temp64 &= ~((u64)value);
1910        else
1911                temp64 |= ((u64)value);
1912        writeq(temp64, addr);
1913}
1914
1915static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1916{
1917        struct XENA_dev_config __iomem *bar0 = nic->bar0;
1918        register u64 gen_int_mask = 0;
1919        u64 interruptible;
1920
1921        writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1922        if (mask & TX_DMA_INTR) {
1923                gen_int_mask |= TXDMA_INT_M;
1924
1925                do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1926                                   TXDMA_PCC_INT | TXDMA_TTI_INT |
1927                                   TXDMA_LSO_INT | TXDMA_TPA_INT |
1928                                   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1929
1930                do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1931                                   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1932                                   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1933                                   &bar0->pfc_err_mask);
1934
1935                do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1936                                   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1937                                   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1938
1939                do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1940                                   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1941                                   PCC_N_SERR | PCC_6_COF_OV_ERR |
1942                                   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1943                                   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1944                                   PCC_TXB_ECC_SG_ERR,
1945                                   flag, &bar0->pcc_err_mask);
1946
1947                do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1948                                   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1949
1950                do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1951                                   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1952                                   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1953                                   flag, &bar0->lso_err_mask);
1954
1955                do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1956                                   flag, &bar0->tpa_err_mask);
1957
1958                do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1959        }
1960
1961        if (mask & TX_MAC_INTR) {
1962                gen_int_mask |= TXMAC_INT_M;
1963                do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1964                                   &bar0->mac_int_mask);
1965                do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1966                                   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1967                                   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1968                                   flag, &bar0->mac_tmac_err_mask);
1969        }
1970
1971        if (mask & TX_XGXS_INTR) {
1972                gen_int_mask |= TXXGXS_INT_M;
1973                do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1974                                   &bar0->xgxs_int_mask);
1975                do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1976                                   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1977                                   flag, &bar0->xgxs_txgxs_err_mask);
1978        }
1979
1980        if (mask & RX_DMA_INTR) {
1981                gen_int_mask |= RXDMA_INT_M;
1982                do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1983                                   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1984                                   flag, &bar0->rxdma_int_mask);
1985                do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1986                                   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1987                                   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1988                                   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1989                do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1990                                   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1991                                   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1992                                   &bar0->prc_pcix_err_mask);
1993                do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1994                                   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1995                                   &bar0->rpa_err_mask);
1996                do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1997                                   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1998                                   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1999                                   RDA_FRM_ECC_SG_ERR |
2000                                   RDA_MISC_ERR|RDA_PCIX_ERR,
2001                                   flag, &bar0->rda_err_mask);
2002                do_s2io_write_bits(RTI_SM_ERR_ALARM |
2003                                   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2004                                   flag, &bar0->rti_err_mask);
2005        }
2006
2007        if (mask & RX_MAC_INTR) {
2008                gen_int_mask |= RXMAC_INT_M;
2009                do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2010                                   &bar0->mac_int_mask);
2011                interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2012                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2013                                 RMAC_DOUBLE_ECC_ERR);
2014                if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2015                        interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2016                do_s2io_write_bits(interruptible,
2017                                   flag, &bar0->mac_rmac_err_mask);
2018        }
2019
2020        if (mask & RX_XGXS_INTR) {
2021                gen_int_mask |= RXXGXS_INT_M;
2022                do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2023                                   &bar0->xgxs_int_mask);
2024                do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2025                                   &bar0->xgxs_rxgxs_err_mask);
2026        }
2027
2028        if (mask & MC_INTR) {
2029                gen_int_mask |= MC_INT_M;
2030                do_s2io_write_bits(MC_INT_MASK_MC_INT,
2031                                   flag, &bar0->mc_int_mask);
2032                do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2033                                   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2034                                   &bar0->mc_err_mask);
2035        }
2036        nic->general_int_mask = gen_int_mask;
2037
2038        /* Remove this line when alarm interrupts are enabled */
2039        nic->general_int_mask = 0;
2040}
2041
2042/**
2043 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2044 *  @nic: device private variable,
2045 *  @mask: A mask indicating which Intr block must be modified and,
2046 *  @flag: A flag indicating whether to enable or disable the Intrs.
2047 *  Description: This function will either disable or enable the interrupts
2048 *  depending on the flag argument. The mask argument can be used to
2049 *  enable/disable any Intr block.
2050 *  Return Value: NONE.
2051 */
2052
2053static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2054{
2055        struct XENA_dev_config __iomem *bar0 = nic->bar0;
2056        register u64 temp64 = 0, intr_mask = 0;
2057
2058        intr_mask = nic->general_int_mask;
2059
2060        /*  Top level interrupt classification */
2061        /*  PIC Interrupts */
2062        if (mask & TX_PIC_INTR) {
2063                /*  Enable PIC Intrs in the general intr mask register */
2064                intr_mask |= TXPIC_INT_M;
2065                if (flag == ENABLE_INTRS) {
2066                        /*
2067                         * If Hercules adapter enable GPIO otherwise
2068                         * disable all PCIX, Flash, MDIO, IIC and GPIO
2069                         * interrupts for now.
2070                         * TODO
2071                         */
2072                        if (s2io_link_fault_indication(nic) ==
2073                            LINK_UP_DOWN_INTERRUPT) {
2074                                do_s2io_write_bits(PIC_INT_GPIO, flag,
2075                                                   &bar0->pic_int_mask);
2076                                do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2077                                                   &bar0->gpio_int_mask);
2078                        } else
2079                                writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080                } else if (flag == DISABLE_INTRS) {
2081                        /*
2082                         * Disable PIC Intrs in the general
2083                         * intr mask register
2084                         */
2085                        writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2086                }
2087        }
2088
2089        /*  Tx traffic interrupts */
2090        if (mask & TX_TRAFFIC_INTR) {
2091                intr_mask |= TXTRAFFIC_INT_M;
2092                if (flag == ENABLE_INTRS) {
2093                        /*
2094                         * Enable all the Tx side interrupts
2095                         * writing 0 Enables all 64 TX interrupt levels
2096                         */
2097                        writeq(0x0, &bar0->tx_traffic_mask);
2098                } else if (flag == DISABLE_INTRS) {
2099                        /*
2100                         * Disable Tx Traffic Intrs in the general intr mask
2101                         * register.
2102                         */
2103                        writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2104                }
2105        }
2106
2107        /*  Rx traffic interrupts */
2108        if (mask & RX_TRAFFIC_INTR) {
2109                intr_mask |= RXTRAFFIC_INT_M;
2110                if (flag == ENABLE_INTRS) {
2111                        /* writing 0 Enables all 8 RX interrupt levels */
2112                        writeq(0x0, &bar0->rx_traffic_mask);
2113                } else if (flag == DISABLE_INTRS) {
2114                        /*
2115                         * Disable Rx Traffic Intrs in the general intr mask
2116                         * register.
2117                         */
2118                        writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2119                }
2120        }
2121
2122        temp64 = readq(&bar0->general_int_mask);
2123        if (flag == ENABLE_INTRS)
2124                temp64 &= ~((u64)intr_mask);
2125        else
2126                temp64 = DISABLE_ALL_INTRS;
2127        writeq(temp64, &bar0->general_int_mask);
2128
2129        nic->general_int_mask = readq(&bar0->general_int_mask);
2130}
2131
2132/**
2133 *  verify_pcc_quiescent- Checks for PCC quiescent state
2134 *  Return: 1 If PCC is quiescence
2135 *          0 If PCC is not quiescence
2136 */
2137static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2138{
2139        int ret = 0, herc;
2140        struct XENA_dev_config __iomem *bar0 = sp->bar0;
2141        u64 val64 = readq(&bar0->adapter_status);
2142
2143        herc = (sp->device_type == XFRAME_II_DEVICE);
2144
2145        if (flag == false) {
2146                if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2147                        if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2148                                ret = 1;
2149                } else {
2150                        if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2151                                ret = 1;
2152                }
2153        } else {
2154                if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2155                        if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2156                             ADAPTER_STATUS_RMAC_PCC_IDLE))
2157                                ret = 1;
2158                } else {
2159                        if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2160                             ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2161                                ret = 1;
2162                }
2163        }
2164
2165        return ret;
2166}
2167/**
2168 *  verify_xena_quiescence - Checks whether the H/W is ready
2169 *  Description: Returns whether the H/W is ready to go or not. Depending
2170 *  on whether adapter enable bit was written or not the comparison
2171 *  differs and the calling function passes the input argument flag to
2172 *  indicate this.
2173 *  Return: 1 If xena is quiescence
2174 *          0 If Xena is not quiescence
2175 */
2176
2177static int verify_xena_quiescence(struct s2io_nic *sp)
2178{
2179        int  mode;
2180        struct XENA_dev_config __iomem *bar0 = sp->bar0;
2181        u64 val64 = readq(&bar0->adapter_status);
2182        mode = s2io_verify_pci_mode(sp);
2183
2184        if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2185                DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2186                return 0;
2187        }
2188        if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2189                DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2190                return 0;
2191        }
2192        if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2193                DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2194                return 0;
2195        }
2196        if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2197                DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2198                return 0;
2199        }
2200        if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2201                DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2202                return 0;
2203        }
2204        if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2205                DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2206                return 0;
2207        }
2208        if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2209                DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2210                return 0;
2211        }
2212        if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2213                DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2214                return 0;
2215        }
2216
2217        /*
2218         * In PCI 33 mode, the P_PLL is not used, and therefore,
2219         * the the P_PLL_LOCK bit in the adapter_status register will
2220         * not be asserted.
2221         */
2222        if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2223            sp->device_type == XFRAME_II_DEVICE &&
2224            mode != PCI_MODE_PCI_33) {
2225                DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2226                return 0;
2227        }
2228        if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2229              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2230                DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2231                return 0;
2232        }
2233        return 1;
2234}
2235
2236/**
2237 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2238 * @sp: Pointer to device specifc structure
2239 * Description :
2240 * New procedure to clear mac address reading  problems on Alpha platforms
2241 *
2242 */
2243
2244static void fix_mac_address(struct s2io_nic *sp)
2245{
2246        struct XENA_dev_config __iomem *bar0 = sp->bar0;
2247        u64 val64;
2248        int i = 0;
2249
2250        while (fix_mac[i] != END_SIGN) {
2251                writeq(fix_mac[i++], &bar0->gpio_control);
2252                udelay(10);
2253                val64 = readq(&bar0->gpio_control);
2254        }
2255}
2256
2257/**
2258 *  start_nic - Turns the device on
2259 *  @nic : device private variable.
2260 *  Description:
2261 *  This function actually turns the device on. Before this  function is
2262 *  called,all Registers are configured from their reset states
2263 *  and shared memory is allocated but the NIC is still quiescent. On
2264 *  calling this function, the device interrupts are cleared and the NIC is
2265 *  literally switched on by writing into the adapter control register.
2266 *  Return Value:
2267 *  SUCCESS on success and -1 on failure.
2268 */
2269
2270static int start_nic(struct s2io_nic *nic)
2271{
2272        struct XENA_dev_config __iomem *bar0 = nic->bar0;
2273        struct net_device *dev = nic->dev;
2274        register u64 val64 = 0;
2275        u16 subid, i;
2276        struct config_param *config = &nic->config;
2277        struct mac_info *mac_control = &nic->mac_control;
2278
2279        /*  PRC Initialization and configuration */
2280        for (i = 0; i < config->rx_ring_num; i++) {
2281                struct ring_info *ring = &mac_control->rings[i];
2282
2283                writeq((u64)ring->rx_blocks[0].block_dma_addr,
2284                       &bar0->prc_rxd0_n[i]);
2285
2286                val64 = readq(&bar0->prc_ctrl_n[i]);
2287                if (nic->rxd_mode == RXD_MODE_1)
2288                        val64 |= PRC_CTRL_RC_ENABLED;
2289                else
2290                        val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2291                if (nic->device_type == XFRAME_II_DEVICE)
2292                        val64 |= PRC_CTRL_GROUP_READS;
2293                val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294                val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295                writeq(val64, &bar0->prc_ctrl_n[i]);
2296        }
2297
2298        if (nic->rxd_mode == RXD_MODE_3B) {
2299                /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300                val64 = readq(&bar0->rx_pa_cfg);
2301                val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302                writeq(val64, &bar0->rx_pa_cfg);
2303        }
2304
2305        if (vlan_tag_strip == 0) {
2306                val64 = readq(&bar0->rx_pa_cfg);
2307                val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308                writeq(val64, &bar0->rx_pa_cfg);
2309                nic->vlan_strip_flag = 0;
2310        }
2311
2312        /*
2313         * Enabling MC-RLDRAM. After enabling the device, we timeout
2314         * for around 100ms, which is approximately the time required
2315         * for the device to be ready for operation.
2316         */
2317        val64 = readq(&bar0->mc_rldram_mrs);
2318        val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319        SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320        val64 = readq(&bar0->mc_rldram_mrs);
2321
2322        msleep(100);    /* Delay by around 100 ms. */
2323
2324        /* Enabling ECC Protection. */
2325        val64 = readq(&bar0->adapter_control);
2326        val64 &= ~ADAPTER_ECC_EN;
2327        writeq(val64, &bar0->adapter_control);
2328
2329        /*
2330         * Verify if the device is ready to be enabled, if so enable
2331         * it.
2332         */
2333        val64 = readq(&bar0->adapter_status);
2334        if (!verify_xena_quiescence(nic)) {
2335                DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336                          "Adapter status reads: 0x%llx\n",
2337                          dev->name, (unsigned long long)val64);
2338                return FAILURE;
2339        }
2340
2341        /*
2342         * With some switches, link might be already up at this point.
2343         * Because of this weird behavior, when we enable laser,
2344         * we may not get link. We need to handle this. We cannot
2345         * figure out which switch is misbehaving. So we are forced to
2346         * make a global change.
2347         */
2348
2349        /* Enabling Laser. */
2350        val64 = readq(&bar0->adapter_control);
2351        val64 |= ADAPTER_EOI_TX_ON;
2352        writeq(val64, &bar0->adapter_control);
2353
2354        if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2355                /*
2356                 * Dont see link state interrupts initially on some switches,
2357                 * so directly scheduling the link state task here.
2358                 */
2359                schedule_work(&nic->set_link_task);
2360        }
2361        /* SXE-002: Initialize link and activity LED */
2362        subid = nic->pdev->subsystem_device;
2363        if (((subid & 0xFF) >= 0x07) &&
2364            (nic->device_type == XFRAME_I_DEVICE)) {
2365                val64 = readq(&bar0->gpio_control);
2366                val64 |= 0x0000800000000000ULL;
2367                writeq(val64, &bar0->gpio_control);
2368                val64 = 0x0411040400000000ULL;
2369                writeq(val64, (void __iomem *)bar0 + 0x2700);
2370        }
2371
2372        return SUCCESS;
2373}
2374/**
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2376 */
2377static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378                                        struct TxD *txdlp, int get_off)
2379{
2380        struct s2io_nic *nic = fifo_data->nic;
2381        struct sk_buff *skb;
2382        struct TxD *txds;
2383        u16 j, frg_cnt;
2384
2385        txds = txdlp;
2386        if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2387                pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388                                 sizeof(u64), PCI_DMA_TODEVICE);
2389                txds++;
2390        }
2391
2392        skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2393        if (!skb) {
2394                memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395                return NULL;
2396        }
2397        pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2398                         skb_headlen(skb), PCI_DMA_TODEVICE);
2399        frg_cnt = skb_shinfo(skb)->nr_frags;
2400        if (frg_cnt) {
2401                txds++;
2402                for (j = 0; j < frg_cnt; j++, txds++) {
2403                        skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404                        if (!txds->Buffer_Pointer)
2405                                break;
2406                        pci_unmap_page(nic->pdev,
2407                                       (dma_addr_t)txds->Buffer_Pointer,
2408                                       frag->size, PCI_DMA_TODEVICE);
2409                }
2410        }
2411        memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412        return skb;
2413}
2414
2415/**
2416 *  free_tx_buffers - Free all queued Tx buffers
2417 *  @nic : device private variable.
2418 *  Description:
2419 *  Free all queued Tx buffers.
2420 *  Return Value: void
2421 */
2422
2423static void free_tx_buffers(struct s2io_nic *nic)
2424{
2425        struct net_device *dev = nic->dev;
2426        struct sk_buff *skb;
2427        struct TxD *txdp;
2428        int i, j;
2429        int cnt = 0;
2430        struct config_param *config = &nic->config;
2431        struct mac_info *mac_control = &nic->mac_control;
2432        struct stat_block *stats = mac_control->stats_info;
2433        struct swStat *swstats = &stats->sw_stat;
2434
2435        for (i = 0; i < config->tx_fifo_num; i++) {
2436                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437                struct fifo_info *fifo = &mac_control->fifos[i];
2438                unsigned long flags;
2439
2440                spin_lock_irqsave(&fifo->tx_lock, flags);
2441                for (j = 0; j < tx_cfg->fifo_len; j++) {
2442                        txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2443                        skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444                        if (skb) {
2445                                swstats->mem_freed += skb->truesize;
2446                                dev_kfree_skb(skb);
2447                                cnt++;
2448                        }
2449                }
2450                DBG_PRINT(INTR_DBG,
2451                          "%s: forcibly freeing %d skbs on FIFO%d\n",
2452                          dev->name, cnt, i);
2453                fifo->tx_curr_get_info.offset = 0;
2454                fifo->tx_curr_put_info.offset = 0;
2455                spin_unlock_irqrestore(&fifo->tx_lock, flags);
2456        }
2457}
2458
2459/**
2460 *   stop_nic -  To stop the nic
2461 *   @nic ; device private variable.
2462 *   Description:
2463 *   This function does exactly the opposite of what the start_nic()
2464 *   function does. This function is called to stop the device.
2465 *   Return Value:
2466 *   void.
2467 */
2468
2469static void stop_nic(struct s2io_nic *nic)
2470{
2471        struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472        register u64 val64 = 0;
2473        u16 interruptible;
2474
2475        /*  Disable all interrupts */
2476        en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2477        interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2478        interruptible |= TX_PIC_INTR;
2479        en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2480
2481        /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482        val64 = readq(&bar0->adapter_control);
2483        val64 &= ~(ADAPTER_CNTL_EN);
2484        writeq(val64, &bar0->adapter_control);
2485}
2486
2487/**
2488 *  fill_rx_buffers - Allocates the Rx side skbs
2489 *  @ring_info: per ring structure
2490 *  @from_card_up: If this is true, we will map the buffer to get
2491 *     the dma address for buf0 and buf1 to give it to the card.
2492 *     Else we will sync the already mapped buffer to give it to the card.
2493 *  Description:
2494 *  The function allocates Rx side skbs and puts the physical
2495 *  address of these buffers into the RxD buffer pointers, so that the NIC
2496 *  can DMA the received frame into these locations.
2497 *  The NIC supports 3 receive modes, viz
2498 *  1. single buffer,
2499 *  2. three buffer and
2500 *  3. Five buffer modes.
2501 *  Each mode defines how many fragments the received frame will be split
2502 *  up into by the NIC. The frame is split into L3 header, L4 Header,
2503 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 *  is split into 3 fragments. As of now only single buffer mode is
2505 *  supported.
2506 *   Return Value:
2507 *  SUCCESS on success or an appropriate -ve value on failure.
2508 */
2509static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2510                           int from_card_up)
2511{
2512        struct sk_buff *skb;
2513        struct RxD_t *rxdp;
2514        int off, size, block_no, block_no1;
2515        u32 alloc_tab = 0;
2516        u32 alloc_cnt;
2517        u64 tmp;
2518        struct buffAdd *ba;
2519        struct RxD_t *first_rxdp = NULL;
2520        u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2521        int rxd_index = 0;
2522        struct RxD1 *rxdp1;
2523        struct RxD3 *rxdp3;
2524        struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2525
2526        alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2527
2528        block_no1 = ring->rx_curr_get_info.block_index;
2529        while (alloc_tab < alloc_cnt) {
2530                block_no = ring->rx_curr_put_info.block_index;
2531
2532                off = ring->rx_curr_put_info.offset;
2533
2534                rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2535
2536                rxd_index = off + 1;
2537                if (block_no)
2538                        rxd_index += (block_no * ring->rxd_count);
2539
2540                if ((block_no == block_no1) &&
2541                    (off == ring->rx_curr_get_info.offset) &&
2542                    (rxdp->Host_Control)) {
2543                        DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544                                  ring->dev->name);
2545                        goto end;
2546                }
2547                if (off && (off == ring->rxd_count)) {
2548                        ring->rx_curr_put_info.block_index++;
2549                        if (ring->rx_curr_put_info.block_index ==
2550                            ring->block_count)
2551                                ring->rx_curr_put_info.block_index = 0;
2552                        block_no = ring->rx_curr_put_info.block_index;
2553                        off = 0;
2554                        ring->rx_curr_put_info.offset = off;
2555                        rxdp = ring->rx_blocks[block_no].block_virt_addr;
2556                        DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2557                                  ring->dev->name, rxdp);
2558
2559                }
2560
2561                if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2562                    ((ring->rxd_mode == RXD_MODE_3B) &&
2563                     (rxdp->Control_2 & s2BIT(0)))) {
2564                        ring->rx_curr_put_info.offset = off;
2565                        goto end;
2566                }
2567                /* calculate size of skb based on ring mode */
2568                size = ring->mtu +
2569                        HEADER_ETHERNET_II_802_3_SIZE +
2570                        HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2571                if (ring->rxd_mode == RXD_MODE_1)
2572                        size += NET_IP_ALIGN;
2573                else
2574                        size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2575
2576                /* allocate skb */
2577                skb = dev_alloc_skb(size);
2578                if (!skb) {
2579                        DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580                                  ring->dev->name);
2581                        if (first_rxdp) {
2582                                wmb();
2583                                first_rxdp->Control_1 |= RXD_OWN_XENA;
2584                        }
2585                        swstats->mem_alloc_fail_cnt++;
2586
2587                        return -ENOMEM ;
2588                }
2589                swstats->mem_allocated += skb->truesize;
2590
2591                if (ring->rxd_mode == RXD_MODE_1) {
2592                        /* 1 buffer mode - normal operation mode */
2593                        rxdp1 = (struct RxD1 *)rxdp;
2594                        memset(rxdp, 0, sizeof(struct RxD1));
2595                        skb_reserve(skb, NET_IP_ALIGN);
2596                        rxdp1->Buffer0_ptr =
2597                                pci_map_single(ring->pdev, skb->data,
2598                                               size - NET_IP_ALIGN,
2599                                               PCI_DMA_FROMDEVICE);
2600                        if (pci_dma_mapping_error(nic->pdev,
2601                                                  rxdp1->Buffer0_ptr))
2602                                goto pci_map_failed;
2603
2604                        rxdp->Control_2 =
2605                                SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2606                        rxdp->Host_Control = (unsigned long)skb;
2607                } else if (ring->rxd_mode == RXD_MODE_3B) {
2608                        /*
2609                         * 2 buffer mode -
2610                         * 2 buffer mode provides 128
2611                         * byte aligned receive buffers.
2612                         */
2613
2614                        rxdp3 = (struct RxD3 *)rxdp;
2615                        /* save buffer pointers to avoid frequent dma mapping */
2616                        Buffer0_ptr = rxdp3->Buffer0_ptr;
2617                        Buffer1_ptr = rxdp3->Buffer1_ptr;
2618                        memset(rxdp, 0, sizeof(struct RxD3));
2619                        /* restore the buffer pointers for dma sync*/
2620                        rxdp3->Buffer0_ptr = Buffer0_ptr;
2621                        rxdp3->Buffer1_ptr = Buffer1_ptr;
2622
2623                        ba = &ring->ba[block_no][off];
2624                        skb_reserve(skb, BUF0_LEN);
2625                        tmp = (u64)(unsigned long)skb->data;
2626                        tmp += ALIGN_SIZE;
2627                        tmp &= ~ALIGN_SIZE;
2628                        skb->data = (void *) (unsigned long)tmp;
2629                        skb_reset_tail_pointer(skb);
2630
2631                        if (from_card_up) {
2632                                rxdp3->Buffer0_ptr =
2633                                        pci_map_single(ring->pdev, ba->ba_0,
2634                                                       BUF0_LEN,
2635                                                       PCI_DMA_FROMDEVICE);
2636                                if (pci_dma_mapping_error(nic->pdev,
2637                                                          rxdp3->Buffer0_ptr))
2638                                        goto pci_map_failed;
2639                        } else
2640                                pci_dma_sync_single_for_device(ring->pdev,
2641                                                               (dma_addr_t)rxdp3->Buffer0_ptr,
2642                                                               BUF0_LEN,
2643                                                               PCI_DMA_FROMDEVICE);
2644
2645                        rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646                        if (ring->rxd_mode == RXD_MODE_3B) {
2647                                /* Two buffer mode */
2648
2649                                /*
2650                                 * Buffer2 will have L3/L4 header plus
2651                                 * L4 payload
2652                                 */
2653                                rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654                                                                    skb->data,
2655                                                                    ring->mtu + 4,
2656                                                                    PCI_DMA_FROMDEVICE);
2657
2658                                if (pci_dma_mapping_error(nic->pdev,
2659                                                          rxdp3->Buffer2_ptr))
2660                                        goto pci_map_failed;
2661
2662                                if (from_card_up) {
2663                                        rxdp3->Buffer1_ptr =
2664                                                pci_map_single(ring->pdev,
2665                                                               ba->ba_1,
2666                                                               BUF1_LEN,
2667                                                               PCI_DMA_FROMDEVICE);
2668
2669                                        if (pci_dma_mapping_error(nic->pdev,
2670                                                                  rxdp3->Buffer1_ptr)) {
2671                                                pci_unmap_single(ring->pdev,
2672                                                                 (dma_addr_t)(unsigned long)
2673                                                                 skb->data,
2674                                                                 ring->mtu + 4,
2675                                                                 PCI_DMA_FROMDEVICE);
2676                                                goto pci_map_failed;
2677                                        }
2678                                }
2679                                rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680                                rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681                                        (ring->mtu + 4);
2682                        }
2683                        rxdp->Control_2 |= s2BIT(0);
2684                        rxdp->Host_Control = (unsigned long) (skb);
2685                }
2686                if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687                        rxdp->Control_1 |= RXD_OWN_XENA;
2688                off++;
2689                if (off == (ring->rxd_count + 1))
2690                        off = 0;
2691                ring->rx_curr_put_info.offset = off;
2692
2693                rxdp->Control_2 |= SET_RXD_MARKER;
2694                if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695                        if (first_rxdp) {
2696                                wmb();
2697                                first_rxdp->Control_1 |= RXD_OWN_XENA;
2698                        }
2699                        first_rxdp = rxdp;
2700                }
2701                ring->rx_bufs_left += 1;
2702                alloc_tab++;
2703        }
2704
2705end:
2706        /* Transfer ownership of first descriptor to adapter just before
2707         * exiting. Before that, use memory barrier so that ownership
2708         * and other fields are seen by adapter correctly.
2709         */
2710        if (first_rxdp) {
2711                wmb();
2712                first_rxdp->Control_1 |= RXD_OWN_XENA;
2713        }
2714
2715        return SUCCESS;
2716
2717pci_map_failed:
2718        swstats->pci_map_fail_cnt++;
2719        swstats->mem_freed += skb->truesize;
2720        dev_kfree_skb_irq(skb);
2721        return -ENOMEM;
2722}
2723
2724static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725{
2726        struct net_device *dev = sp->dev;
2727        int j;
2728        struct sk_buff *skb;
2729        struct RxD_t *rxdp;
2730        struct buffAdd *ba;
2731        struct RxD1 *rxdp1;
2732        struct RxD3 *rxdp3;
2733        struct mac_info *mac_control = &sp->mac_control;
2734        struct stat_block *stats = mac_control->stats_info;
2735        struct swStat *swstats = &stats->sw_stat;
2736
2737        for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738                rxdp = mac_control->rings[ring_no].
2739                        rx_blocks[blk].rxds[j].virt_addr;
2740                skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2741                if (!skb)
2742                        continue;
2743                if (sp->rxd_mode == RXD_MODE_1) {
2744                        rxdp1 = (struct RxD1 *)rxdp;
2745                        pci_unmap_single(sp->pdev,
2746                                         (dma_addr_t)rxdp1->Buffer0_ptr,
2747                                         dev->mtu +
2748                                         HEADER_ETHERNET_II_802_3_SIZE +
2749                                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2750                                         PCI_DMA_FROMDEVICE);
2751                        memset(rxdp, 0, sizeof(struct RxD1));
2752                } else if (sp->rxd_mode == RXD_MODE_3B) {
2753                        rxdp3 = (struct RxD3 *)rxdp;
2754                        ba = &mac_control->rings[ring_no].ba[blk][j];
2755                        pci_unmap_single(sp->pdev,
2756                                         (dma_addr_t)rxdp3->Buffer0_ptr,
2757                                         BUF0_LEN,
2758                                         PCI_DMA_FROMDEVICE);
2759                        pci_unmap_single(sp->pdev,
2760                                         (dma_addr_t)rxdp3->Buffer1_ptr,
2761                                         BUF1_LEN,
2762                                         PCI_DMA_FROMDEVICE);
2763                        pci_unmap_single(sp->pdev,
2764                                         (dma_addr_t)rxdp3->Buffer2_ptr,
2765                                         dev->mtu + 4,
2766                                         PCI_DMA_FROMDEVICE);
2767                        memset(rxdp, 0, sizeof(struct RxD3));
2768                }
2769                swstats->mem_freed += skb->truesize;
2770                dev_kfree_skb(skb);
2771                mac_control->rings[ring_no].rx_bufs_left -= 1;
2772        }
2773}
2774
2775/**
2776 *  free_rx_buffers - Frees all Rx buffers
2777 *  @sp: device private variable.
2778 *  Description:
2779 *  This function will free all Rx buffers allocated by host.
2780 *  Return Value:
2781 *  NONE.
2782 */
2783
2784static void free_rx_buffers(struct s2io_nic *sp)
2785{
2786        struct net_device *dev = sp->dev;
2787        int i, blk = 0, buf_cnt = 0;
2788        struct config_param *config = &sp->config;
2789        struct mac_info *mac_control = &sp->mac_control;
2790
2791        for (i = 0; i < config->rx_ring_num; i++) {
2792                struct ring_info *ring = &mac_control->rings[i];
2793
2794                for (blk = 0; blk < rx_ring_sz[i]; blk++)
2795                        free_rxd_blk(sp, i, blk);
2796
2797                ring->rx_curr_put_info.block_index = 0;
2798                ring->rx_curr_get_info.block_index = 0;
2799                ring->rx_curr_put_info.offset = 0;
2800                ring->rx_curr_get_info.offset = 0;
2801                ring->rx_bufs_left = 0;
2802                DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2803                          dev->name, buf_cnt, i);
2804        }
2805}
2806
2807static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2808{
2809        if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2810                DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2811                          ring->dev->name);
2812        }
2813        return 0;
2814}
2815
2816/**
2817 * s2io_poll - Rx interrupt handler for NAPI support
2818 * @napi : pointer to the napi structure.
2819 * @budget : The number of packets that were budgeted to be processed
2820 * during  one pass through the 'Poll" function.
2821 * Description:
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2825 * Return value:
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2827 */
2828
2829static int s2io_poll_msix(struct napi_struct *napi, int budget)
2830{
2831        struct ring_info *ring = container_of(napi, struct ring_info, napi);
2832        struct net_device *dev = ring->dev;
2833        int pkts_processed = 0;
2834        u8 __iomem *addr = NULL;
2835        u8 val8 = 0;
2836        struct s2io_nic *nic = netdev_priv(dev);
2837        struct XENA_dev_config __iomem *bar0 = nic->bar0;
2838        int budget_org = budget;
2839
2840        if (unlikely(!is_s2io_card_up(nic)))
2841                return 0;
2842
2843        pkts_processed = rx_intr_handler(ring, budget);
2844        s2io_chk_rx_buffers(nic, ring);
2845
2846        if (pkts_processed < budget_org) {
2847                napi_complete(napi);
2848                /*Re Enable MSI-Rx Vector*/
2849                addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2850                addr += 7 - ring->ring_no;
2851                val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2852                writeb(val8, addr);
2853                val8 = readb(addr);
2854        }
2855        return pkts_processed;
2856}
2857
2858static int s2io_poll_inta(struct napi_struct *napi, int budget)
2859{
2860        struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2861        int pkts_processed = 0;
2862        int ring_pkts_processed, i;
2863        struct XENA_dev_config __iomem *bar0 = nic->bar0;
2864        int budget_org = budget;
2865        struct config_param *config = &nic->config;
2866        struct mac_info *mac_control = &nic->mac_control;
2867
2868        if (unlikely(!is_s2io_card_up(nic)))
2869                return 0;
2870
2871        for (i = 0; i < config->rx_ring_num; i++) {
2872                struct ring_info *ring = &mac_control->rings[i];
2873                ring_pkts_processed = rx_intr_handler(ring, budget);
2874                s2io_chk_rx_buffers(nic, ring);
2875                pkts_processed += ring_pkts_processed;
2876                budget -= ring_pkts_processed;
2877                if (budget <= 0)
2878                        break;
2879        }
2880        if (pkts_processed < budget_org) {
2881                napi_complete(napi);
2882                /* Re enable the Rx interrupts for the ring */
2883                writeq(0, &bar0->rx_traffic_mask);
2884                readl(&bar0->rx_traffic_mask);
2885        }
2886        return pkts_processed;
2887}
2888
2889#ifdef CONFIG_NET_POLL_CONTROLLER
2890/**
2891 * s2io_netpoll - netpoll event handler entry point
2892 * @dev : pointer to the device structure.
2893 * Description:
2894 *      This function will be called by upper layer to check for events on the
2895 * interface in situations where interrupts are disabled. It is used for
2896 * specific in-kernel networking tasks, such as remote consoles and kernel
2897 * debugging over the network (example netdump in RedHat).
2898 */
2899static void s2io_netpoll(struct net_device *dev)
2900{
2901        struct s2io_nic *nic = netdev_priv(dev);
2902        struct XENA_dev_config __iomem *bar0 = nic->bar0;
2903        u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2904        int i;
2905        struct config_param *config = &nic->config;
2906        struct mac_info *mac_control = &nic->mac_control;
2907
2908        if (pci_channel_offline(nic->pdev))
2909                return;
2910
2911        disable_irq(dev->irq);
2912
2913        writeq(val64, &bar0->rx_traffic_int);
2914        writeq(val64, &bar0->tx_traffic_int);
2915
2916        /* we need to free up the transmitted skbufs or else netpoll will
2917         * run out of skbs and will fail and eventually netpoll application such
2918         * as netdump will fail.
2919         */
2920        for (i = 0; i < config->tx_fifo_num; i++)
2921                tx_intr_handler(&mac_control->fifos[i]);
2922
2923        /* check for received packet and indicate up to network */
2924        for (i = 0; i < config->rx_ring_num; i++) {
2925                struct ring_info *ring = &mac_control->rings[i];
2926
2927                rx_intr_handler(ring, 0);
2928        }
2929
2930        for (i = 0; i < config->rx_ring_num; i++) {
2931                struct ring_info *ring = &mac_control->rings[i];
2932
2933                if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2934                        DBG_PRINT(INFO_DBG,
2935                                  "%s: Out of memory in Rx Netpoll!!\n",
2936                                  dev->name);
2937                        break;
2938                }
2939        }
2940        enable_irq(dev->irq);
2941}
2942#endif
2943
2944/**
2945 *  rx_intr_handler - Rx interrupt handler
2946 *  @ring_info: per ring structure.
2947 *  @budget: budget for napi processing.
2948 *  Description:
2949 *  If the interrupt is because of a received frame or if the
2950 *  receive ring contains fresh as yet un-processed frames,this function is
2951 *  called. It picks out the RxD at which place the last Rx processing had
2952 *  stopped and sends the skb to the OSM's Rx handler and then increments
2953 *  the offset.
2954 *  Return Value:
2955 *  No. of napi packets processed.
2956 */
2957static int rx_intr_handler(struct ring_info *ring_data, int budget)
2958{
2959        int get_block, put_block;
2960        struct rx_curr_get_info get_info, put_info;
2961        struct RxD_t *rxdp;
2962        struct sk_buff *skb;
2963        int pkt_cnt = 0, napi_pkts = 0;
2964        int i;
2965        struct RxD1 *rxdp1;
2966        struct RxD3 *rxdp3;
2967
2968        get_info = ring_data->rx_curr_get_info;
2969        get_block = get_info.block_index;
2970        memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2971        put_block = put_info.block_index;
2972        rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2973
2974        while (RXD_IS_UP2DT(rxdp)) {
2975                /*
2976                 * If your are next to put index then it's
2977                 * FIFO full condition
2978                 */
2979                if ((get_block == put_block) &&
2980                    (get_info.offset + 1) == put_info.offset) {
2981                        DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2982                                  ring_data->dev->name);
2983                        break;
2984                }
2985                skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2986                if (skb == NULL) {
2987                        DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2988                                  ring_data->dev->name);
2989                        return 0;
2990                }
2991                if (ring_data->rxd_mode == RXD_MODE_1) {
2992                        rxdp1 = (struct RxD1 *)rxdp;
2993                        pci_unmap_single(ring_data->pdev, (dma_addr_t)
2994                                         rxdp1->Buffer0_ptr,
2995                                         ring_data->mtu +
2996                                         HEADER_ETHERNET_II_802_3_SIZE +
2997                                         HEADER_802_2_SIZE +
2998                                         HEADER_SNAP_SIZE,
2999                                         PCI_DMA_FROMDEVICE);
3000                } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3001                        rxdp3 = (struct RxD3 *)rxdp;
3002                        pci_dma_sync_single_for_cpu(ring_data->pdev,
3003                                                    (dma_addr_t)rxdp3->Buffer0_ptr,
3004                                                    BUF0_LEN,
3005                                                    PCI_DMA_FROMDEVICE);
3006                        pci_unmap_single(ring_data->pdev,
3007                                         (dma_addr_t)rxdp3->Buffer2_ptr,
3008                                         ring_data->mtu + 4,
3009                                         PCI_DMA_FROMDEVICE);
3010                }
3011                prefetch(skb->data);
3012                rx_osm_handler(ring_data, rxdp);
3013                get_info.offset++;
3014                ring_data->rx_curr_get_info.offset = get_info.offset;
3015                rxdp = ring_data->rx_blocks[get_block].
3016                        rxds[get_info.offset].virt_addr;
3017                if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3018                        get_info.offset = 0;
3019                        ring_data->rx_curr_get_info.offset = get_info.offset;
3020                        get_block++;
3021                        if (get_block == ring_data->block_count)
3022                                get_block = 0;
3023                        ring_data->rx_curr_get_info.block_index = get_block;
3024                        rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025                }
3026
3027                if (ring_data->nic->config.napi) {
3028                        budget--;
3029                        napi_pkts++;
3030                        if (!budget)
3031                                break;
3032                }
3033                pkt_cnt++;
3034                if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3035                        break;
3036        }
3037        if (ring_data->lro) {
3038                /* Clear all LRO sessions before exiting */
3039                for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3040                        struct lro *lro = &ring_data->lro0_n[i];
3041                        if (lro->in_use) {
3042                                update_L3L4_header(ring_data->nic, lro);
3043                                queue_rx_frame(lro->parent, lro->vlan_tag);
3044                                clear_lro_session(lro);
3045                        }
3046                }
3047        }
3048        return napi_pkts;
3049}
3050
3051/**
3052 *  tx_intr_handler - Transmit interrupt handler
3053 *  @nic : device private variable
3054 *  Description:
3055 *  If an interrupt was raised to indicate DMA complete of the
3056 *  Tx packet, this function is called. It identifies the last TxD
3057 *  whose buffer was freed and frees all skbs whose data have already
3058 *  DMA'ed into the NICs internal memory.
3059 *  Return Value:
3060 *  NONE
3061 */
3062
3063static void tx_intr_handler(struct fifo_info *fifo_data)
3064{
3065        struct s2io_nic *nic = fifo_data->nic;
3066        struct tx_curr_get_info get_info, put_info;
3067        struct sk_buff *skb = NULL;
3068        struct TxD *txdlp;
3069        int pkt_cnt = 0;
3070        unsigned long flags = 0;
3071        u8 err_mask;
3072        struct stat_block *stats = nic->mac_control.stats_info;
3073        struct swStat *swstats = &stats->sw_stat;
3074
3075        if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3076                return;
3077
3078        get_info = fifo_data->tx_curr_get_info;
3079        memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3080        txdlp = (struct TxD *)
3081                fifo_data->list_info[get_info.offset].list_virt_addr;
3082        while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3083               (get_info.offset != put_info.offset) &&
3084               (txdlp->Host_Control)) {
3085                /* Check for TxD errors */
3086                if (txdlp->Control_1 & TXD_T_CODE) {
3087                        unsigned long long err;
3088                        err = txdlp->Control_1 & TXD_T_CODE;
3089                        if (err & 0x1) {
3090                                swstats->parity_err_cnt++;
3091                        }
3092
3093                        /* update t_code statistics */
3094                        err_mask = err >> 48;
3095                        switch (err_mask) {
3096                        case 2:
3097                                swstats->tx_buf_abort_cnt++;
3098                                break;
3099
3100                        case 3:
3101                                swstats->tx_desc_abort_cnt++;
3102                                break;
3103
3104                        case 7:
3105                                swstats->tx_parity_err_cnt++;
3106                                break;
3107
3108                        case 10:
3109                                swstats->tx_link_loss_cnt++;
3110                                break;
3111
3112                        case 15:
3113                                swstats->tx_list_proc_err_cnt++;
3114                                break;
3115                        }
3116                }
3117
3118                skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3119                if (skb == NULL) {
3120                        spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3121                        DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3122                                  __func__);
3123                        return;
3124                }
3125                pkt_cnt++;
3126
3127                /* Updating the statistics block */
3128                swstats->mem_freed += skb->truesize;
3129                dev_kfree_skb_irq(skb);
3130
3131                get_info.offset++;
3132                if (get_info.offset == get_info.fifo_len + 1)
3133                        get_info.offset = 0;
3134                txdlp = (struct TxD *)
3135                        fifo_data->list_info[get_info.offset].list_virt_addr;
3136                fifo_data->tx_curr_get_info.offset = get_info.offset;
3137        }
3138
3139        s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3140
3141        spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3142}
3143
3144/**
3145 *  s2io_mdio_write - Function to write in to MDIO registers
3146 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147 *  @addr     : address value
3148 *  @value    : data value
3149 *  @dev      : pointer to net_device structure
3150 *  Description:
3151 *  This function is used to write values to the MDIO registers
3152 *  NONE
3153 */
3154static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3155                            struct net_device *dev)
3156{
3157        u64 val64;
3158        struct s2io_nic *sp = netdev_priv(dev);
3159        struct XENA_dev_config __iomem *bar0 = sp->bar0;
3160
3161        /* address transaction */
3162        val64 = MDIO_MMD_INDX_ADDR(addr) |
3163                MDIO_MMD_DEV_ADDR(mmd_type) |
3164                MDIO_MMS_PRT_ADDR(0x0);
3165        writeq(val64, &bar0->mdio_control);
3166        val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167        writeq(val64, &bar0->mdio_control);
3168        udelay(100);
3169
3170        /* Data transaction */
3171        val64 = MDIO_MMD_INDX_ADDR(addr) |
3172                MDIO_MMD_DEV_ADDR(mmd_type) |
3173                MDIO_MMS_PRT_ADDR(0x0) |
3174                MDIO_MDIO_DATA(value) |
3175                MDIO_OP(MDIO_OP_WRITE_TRANS);
3176        writeq(val64, &bar0->mdio_control);
3177        val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3178        writeq(val64, &bar0->mdio_control);
3179        udelay(100);
3180
3181        val64 = MDIO_MMD_INDX_ADDR(addr) |
3182                MDIO_MMD_DEV_ADDR(mmd_type) |
3183                MDIO_MMS_PRT_ADDR(0x0) |
3184                MDIO_OP(MDIO_OP_READ_TRANS);
3185        writeq(val64, &bar0->mdio_control);
3186        val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3187        writeq(val64, &bar0->mdio_control);
3188        udelay(100);
3189}
3190
3191/**
3192 *  s2io_mdio_read - Function to write in to MDIO registers
3193 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194 *  @addr     : address value
3195 *  @dev      : pointer to net_device structure
3196 *  Description:
3197 *  This function is used to read values to the MDIO registers
3198 *  NONE
3199 */
3200static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3201{
3202        u64 val64 = 0x0;
3203        u64 rval64 = 0x0;
3204        struct s2io_nic *sp = netdev_priv(dev);
3205        struct XENA_dev_config __iomem *bar0 = sp->bar0;
3206
3207        /* address transaction */
3208        val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3209                         | MDIO_MMD_DEV_ADDR(mmd_type)
3210                         | MDIO_MMS_PRT_ADDR(0x0));
3211        writeq(val64, &bar0->mdio_control);
3212        val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213        writeq(val64, &bar0->mdio_control);
3214        udelay(100);
3215
3216        /* Data transaction */
3217        val64 = MDIO_MMD_INDX_ADDR(addr) |
3218                MDIO_MMD_DEV_ADDR(mmd_type) |
3219                MDIO_MMS_PRT_ADDR(0x0) |
3220                MDIO_OP(MDIO_OP_READ_TRANS);
3221        writeq(val64, &bar0->mdio_control);
3222        val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223        writeq(val64, &bar0->mdio_control);
3224        udelay(100);
3225
3226        /* Read the value from regs */
3227        rval64 = readq(&bar0->mdio_control);
3228        rval64 = rval64 & 0xFFFF0000;
3229        rval64 = rval64 >> 16;
3230        return rval64;
3231}
3232
3233/**
3234 *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3235 *  @counter      : counter value to be updated
3236 *  @flag         : flag to indicate the status
3237 *  @type         : counter type
3238 *  Description:
3239 *  This function is to check the status of the xpak counters value
3240 *  NONE
3241 */
3242
3243static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3244                                  u16 flag, u16 type)
3245{
3246        u64 mask = 0x3;
3247        u64 val64;
3248        int i;
3249        for (i = 0; i < index; i++)
3250                mask = mask << 0x2;
3251
3252        if (flag > 0) {
3253                *counter = *counter + 1;
3254                val64 = *regs_stat & mask;
3255                val64 = val64 >> (index * 0x2);
3256                val64 = val64 + 1;
3257                if (val64 == 3) {
3258                        switch (type) {
3259                        case 1:
3260                                DBG_PRINT(ERR_DBG,
3261                                          "Take Xframe NIC out of service.\n");
3262                                DBG_PRINT(ERR_DBG,
3263"Excessive temperatures may result in premature transceiver failure.\n");
3264                                break;
3265                        case 2:
3266                                DBG_PRINT(ERR_DBG,
3267                                          "Take Xframe NIC out of service.\n");
3268                                DBG_PRINT(ERR_DBG,
3269"Excessive bias currents may indicate imminent laser diode failure.\n");
3270                                break;
3271                        case 3:
3272                                DBG_PRINT(ERR_DBG,
3273                                          "Take Xframe NIC out of service.\n");
3274                                DBG_PRINT(ERR_DBG,
3275"Excessive laser output power may saturate far-end receiver.\n");
3276                                break;
3277                        default:
3278                                DBG_PRINT(ERR_DBG,
3279                                          "Incorrect XPAK Alarm type\n");
3280                        }
3281                        val64 = 0x0;
3282                }
3283                val64 = val64 << (index * 0x2);
3284                *regs_stat = (*regs_stat & (~mask)) | (val64);
3285
3286        } else {
3287                *regs_stat = *regs_stat & (~mask);
3288        }
3289}
3290
3291/**
3292 *  s2io_updt_xpak_counter - Function to update the xpak counters
3293 *  @dev         : pointer to net_device struct
3294 *  Description:
3295 *  This function is to upate the status of the xpak counters value
3296 *  NONE
3297 */
3298static void s2io_updt_xpak_counter(struct net_device *dev)
3299{
3300        u16 flag  = 0x0;
3301        u16 type  = 0x0;
3302        u16 val16 = 0x0;
3303        u64 val64 = 0x0;
3304        u64 addr  = 0x0;
3305
3306        struct s2io_nic *sp = netdev_priv(dev);
3307        struct stat_block *stats = sp->mac_control.stats_info;
3308        struct xpakStat *xstats = &stats->xpak_stat;
3309
3310        /* Check the communication with the MDIO slave */
3311        addr = MDIO_CTRL1;
3312        val64 = 0x0;
3313        val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3314        if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3315                DBG_PRINT(ERR_DBG,
3316                          "ERR: MDIO slave access failed - Returned %llx\n",
3317                          (unsigned long long)val64);
3318                return;
3319        }
3320
3321        /* Check for the expected value of control reg 1 */
3322        if (val64 != MDIO_CTRL1_SPEED10G) {
3323                DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3324                          "Returned: %llx- Expected: 0x%x\n",
3325                          (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3326                return;
3327        }
3328
3329        /* Loading the DOM register to MDIO register */
3330        addr = 0xA100;
3331        s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3332        val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3333
3334        /* Reading the Alarm flags */
3335        addr = 0xA070;
3336        val64 = 0x0;
3337        val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339        flag = CHECKBIT(val64, 0x7);
3340        type = 1;
3341        s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3342                              &xstats->xpak_regs_stat,
3343                              0x0, flag, type);
3344
3345        if (CHECKBIT(val64, 0x6))
3346                xstats->alarm_transceiver_temp_low++;
3347
3348        flag = CHECKBIT(val64, 0x3);
3349        type = 2;
3350        s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3351                              &xstats->xpak_regs_stat,
3352                              0x2, flag, type);
3353
3354        if (CHECKBIT(val64, 0x2))
3355                xstats->alarm_laser_bias_current_low++;
3356
3357        flag = CHECKBIT(val64, 0x1);
3358        type = 3;
3359        s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3360                              &xstats->xpak_regs_stat,
3361                              0x4, flag, type);
3362
3363        if (CHECKBIT(val64, 0x0))
3364                xstats->alarm_laser_output_power_low++;
3365
3366        /* Reading the Warning flags */
3367        addr = 0xA074;
3368        val64 = 0x0;
3369        val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3370
3371        if (CHECKBIT(val64, 0x7))
3372                xstats->warn_transceiver_temp_high++;
3373
3374        if (CHECKBIT(val64, 0x6))
3375                xstats->warn_transceiver_temp_low++;
3376
3377        if (CHECKBIT(val64, 0x3))
3378                xstats->warn_laser_bias_current_high++;
3379
3380        if (CHECKBIT(val64, 0x2))
3381                xstats->warn_laser_bias_current_low++;
3382
3383        if (CHECKBIT(val64, 0x1))
3384                xstats->warn_laser_output_power_high++;
3385
3386        if (CHECKBIT(val64, 0x0))
3387                xstats->warn_laser_output_power_low++;
3388}
3389
3390/**
3391 *  wait_for_cmd_complete - waits for a command to complete.
3392 *  @sp : private member of the device structure, which is a pointer to the
3393 *  s2io_nic structure.
3394 *  Description: Function that waits for a command to Write into RMAC
3395 *  ADDR DATA registers to be completed and returns either success or
3396 *  error depending on whether the command was complete or not.
3397 *  Return value:
3398 *   SUCCESS on success and FAILURE on failure.
3399 */
3400
3401static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3402                                 int bit_state)
3403{
3404        int ret = FAILURE, cnt = 0, delay = 1;
3405        u64 val64;
3406
3407        if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3408                return FAILURE;
3409
3410        do {
3411                val64 = readq(addr);
3412                if (bit_state == S2IO_BIT_RESET) {
3413                        if (!(val64 & busy_bit)) {
3414                                ret = SUCCESS;
3415                                break;
3416                        }
3417                } else {
3418                        if (val64 & busy_bit) {
3419                                ret = SUCCESS;
3420                                break;
3421                        }
3422                }
3423
3424                if (in_interrupt())
3425                        mdelay(delay);
3426                else
3427                        msleep(delay);
3428
3429                if (++cnt >= 10)
3430                        delay = 50;
3431        } while (cnt < 20);
3432        return ret;
3433}
3434/*
3435 * check_pci_device_id - Checks if the device id is supported
3436 * @id : device id
3437 * Description: Function to check if the pci device id is supported by driver.
3438 * Return value: Actual device id if supported else PCI_ANY_ID
3439 */
3440static u16 check_pci_device_id(u16 id)
3441{
3442        switch (id) {
3443        case PCI_DEVICE_ID_HERC_WIN:
3444        case PCI_DEVICE_ID_HERC_UNI:
3445                return XFRAME_II_DEVICE;
3446        case PCI_DEVICE_ID_S2IO_UNI:
3447        case PCI_DEVICE_ID_S2IO_WIN:
3448                return XFRAME_I_DEVICE;
3449        default:
3450                return PCI_ANY_ID;
3451        }
3452}
3453
3454/**
3455 *  s2io_reset - Resets the card.
3456 *  @sp : private member of the device structure.
3457 *  Description: Function to Reset the card. This function then also
3458 *  restores the previously saved PCI configuration space registers as
3459 *  the card reset also resets the configuration space.
3460 *  Return value:
3461 *  void.
3462 */
3463
3464static void s2io_reset(struct s2io_nic *sp)
3465{
3466        struct XENA_dev_config __iomem *bar0 = sp->bar0;
3467        u64 val64;
3468        u16 subid, pci_cmd;
3469        int i;
3470        u16 val16;
3471        unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3472        unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473        struct stat_block *stats;
3474        struct swStat *swstats;
3475
3476        DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3477                  __func__, pci_name(sp->pdev));
3478
3479        /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3480        pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3481
3482        val64 = SW_RESET_ALL;
3483        writeq(val64, &bar0->sw_reset);
3484        if (strstr(sp->product_name, "CX4"))
3485                msleep(750);
3486        msleep(250);
3487        for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3488
3489                /* Restore the PCI state saved during initialization. */
3490                pci_restore_state(sp->pdev);
3491                pci_save_state(sp->pdev);
3492                pci_read_config_word(sp->pdev, 0x2, &val16);
3493                if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3494                        break;
3495                msleep(200);
3496        }
3497
3498        if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3499                DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3500
3501        pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3502
3503        s2io_init_pci(sp);
3504
3505        /* Set swapper to enable I/O register access */
3506        s2io_set_swapper(sp);
3507
3508        /* restore mac_addr entries */
3509        do_s2io_restore_unicast_mc(sp);
3510
3511        /* Restore the MSIX table entries from local variables */
3512        restore_xmsi_data(sp);
3513
3514        /* Clear certain PCI/PCI-X fields after reset */
3515        if (sp->device_type == XFRAME_II_DEVICE) {
3516                /* Clear "detected parity error" bit */
3517                pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3518
3519                /* Clearing PCIX Ecc status register */
3520                pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3521
3522                /* Clearing PCI_STATUS error reflected here */
3523                writeq(s2BIT(62), &bar0->txpic_int_reg);
3524        }
3525
3526        /* Reset device statistics maintained by OS */
3527        memset(&sp->stats, 0, sizeof(struct net_device_stats));
3528
3529        stats = sp->mac_control.stats_info;
3530        swstats = &stats->sw_stat;
3531
3532        /* save link up/down time/cnt, reset/memory/watchdog cnt */
3533        up_cnt = swstats->link_up_cnt;
3534        down_cnt = swstats->link_down_cnt;
3535        up_time = swstats->link_up_time;
3536        down_time = swstats->link_down_time;
3537        reset_cnt = swstats->soft_reset_cnt;
3538        mem_alloc_cnt = swstats->mem_allocated;
3539        mem_free_cnt = swstats->mem_freed;
3540        watchdog_cnt = swstats->watchdog_timer_cnt;
3541
3542        memset(stats, 0, sizeof(struct stat_block));
3543
3544        /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3545        swstats->link_up_cnt = up_cnt;
3546        swstats->link_down_cnt = down_cnt;
3547        swstats->link_up_time = up_time;
3548        swstats->link_down_time = down_time;
3549        swstats->soft_reset_cnt = reset_cnt;
3550        swstats->mem_allocated = mem_alloc_cnt;
3551        swstats->mem_freed = mem_free_cnt;
3552        swstats->watchdog_timer_cnt = watchdog_cnt;
3553
3554        /* SXE-002: Configure link and activity LED to turn it off */
3555        subid = sp->pdev->subsystem_device;
3556        if (((subid & 0xFF) >= 0x07) &&
3557            (sp->device_type == XFRAME_I_DEVICE)) {
3558                val64 = readq(&bar0->gpio_control);
3559                val64 |= 0x0000800000000000ULL;
3560                writeq(val64, &bar0->gpio_control);
3561                val64 = 0x0411040400000000ULL;
3562                writeq(val64, (void __iomem *)bar0 + 0x2700);
3563        }
3564
3565        /*
3566         * Clear spurious ECC interrupts that would have occurred on
3567         * XFRAME II cards after reset.
3568         */
3569        if (sp->device_type == XFRAME_II_DEVICE) {
3570                val64 = readq(&bar0->pcc_err_reg);
3571                writeq(val64, &bar0->pcc_err_reg);
3572        }
3573
3574        sp->device_enabled_once = false;
3575}
3576
3577/**
3578 *  s2io_set_swapper - to set the swapper controle on the card
3579 *  @sp : private member of the device structure,
3580 *  pointer to the s2io_nic structure.
3581 *  Description: Function to set the swapper control on the card
3582 *  correctly depending on the 'endianness' of the system.
3583 *  Return value:
3584 *  SUCCESS on success and FAILURE on failure.
3585 */
3586
3587static int s2io_set_swapper(struct s2io_nic *sp)
3588{
3589        struct net_device *dev = sp->dev;
3590        struct XENA_dev_config __iomem *bar0 = sp->bar0;
3591        u64 val64, valt, valr;
3592
3593        /*
3594         * Set proper endian settings and verify the same by reading
3595         * the PIF Feed-back register.
3596         */
3597
3598        val64 = readq(&bar0->pif_rd_swapper_fb);
3599        if (val64 != 0x0123456789ABCDEFULL) {
3600                int i = 0;
3601                static const u64 value[] = {
3602                        0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3603                        0x8100008181000081ULL,  /* FE=1, SE=0 */
3604                        0x4200004242000042ULL,  /* FE=0, SE=1 */
3605                        0                       /* FE=0, SE=0 */
3606                };
3607
3608                while (i < 4) {
3609                        writeq(value[i], &bar0->swapper_ctrl);
3610                        val64 = readq(&bar0->pif_rd_swapper_fb);
3611                        if (val64 == 0x0123456789ABCDEFULL)
3612                                break;
3613                        i++;
3614                }
3615                if (i == 4) {
3616                        DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3617                                  "feedback read %llx\n",
3618                                  dev->name, (unsigned long long)val64);
3619                        return FAILURE;
3620                }
3621                valr = value[i];
3622        } else {
3623                valr = readq(&bar0->swapper_ctrl);
3624        }
3625
3626        valt = 0x0123456789ABCDEFULL;
3627        writeq(valt, &bar0->xmsi_address);
3628        val64 = readq(&bar0->xmsi_address);
3629
3630        if (val64 != valt) {
3631                int i = 0;
3632                static const u64 value[] = {
3633                        0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3634                        0x0081810000818100ULL,  /* FE=1, SE=0 */
3635                        0x0042420000424200ULL,  /* FE=0, SE=1 */
3636                        0                       /* FE=0, SE=0 */
3637                };
3638
3639                while (i < 4) {
3640                        writeq((value[i] | valr), &bar0->swapper_ctrl);
3641                        writeq(valt, &bar0->xmsi_address);
3642                        val64 = readq(&bar0->xmsi_address);
3643                        if (val64 == valt)
3644                                break;
3645                        i++;
3646                }
3647                if (i == 4) {
3648                        unsigned long long x = val64;
3649                        DBG_PRINT(ERR_DBG,
3650                                  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3651                        return FAILURE;
3652                }
3653        }
3654        val64 = readq(&bar0->swapper_ctrl);
3655        val64 &= 0xFFFF000000000000ULL;
3656
3657#ifdef __BIG_ENDIAN
3658        /*
3659         * The device by default set to a big endian format, so a
3660         * big endian driver need not set anything.
3661         */
3662        val64 |= (SWAPPER_CTRL_TXP_FE |
3663                  SWAPPER_CTRL_TXP_SE |
3664                  SWAPPER_CTRL_TXD_R_FE |
3665                  SWAPPER_CTRL_TXD_W_FE |
3666                  SWAPPER_CTRL_TXF_R_FE |
3667                  SWAPPER_CTRL_RXD_R_FE |
3668                  SWAPPER_CTRL_RXD_W_FE |
3669                  SWAPPER_CTRL_RXF_W_FE |
3670                  SWAPPER_CTRL_XMSI_FE |
3671                  SWAPPER_CTRL_STATS_FE |
3672                  SWAPPER_CTRL_STATS_SE);
3673        if (sp->config.intr_type == INTA)
3674                val64 |= SWAPPER_CTRL_XMSI_SE;
3675        writeq(val64, &bar0->swapper_ctrl);
3676#else
3677        /*
3678         * Initially we enable all bits to make it accessible by the
3679         * driver, then we selectively enable only those bits that
3680         * we want to set.
3681         */
3682        val64 |= (SWAPPER_CTRL_TXP_FE |
3683                  SWAPPER_CTRL_TXP_SE |
3684                  SWAPPER_CTRL_TXD_R_FE |
3685                  SWAPPER_CTRL_TXD_R_SE |
3686                  SWAPPER_CTRL_TXD_W_FE |
3687                  SWAPPER_CTRL_TXD_W_SE |
3688                  SWAPPER_CTRL_TXF_R_FE |
3689                  SWAPPER_CTRL_RXD_R_FE |
3690                  SWAPPER_CTRL_RXD_R_SE |
3691                  SWAPPER_CTRL_RXD_W_FE |
3692                  SWAPPER_CTRL_RXD_W_SE |
3693                  SWAPPER_CTRL_RXF_W_FE |
3694                  SWAPPER_CTRL_XMSI_FE |
3695                  SWAPPER_CTRL_STATS_FE |
3696                  SWAPPER_CTRL_STATS_SE);
3697        if (sp->config.intr_type == INTA)
3698                val64 |= SWAPPER_CTRL_XMSI_SE;
3699        writeq(val64, &bar0->swapper_ctrl);
3700#endif
3701        val64 = readq(&bar0->swapper_ctrl);
3702
3703        /*
3704         * Verifying if endian settings are accurate by reading a
3705         * feedback register.
3706         */
3707        val64 = readq(&bar0->pif_rd_swapper_fb);
3708        if (val64 != 0x0123456789ABCDEFULL) {
3709                /* Endian settings are incorrect, calls for another dekko. */
3710                DBG_PRINT(ERR_DBG,
3711                          "%s: Endian settings are wrong, feedback read %llx\n",
3712                          dev->name, (unsigned long long)val64);
3713                return FAILURE;
3714        }
3715
3716        return SUCCESS;
3717}
3718
3719static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3720{
3721        struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722        u64 val64;
3723        int ret = 0, cnt = 0;
3724
3725        do {
3726                val64 = readq(&bar0->xmsi_access);
3727                if (!(val64 & s2BIT(15)))
3728                        break;
3729                mdelay(1);
3730                cnt++;
3731        } while (cnt < 5);
3732        if (cnt == 5) {
3733                DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734                ret = 1;
3735        }
3736
3737        return ret;
3738}
3739
3740static void restore_xmsi_data(struct s2io_nic *nic)
3741{
3742        struct XENA_dev_config __iomem *bar0 = nic->bar0;
3743        u64 val64;
3744        int i, msix_index;
3745
3746        if (nic->device_type == XFRAME_I_DEVICE)
3747                return;
3748
3749        for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750                msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3751                writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752                writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3753                val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3754                writeq(val64, &bar0->xmsi_access);
3755                if (wait_for_msix_trans(nic, msix_index)) {
3756                        DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757                                  __func__, msix_index);
3758                        continue;
3759                }
3760        }
3761}
3762
3763static void store_xmsi_data(struct s2io_nic *nic)
3764{
3765        struct XENA_dev_config __iomem *bar0 = nic->bar0;
3766        u64 val64, addr, data;
3767        int i, msix_index;
3768
3769        if (nic->device_type == XFRAME_I_DEVICE)
3770                return;
3771
3772        /* Store and display */
3773        for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774                msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3775                val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3776                writeq(val64, &bar0->xmsi_access);
3777                if (wait_for_msix_trans(nic, msix_index)) {
3778                        DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779                                  __func__, msix_index);
3780                        continue;
3781                }
3782                addr = readq(&bar0->xmsi_address);
3783                data = readq(&bar0->xmsi_data);
3784                if (addr && data) {
3785                        nic->msix_info[i].addr = addr;
3786                        nic->msix_info[i].data = data;
3787                }
3788        }
3789}
3790
3791static int s2io_enable_msi_x(struct s2io_nic *nic)
3792{
3793        struct XENA_dev_config __iomem *bar0 = nic->bar0;
3794        u64 rx_mat;
3795        u16 msi_control; /* Temp variable */
3796        int ret, i, j, msix_indx = 1;
3797        int size;
3798        struct stat_block *stats = nic->mac_control.stats_info;
3799        struct swStat *swstats = &stats->sw_stat;
3800
3801        size = nic->num_entries * sizeof(struct msix_entry);
3802        nic->entries = kzalloc(size, GFP_KERNEL);
3803        if (!nic->entries) {
3804                DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805                          __func__);
3806                swstats->mem_alloc_fail_cnt++;
3807                return -ENOMEM;
3808        }
3809        swstats->mem_allocated += size;
3810
3811        size = nic->num_entries * sizeof(struct s2io_msix_entry);
3812        nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3813        if (!nic->s2io_entries) {
3814                DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3815                          __func__);
3816                swstats->mem_alloc_fail_cnt++;
3817                kfree(nic->entries);
3818                swstats->mem_freed
3819                        += (nic->num_entries * sizeof(struct msix_entry));
3820                return -ENOMEM;
3821        }
3822        swstats->mem_allocated += size;
3823
3824        nic->entries[0].entry = 0;
3825        nic->s2io_entries[0].entry = 0;
3826        nic->s2io_entries[0].in_use = MSIX_FLG;
3827        nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828        nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829
3830        for (i = 1; i < nic->num_entries; i++) {
3831                nic->entries[i].entry = ((i - 1) * 8) + 1;
3832                nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3833                nic->s2io_entries[i].arg = NULL;
3834                nic->s2io_entries[i].in_use = 0;
3835        }
3836
3837        rx_mat = readq(&bar0->rx_mat);
3838        for (j = 0; j < nic->config.rx_ring_num; j++) {
3839                rx_mat |= RX_MAT_SET(j, msix_indx);
3840                nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841                nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842                nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843                msix_indx += 8;
3844        }
3845        writeq(rx_mat, &bar0->rx_mat);
3846        readq(&bar0->rx_mat);
3847
3848        ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3849        /* We fail init if error or we get less vectors than min required */
3850        if (ret) {
3851                DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3852                kfree(nic->entries);
3853                swstats->mem_freed += nic->num_entries *
3854                        sizeof(struct msix_entry);
3855                kfree(nic->s2io_entries);
3856                swstats->mem_freed += nic->num_entries *
3857                        sizeof(struct s2io_msix_entry);
3858                nic->entries = NULL;
3859                nic->s2io_entries = NULL;
3860                return -ENOMEM;
3861        }
3862
3863        /*
3864         * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865         * in the herc NIC. (Temp change, needs to be removed later)
3866         */
3867        pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868        msi_control |= 0x1; /* Enable MSI */
3869        pci_write_config_word(nic->pdev, 0x42, msi_control);
3870
3871        return 0;
3872}
3873
3874/* Handle software interrupt used during MSI(X) test */
3875static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3876{
3877        struct s2io_nic *sp = dev_id;
3878
3879        sp->msi_detected = 1;
3880        wake_up(&sp->msi_wait);
3881
3882        return IRQ_HANDLED;
3883}
3884
3885/* Test interrupt path by forcing a a software IRQ */
3886static int s2io_test_msi(struct s2io_nic *sp)
3887{
3888        struct pci_dev *pdev = sp->pdev;
3889        struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890        int err;
3891        u64 val64, saved64;
3892
3893        err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3894                          sp->name, sp);
3895        if (err) {
3896                DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3897                          sp->dev->name, pci_name(pdev), pdev->irq);
3898                return err;
3899        }
3900
3901        init_waitqueue_head(&sp->msi_wait);
3902        sp->msi_detected = 0;
3903
3904        saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905        val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906        val64 |= SCHED_INT_CTRL_TIMER_EN;
3907        val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908        writeq(val64, &bar0->scheduled_int_ctrl);
3909
3910        wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911
3912        if (!sp->msi_detected) {
3913                /* MSI(X) test failed, go back to INTx mode */
3914                DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3915                          "using MSI(X) during test\n",
3916                          sp->dev->name, pci_name(pdev));
3917
3918                err = -EOPNOTSUPP;
3919        }
3920
3921        free_irq(sp->entries[1].vector, sp);
3922
3923        writeq(saved64, &bar0->scheduled_int_ctrl);
3924
3925        return err;
3926}
3927
3928static void remove_msix_isr(struct s2io_nic *sp)
3929{
3930        int i;
3931        u16 msi_control;
3932
3933        for (i = 0; i < sp->num_entries; i++) {
3934                if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3935                        int vector = sp->entries[i].vector;
3936                        void *arg = sp->s2io_entries[i].arg;
3937                        free_irq(vector, arg);
3938                }
3939        }
3940
3941        kfree(sp->entries);
3942        kfree(sp->s2io_entries);
3943        sp->entries = NULL;
3944        sp->s2io_entries = NULL;
3945
3946        pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947        msi_control &= 0xFFFE; /* Disable MSI */
3948        pci_write_config_word(sp->pdev, 0x42, msi_control);
3949
3950        pci_disable_msix(sp->pdev);
3951}
3952
3953static void remove_inta_isr(struct s2io_nic *sp)
3954{
3955        struct net_device *dev = sp->dev;
3956
3957        free_irq(sp->pdev->irq, dev);
3958}
3959
3960/* ********************************************************* *
3961 * Functions defined below concern the OS part of the driver *
3962 * ********************************************************* */
3963
3964/**
3965 *  s2io_open - open entry point of the driver
3966 *  @dev : pointer to the device structure.
3967 *  Description:
3968 *  This function is the open entry point of the driver. It mainly calls a
3969 *  function to allocate Rx buffers and inserts them into the buffer
3970 *  descriptors and then enables the Rx part of the NIC.
3971 *  Return value:
3972 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3973 *   file on failure.
3974 */
3975
3976static int s2io_open(struct net_device *dev)
3977{
3978        struct s2io_nic *sp = netdev_priv(dev);
3979        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3980        int err = 0;
3981
3982        /*
3983         * Make sure you have link off by default every time
3984         * Nic is initialized
3985         */
3986        netif_carrier_off(dev);
3987        sp->last_link_state = 0;
3988
3989        /* Initialize H/W and enable interrupts */
3990        err = s2io_card_up(sp);
3991        if (err) {
3992                DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993                          dev->name);
3994                goto hw_init_failed;
3995        }
3996
3997        if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3998                DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3999                s2io_card_down(sp);
4000                err = -ENODEV;
4001                goto hw_init_failed;
4002        }
4003        s2io_start_all_tx_queue(sp);
4004        return 0;
4005
4006hw_init_failed:
4007        if (sp->config.intr_type == MSI_X) {
4008                if (sp->entries) {
4009                        kfree(sp->entries);
4010                        swstats->mem_freed += sp->num_entries *
4011                                sizeof(struct msix_entry);
4012                }
4013                if (sp->s2io_entries) {
4014                        kfree(sp->s2io_entries);
4015                        swstats->mem_freed += sp->num_entries *
4016                                sizeof(struct s2io_msix_entry);
4017                }
4018        }
4019        return err;
4020}
4021
4022/**
4023 *  s2io_close -close entry point of the driver
4024 *  @dev : device pointer.
4025 *  Description:
4026 *  This is the stop entry point of the driver. It needs to undo exactly
4027 *  whatever was done by the open entry point,thus it's usually referred to
4028 *  as the close function.Among other things this function mainly stops the
4029 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030 *  Return value:
4031 *  0 on success and an appropriate (-)ve integer as defined in errno.h
4032 *  file on failure.
4033 */
4034
4035static int s2io_close(struct net_device *dev)
4036{
4037        struct s2io_nic *sp = netdev_priv(dev);
4038        struct config_param *config = &sp->config;
4039        u64 tmp64;
4040        int offset;
4041
4042        /* Return if the device is already closed               *
4043         *  Can happen when s2io_card_up failed in change_mtu    *
4044         */
4045        if (!is_s2io_card_up(sp))
4046                return 0;
4047
4048        s2io_stop_all_tx_queue(sp);
4049        /* delete all populated mac entries */
4050        for (offset = 1; offset < config->max_mc_addr; offset++) {
4051                tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052                if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053                        do_s2io_delete_unicast_mc(sp, tmp64);
4054        }
4055
4056        s2io_card_down(sp);
4057
4058        return 0;
4059}
4060
4061/**
4062 *  s2io_xmit - Tx entry point of te driver
4063 *  @skb : the socket buffer containing the Tx data.
4064 *  @dev : device pointer.
4065 *  Description :
4066 *  This function is the Tx entry point of the driver. S2IO NIC supports
4067 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4068 *  NOTE: when device can't queue the pkt,just the trans_start variable will
4069 *  not be upadted.
4070 *  Return value:
4071 *  0 on success & 1 on failure.
4072 */
4073
4074static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4075{
4076        struct s2io_nic *sp = netdev_priv(dev);
4077        u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078        register u64 val64;
4079        struct TxD *txdp;
4080        struct TxFIFO_element __iomem *tx_fifo;
4081        unsigned long flags = 0;
4082        u16 vlan_tag = 0;
4083        struct fifo_info *fifo = NULL;
4084        int do_spin_lock = 1;
4085        int offload_type;
4086        int enable_per_list_interrupt = 0;
4087        struct config_param *config = &sp->config;
4088        struct mac_info *mac_control = &sp->mac_control;
4089        struct stat_block *stats = mac_control->stats_info;
4090        struct swStat *swstats = &stats->sw_stat;
4091
4092        DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4093
4094        if (unlikely(skb->len <= 0)) {
4095                DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4096                dev_kfree_skb_any(skb);
4097                return NETDEV_TX_OK;
4098        }
4099
4100        if (!is_s2io_card_up(sp)) {
4101                DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4102                          dev->name);
4103                dev_kfree_skb(skb);
4104                return NETDEV_TX_OK;
4105        }
4106
4107        queue = 0;
4108        if (vlan_tx_tag_present(skb))
4109                vlan_tag = vlan_tx_tag_get(skb);
4110        if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111                if (skb->protocol == htons(ETH_P_IP)) {
4112                        struct iphdr *ip;
4113                        struct tcphdr *th;
4114                        ip = ip_hdr(skb);
4115
4116                        if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117                                th = (struct tcphdr *)(((unsigned char *)ip) +
4118                                                       ip->ihl*4);
4119
4120                                if (ip->protocol == IPPROTO_TCP) {
4121                                        queue_len = sp->total_tcp_fifos;
4122                                        queue = (ntohs(th->source) +
4123                                                 ntohs(th->dest)) &
4124                                                sp->fifo_selector[queue_len - 1];
4125                                        if (queue >= queue_len)
4126                                                queue = queue_len - 1;
4127                                } else if (ip->protocol == IPPROTO_UDP) {
4128                                        queue_len = sp->total_udp_fifos;
4129                                        queue = (ntohs(th->source) +
4130                                                 ntohs(th->dest)) &
4131                                                sp->fifo_selector[queue_len - 1];
4132                                        if (queue >= queue_len)
4133                                                queue = queue_len - 1;
4134                                        queue += sp->udp_fifo_idx;
4135                                        if (skb->len > 1024)
4136                                                enable_per_list_interrupt = 1;
4137                                        do_spin_lock = 0;
4138                                }
4139                        }
4140                }
4141        } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142                /* get fifo number based on skb->priority value */
4143                queue = config->fifo_mapping
4144                        [skb->priority & (MAX_TX_FIFOS - 1)];
4145        fifo = &mac_control->fifos[queue];
4146
4147        if (do_spin_lock)
4148                spin_lock_irqsave(&fifo->tx_lock, flags);
4149        else {
4150                if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151                        return NETDEV_TX_LOCKED;
4152        }
4153
4154        if (sp->config.multiq) {
4155                if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156                        spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157                        return NETDEV_TX_BUSY;
4158                }
4159        } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4160                if (netif_queue_stopped(dev)) {
4161                        spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162                        return NETDEV_TX_BUSY;
4163                }
4164        }
4165
4166        put_off = (u16)fifo->tx_curr_put_info.offset;
4167        get_off = (u16)fifo->tx_curr_get_info.offset;
4168        txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4169
4170        queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4171        /* Avoid "put" pointer going beyond "get" pointer */
4172        if (txdp->Host_Control ||
4173            ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4174                DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4175                s2io_stop_tx_queue(sp, fifo->fifo_no);
4176                dev_kfree_skb(skb);
4177                spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178                return NETDEV_TX_OK;
4179        }
4180
4181        offload_type = s2io_offload_type(skb);
4182        if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4183                txdp->Control_1 |= TXD_TCP_LSO_EN;
4184                txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4185        }
4186        if (skb->ip_summed == CHECKSUM_PARTIAL) {
4187                txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188                                    TXD_TX_CKO_TCP_EN |
4189                                    TXD_TX_CKO_UDP_EN);
4190        }
4191        txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192        txdp->Control_1 |= TXD_LIST_OWN_XENA;
4193        txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4194        if (enable_per_list_interrupt)
4195                if (put_off & (queue_len >> 5))
4196                        txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4197        if (vlan_tag) {
4198                txdp->Control_2 |= TXD_VLAN_ENABLE;
4199                txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200        }
4201
4202        frg_len = skb_headlen(skb);
4203        if (offload_type == SKB_GSO_UDP) {
4204                int ufo_size;
4205
4206                ufo_size = s2io_udp_mss(skb);
4207                ufo_size &= ~7;
4208                txdp->Control_1 |= TXD_UFO_EN;
4209                txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210                txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211#ifdef __BIG_ENDIAN
4212                /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213                fifo->ufo_in_band_v[put_off] =
4214                        (__force u64)skb_shinfo(skb)->ip6_frag_id;
4215#else
4216                fifo->ufo_in_band_v[put_off] =
4217                        (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4218#endif
4219                txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4220                txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4221                                                      fifo->ufo_in_band_v,
4222                                                      sizeof(u64),
4223                                                      PCI_DMA_TODEVICE);
4224                if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4225                        goto pci_map_failed;
4226                txdp++;
4227        }
4228
4229        txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230                                              frg_len, PCI_DMA_TODEVICE);
4231        if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4232                goto pci_map_failed;
4233
4234        txdp->Host_Control = (unsigned long)skb;
4235        txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4236        if (offload_type == SKB_GSO_UDP)
4237                txdp->Control_1 |= TXD_UFO_EN;
4238
4239        frg_cnt = skb_shinfo(skb)->nr_frags;
4240        /* For fragmented SKB. */
4241        for (i = 0; i < frg_cnt; i++) {
4242                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4243                /* A '0' length fragment will be ignored */
4244                if (!frag->size)
4245                        continue;
4246                txdp++;
4247                txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248                                                         frag->page_offset,
4249                                                         frag->size,
4250                                                         PCI_DMA_TODEVICE);
4251                txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4252                if (offload_type == SKB_GSO_UDP)
4253                        txdp->Control_1 |= TXD_UFO_EN;
4254        }
4255        txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256
4257        if (offload_type == SKB_GSO_UDP)
4258                frg_cnt++; /* as Txd0 was used for inband header */
4259
4260        tx_fifo = mac_control->tx_FIFO_start[queue];
4261        val64 = fifo->list_info[put_off].list_phy_addr;
4262        writeq(val64, &tx_fifo->TxDL_Pointer);
4263
4264        val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265                 TX_FIFO_LAST_LIST);
4266        if (offload_type)
4267                val64 |= TX_FIFO_SPECIAL_FUNC;
4268
4269        writeq(val64, &tx_fifo->List_Control);
4270
4271        mmiowb();
4272
4273        put_off++;
4274        if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4275                put_off = 0;
4276        fifo->tx_curr_put_info.offset = put_off;
4277
4278        /* Avoid "put" pointer going beyond "get" pointer */
4279        if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4280                swstats->fifo_full_cnt++;
4281                DBG_PRINT(TX_DBG,
4282                          "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283                          put_off, get_off);
4284                s2io_stop_tx_queue(sp, fifo->fifo_no);
4285        }
4286        swstats->mem_allocated += skb->truesize;
4287        spin_unlock_irqrestore(&fifo->tx_lock, flags);
4288
4289        if (sp->config.intr_type == MSI_X)
4290                tx_intr_handler(fifo);
4291
4292        return NETDEV_TX_OK;
4293
4294pci_map_failed:
4295        swstats->pci_map_fail_cnt++;
4296        s2io_stop_tx_queue(sp, fifo->fifo_no);
4297        swstats->mem_freed += skb->truesize;
4298        dev_kfree_skb(skb);
4299        spin_unlock_irqrestore(&fifo->tx_lock, flags);
4300        return NETDEV_TX_OK;
4301}
4302
4303static void
4304s2io_alarm_handle(unsigned long data)
4305{
4306        struct s2io_nic *sp = (struct s2io_nic *)data;
4307        struct net_device *dev = sp->dev;
4308
4309        s2io_handle_errors(dev);
4310        mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311}
4312
4313static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4314{
4315        struct ring_info *ring = (struct ring_info *)dev_id;
4316        struct s2io_nic *sp = ring->nic;
4317        struct XENA_dev_config __iomem *bar0 = sp->bar0;
4318
4319        if (unlikely(!is_s2io_card_up(sp)))
4320                return IRQ_HANDLED;
4321
4322        if (sp->config.napi) {
4323                u8 __iomem *addr = NULL;
4324                u8 val8 = 0;
4325
4326                addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4327                addr += (7 - ring->ring_no);
4328                val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329                writeb(val8, addr);
4330                val8 = readb(addr);
4331                napi_schedule(&ring->napi);
4332        } else {
4333                rx_intr_handler(ring, 0);
4334                s2io_chk_rx_buffers(sp, ring);
4335        }
4336
4337        return IRQ_HANDLED;
4338}
4339
4340static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4341{
4342        int i;
4343        struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344        struct s2io_nic *sp = fifos->nic;
4345        struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346        struct config_param *config  = &sp->config;
4347        u64 reason;
4348
4349        if (unlikely(!is_s2io_card_up(sp)))
4350                return IRQ_NONE;
4351
4352        reason = readq(&bar0->general_int_status);
4353        if (unlikely(reason == S2IO_MINUS_ONE))
4354                /* Nothing much can be done. Get out */
4355                return IRQ_HANDLED;
4356
4357        if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358                writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4359
4360                if (reason & GEN_INTR_TXPIC)
4361                        s2io_txpic_intr_handle(sp);
4362
4363                if (reason & GEN_INTR_TXTRAFFIC)
4364                        writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4365
4366                for (i = 0; i < config->tx_fifo_num; i++)
4367                        tx_intr_handler(&fifos[i]);
4368
4369                writeq(sp->general_int_mask, &bar0->general_int_mask);
4370                readl(&bar0->general_int_status);
4371                return IRQ_HANDLED;
4372        }
4373        /* The interrupt was not raised by us */
4374        return IRQ_NONE;
4375}
4376
4377static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4378{
4379        struct XENA_dev_config __iomem *bar0 = sp->bar0;
4380        u64 val64;
4381
4382        val64 = readq(&bar0->pic_int_status);
4383        if (val64 & PIC_INT_GPIO) {
4384                val64 = readq(&bar0->gpio_int_reg);
4385                if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386                    (val64 & GPIO_INT_REG_LINK_UP)) {
4387                        /*
4388                         * This is unstable state so clear both up/down
4389                         * interrupt and adapter to re-evaluate the link state.
4390                         */
4391                        val64 |= GPIO_INT_REG_LINK_DOWN;
4392                        val64 |= GPIO_INT_REG_LINK_UP;
4393                        writeq(val64, &bar0->gpio_int_reg);
4394                        val64 = readq(&bar0->gpio_int_mask);
4395                        val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396                                   GPIO_INT_MASK_LINK_DOWN);
4397                        writeq(val64, &bar0->gpio_int_mask);
4398                } else if (val64 & GPIO_INT_REG_LINK_UP) {
4399                        val64 = readq(&bar0->adapter_status);
4400                        /* Enable Adapter */
4401                        val64 = readq(&bar0->adapter_control);
4402                        val64 |= ADAPTER_CNTL_EN;
4403                        writeq(val64, &bar0->adapter_control);
4404                        val64 |= ADAPTER_LED_ON;
4405                        writeq(val64, &bar0->adapter_control);
4406                        if (!sp->device_enabled_once)
4407                                sp->device_enabled_once = 1;
4408
4409                        s2io_link(sp, LINK_UP);
4410                        /*
4411                         * unmask link down interrupt and mask link-up
4412                         * intr
4413                         */
4414                        val64 = readq(&bar0->gpio_int_mask);
4415                        val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416                        val64 |= GPIO_INT_MASK_LINK_UP;
4417                        writeq(val64, &bar0->gpio_int_mask);
4418
4419                } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4420                        val64 = readq(&bar0->adapter_status);
4421                        s2io_link(sp, LINK_DOWN);
4422                        /* Link is down so unmaks link up interrupt */
4423                        val64 = readq(&bar0->gpio_int_mask);
4424                        val64 &= ~GPIO_INT_MASK_LINK_UP;
4425                        val64 |= GPIO_INT_MASK_LINK_DOWN;
4426                        writeq(val64, &bar0->gpio_int_mask);
4427
4428                        /* turn off LED */
4429                        val64 = readq(&bar0->adapter_control);
4430                        val64 = val64 & (~ADAPTER_LED_ON);
4431                        writeq(val64, &bar0->adapter_control);
4432                }
4433        }
4434        val64 = readq(&bar0->gpio_int_mask);
4435}
4436
4437/**
4438 *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439 *  @value: alarm bits
4440 *  @addr: address value
4441 *  @cnt: counter variable
4442 *  Description: Check for alarm and increment the counter
4443 *  Return Value:
4444 *  1 - if alarm bit set
4445 *  0 - if alarm bit is not set
4446 */
4447static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448                                 unsigned long long *cnt)
4449{
4450        u64 val64;
4451        val64 = readq(addr);
4452        if (val64 & value) {
4453                writeq(val64, addr);
4454                (*cnt)++;
4455                return 1;
4456        }
4457        return 0;
4458
4459}
4460
4461/**
4462 *  s2io_handle_errors - Xframe error indication handler
4463 *  @nic: device private variable
4464 *  Description: Handle alarms such as loss of link, single or
4465 *  double ECC errors, critical and serious errors.
4466 *  Return Value:
4467 *  NONE
4468 */
4469static void s2io_handle_errors(void *dev_id)
4470{
4471        struct net_device *dev = (struct net_device *)dev_id;
4472        struct s2io_nic *sp = netdev_priv(dev);
4473        struct XENA_dev_config __iomem *bar0 = sp->bar0;
4474        u64 temp64 = 0, val64 = 0;
4475        int i = 0;
4476
4477        struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478        struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479
4480        if (!is_s2io_card_up(sp))
4481                return;
4482
4483        if (pci_channel_offline(sp->pdev))
4484                return;
4485
4486        memset(&sw_stat->ring_full_cnt, 0,
4487               sizeof(sw_stat->ring_full_cnt));
4488
4489        /* Handling the XPAK counters update */
4490        if (stats->xpak_timer_count < 72000) {
4491                /* waiting for an hour */
4492                stats->xpak_timer_count++;
4493        } else {
4494                s2io_updt_xpak_counter(dev);
4495                /* reset the count to zero */
4496                stats->xpak_timer_count = 0;
4497        }
4498
4499        /* Handling link status change error Intr */
4500        if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501                val64 = readq(&bar0->mac_rmac_err_reg);
4502                writeq(val64, &bar0->mac_rmac_err_reg);
4503                if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504                        schedule_work(&sp->set_link_task);
4505        }
4506
4507        /* In case of a serious error, the device will be Reset. */
4508        if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4509                                  &sw_stat->serious_err_cnt))
4510                goto reset;
4511
4512        /* Check for data parity error */
4513        if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4514                                  &sw_stat->parity_err_cnt))
4515                goto reset;
4516
4517        /* Check for ring full counter */
4518        if (sp->device_type == XFRAME_II_DEVICE) {
4519                val64 = readq(&bar0->ring_bump_counter1);
4520                for (i = 0; i < 4; i++) {
4521                        temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4522                        temp64 >>= 64 - ((i+1)*16);
4523                        sw_stat->ring_full_cnt[i] += temp64;
4524                }
4525
4526                val64 = readq(&bar0->ring_bump_counter2);
4527                for (i = 0; i < 4; i++) {
4528                        temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4529                        temp64 >>= 64 - ((i+1)*16);
4530                        sw_stat->ring_full_cnt[i+4] += temp64;
4531                }
4532        }
4533
4534        val64 = readq(&bar0->txdma_int_status);
4535        /*check for pfc_err*/
4536        if (val64 & TXDMA_PFC_INT) {
4537                if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538                                          PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539                                          PFC_PCIX_ERR,
4540                                          &bar0->pfc_err_reg,
4541                                          &sw_stat->pfc_err_cnt))
4542                        goto reset;
4543                do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544                                      &bar0->pfc_err_reg,
4545                                      &sw_stat->pfc_err_cnt);
4546        }
4547
4548        /*check for tda_err*/
4549        if (val64 & TXDMA_TDA_INT) {
4550                if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551                                          TDA_SM0_ERR_ALARM |
4552                                          TDA_SM1_ERR_ALARM,
4553                                          &bar0->tda_err_reg,
4554                                          &sw_stat->tda_err_cnt))
4555                        goto reset;
4556                do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4557                                      &bar0->tda_err_reg,
4558                                      &sw_stat->tda_err_cnt);
4559        }
4560        /*check for pcc_err*/
4561        if (val64 & TXDMA_PCC_INT) {
4562                if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563                                          PCC_N_SERR | PCC_6_COF_OV_ERR |
4564                                          PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565                                          PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566                                          PCC_TXB_ECC_DB_ERR,
4567                                          &bar0->pcc_err_reg,
4568                                          &sw_stat->pcc_err_cnt))
4569                        goto reset;
4570                do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4571                                      &bar0->pcc_err_reg,
4572                                      &sw_stat->pcc_err_cnt);
4573        }
4574
4575        /*check for tti_err*/
4576        if (val64 & TXDMA_TTI_INT) {
4577                if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578                                          &bar0->tti_err_reg,
4579                                          &sw_stat->tti_err_cnt))
4580                        goto reset;
4581                do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4582                                      &bar0->tti_err_reg,
4583                                      &sw_stat->tti_err_cnt);
4584        }
4585
4586        /*check for lso_err*/
4587        if (val64 & TXDMA_LSO_INT) {
4588                if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589                                          LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590                                          &bar0->lso_err_reg,
4591                                          &sw_stat->lso_err_cnt))
4592                        goto reset;
4593                do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4594                                      &bar0->lso_err_reg,
4595                                      &sw_stat->lso_err_cnt);
4596        }
4597
4598        /*check for tpa_err*/
4599        if (val64 & TXDMA_TPA_INT) {
4600                if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601                                          &bar0->tpa_err_reg,
4602                                          &sw_stat->tpa_err_cnt))
4603                        goto reset;
4604                do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605                                      &bar0->tpa_err_reg,
4606                                      &sw_stat->tpa_err_cnt);
4607        }
4608
4609        /*check for sm_err*/
4610        if (val64 & TXDMA_SM_INT) {
4611                if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612                                          &bar0->sm_err_reg,
4613                                          &sw_stat->sm_err_cnt))
4614                        goto reset;
4615        }
4616
4617        val64 = readq(&bar0->mac_int_status);
4618        if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619                if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4620                                          &bar0->mac_tmac_err_reg,
4621                                          &sw_stat->mac_tmac_err_cnt))
4622                        goto reset;
4623                do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624                                      TMAC_DESC_ECC_SG_ERR |
4625                                      TMAC_DESC_ECC_DB_ERR,
4626                                      &bar0->mac_tmac_err_reg,
4627                                      &sw_stat->mac_tmac_err_cnt);
4628        }
4629
4630        val64 = readq(&bar0->xgxs_int_status);
4631        if (val64 & XGXS_INT_STATUS_TXGXS) {
4632                if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633                                          &bar0->xgxs_txgxs_err_reg,
4634                                          &sw_stat->xgxs_txgxs_err_cnt))
4635                        goto reset;
4636                do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637                                      &bar0->xgxs_txgxs_err_reg,
4638                                      &sw_stat->xgxs_txgxs_err_cnt);
4639        }
4640
4641        val64 = readq(&bar0->rxdma_int_status);
4642        if (val64 & RXDMA_INT_RC_INT_M) {
4643                if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644                                          RC_FTC_ECC_DB_ERR |
4645                                          RC_PRCn_SM_ERR_ALARM |
4646                                          RC_FTC_SM_ERR_ALARM,
4647                                          &bar0->rc_err_reg,
4648                                          &sw_stat->rc_err_cnt))
4649                        goto reset;
4650                do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651                                      RC_FTC_ECC_SG_ERR |
4652                                      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653                                      &sw_stat->rc_err_cnt);
4654                if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655                                          PRC_PCI_AB_WR_Rn |
4656                                          PRC_PCI_AB_F_WR_Rn,
4657                                          &bar0->prc_pcix_err_reg,
4658                                          &sw_stat->prc_pcix_err_cnt))
4659                        goto reset;
4660                do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661                                      PRC_PCI_DP_WR_Rn |
4662                                      PRC_PCI_DP_F_WR_Rn,
4663                                      &bar0->prc_pcix_err_reg,
4664                                      &sw_stat->prc_pcix_err_cnt);
4665        }
4666
4667        if (val64 & RXDMA_INT_RPA_INT_M) {
4668                if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4669                                          &bar0->rpa_err_reg,
4670                                          &sw_stat->rpa_err_cnt))
4671                        goto reset;
4672                do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4673                                      &bar0->rpa_err_reg,
4674                                      &sw_stat->rpa_err_cnt);
4675        }
4676
4677        if (val64 & RXDMA_INT_RDA_INT_M) {
4678                if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679                                          RDA_FRM_ECC_DB_N_AERR |
4680                                          RDA_SM1_ERR_ALARM |
4681                                          RDA_SM0_ERR_ALARM |
4682                                          RDA_RXD_ECC_DB_SERR,
4683                                          &bar0->rda_err_reg,
4684                                          &sw_stat->rda_err_cnt))
4685                        goto reset;
4686                do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687                                      RDA_FRM_ECC_SG_ERR |
4688                                      RDA_MISC_ERR |
4689                                      RDA_PCIX_ERR,
4690                                      &bar0->rda_err_reg,
4691                                      &sw_stat->rda_err_cnt);
4692        }
4693
4694        if (val64 & RXDMA_INT_RTI_INT_M) {
4695                if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696                                          &bar0->rti_err_reg,
4697                                          &sw_stat->rti_err_cnt))
4698                        goto reset;
4699                do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4700                                      &bar0->rti_err_reg,
4701                                      &sw_stat->rti_err_cnt);
4702        }
4703
4704        val64 = readq(&bar0->mac_int_status);
4705        if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706                if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4707                                          &bar0->mac_rmac_err_reg,
4708                                          &sw_stat->mac_rmac_err_cnt))
4709                        goto reset;
4710                do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711                                      RMAC_SINGLE_ECC_ERR |
4712                                      RMAC_DOUBLE_ECC_ERR,
4713                                      &bar0->mac_rmac_err_reg,
4714                                      &sw_stat->mac_rmac_err_cnt);
4715        }
4716
4717        val64 = readq(&bar0->xgxs_int_status);
4718        if (val64 & XGXS_INT_STATUS_RXGXS) {
4719                if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4720                                          &bar0->xgxs_rxgxs_err_reg,
4721                                          &sw_stat->xgxs_rxgxs_err_cnt))
4722                        goto reset;
4723        }
4724
4725        val64 = readq(&bar0->mc_int_status);
4726        if (val64 & MC_INT_STATUS_MC_INT) {
4727                if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728                                          &bar0->mc_err_reg,
4729                                          &sw_stat->mc_err_cnt))
4730                        goto reset;
4731
4732                /* Handling Ecc errors */
4733                if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734                        writeq(val64, &bar0->mc_err_reg);
4735                        if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736                                sw_stat->double_ecc_errs++;
4737                                if (sp->device_type != XFRAME_II_DEVICE) {
4738                                        /*
4739                                         * Reset XframeI only if critical error
4740                                         */
4741                                        if (val64 &
4742                                            (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743                                             MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744                                                goto reset;
4745                                }
4746                        } else
4747                                sw_stat->single_ecc_errs++;
4748                }
4749        }
4750        return;
4751
4752reset:
4753        s2io_stop_all_tx_queue(sp);
4754        schedule_work(&sp->rst_timer_task);
4755        sw_stat->soft_reset_cnt++;
4756}
4757
4758/**
4759 *  s2io_isr - ISR handler of the device .
4760 *  @irq: the irq of the device.
4761 *  @dev_id: a void pointer to the dev structure of the NIC.
4762 *  Description:  This function is the ISR handler of the device. It
4763 *  identifies the reason for the interrupt and calls the relevant
4764 *  service routines. As a contongency measure, this ISR allocates the
4765 *  recv buffers, if their numbers are below the panic value which is
4766 *  presently set to 25% of the original number of rcv buffers allocated.
4767 *  Return value:
4768 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769 *   IRQ_NONE: will be returned if interrupt is not from our device
4770 */
4771static irqreturn_t s2io_isr(int irq, void *dev_id)
4772{
4773        struct net_device *dev = (struct net_device *)dev_id;
4774        struct s2io_nic *sp = netdev_priv(dev);
4775        struct XENA_dev_config __iomem *bar0 = sp->bar0;
4776        int i;
4777        u64 reason = 0;
4778        struct mac_info *mac_control;
4779        struct config_param *config;
4780
4781        /* Pretend we handled any irq's from a disconnected card */
4782        if (pci_channel_offline(sp->pdev))
4783                return IRQ_NONE;
4784
4785        if (!is_s2io_card_up(sp))
4786                return IRQ_NONE;
4787
4788        config = &sp->config;
4789        mac_control = &sp->mac_control;
4790
4791        /*
4792         * Identify the cause for interrupt and call the appropriate
4793         * interrupt handler. Causes for the interrupt could be;
4794         * 1. Rx of packet.
4795         * 2. Tx complete.
4796         * 3. Link down.
4797         */
4798        reason = readq(&bar0->general_int_status);
4799
4800        if (unlikely(reason == S2IO_MINUS_ONE))
4801                return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4802
4803        if (reason &
4804            (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4805                writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806
4807                if (config->napi) {
4808                        if (reason & GEN_INTR_RXTRAFFIC) {
4809                                napi_schedule(&sp->napi);
4810                                writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811                                writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812                                readl(&bar0->rx_traffic_int);
4813                        }
4814                } else {
4815                        /*
4816                         * rx_traffic_int reg is an R1 register, writing all 1's
4817                         * will ensure that the actual interrupt causing bit
4818                         * get's cleared and hence a read can be avoided.
4819                         */
4820                        if (reason & GEN_INTR_RXTRAFFIC)
4821                                writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4822
4823                        for (i = 0; i < config->rx_ring_num; i++) {
4824                                struct ring_info *ring = &mac_control->rings[i];
4825
4826                                rx_intr_handler(ring, 0);
4827                        }
4828                }
4829
4830                /*
4831                 * tx_traffic_int reg is an R1 register, writing all 1's
4832                 * will ensure that the actual interrupt causing bit get's
4833                 * cleared and hence a read can be avoided.
4834                 */
4835                if (reason & GEN_INTR_TXTRAFFIC)
4836                        writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4837
4838                for (i = 0; i < config->tx_fifo_num; i++)
4839                        tx_intr_handler(&mac_control->fifos[i]);
4840
4841                if (reason & GEN_INTR_TXPIC)
4842                        s2io_txpic_intr_handle(sp);
4843
4844                /*
4845                 * Reallocate the buffers from the interrupt handler itself.
4846                 */
4847                if (!config->napi) {
4848                        for (i = 0; i < config->rx_ring_num; i++) {
4849                                struct ring_info *ring = &mac_control->rings[i];
4850
4851                                s2io_chk_rx_buffers(sp, ring);
4852                        }
4853                }
4854                writeq(sp->general_int_mask, &bar0->general_int_mask);
4855                readl(&bar0->general_int_status);
4856
4857                return IRQ_HANDLED;
4858
4859        } else if (!reason) {
4860                /* The interrupt was not raised by us */
4861                return IRQ_NONE;
4862        }
4863
4864        return IRQ_HANDLED;
4865}
4866
4867/**
4868 * s2io_updt_stats -
4869 */
4870static void s2io_updt_stats(struct s2io_nic *sp)
4871{
4872        struct XENA_dev_config __iomem *bar0 = sp->bar0;
4873        u64 val64;
4874        int cnt = 0;
4875
4876        if (is_s2io_card_up(sp)) {
4877                /* Apprx 30us on a 133 MHz bus */
4878                val64 = SET_UPDT_CLICKS(10) |
4879                        STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880                writeq(val64, &bar0->stat_cfg);
4881                do {
4882                        udelay(100);
4883                        val64 = readq(&bar0->stat_cfg);
4884                        if (!(val64 & s2BIT(0)))
4885                                break;
4886                        cnt++;
4887                        if (cnt == 5)
4888                                break; /* Updt failed */
4889                } while (1);
4890        }
4891}
4892
4893/**
4894 *  s2io_get_stats - Updates the device statistics structure.
4895 *  @dev : pointer to the device structure.
4896 *  Description:
4897 *  This function updates the device statistics structure in the s2io_nic
4898 *  structure and returns a pointer to the same.
4899 *  Return value:
4900 *  pointer to the updated net_device_stats structure.
4901 */
4902static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4903{
4904        struct s2io_nic *sp = netdev_priv(dev);
4905        struct mac_info *mac_control = &sp->mac_control;
4906        struct stat_block *stats = mac_control->stats_info;
4907        u64 delta;
4908
4909        /* Configure Stats for immediate updt */
4910        s2io_updt_stats(sp);
4911
4912        /* A device reset will cause the on-adapter statistics to be zero'ed.
4913         * This can be done while running by changing the MTU.  To prevent the
4914         * system from having the stats zero'ed, the driver keeps a copy of the
4915         * last update to the system (which is also zero'ed on reset).  This
4916         * enables the driver to accurately know the delta between the last
4917         * update and the current update.
4918         */
4919        delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920                le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921        sp->stats.rx_packets += delta;
4922        dev->stats.rx_packets += delta;
4923
4924        delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925                le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926        sp->stats.tx_packets += delta;
4927        dev->stats.tx_packets += delta;
4928
4929        delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930                le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931        sp->stats.rx_bytes += delta;
4932        dev->stats.rx_bytes += delta;
4933
4934        delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935                le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936        sp->stats.tx_bytes += delta;
4937        dev->stats.tx_bytes += delta;
4938
4939        delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940        sp->stats.rx_errors += delta;
4941        dev->stats.rx_errors += delta;
4942
4943        delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944                le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945        sp->stats.tx_errors += delta;
4946        dev->stats.tx_errors += delta;
4947
4948        delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949        sp->stats.rx_dropped += delta;
4950        dev->stats.rx_dropped += delta;
4951
4952        delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953        sp->stats.tx_dropped += delta;
4954        dev->stats.tx_dropped += delta;
4955
4956        /* The adapter MAC interprets pause frames as multicast packets, but
4957         * does not pass them up.  This erroneously increases the multicast
4958         * packet count and needs to be deducted when the multicast frame count
4959         * is queried.
4960         */
4961        delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962                le32_to_cpu(stats->rmac_vld_mcst_frms);
4963        delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964        delta -= sp->stats.multicast;
4965        sp->stats.multicast += delta;
4966        dev->stats.multicast += delta;
4967
4968        delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969                le32_to_cpu(stats->rmac_usized_frms)) +
4970                le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971        sp->stats.rx_length_errors += delta;
4972        dev->stats.rx_length_errors += delta;
4973
4974        delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975        sp->stats.rx_crc_errors += delta;
4976        dev->stats.rx_crc_errors += delta;
4977
4978        return &dev->stats;
4979}
4980
4981/**
4982 *  s2io_set_multicast - entry point for multicast address enable/disable.
4983 *  @dev : pointer to the device structure
4984 *  Description:
4985 *  This function is a driver entry point which gets called by the kernel
4986 *  whenever multicast addresses must be enabled/disabled. This also gets
4987 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4988 *  determine, if multicast address must be enabled or if promiscuous mode
4989 *  is to be disabled etc.
4990 *  Return value:
4991 *  void.
4992 */
4993
4994static void s2io_set_multicast(struct net_device *dev)
4995{
4996        int i, j, prev_cnt;
4997        struct netdev_hw_addr *ha;
4998        struct s2io_nic *sp = netdev_priv(dev);
4999        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5000        u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5001                0xfeffffffffffULL;
5002        u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5003        void __iomem *add;
5004        struct config_param *config = &sp->config;
5005
5006        if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007                /*  Enable all Multicast addresses */
5008                writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009                       &bar0->rmac_addr_data0_mem);
5010                writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011                       &bar0->rmac_addr_data1_mem);
5012                val64 = RMAC_ADDR_CMD_MEM_WE |
5013                        RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014                        RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5015                writeq(val64, &bar0->rmac_addr_cmd_mem);
5016                /* Wait till command completes */
5017                wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5018                                      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019                                      S2IO_BIT_RESET);
5020
5021                sp->m_cast_flg = 1;
5022                sp->all_multi_pos = config->max_mc_addr - 1;
5023        } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024                /*  Disable all Multicast addresses */
5025                writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026                       &bar0->rmac_addr_data0_mem);
5027                writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028                       &bar0->rmac_addr_data1_mem);
5029                val64 = RMAC_ADDR_CMD_MEM_WE |
5030                        RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031                        RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5032                writeq(val64, &bar0->rmac_addr_cmd_mem);
5033                /* Wait till command completes */
5034                wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5035                                      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036                                      S2IO_BIT_RESET);
5037
5038                sp->m_cast_flg = 0;
5039                sp->all_multi_pos = 0;
5040        }
5041
5042        if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043                /*  Put the NIC into promiscuous mode */
5044                add = &bar0->mac_cfg;
5045                val64 = readq(&bar0->mac_cfg);
5046                val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047
5048                writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5049                writel((u32)val64, add);
5050                writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051                writel((u32) (val64 >> 32), (add + 4));
5052
5053                if (vlan_tag_strip != 1) {
5054                        val64 = readq(&bar0->rx_pa_cfg);
5055                        val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056                        writeq(val64, &bar0->rx_pa_cfg);
5057                        sp->vlan_strip_flag = 0;
5058                }
5059
5060                val64 = readq(&bar0->mac_cfg);
5061                sp->promisc_flg = 1;
5062                DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5063                          dev->name);
5064        } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065                /*  Remove the NIC from promiscuous mode */
5066                add = &bar0->mac_cfg;
5067                val64 = readq(&bar0->mac_cfg);
5068                val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069
5070                writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5071                writel((u32)val64, add);
5072                writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073                writel((u32) (val64 >> 32), (add + 4));
5074
5075                if (vlan_tag_strip != 0) {
5076                        val64 = readq(&bar0->rx_pa_cfg);
5077                        val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078                        writeq(val64, &bar0->rx_pa_cfg);
5079                        sp->vlan_strip_flag = 1;
5080                }
5081
5082                val64 = readq(&bar0->mac_cfg);
5083                sp->promisc_flg = 0;
5084                DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5085        }
5086
5087        /*  Update individual M_CAST address list */
5088        if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089                if (netdev_mc_count(dev) >
5090                    (config->max_mc_addr - config->max_mac_addr)) {
5091                        DBG_PRINT(ERR_DBG,
5092                                  "%s: No more Rx filters can be added - "
5093                                  "please enable ALL_MULTI instead\n",
5094                                  dev->name);
5095                        return;
5096                }
5097
5098                prev_cnt = sp->mc_addr_count;
5099                sp->mc_addr_count = netdev_mc_count(dev);
5100
5101                /* Clear out the previous list of Mc in the H/W. */
5102                for (i = 0; i < prev_cnt; i++) {
5103                        writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104                               &bar0->rmac_addr_data0_mem);
5105                        writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106                               &bar0->rmac_addr_data1_mem);
5107                        val64 = RMAC_ADDR_CMD_MEM_WE |
5108                                RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109                                RMAC_ADDR_CMD_MEM_OFFSET
5110                                (config->mc_start_offset + i);
5111                        writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113                        /* Wait for command completes */
5114                        if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115                                                  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116                                                  S2IO_BIT_RESET)) {
5117                                DBG_PRINT(ERR_DBG,
5118                                          "%s: Adding Multicasts failed\n",
5119                                          dev->name);
5120                                return;
5121                        }
5122                }
5123
5124                /* Create the new Rx filter list and update the same in H/W. */
5125                i = 0;
5126                netdev_for_each_mc_addr(ha, dev) {
5127                        mac_addr = 0;
5128                        for (j = 0; j < ETH_ALEN; j++) {
5129                                mac_addr |= ha->addr[j];
5130                                mac_addr <<= 8;
5131                        }
5132                        mac_addr >>= 8;
5133                        writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5134                               &bar0->rmac_addr_data0_mem);
5135                        writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5136                               &bar0->rmac_addr_data1_mem);
5137                        val64 = RMAC_ADDR_CMD_MEM_WE |
5138                                RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5139                                RMAC_ADDR_CMD_MEM_OFFSET
5140                                (i + config->mc_start_offset);
5141                        writeq(val64, &bar0->rmac_addr_cmd_mem);
5142
5143                        /* Wait for command completes */
5144                        if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5145                                                  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5146                                                  S2IO_BIT_RESET)) {
5147                                DBG_PRINT(ERR_DBG,
5148                                          "%s: Adding Multicasts failed\n",
5149                                          dev->name);
5150                                return;
5151                        }
5152                        i++;
5153                }
5154        }
5155}
5156
5157/* read from CAM unicast & multicast addresses and store it in
5158 * def_mac_addr structure
5159 */
5160static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5161{
5162        int offset;
5163        u64 mac_addr = 0x0;
5164        struct config_param *config = &sp->config;
5165
5166        /* store unicast & multicast mac addresses */
5167        for (offset = 0; offset < config->max_mc_addr; offset++) {
5168                mac_addr = do_s2io_read_unicast_mc(sp, offset);
5169                /* if read fails disable the entry */
5170                if (mac_addr == FAILURE)
5171                        mac_addr = S2IO_DISABLE_MAC_ENTRY;
5172                do_s2io_copy_mac_addr(sp, offset, mac_addr);
5173        }
5174}
5175
5176/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5177static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5178{
5179        int offset;
5180        struct config_param *config = &sp->config;
5181        /* restore unicast mac address */
5182        for (offset = 0; offset < config->max_mac_addr; offset++)
5183                do_s2io_prog_unicast(sp->dev,
5184                                     sp->def_mac_addr[offset].mac_addr);
5185
5186        /* restore multicast mac address */
5187        for (offset = config->mc_start_offset;
5188             offset < config->max_mc_addr; offset++)
5189                do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190}
5191
5192/* add a multicast MAC address to CAM */
5193static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5194{
5195        int i;
5196        u64 mac_addr = 0;
5197        struct config_param *config = &sp->config;
5198
5199        for (i = 0; i < ETH_ALEN; i++) {
5200                mac_addr <<= 8;
5201                mac_addr |= addr[i];
5202        }
5203        if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5204                return SUCCESS;
5205
5206        /* check if the multicast mac already preset in CAM */
5207        for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5208                u64 tmp64;
5209                tmp64 = do_s2io_read_unicast_mc(sp, i);
5210                if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5211                        break;
5212
5213                if (tmp64 == mac_addr)
5214                        return SUCCESS;
5215        }
5216        if (i == config->max_mc_addr) {
5217                DBG_PRINT(ERR_DBG,
5218                          "CAM full no space left for multicast MAC\n");
5219                return FAILURE;
5220        }
5221        /* Update the internal structure with this new mac address */
5222        do_s2io_copy_mac_addr(sp, i, mac_addr);
5223
5224        return do_s2io_add_mac(sp, mac_addr, i);
5225}
5226
5227/* add MAC address to CAM */
5228static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5229{
5230        u64 val64;
5231        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232
5233        writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5234               &bar0->rmac_addr_data0_mem);
5235
5236        val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237                RMAC_ADDR_CMD_MEM_OFFSET(off);
5238        writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240        /* Wait till command completes */
5241        if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242                                  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243                                  S2IO_BIT_RESET)) {
5244                DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5245                return FAILURE;
5246        }
5247        return SUCCESS;
5248}
5249/* deletes a specified unicast/multicast mac entry from CAM */
5250static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5251{
5252        int offset;
5253        u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5254        struct config_param *config = &sp->config;
5255
5256        for (offset = 1;
5257             offset < config->max_mc_addr; offset++) {
5258                tmp64 = do_s2io_read_unicast_mc(sp, offset);
5259                if (tmp64 == addr) {
5260                        /* disable the entry by writing  0xffffffffffffULL */
5261                        if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5262                                return FAILURE;
5263                        /* store the new mac list from CAM */
5264                        do_s2io_store_unicast_mc(sp);
5265                        return SUCCESS;
5266                }
5267        }
5268        DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5269                  (unsigned long long)addr);
5270        return FAILURE;
5271}
5272
5273/* read mac entries from CAM */
5274static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5275{
5276        u64 tmp64 = 0xffffffffffff0000ULL, val64;
5277        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278
5279        /* read mac addr */
5280        val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5281                RMAC_ADDR_CMD_MEM_OFFSET(offset);
5282        writeq(val64, &bar0->rmac_addr_cmd_mem);
5283
5284        /* Wait till command completes */
5285        if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5286                                  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5287                                  S2IO_BIT_RESET)) {
5288                DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5289                return FAILURE;
5290        }
5291        tmp64 = readq(&bar0->rmac_addr_data0_mem);
5292
5293        return tmp64 >> 16;
5294}
5295
5296/**
5297 * s2io_set_mac_addr driver entry point
5298 */
5299
5300static int s2io_set_mac_addr(struct net_device *dev, void *p)
5301{
5302        struct sockaddr *addr = p;
5303
5304        if (!is_valid_ether_addr(addr->sa_data))
5305                return -EINVAL;
5306
5307        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5308
5309        /* store the MAC address in CAM */
5310        return do_s2io_prog_unicast(dev, dev->dev_addr);
5311}
5312/**
5313 *  do_s2io_prog_unicast - Programs the Xframe mac address
5314 *  @dev : pointer to the device structure.
5315 *  @addr: a uchar pointer to the new mac address which is to be set.
5316 *  Description : This procedure will program the Xframe to receive
5317 *  frames with new Mac Address
5318 *  Return value: SUCCESS on success and an appropriate (-)ve integer
5319 *  as defined in errno.h file on failure.
5320 */
5321
5322static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5323{
5324        struct s2io_nic *sp = netdev_priv(dev);
5325        register u64 mac_addr = 0, perm_addr = 0;
5326        int i;
5327        u64 tmp64;
5328        struct config_param *config = &sp->config;
5329
5330        /*
5331         * Set the new MAC address as the new unicast filter and reflect this
5332         * change on the device address registered with the OS. It will be
5333         * at offset 0.
5334         */
5335        for (i = 0; i < ETH_ALEN; i++) {
5336                mac_addr <<= 8;
5337                mac_addr |= addr[i];
5338                perm_addr <<= 8;
5339                perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5340        }
5341
5342        /* check if the dev_addr is different than perm_addr */
5343        if (mac_addr == perm_addr)
5344                return SUCCESS;
5345
5346        /* check if the mac already preset in CAM */
5347        for (i = 1; i < config->max_mac_addr; i++) {
5348                tmp64 = do_s2io_read_unicast_mc(sp, i);
5349                if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5350                        break;
5351
5352                if (tmp64 == mac_addr) {
5353                        DBG_PRINT(INFO_DBG,
5354                                  "MAC addr:0x%llx already present in CAM\n",
5355                                  (unsigned long long)mac_addr);
5356                        return SUCCESS;
5357                }
5358        }
5359        if (i == config->max_mac_addr) {
5360                DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5361                return FAILURE;
5362        }
5363        /* Update the internal structure with this new mac address */
5364        do_s2io_copy_mac_addr(sp, i, mac_addr);
5365
5366        return do_s2io_add_mac(sp, mac_addr, i);
5367}
5368
5369/**
5370 * s2io_ethtool_sset - Sets different link parameters.
5371 * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5372 * @info: pointer to the structure with parameters given by ethtool to set
5373 * link information.
5374 * Description:
5375 * The function sets different link parameters provided by the user onto
5376 * the NIC.
5377 * Return value:
5378 * 0 on success.
5379 */
5380
5381static int s2io_ethtool_sset(struct net_device *dev,
5382                             struct ethtool_cmd *info)
5383{
5384        struct s2io_nic *sp = netdev_priv(dev);
5385        if ((info->autoneg == AUTONEG_ENABLE) ||
5386            (info->speed != SPEED_10000) ||
5387            (info->duplex != DUPLEX_FULL))
5388                return -EINVAL;
5389        else {
5390                s2io_close(sp->dev);
5391                s2io_open(sp->dev);
5392        }
5393
5394        return 0;
5395}
5396
5397/**
5398 * s2io_ethtol_gset - Return link specific information.
5399 * @sp : private member of the device structure, pointer to the
5400 *      s2io_nic structure.
5401 * @info : pointer to the structure with parameters given by ethtool
5402 * to return link information.
5403 * Description:
5404 * Returns link specific information like speed, duplex etc.. to ethtool.
5405 * Return value :
5406 * return 0 on success.
5407 */
5408
5409static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5410{
5411        struct s2io_nic *sp = netdev_priv(dev);
5412        info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5413        info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5414        info->port = PORT_FIBRE;
5415
5416        /* info->transceiver */
5417        info->transceiver = XCVR_EXTERNAL;
5418
5419        if (netif_carrier_ok(sp->dev)) {
5420                info->speed = 10000;
5421                info->duplex = DUPLEX_FULL;
5422        } else {
5423                info->speed = -1;
5424                info->duplex = -1;
5425        }
5426
5427        info->autoneg = AUTONEG_DISABLE;
5428        return 0;
5429}
5430
5431/**
5432 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433 * @sp : private member of the device structure, which is a pointer to the
5434 * s2io_nic structure.
5435 * @info : pointer to the structure with parameters given by ethtool to
5436 * return driver information.
5437 * Description:
5438 * Returns driver specefic information like name, version etc.. to ethtool.
5439 * Return value:
5440 *  void
5441 */
5442
5443static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5444                                  struct ethtool_drvinfo *info)
5445{
5446        struct s2io_nic *sp = netdev_priv(dev);
5447
5448        strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5449        strncpy(info->version, s2io_driver_version, sizeof(info->version));
5450        strncpy(info->fw_version, "", sizeof(info->fw_version));
5451        strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5452        info->regdump_len = XENA_REG_SPACE;
5453        info->eedump_len = XENA_EEPROM_SPACE;
5454}
5455
5456/**
5457 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5458 *  @sp: private member of the device structure, which is a pointer to the
5459 *  s2io_nic structure.
5460 *  @regs : pointer to the structure with parameters given by ethtool for
5461 *  dumping the registers.
5462 *  @reg_space: The input argumnet into which all the registers are dumped.
5463 *  Description:
5464 *  Dumps the entire register space of xFrame NIC into the user given
5465 *  buffer area.
5466 * Return value :
5467 * void .
5468 */
5469
5470static void s2io_ethtool_gregs(struct net_device *dev,
5471                               struct ethtool_regs *regs, void *space)
5472{
5473        int i;
5474        u64 reg;
5475        u8 *reg_space = (u8 *)space;
5476        struct s2io_nic *sp = netdev_priv(dev);
5477
5478        regs->len = XENA_REG_SPACE;
5479        regs->version = sp->pdev->subsystem_device;
5480
5481        for (i = 0; i < regs->len; i += 8) {
5482                reg = readq(sp->bar0 + i);
5483                memcpy((reg_space + i), &reg, 8);
5484        }
5485}
5486
5487/**
5488 *  s2io_phy_id  - timer function that alternates adapter LED.
5489 *  @data : address of the private member of the device structure, which
5490 *  is a pointer to the s2io_nic structure, provided as an u32.
5491 * Description: This is actually the timer function that alternates the
5492 * adapter LED bit of the adapter control bit to set/reset every time on
5493 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5494 *  once every second.
5495 */
5496static void s2io_phy_id(unsigned long data)
5497{
5498        struct s2io_nic *sp = (struct s2io_nic *)data;
5499        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5500        u64 val64 = 0;
5501        u16 subid;
5502
5503        subid = sp->pdev->subsystem_device;
5504        if ((sp->device_type == XFRAME_II_DEVICE) ||
5505            ((subid & 0xFF) >= 0x07)) {
5506                val64 = readq(&bar0->gpio_control);
5507                val64 ^= GPIO_CTRL_GPIO_0;
5508                writeq(val64, &bar0->gpio_control);
5509        } else {
5510                val64 = readq(&bar0->adapter_control);
5511                val64 ^= ADAPTER_LED_ON;
5512                writeq(val64, &bar0->adapter_control);
5513        }
5514
5515        mod_timer(&sp->id_timer, jiffies + HZ / 2);
5516}
5517
5518/**
5519 * s2io_ethtool_idnic - To physically identify the nic on the system.
5520 * @sp : private member of the device structure, which is a pointer to the
5521 * s2io_nic structure.
5522 * @id : pointer to the structure with identification parameters given by
5523 * ethtool.
5524 * Description: Used to physically identify the NIC on the system.
5525 * The Link LED will blink for a time specified by the user for
5526 * identification.
5527 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5528 * identification is possible only if it's link is up.
5529 * Return value:
5530 * int , returns 0 on success
5531 */
5532
5533static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5534{
5535        u64 val64 = 0, last_gpio_ctrl_val;
5536        struct s2io_nic *sp = netdev_priv(dev);
5537        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5538        u16 subid;
5539
5540        subid = sp->pdev->subsystem_device;
5541        last_gpio_ctrl_val = readq(&bar0->gpio_control);
5542        if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5543                val64 = readq(&bar0->adapter_control);
5544                if (!(val64 & ADAPTER_CNTL_EN)) {
5545                        pr_err("Adapter Link down, cannot blink LED\n");
5546                        return -EFAULT;
5547                }
5548        }
5549        if (sp->id_timer.function == NULL) {
5550                init_timer(&sp->id_timer);
5551                sp->id_timer.function = s2io_phy_id;
5552                sp->id_timer.data = (unsigned long)sp;
5553        }
5554        mod_timer(&sp->id_timer, jiffies);
5555        if (data)
5556                msleep_interruptible(data * HZ);
5557        else
5558                msleep_interruptible(MAX_FLICKER_TIME);
5559        del_timer_sync(&sp->id_timer);
5560
5561        if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5562                writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5563                last_gpio_ctrl_val = readq(&bar0->gpio_control);
5564        }
5565
5566        return 0;
5567}
5568
5569static void s2io_ethtool_gringparam(struct net_device *dev,
5570                                    struct ethtool_ringparam *ering)
5571{
5572        struct s2io_nic *sp = netdev_priv(dev);
5573        int i, tx_desc_count = 0, rx_desc_count = 0;
5574
5575        if (sp->rxd_mode == RXD_MODE_1) {
5576                ering->rx_max_pending = MAX_RX_DESC_1;
5577                ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5578        } else {
5579                ering->rx_max_pending = MAX_RX_DESC_2;
5580                ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5581        }
5582
5583        ering->rx_mini_max_pending = 0;
5584        ering->tx_max_pending = MAX_TX_DESC;
5585
5586        for (i = 0; i < sp->config.rx_ring_num; i++)
5587                rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5588        ering->rx_pending = rx_desc_count;
5589        ering->rx_jumbo_pending = rx_desc_count;
5590        ering->rx_mini_pending = 0;
5591
5592        for (i = 0; i < sp->config.tx_fifo_num; i++)
5593                tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5594        ering->tx_pending = tx_desc_count;
5595        DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5596}
5597
5598/**
5599 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5600 * @sp : private member of the device structure, which is a pointer to the
5601 *      s2io_nic structure.
5602 * @ep : pointer to the structure with pause parameters given by ethtool.
5603 * Description:
5604 * Returns the Pause frame generation and reception capability of the NIC.
5605 * Return value:
5606 *  void
5607 */
5608static void s2io_ethtool_getpause_data(struct net_device *dev,
5609                                       struct ethtool_pauseparam *ep)
5610{
5611        u64 val64;
5612        struct s2io_nic *sp = netdev_priv(dev);
5613        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5614
5615        val64 = readq(&bar0->rmac_pause_cfg);
5616        if (val64 & RMAC_PAUSE_GEN_ENABLE)
5617                ep->tx_pause = true;
5618        if (val64 & RMAC_PAUSE_RX_ENABLE)
5619                ep->rx_pause = true;
5620        ep->autoneg = false;
5621}
5622
5623/**
5624 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5625 * @sp : private member of the device structure, which is a pointer to the
5626 *      s2io_nic structure.
5627 * @ep : pointer to the structure with pause parameters given by ethtool.
5628 * Description:
5629 * It can be used to set or reset Pause frame generation or reception
5630 * support of the NIC.
5631 * Return value:
5632 * int, returns 0 on Success
5633 */
5634
5635static int s2io_ethtool_setpause_data(struct net_device *dev,
5636                                      struct ethtool_pauseparam *ep)
5637{
5638        u64 val64;
5639        struct s2io_nic *sp = netdev_priv(dev);
5640        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5641
5642        val64 = readq(&bar0->rmac_pause_cfg);
5643        if (ep->tx_pause)
5644                val64 |= RMAC_PAUSE_GEN_ENABLE;
5645        else
5646                val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5647        if (ep->rx_pause)
5648                val64 |= RMAC_PAUSE_RX_ENABLE;
5649        else
5650                val64 &= ~RMAC_PAUSE_RX_ENABLE;
5651        writeq(val64, &bar0->rmac_pause_cfg);
5652        return 0;
5653}
5654
5655/**
5656 * read_eeprom - reads 4 bytes of data from user given offset.
5657 * @sp : private member of the device structure, which is a pointer to the
5658 *      s2io_nic structure.
5659 * @off : offset at which the data must be written
5660 * @data : Its an output parameter where the data read at the given
5661 *      offset is stored.
5662 * Description:
5663 * Will read 4 bytes of data from the user given offset and return the
5664 * read data.
5665 * NOTE: Will allow to read only part of the EEPROM visible through the
5666 *   I2C bus.
5667 * Return value:
5668 *  -1 on failure and 0 on success.
5669 */
5670
5671#define S2IO_DEV_ID             5
5672static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5673{
5674        int ret = -1;
5675        u32 exit_cnt = 0;
5676        u64 val64;
5677        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5678
5679        if (sp->device_type == XFRAME_I_DEVICE) {
5680                val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5681                        I2C_CONTROL_ADDR(off) |
5682                        I2C_CONTROL_BYTE_CNT(0x3) |
5683                        I2C_CONTROL_READ |
5684                        I2C_CONTROL_CNTL_START;
5685                SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5686
5687                while (exit_cnt < 5) {
5688                        val64 = readq(&bar0->i2c_control);
5689                        if (I2C_CONTROL_CNTL_END(val64)) {
5690                                *data = I2C_CONTROL_GET_DATA(val64);
5691                                ret = 0;
5692                                break;
5693                        }
5694                        msleep(50);
5695                        exit_cnt++;
5696                }
5697        }
5698
5699        if (sp->device_type == XFRAME_II_DEVICE) {
5700                val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5701                        SPI_CONTROL_BYTECNT(0x3) |
5702                        SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5703                SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5704                val64 |= SPI_CONTROL_REQ;
5705                SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5706                while (exit_cnt < 5) {
5707                        val64 = readq(&bar0->spi_control);
5708                        if (val64 & SPI_CONTROL_NACK) {
5709                                ret = 1;
5710                                break;
5711                        } else if (val64 & SPI_CONTROL_DONE) {
5712                                *data = readq(&bar0->spi_data);
5713                                *data &= 0xffffff;
5714                                ret = 0;
5715                                break;
5716                        }
5717                        msleep(50);
5718                        exit_cnt++;
5719                }
5720        }
5721        return ret;
5722}
5723
5724/**
5725 *  write_eeprom - actually writes the relevant part of the data value.
5726 *  @sp : private member of the device structure, which is a pointer to the
5727 *       s2io_nic structure.
5728 *  @off : offset at which the data must be written
5729 *  @data : The data that is to be written
5730 *  @cnt : Number of bytes of the data that are actually to be written into
5731 *  the Eeprom. (max of 3)
5732 * Description:
5733 *  Actually writes the relevant part of the data value into the Eeprom
5734 *  through the I2C bus.
5735 * Return value:
5736 *  0 on success, -1 on failure.
5737 */
5738
5739static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5740{
5741        int exit_cnt = 0, ret = -1;
5742        u64 val64;
5743        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5744
5745        if (sp->device_type == XFRAME_I_DEVICE) {
5746                val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5747                        I2C_CONTROL_ADDR(off) |
5748                        I2C_CONTROL_BYTE_CNT(cnt) |
5749                        I2C_CONTROL_SET_DATA((u32)data) |
5750                        I2C_CONTROL_CNTL_START;
5751                SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5752
5753                while (exit_cnt < 5) {
5754                        val64 = readq(&bar0->i2c_control);
5755                        if (I2C_CONTROL_CNTL_END(val64)) {
5756                                if (!(val64 & I2C_CONTROL_NACK))
5757                                        ret = 0;
5758                                break;
5759                        }
5760                        msleep(50);
5761                        exit_cnt++;
5762                }
5763        }
5764
5765        if (sp->device_type == XFRAME_II_DEVICE) {
5766                int write_cnt = (cnt == 8) ? 0 : cnt;
5767                writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5768
5769                val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5770                        SPI_CONTROL_BYTECNT(write_cnt) |
5771                        SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5772                SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5773                val64 |= SPI_CONTROL_REQ;
5774                SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5775                while (exit_cnt < 5) {
5776                        val64 = readq(&bar0->spi_control);
5777                        if (val64 & SPI_CONTROL_NACK) {
5778                                ret = 1;
5779                                break;
5780                        } else if (val64 & SPI_CONTROL_DONE) {
5781                                ret = 0;
5782                                break;
5783                        }
5784                        msleep(50);
5785                        exit_cnt++;
5786                }
5787        }
5788        return ret;
5789}
5790static void s2io_vpd_read(struct s2io_nic *nic)
5791{
5792        u8 *vpd_data;
5793        u8 data;
5794        int i = 0, cnt, len, fail = 0;
5795        int vpd_addr = 0x80;
5796        struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5797
5798        if (nic->device_type == XFRAME_II_DEVICE) {
5799                strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5800                vpd_addr = 0x80;
5801        } else {
5802                strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5803                vpd_addr = 0x50;
5804        }
5805        strcpy(nic->serial_num, "NOT AVAILABLE");
5806
5807        vpd_data = kmalloc(256, GFP_KERNEL);
5808        if (!vpd_data) {
5809                swstats->mem_alloc_fail_cnt++;
5810                return;
5811        }
5812        swstats->mem_allocated += 256;
5813
5814        for (i = 0; i < 256; i += 4) {
5815                pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5816                pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5817                pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5818                for (cnt = 0; cnt < 5; cnt++) {
5819                        msleep(2);
5820                        pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5821                        if (data == 0x80)
5822                                break;
5823                }
5824                if (cnt >= 5) {
5825                        DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5826                        fail = 1;
5827                        break;
5828                }
5829                pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5830                                      (u32 *)&vpd_data[i]);
5831        }
5832
5833        if (!fail) {
5834                /* read serial number of adapter */
5835                for (cnt = 0; cnt < 252; cnt++) {
5836                        if ((vpd_data[cnt] == 'S') &&
5837                            (vpd_data[cnt+1] == 'N')) {
5838                                len = vpd_data[cnt+2];
5839                                if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5840                                        memcpy(nic->serial_num,
5841                                               &vpd_data[cnt + 3],
5842                                               len);
5843                                        memset(nic->serial_num+len,
5844                                               0,
5845                                               VPD_STRING_LEN-len);
5846                                        break;
5847                                }
5848                        }
5849                }
5850        }
5851
5852        if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5853                len = vpd_data[1];
5854                memcpy(nic->product_name, &vpd_data[3], len);
5855                nic->product_name[len] = 0;
5856        }
5857        kfree(vpd_data);
5858        swstats->mem_freed += 256;
5859}
5860
5861/**
5862 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5863 *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5864 *  @eeprom : pointer to the user level structure provided by ethtool,
5865 *  containing all relevant information.
5866 *  @data_buf : user defined value to be written into Eeprom.
5867 *  Description: Reads the values stored in the Eeprom at given offset
5868 *  for a given length. Stores these values int the input argument data
5869 *  buffer 'data_buf' and returns these to the caller (ethtool.)
5870 *  Return value:
5871 *  int  0 on success
5872 */
5873
5874static int s2io_ethtool_geeprom(struct net_device *dev,
5875                                struct ethtool_eeprom *eeprom, u8 * data_buf)
5876{
5877        u32 i, valid;
5878        u64 data;
5879        struct s2io_nic *sp = netdev_priv(dev);
5880
5881        eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5882
5883        if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5884                eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5885
5886        for (i = 0; i < eeprom->len; i += 4) {
5887                if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5888                        DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5889                        return -EFAULT;
5890                }
5891                valid = INV(data);
5892                memcpy((data_buf + i), &valid, 4);
5893        }
5894        return 0;
5895}
5896
5897/**
5898 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5899 *  @sp : private member of the device structure, which is a pointer to the
5900 *  s2io_nic structure.
5901 *  @eeprom : pointer to the user level structure provided by ethtool,
5902 *  containing all relevant information.
5903 *  @data_buf ; user defined value to be written into Eeprom.
5904 *  Description:
5905 *  Tries to write the user provided value in the Eeprom, at the offset
5906 *  given by the user.
5907 *  Return value:
5908 *  0 on success, -EFAULT on failure.
5909 */
5910
5911static int s2io_ethtool_seeprom(struct net_device *dev,
5912                                struct ethtool_eeprom *eeprom,
5913                                u8 *data_buf)
5914{
5915        int len = eeprom->len, cnt = 0;
5916        u64 valid = 0, data;
5917        struct s2io_nic *sp = netdev_priv(dev);
5918
5919        if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5920                DBG_PRINT(ERR_DBG,
5921                          "ETHTOOL_WRITE_EEPROM Err: "
5922                          "Magic value is wrong, it is 0x%x should be 0x%x\n",
5923                          (sp->pdev->vendor | (sp->pdev->device << 16)),
5924                          eeprom->magic);
5925                return -EFAULT;
5926        }
5927
5928        while (len) {
5929                data = (u32)data_buf[cnt] & 0x000000FF;
5930                if (data)
5931                        valid = (u32)(data << 24);
5932                else
5933                        valid = data;
5934
5935                if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5936                        DBG_PRINT(ERR_DBG,
5937                                  "ETHTOOL_WRITE_EEPROM Err: "
5938                                  "Cannot write into the specified offset\n");
5939                        return -EFAULT;
5940                }
5941                cnt++;
5942                len--;
5943        }
5944
5945        return 0;
5946}
5947
5948/**
5949 * s2io_register_test - reads and writes into all clock domains.
5950 * @sp : private member of the device structure, which is a pointer to the
5951 * s2io_nic structure.
5952 * @data : variable that returns the result of each of the test conducted b
5953 * by the driver.
5954 * Description:
5955 * Read and write into all clock domains. The NIC has 3 clock domains,
5956 * see that registers in all the three regions are accessible.
5957 * Return value:
5958 * 0 on success.
5959 */
5960
5961static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5962{
5963        struct XENA_dev_config __iomem *bar0 = sp->bar0;
5964        u64 val64 = 0, exp_val;
5965        int fail = 0;
5966
5967        val64 = readq(&bar0->pif_rd_swapper_fb);
5968        if (val64 != 0x123456789abcdefULL) {
5969                fail = 1;
5970                DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5971        }
5972
5973        val64 = readq(&bar0->rmac_pause_cfg);
5974        if (val64 != 0xc000ffff00000000ULL) {
5975                fail = 1;
5976                DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5977        }
5978
5979        val64 = readq(&bar0->rx_queue_cfg);
5980        if (sp->device_type == XFRAME_II_DEVICE)
5981                exp_val = 0x0404040404040404ULL;
5982        else
5983                exp_val = 0x0808080808080808ULL;
5984        if (val64 != exp_val) {
5985                fail = 1;
5986                DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5987        }
5988
5989        val64 = readq(&bar0->xgxs_efifo_cfg);
5990        if (val64 != 0x000000001923141EULL) {
5991                fail = 1;
5992                DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5993        }
5994
5995        val64 = 0x5A5A5A5A5A5A5A5AULL;
5996        writeq(val64, &bar0->xmsi_data);
5997        val64 = readq(&bar0->xmsi_data);
5998        if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5999                fail = 1;
6000                DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
6001        }
6002
6003        val64 = 0xA5A5A5A5A5A5A5A5ULL;
6004        writeq(val64, &bar0->xmsi_data);
6005        val64 = readq(&bar0->xmsi_data);
6006        if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6007                fail = 1;
6008                DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6009        }
6010
6011        *data = fail;
6012        return fail;
6013}
6014
6015/**
6016 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6017 * @sp : private member of the device structure, which is a pointer to the
6018 * s2io_nic structure.
6019 * @data:variable that returns the result of each of the test conducted by
6020 * the driver.
6021 * Description:
6022 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6023 * register.
6024 * Return value:
6025 * 0 on success.
6026 */
6027
6028static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6029{
6030        int fail = 0;
6031        u64 ret_data, org_4F0, org_7F0;
6032        u8 saved_4F0 = 0, saved_7F0 = 0;
6033        struct net_device *dev = sp->dev;
6034
6035        /* Test Write Error at offset 0 */
6036        /* Note that SPI interface allows write access to all areas
6037         * of EEPROM. Hence doing all negative testing only for Xframe I.
6038         */
6039        if (sp->device_type == XFRAME_I_DEVICE)
6040                if (!write_eeprom(sp, 0, 0, 3))
6041                        fail = 1;
6042
6043        /* Save current values at offsets 0x4F0 and 0x7F0 */
6044        if (!read_eeprom(sp, 0x4F0, &org_4F0))
6045                saved_4F0 = 1;
6046        if (!read_eeprom(sp, 0x7F0, &org_7F0))
6047                saved_7F0 = 1;
6048
6049        /* Test Write at offset 4f0 */
6050        if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6051                fail = 1;
6052        if (read_eeprom(sp, 0x4F0, &ret_data))
6053                fail = 1;
6054
6055        if (ret_data != 0x012345) {
6056                DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6057                          "Data written %llx Data read %llx\n",
6058                          dev->name, (unsigned long long)0x12345,
6059                          (unsigned long long)ret_data);
6060                fail = 1;
6061        }
6062
6063        /* Reset the EEPROM data go FFFF */
6064        write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6065
6066        /* Test Write Request Error at offset 0x7c */
6067        if (sp->device_type == XFRAME_I_DEVICE)
6068                if (!write_eeprom(sp, 0x07C, 0, 3))
6069                        fail = 1;
6070
6071        /* Test Write Request at offset 0x7f0 */
6072        if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6073                fail = 1;
6074        if (read_eeprom(sp, 0x7F0, &ret_data))
6075                fail = 1;
6076
6077        if (ret_data != 0x012345) {
6078                DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6079                          "Data written %llx Data read %llx\n",
6080                          dev->name, (unsigned long long)0x12345,
6081                          (unsigned long long)ret_data);
6082                fail = 1;
6083        }
6084
6085        /* Reset the EEPROM data go FFFF */
6086        write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6087
6088        if (sp->device_type == XFRAME_I_DEVICE) {
6089                /* Test Write Error at offset 0x80 */
6090                if (!write_eeprom(sp, 0x080, 0, 3))
6091                        fail = 1;
6092
6093                /* Test Write Error at offset 0xfc */
6094                if (!write_eeprom(sp, 0x0FC, 0, 3))
6095                        fail = 1;
6096
6097                /* Test Write Error at offset 0x100 */
6098                if (!write_eeprom(sp, 0x100, 0, 3))
6099                        fail = 1;
6100
6101                /* Test Write Error at offset 4ec */
6102                if (!write_eeprom(sp, 0x4EC, 0, 3))
6103                        fail = 1;
6104        }
6105
6106        /* Restore values at offsets 0x4F0 and 0x7F0 */
6107        if (saved_4F0)
6108                write_eeprom(sp, 0x4F0, org_4F0, 3);
6109        if (saved_7F0)
6110                write_eeprom(sp, 0x7F0, org_7F0, 3);
6111
6112        *data = fail;
6113        return fail;
6114}
6115
6116/**
6117 * s2io_bist_test - invokes the MemBist test of the card .
6118 * @sp : private member of the device structure, which is a pointer to the
6119 * s2io_nic structure.
6120 * @data:variable that returns the result of each of the test conducted by
6121 * the driver.
6122 * Description:
6123 * This invokes the MemBist test of the card. We give around
6124 * 2 secs time for the Test to complete. If it's still not complete
6125 * within this peiod, we consider that the test failed.
6126 * Return value:
6127 * 0 on success and -1 on failure.
6128 */
6129
6130static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6131{
6132        u8 bist = 0;
6133        int cnt = 0, ret = -1;
6134
6135        pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6136        bist |= PCI_BIST_START;
6137        pci_write_config_word(sp->pdev, PCI_BIST, bist);
6138
6139        while (cnt < 20) {
6140                pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6141                if (!(bist & PCI_BIST_START)) {
6142                        *data = (bist & PCI_BIST_CODE_MASK);
6143                        ret = 0;
6144                        break;
6145                }
6146                msleep(100);
6147                cnt++;
6148        }
6149
6150        return ret;
6151}
6152
6153/**
6154 * s2io-link_test - verifies the link state of the nic
6155 * @sp ; private member of the device structure, which is a pointer to the
6156 * s2io_nic structure.
6157 * @data: variable that returns the result of each of the test conducted by
6158 * the driver.
6159 * Description:
6160 * The function verifies the link state of the NIC and updates the input
6161 * argument 'data' appropriately.
6162 * Return value:
6163 * 0 on success.
6164 */
6165
6166static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6167{
6168        struct XENA_dev_config __iomem *bar0 = sp->bar0;
6169        u64 val64;
6170
6171        val64 = readq(&bar0->adapter_status);
6172        if (!(LINK_IS_UP(val64)))
6173                *data = 1;
6174        else
6175                *data = 0;
6176
6177        return *data;
6178}
6179
6180/**
6181 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6182 * @sp - private member of the device structure, which is a pointer to the
6183 * s2io_nic structure.
6184 * @data - variable that returns the result of each of the test
6185 * conducted by the driver.
6186 * Description:
6187 *  This is one of the offline test that tests the read and write
6188 *  access to the RldRam chip on the NIC.
6189 * Return value:
6190 *  0 on success.
6191 */
6192
6193static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6194{
6195        struct XENA_dev_config __iomem *bar0 = sp->bar0;
6196        u64 val64;
6197        int cnt, iteration = 0, test_fail = 0;
6198
6199        val64 = readq(&bar0->adapter_control);
6200        val64 &= ~ADAPTER_ECC_EN;
6201        writeq(val64, &bar0->adapter_control);
6202
6203        val64 = readq(&bar0->mc_rldram_test_ctrl);
6204        val64 |= MC_RLDRAM_TEST_MODE;
6205        SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6206
6207        val64 = readq(&bar0->mc_rldram_mrs);
6208        val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6209        SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6210
6211        val64 |= MC_RLDRAM_MRS_ENABLE;
6212        SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6213
6214        while (iteration < 2) {
6215                val64 = 0x55555555aaaa0000ULL;
6216                if (iteration == 1)
6217                        val64 ^= 0xFFFFFFFFFFFF0000ULL;
6218                writeq(val64, &bar0->mc_rldram_test_d0);
6219
6220                val64 = 0xaaaa5a5555550000ULL;
6221                if (iteration == 1)
6222                        val64 ^= 0xFFFFFFFFFFFF0000ULL;
6223                writeq(val64, &bar0->mc_rldram_test_d1);
6224
6225                val64 = 0x55aaaaaaaa5a0000ULL;
6226                if (iteration == 1)
6227                        val64 ^= 0xFFFFFFFFFFFF0000ULL;
6228                writeq(val64, &bar0->mc_rldram_test_d2);
6229
6230                val64 = (u64) (0x0000003ffffe0100ULL);
6231                writeq(val64, &bar0->mc_rldram_test_add);
6232
6233                val64 = MC_RLDRAM_TEST_MODE |
6234                        MC_RLDRAM_TEST_WRITE |
6235                        MC_RLDRAM_TEST_GO;
6236                SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6237
6238                for (cnt = 0; cnt < 5; cnt++) {
6239                        val64 = readq(&bar0->mc_rldram_test_ctrl);
6240                        if (val64 & MC_RLDRAM_TEST_DONE)
6241                                break;
6242                        msleep(200);
6243                }
6244
6245                if (cnt == 5)
6246                        break;
6247
6248                val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6249                SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6250
6251                for (cnt = 0; cnt < 5; cnt++) {
6252                        val64 = readq(&bar0->mc_rldram_test_ctrl);
6253                        if (val64 & MC_RLDRAM_TEST_DONE)
6254                                break;
6255                        msleep(500);
6256                }
6257
6258                if (cnt == 5)
6259                        break;
6260
6261                val64 = readq(&bar0->mc_rldram_test_ctrl);
6262                if (!(val64 & MC_RLDRAM_TEST_PASS))
6263                        test_fail = 1;
6264
6265                iteration++;
6266        }
6267
6268        *data = test_fail;
6269
6270        /* Bring the adapter out of test mode */
6271        SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6272
6273        return test_fail;
6274}
6275
6276/**
6277 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6278 *  @sp : private member of the device structure, which is a pointer to the
6279 *  s2io_nic structure.
6280 *  @ethtest : pointer to a ethtool command specific structure that will be
6281 *  returned to the user.
6282 *  @data : variable that returns the result of each of the test
6283 * conducted by the driver.
6284 * Description:
6285 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6286 *  the health of the card.
6287 * Return value:
6288 *  void
6289 */
6290
6291static void s2io_ethtool_test(struct net_device *dev,
6292                              struct ethtool_test *ethtest,
6293                              uint64_t *data)
6294{
6295        struct s2io_nic *sp = netdev_priv(dev);
6296        int orig_state = netif_running(sp->dev);
6297
6298        if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6299                /* Offline Tests. */
6300                if (orig_state)
6301                        s2io_close(sp->dev);
6302
6303                if (s2io_register_test(sp, &data[0]))
6304                        ethtest->flags |= ETH_TEST_FL_FAILED;
6305
6306                s2io_reset(sp);
6307
6308                if (s2io_rldram_test(sp, &data[3]))
6309                        ethtest->flags |= ETH_TEST_FL_FAILED;
6310
6311                s2io_reset(sp);
6312
6313                if (s2io_eeprom_test(sp, &data[1]))
6314                        ethtest->flags |= ETH_TEST_FL_FAILED;
6315
6316                if (s2io_bist_test(sp, &data[4]))
6317                        ethtest->flags |= ETH_TEST_FL_FAILED;
6318
6319                if (orig_state)
6320                        s2io_open(sp->dev);
6321
6322                data[2] = 0;
6323        } else {
6324                /* Online Tests. */
6325                if (!orig_state) {
6326                        DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6327                                  dev->name);
6328                        data[0] = -1;
6329                        data[1] = -1;
6330                        data[2] = -1;
6331                        data[3] = -1;
6332                        data[4] = -1;
6333                }
6334
6335                if (s2io_link_test(sp, &data[2]))
6336                        ethtest->flags |= ETH_TEST_FL_FAILED;
6337
6338                data[0] = 0;
6339                data[1] = 0;
6340                data[3] = 0;
6341                data[4] = 0;
6342        }
6343}
6344
6345static void s2io_get_ethtool_stats(struct net_device *dev,
6346                                   struct ethtool_stats *estats,
6347                                   u64 *tmp_stats)
6348{
6349        int i = 0, k;
6350        struct s2io_nic *sp = netdev_priv(dev);
6351        struct stat_block *stats = sp->mac_control.stats_info;
6352        struct swStat *swstats = &stats->sw_stat;
6353        struct xpakStat *xstats = &stats->xpak_stat;
6354
6355        s2io_updt_stats(sp);
6356        tmp_stats[i++] =
6357                (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6358                le32_to_cpu(stats->tmac_frms);
6359        tmp_stats[i++] =
6360                (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6361                le32_to_cpu(stats->tmac_data_octets);
6362        tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6363        tmp_stats[i++] =
6364                (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6365                le32_to_cpu(stats->tmac_mcst_frms);
6366        tmp_stats[i++] =
6367                (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6368                le32_to_cpu(stats->tmac_bcst_frms);
6369        tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6370        tmp_stats[i++] =
6371                (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6372                le32_to_cpu(stats->tmac_ttl_octets);
6373        tmp_stats[i++] =
6374                (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6375                le32_to_cpu(stats->tmac_ucst_frms);
6376        tmp_stats[i++] =
6377                (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6378                le32_to_cpu(stats->tmac_nucst_frms);
6379        tmp_stats[i++] =
6380                (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6381                le32_to_cpu(stats->tmac_any_err_frms);
6382        tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6383        tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6384        tmp_stats[i++] =
6385                (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6386                le32_to_cpu(stats->tmac_vld_ip);
6387        tmp_stats[i++] =
6388                (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6389                le32_to_cpu(stats->tmac_drop_ip);
6390        tmp_stats[i++] =
6391                (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6392                le32_to_cpu(stats->tmac_icmp);
6393        tmp_stats[i++] =
6394                (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6395                le32_to_cpu(stats->tmac_rst_tcp);
6396        tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6397        tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6398                le32_to_cpu(stats->tmac_udp);
6399        tmp_stats[i++] =
6400                (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6401                le32_to_cpu(stats->rmac_vld_frms);
6402        tmp_stats[i++] =
6403                (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6404                le32_to_cpu(stats->rmac_data_octets);
6405        tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6406        tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6407        tmp_stats[i++] =
6408                (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6409                le32_to_cpu(stats->rmac_vld_mcst_frms);
6410        tmp_stats[i++] =
6411                (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6412                le32_to_cpu(stats->rmac_vld_bcst_frms);
6413        tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6414        tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6415        tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6416        tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6417        tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6418        tmp_stats[i++] =
6419                (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6420                le32_to_cpu(stats->rmac_ttl_octets);
6421        tmp_stats[i++] =
6422                (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6423                | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6424        tmp_stats[i++] =
6425                (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6426                << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6427        tmp_stats[i++] =
6428                (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6429                le32_to_cpu(stats->rmac_discarded_frms);
6430        tmp_stats[i++] =
6431                (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6432                << 32 | le32_to_cpu(stats->rmac_drop_events);
6433        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6434        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6435        tmp_stats[i++] =
6436                (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6437                le32_to_cpu(stats->rmac_usized_frms);
6438        tmp_stats[i++] =
6439                (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6440                le32_to_cpu(stats->rmac_osized_frms);
6441        tmp_stats[i++] =
6442                (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6443                le32_to_cpu(stats->rmac_frag_frms);
6444        tmp_stats[i++] =
6445                (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6446                le32_to_cpu(stats->rmac_jabber_frms);
6447        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6448        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6449        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6450        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6451        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6452        tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6453        tmp_stats[i++] =
6454                (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6455                le32_to_cpu(stats->rmac_ip);
6456        tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6457        tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6458        tmp_stats[i++] =
6459                (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6460                le32_to_cpu(stats->rmac_drop_ip);
6461        tmp_stats[i++] =
6462                (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6463                le32_to_cpu(stats->rmac_icmp);
6464        tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6465        tmp_stats[i++] =
6466                (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6467                le32_to_cpu(stats->rmac_udp);
6468        tmp_stats[i++] =
6469                (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6470                le32_to_cpu(stats->rmac_err_drp_udp);
6471        tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6472        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6473        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6474        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6475        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6476        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6477        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6478        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6479        tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6480        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6481        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6482        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6483        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6484        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6485        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6486        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6487        tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6488        tmp_stats[i++] =
6489                (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6490                le32_to_cpu(stats->rmac_pause_cnt);
6491        tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6492        tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6493        tmp_stats[i++] =
6494                (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6495                le32_to_cpu(stats->rmac_accepted_ip);
6496        tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6497        tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6498        tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6499        tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6500        tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6501        tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6502        tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6503        tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6504        tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6505        tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6506        tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6507        tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6508        tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6509        tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6510        tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6511        tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6512        tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6513        tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6514        tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6515
6516        /* Enhanced statistics exist only for Hercules */
6517        if (sp->device_type == XFRAME_II_DEVICE) {
6518                tmp_stats[i++] =
6519                        le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6520                tmp_stats[i++] =
6521                        le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6522                tmp_stats[i++] =
6523                        le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6524                tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6525                tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6526                tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6527                tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6528                tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6529                tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6530                tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6531                tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6532                tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6533                tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6534                tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6535                tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6536                tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6537        }
6538
6539        tmp_stats[i++] = 0;
6540        tmp_stats[i++] = swstats->single_ecc_errs;
6541        tmp_stats[i++] = swstats->double_ecc_errs;
6542        tmp_stats[i++] = swstats->parity_err_cnt;
6543        tmp_stats[i++] = swstats->serious_err_cnt;
6544        tmp_stats[i++] = swstats->soft_reset_cnt;
6545        tmp_stats[i++] = swstats->fifo_full_cnt;
6546        for (k = 0; k < MAX_RX_RINGS; k++)
6547                tmp_stats[i++] = swstats->ring_full_cnt[k];
6548        tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6549        tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6550        tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6551        tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6552        tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6553        tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6554        tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6555        tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6556        tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6557        tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6558        tmp_stats[i++] = xstats->warn_laser_output_power_high;
6559        tmp_stats[i++] = xstats->warn_laser_output_power_low;
6560        tmp_stats[i++] = swstats->clubbed_frms_cnt;
6561        tmp_stats[i++] = swstats->sending_both;
6562        tmp_stats[i++] = swstats->outof_sequence_pkts;
6563        tmp_stats[i++] = swstats->flush_max_pkts;
6564        if (swstats->num_aggregations) {
6565                u64 tmp = swstats->sum_avg_pkts_aggregated;
6566                int count = 0;
6567                /*
6568                 * Since 64-bit divide does not work on all platforms,
6569                 * do repeated subtraction.
6570                 */
6571                while (tmp >= swstats->num_aggregations) {
6572                        tmp -= swstats->num_aggregations;
6573                        count++;
6574                }
6575                tmp_stats[i++] = count;
6576        } else
6577                tmp_stats[i++] = 0;
6578        tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6579        tmp_stats[i++] = swstats->pci_map_fail_cnt;
6580        tmp_stats[i++] = swstats->watchdog_timer_cnt;
6581        tmp_stats[i++] = swstats->mem_allocated;
6582        tmp_stats[i++] = swstats->mem_freed;
6583        tmp_stats[i++] = swstats->link_up_cnt;
6584        tmp_stats[i++] = swstats->link_down_cnt;
6585        tmp_stats[i++] = swstats->link_up_time;
6586        tmp_stats[i++] = swstats->link_down_time;
6587
6588        tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6589        tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6590        tmp_stats[i++] = swstats->tx_parity_err_cnt;
6591        tmp_stats[i++] = swstats->tx_link_loss_cnt;
6592        tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6593
6594        tmp_stats[i++] = swstats->rx_parity_err_cnt;
6595        tmp_stats[i++] = swstats->rx_abort_cnt;
6596        tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6597        tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6598        tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6599        tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6600        tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6601        tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6602        tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6603        tmp_stats[i++] = swstats->tda_err_cnt;
6604        tmp_stats[i++] = swstats->pfc_err_cnt;
6605        tmp_stats[i++] = swstats->pcc_err_cnt;
6606        tmp_stats[i++] = swstats->tti_err_cnt;
6607        tmp_stats[i++] = swstats->tpa_err_cnt;
6608        tmp_stats[i++] = swstats->sm_err_cnt;
6609        tmp_stats[i++] = swstats->lso_err_cnt;
6610        tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6611        tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6612        tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6613        tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6614        tmp_stats[i++] = swstats->rc_err_cnt;
6615        tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6616        tmp_stats[i++] = swstats->rpa_err_cnt;
6617        tmp_stats[i++] = swstats->rda_err_cnt;
6618        tmp_stats[i++] = swstats->rti_err_cnt;
6619        tmp_stats[i++] = swstats->mc_err_cnt;
6620}
6621
6622static int s2io_ethtool_get_regs_len(struct net_device *dev)
6623{
6624        return XENA_REG_SPACE;
6625}
6626
6627
6628static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6629{
6630        struct s2io_nic *sp = netdev_priv(dev);
6631
6632        return sp->rx_csum;
6633}
6634
6635static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6636{
6637        struct s2io_nic *sp = netdev_priv(dev);
6638
6639        if (data)
6640                sp->rx_csum = 1;
6641        else
6642                sp->rx_csum = 0;
6643
6644        return 0;
6645}
6646
6647static int s2io_get_eeprom_len(struct net_device *dev)
6648{
6649        return XENA_EEPROM_SPACE;
6650}
6651
6652static int s2io_get_sset_count(struct net_device *dev, int sset)
6653{
6654        struct s2io_nic *sp = netdev_priv(dev);
6655
6656        switch (sset) {
6657        case ETH_SS_TEST:
6658                return S2IO_TEST_LEN;
6659        case ETH_SS_STATS:
6660                switch (sp->device_type) {
6661                case XFRAME_I_DEVICE:
6662                        return XFRAME_I_STAT_LEN;
6663                case XFRAME_II_DEVICE:
6664                        return XFRAME_II_STAT_LEN;
6665                default:
6666                        return 0;
6667                }
6668        default:
6669                return -EOPNOTSUPP;
6670        }
6671}
6672
6673static void s2io_ethtool_get_strings(struct net_device *dev,
6674                                     u32 stringset, u8 *data)
6675{
6676        int stat_size = 0;
6677        struct s2io_nic *sp = netdev_priv(dev);
6678
6679        switch (stringset) {
6680        case ETH_SS_TEST:
6681                memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6682                break;
6683        case ETH_SS_STATS:
6684                stat_size = sizeof(ethtool_xena_stats_keys);
6685                memcpy(data, &ethtool_xena_stats_keys, stat_size);
6686                if (sp->device_type == XFRAME_II_DEVICE) {
6687                        memcpy(data + stat_size,
6688                               &ethtool_enhanced_stats_keys,
6689                               sizeof(ethtool_enhanced_stats_keys));
6690                        stat_size += sizeof(ethtool_enhanced_stats_keys);
6691                }
6692
6693                memcpy(data + stat_size, &ethtool_driver_stats_keys,
6694                       sizeof(ethtool_driver_stats_keys));
6695        }
6696}
6697
6698static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6699{
6700        if (data)
6701                dev->features |= NETIF_F_IP_CSUM;
6702        else
6703                dev->features &= ~NETIF_F_IP_CSUM;
6704
6705        return 0;
6706}
6707
6708static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6709{
6710        return (dev->features & NETIF_F_TSO) != 0;
6711}
6712
6713static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6714{
6715        if (data)
6716                dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6717        else
6718                dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6719
6720        return 0;
6721}
6722
6723static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6724{
6725        struct s2io_nic *sp = netdev_priv(dev);
6726        int rc = 0;
6727        int changed = 0;
6728
6729        if (ethtool_invalid_flags(dev, data, ETH_FLAG_LRO))
6730                return -EINVAL;
6731
6732        if (data & ETH_FLAG_LRO) {
6733                if (!(dev->features & NETIF_F_LRO)) {
6734                        dev->features |= NETIF_F_LRO;
6735                        changed = 1;
6736                }
6737        } else if (dev->features & NETIF_F_LRO) {
6738                dev->features &= ~NETIF_F_LRO;
6739                changed = 1;
6740        }
6741
6742        if (changed && netif_running(dev)) {
6743                s2io_stop_all_tx_queue(sp);
6744                s2io_card_down(sp);
6745                rc = s2io_card_up(sp);
6746                if (rc)
6747                        s2io_reset(sp);
6748                else
6749                        s2io_start_all_tx_queue(sp);
6750        }
6751
6752        return rc;
6753}
6754
6755static const struct ethtool_ops netdev_ethtool_ops = {
6756        .get_settings = s2io_ethtool_gset,
6757        .set_settings = s2io_ethtool_sset,
6758        .get_drvinfo = s2io_ethtool_gdrvinfo,
6759        .get_regs_len = s2io_ethtool_get_regs_len,
6760        .get_regs = s2io_ethtool_gregs,
6761        .get_link = ethtool_op_get_link,
6762        .get_eeprom_len = s2io_get_eeprom_len,
6763        .get_eeprom = s2io_ethtool_geeprom,
6764        .set_eeprom = s2io_ethtool_seeprom,
6765        .get_ringparam = s2io_ethtool_gringparam,
6766        .get_pauseparam = s2io_ethtool_getpause_data,
6767        .set_pauseparam = s2io_ethtool_setpause_data,
6768        .get_rx_csum = s2io_ethtool_get_rx_csum,
6769        .set_rx_csum = s2io_ethtool_set_rx_csum,
6770        .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6771        .set_flags = s2io_ethtool_set_flags,
6772        .get_flags = ethtool_op_get_flags,
6773        .set_sg = ethtool_op_set_sg,
6774        .get_tso = s2io_ethtool_op_get_tso,
6775        .set_tso = s2io_ethtool_op_set_tso,
6776        .set_ufo = ethtool_op_set_ufo,
6777        .self_test = s2io_ethtool_test,
6778        .get_strings = s2io_ethtool_get_strings,
6779        .phys_id = s2io_ethtool_idnic,
6780        .get_ethtool_stats = s2io_get_ethtool_stats,
6781        .get_sset_count = s2io_get_sset_count,
6782};
6783
6784/**
6785 *  s2io_ioctl - Entry point for the Ioctl
6786 *  @dev :  Device pointer.
6787 *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6788 *  a proprietary structure used to pass information to the driver.
6789 *  @cmd :  This is used to distinguish between the different commands that
6790 *  can be passed to the IOCTL functions.
6791 *  Description:
6792 *  Currently there are no special functionality supported in IOCTL, hence
6793 *  function always return EOPNOTSUPPORTED
6794 */
6795
6796static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6797{
6798        return -EOPNOTSUPP;
6799}
6800
6801/**
6802 *  s2io_change_mtu - entry point to change MTU size for the device.
6803 *   @dev : device pointer.
6804 *   @new_mtu : the new MTU size for the device.
6805 *   Description: A driver entry point to change MTU size for the device.
6806 *   Before changing the MTU the device must be stopped.
6807 *  Return value:
6808 *   0 on success and an appropriate (-)ve integer as defined in errno.h
6809 *   file on failure.
6810 */
6811
6812static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6813{
6814        struct s2io_nic *sp = netdev_priv(dev);
6815        int ret = 0;
6816
6817        if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6818                DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6819                return -EPERM;
6820        }
6821
6822        dev->mtu = new_mtu;
6823        if (netif_running(dev)) {
6824                s2io_stop_all_tx_queue(sp);
6825                s2io_card_down(sp);
6826                ret = s2io_card_up(sp);
6827                if (ret) {
6828                        DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6829                                  __func__);
6830                        return ret;
6831                }
6832                s2io_wake_all_tx_queue(sp);
6833        } else { /* Device is down */
6834                struct XENA_dev_config __iomem *bar0 = sp->bar0;
6835                u64 val64 = new_mtu;
6836
6837                writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6838        }
6839
6840        return ret;
6841}
6842
6843/**
6844 * s2io_set_link - Set the LInk status
6845 * @data: long pointer to device private structue
6846 * Description: Sets the link status for the adapter
6847 */
6848
6849static void s2io_set_link(struct work_struct *work)
6850{
6851        struct s2io_nic *nic = container_of(work, struct s2io_nic,
6852                                            set_link_task);
6853        struct net_device *dev = nic->dev;
6854        struct XENA_dev_config __iomem *bar0 = nic->bar0;
6855        register u64 val64;
6856        u16 subid;
6857
6858        rtnl_lock();
6859
6860        if (!netif_running(dev))
6861                goto out_unlock;
6862
6863        if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6864                /* The card is being reset, no point doing anything */
6865                goto out_unlock;
6866        }
6867
6868        subid = nic->pdev->subsystem_device;
6869        if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6870                /*
6871                 * Allow a small delay for the NICs self initiated
6872                 * cleanup to complete.
6873                 */
6874                msleep(100);
6875        }
6876
6877        val64 = readq(&bar0->adapter_status);
6878        if (LINK_IS_UP(val64)) {
6879                if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6880                        if (verify_xena_quiescence(nic)) {
6881                                val64 = readq(&bar0->adapter_control);
6882                                val64 |= ADAPTER_CNTL_EN;
6883                                writeq(val64, &bar0->adapter_control);
6884                                if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6885                                            nic->device_type, subid)) {
6886                                        val64 = readq(&bar0->gpio_control);
6887                                        val64 |= GPIO_CTRL_GPIO_0;
6888                                        writeq(val64, &bar0->gpio_control);
6889                                        val64 = readq(&bar0->gpio_control);
6890                                } else {
6891                                        val64 |= ADAPTER_LED_ON;
6892                                        writeq(val64, &bar0->adapter_control);
6893                                }
6894                                nic->device_enabled_once = true;
6895                        } else {
6896                                DBG_PRINT(ERR_DBG,
6897                                          "%s: Error: device is not Quiescent\n",
6898                                          dev->name);
6899                                s2io_stop_all_tx_queue(nic);
6900                        }
6901                }
6902                val64 = readq(&bar0->adapter_control);
6903                val64 |= ADAPTER_LED_ON;
6904                writeq(val64, &bar0->adapter_control);
6905                s2io_link(nic, LINK_UP);
6906        } else {
6907                if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6908                                                      subid)) {
6909                        val64 = readq(&bar0->gpio_control);
6910                        val64 &= ~GPIO_CTRL_GPIO_0;
6911                        writeq(val64, &bar0->gpio_control);
6912                        val64 = readq(&bar0->gpio_control);
6913                }
6914                /* turn off LED */
6915                val64 = readq(&bar0->adapter_control);
6916                val64 = val64 & (~ADAPTER_LED_ON);
6917                writeq(val64, &bar0->adapter_control);
6918                s2io_link(nic, LINK_DOWN);
6919        }
6920        clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6921
6922out_unlock:
6923        rtnl_unlock();
6924}
6925
6926static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6927                                  struct buffAdd *ba,
6928                                  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6929                                  u64 *temp2, int size)
6930{
6931        struct net_device *dev = sp->dev;
6932        struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6933
6934        if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6935                struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6936                /* allocate skb */
6937                if (*skb) {
6938                        DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6939                        /*
6940                         * As Rx frame are not going to be processed,
6941                         * using same mapped address for the Rxd
6942                         * buffer pointer
6943                         */
6944                        rxdp1->Buffer0_ptr = *temp0;
6945                } else {
6946                        *skb = dev_alloc_skb(size);
6947                        if (!(*skb)) {
6948                                DBG_PRINT(INFO_DBG,
6949                                          "%s: Out of memory to allocate %s\n",
6950                                          dev->name, "1 buf mode SKBs");
6951                                stats->mem_alloc_fail_cnt++;
6952                                return -ENOMEM ;
6953                        }
6954                        stats->mem_allocated += (*skb)->truesize;
6955                        /* storing the mapped addr in a temp variable
6956                         * such it will be used for next rxd whose
6957                         * Host Control is NULL
6958                         */
6959                        rxdp1->Buffer0_ptr = *temp0 =
6960                                pci_map_single(sp->pdev, (*skb)->data,
6961                                               size - NET_IP_ALIGN,
6962                                               PCI_DMA_FROMDEVICE);
6963                        if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6964                                goto memalloc_failed;
6965                        rxdp->Host_Control = (unsigned long) (*skb);
6966                }
6967        } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6968                struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6969                /* Two buffer Mode */
6970                if (*skb) {
6971                        rxdp3->Buffer2_ptr = *temp2;
6972                        rxdp3->Buffer0_ptr = *temp0;
6973                        rxdp3->Buffer1_ptr = *temp1;
6974                } else {
6975                        *skb = dev_alloc_skb(size);
6976                        if (!(*skb)) {
6977                                DBG_PRINT(INFO_DBG,
6978                                          "%s: Out of memory to allocate %s\n",
6979                                          dev->name,
6980                                          "2 buf mode SKBs");
6981                                stats->mem_alloc_fail_cnt++;
6982                                return -ENOMEM;
6983                        }
6984                        stats->mem_allocated += (*skb)->truesize;
6985                        rxdp3->Buffer2_ptr = *temp2 =
6986                                pci_map_single(sp->pdev, (*skb)->data,
6987                                               dev->mtu + 4,
6988                                               PCI_DMA_FROMDEVICE);
6989                        if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6990                                goto memalloc_failed;
6991                        rxdp3->Buffer0_ptr = *temp0 =
6992                                pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6993                                               PCI_DMA_FROMDEVICE);
6994                        if (pci_dma_mapping_error(sp->pdev,
6995                                                  rxdp3->Buffer0_ptr)) {
6996                                pci_unmap_single(sp->pdev,
6997                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
6998                                                 dev->mtu + 4,
6999                                                 PCI_DMA_FROMDEVICE);
7000                                goto memalloc_failed;
7001                        }
7002                        rxdp->Host_Control = (unsigned long) (*skb);
7003
7004                        /* Buffer-1 will be dummy buffer not used */
7005                        rxdp3->Buffer1_ptr = *temp1 =
7006                                pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
7007                                               PCI_DMA_FROMDEVICE);
7008                        if (pci_dma_mapping_error(sp->pdev,
7009                                                  rxdp3->Buffer1_ptr)) {
7010                                pci_unmap_single(sp->pdev,
7011                                                 (dma_addr_t)rxdp3->Buffer0_ptr,
7012                                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
7013                                pci_unmap_single(sp->pdev,
7014                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
7015                                                 dev->mtu + 4,
7016                                                 PCI_DMA_FROMDEVICE);
7017                                goto memalloc_failed;
7018                        }
7019                }
7020        }
7021        return 0;
7022
7023memalloc_failed:
7024        stats->pci_map_fail_cnt++;
7025        stats->mem_freed += (*skb)->truesize;
7026        dev_kfree_skb(*skb);
7027        return -ENOMEM;
7028}
7029
7030static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7031                                int size)
7032{
7033        struct net_device *dev = sp->dev;
7034        if (sp->rxd_mode == RXD_MODE_1) {
7035                rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7036        } else if (sp->rxd_mode == RXD_MODE_3B) {
7037                rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7038                rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7039                rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7040        }
7041}
7042
7043static  int rxd_owner_bit_reset(struct s2io_nic *sp)
7044{
7045        int i, j, k, blk_cnt = 0, size;
7046        struct config_param *config = &sp->config;
7047        struct mac_info *mac_control = &sp->mac_control;
7048        struct net_device *dev = sp->dev;
7049        struct RxD_t *rxdp = NULL;
7050        struct sk_buff *skb = NULL;
7051        struct buffAdd *ba = NULL;
7052        u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7053
7054        /* Calculate the size based on ring mode */
7055        size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7056                HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7057        if (sp->rxd_mode == RXD_MODE_1)
7058                size += NET_IP_ALIGN;
7059        else if (sp->rxd_mode == RXD_MODE_3B)
7060                size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7061
7062        for (i = 0; i < config->rx_ring_num; i++) {
7063                struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7064                struct ring_info *ring = &mac_control->rings[i];
7065
7066                blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7067
7068                for (j = 0; j < blk_cnt; j++) {
7069                        for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7070                                rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7071                                if (sp->rxd_mode == RXD_MODE_3B)
7072                                        ba = &ring->ba[j][k];
7073                                if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7074                                                           (u64 *)&temp0_64,
7075                                                           (u64 *)&temp1_64,
7076                                                           (u64 *)&temp2_64,
7077                                                           size) == -ENOMEM) {
7078                                        return 0;
7079                                }
7080
7081                                set_rxd_buffer_size(sp, rxdp, size);
7082                                wmb();
7083                                /* flip the Ownership bit to Hardware */
7084                                rxdp->Control_1 |= RXD_OWN_XENA;
7085                        }
7086                }
7087        }
7088        return 0;
7089
7090}
7091
7092static int s2io_add_isr(struct s2io_nic *sp)
7093{
7094        int ret = 0;
7095        struct net_device *dev = sp->dev;
7096        int err = 0;
7097
7098        if (sp->config.intr_type == MSI_X)
7099                ret = s2io_enable_msi_x(sp);
7100        if (ret) {
7101                DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7102                sp->config.intr_type = INTA;
7103        }
7104
7105        /*
7106         * Store the values of the MSIX table in
7107         * the struct s2io_nic structure
7108         */
7109        store_xmsi_data(sp);
7110
7111        /* After proper initialization of H/W, register ISR */
7112        if (sp->config.intr_type == MSI_X) {
7113                int i, msix_rx_cnt = 0;
7114
7115                for (i = 0; i < sp->num_entries; i++) {
7116                        if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7117                                if (sp->s2io_entries[i].type ==
7118                                    MSIX_RING_TYPE) {
7119                                        sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7120                                                dev->name, i);
7121                                        err = request_irq(sp->entries[i].vector,
7122                                                          s2io_msix_ring_handle,
7123                                                          0,
7124                                                          sp->desc[i],
7125                                                          sp->s2io_entries[i].arg);
7126                                } else if (sp->s2io_entries[i].type ==
7127                                           MSIX_ALARM_TYPE) {
7128                                        sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7129                                                dev->name, i);
7130                                        err = request_irq(sp->entries[i].vector,
7131                                                          s2io_msix_fifo_handle,
7132                                                          0,
7133                                                          sp->desc[i],
7134                                                          sp->s2io_entries[i].arg);
7135
7136                                }
7137                                /* if either data or addr is zero print it. */
7138                                if (!(sp->msix_info[i].addr &&
7139                                      sp->msix_info[i].data)) {
7140                                        DBG_PRINT(ERR_DBG,
7141                                                  "%s @Addr:0x%llx Data:0x%llx\n",
7142                                                  sp->desc[i],
7143                                                  (unsigned long long)
7144                                                  sp->msix_info[i].addr,
7145                                                  (unsigned long long)
7146                                                  ntohl(sp->msix_info[i].data));
7147                                } else
7148                                        msix_rx_cnt++;
7149                                if (err) {
7150                                        remove_msix_isr(sp);
7151
7152                                        DBG_PRINT(ERR_DBG,
7153                                                  "%s:MSI-X-%d registration "
7154                                                  "failed\n", dev->name, i);
7155
7156                                        DBG_PRINT(ERR_DBG,
7157                                                  "%s: Defaulting to INTA\n",
7158                                                  dev->name);
7159                                        sp->config.intr_type = INTA;
7160                                        break;
7161                                }
7162                                sp->s2io_entries[i].in_use =
7163                                        MSIX_REGISTERED_SUCCESS;
7164                        }
7165                }
7166                if (!err) {
7167                        pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7168                        DBG_PRINT(INFO_DBG,
7169                                  "MSI-X-TX entries enabled through alarm vector\n");
7170                }
7171        }
7172        if (sp->config.intr_type == INTA) {
7173                err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7174                                  sp->name, dev);
7175                if (err) {
7176                        DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7177                                  dev->name);
7178                        return -1;
7179                }
7180        }
7181        return 0;
7182}
7183
7184static void s2io_rem_isr(struct s2io_nic *sp)
7185{
7186        if (sp->config.intr_type == MSI_X)
7187                remove_msix_isr(sp);
7188        else
7189                remove_inta_isr(sp);
7190}
7191
7192static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7193{
7194        int cnt = 0;
7195        struct XENA_dev_config __iomem *bar0 = sp->bar0;
7196        register u64 val64 = 0;
7197        struct config_param *config;
7198        config = &sp->config;
7199
7200        if (!is_s2io_card_up(sp))
7201                return;
7202
7203        del_timer_sync(&sp->alarm_timer);
7204        /* If s2io_set_link task is executing, wait till it completes. */
7205        while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7206                msleep(50);
7207        clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7208
7209        /* Disable napi */
7210        if (sp->config.napi) {
7211                int off = 0;
7212                if (config->intr_type ==  MSI_X) {
7213                        for (; off < sp->config.rx_ring_num; off++)
7214                                napi_disable(&sp->mac_control.rings[off].napi);
7215                }
7216                else
7217                        napi_disable(&sp->napi);
7218        }
7219
7220        /* disable Tx and Rx traffic on the NIC */
7221        if (do_io)
7222                stop_nic(sp);
7223
7224        s2io_rem_isr(sp);
7225
7226        /* stop the tx queue, indicate link down */
7227        s2io_link(sp, LINK_DOWN);
7228
7229        /* Check if the device is Quiescent and then Reset the NIC */
7230        while (do_io) {
7231                /* As per the HW requirement we need to replenish the
7232                 * receive buffer to avoid the ring bump. Since there is
7233                 * no intention of processing the Rx frame at this pointwe are
7234                 * just settting the ownership bit of rxd in Each Rx
7235                 * ring to HW and set the appropriate buffer size
7236                 * based on the ring mode
7237                 */
7238                rxd_owner_bit_reset(sp);
7239
7240                val64 = readq(&bar0->adapter_status);
7241                if (verify_xena_quiescence(sp)) {
7242                        if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7243                                break;
7244                }
7245
7246                msleep(50);
7247                cnt++;
7248                if (cnt == 10) {
7249                        DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7250                                  "adapter status reads 0x%llx\n",
7251                                  (unsigned long long)val64);
7252                        break;
7253                }
7254        }
7255        if (do_io)
7256                s2io_reset(sp);
7257
7258        /* Free all Tx buffers */
7259        free_tx_buffers(sp);
7260
7261        /* Free all Rx buffers */
7262        free_rx_buffers(sp);
7263
7264        clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7265}
7266
7267static void s2io_card_down(struct s2io_nic *sp)
7268{
7269        do_s2io_card_down(sp, 1);
7270}
7271
7272static int s2io_card_up(struct s2io_nic *sp)
7273{
7274        int i, ret = 0;
7275        struct config_param *config;
7276        struct mac_info *mac_control;
7277        struct net_device *dev = (struct net_device *)sp->dev;
7278        u16 interruptible;
7279
7280        /* Initialize the H/W I/O registers */
7281        ret = init_nic(sp);
7282        if (ret != 0) {
7283                DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7284                          dev->name);
7285                if (ret != -EIO)
7286                        s2io_reset(sp);
7287                return ret;
7288        }
7289
7290        /*
7291         * Initializing the Rx buffers. For now we are considering only 1
7292         * Rx ring and initializing buffers into 30 Rx blocks
7293         */
7294        config = &sp->config;
7295        mac_control = &sp->mac_control;
7296
7297        for (i = 0; i < config->rx_ring_num; i++) {
7298                struct ring_info *ring = &mac_control->rings[i];
7299
7300                ring->mtu = dev->mtu;
7301                ring->lro = !!(dev->features & NETIF_F_LRO);
7302                ret = fill_rx_buffers(sp, ring, 1);
7303                if (ret) {
7304                        DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7305                                  dev->name);
7306                        s2io_reset(sp);
7307                        free_rx_buffers(sp);
7308                        return -ENOMEM;
7309                }
7310                DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7311                          ring->rx_bufs_left);
7312        }
7313
7314        /* Initialise napi */
7315        if (config->napi) {
7316                if (config->intr_type ==  MSI_X) {
7317                        for (i = 0; i < sp->config.rx_ring_num; i++)
7318                                napi_enable(&sp->mac_control.rings[i].napi);
7319                } else {
7320                        napi_enable(&sp->napi);
7321                }
7322        }
7323
7324        /* Maintain the state prior to the open */
7325        if (sp->promisc_flg)
7326                sp->promisc_flg = 0;
7327        if (sp->m_cast_flg) {
7328                sp->m_cast_flg = 0;
7329                sp->all_multi_pos = 0;
7330        }
7331
7332        /* Setting its receive mode */
7333        s2io_set_multicast(dev);
7334
7335        if (dev->features & NETIF_F_LRO) {
7336                /* Initialize max aggregatable pkts per session based on MTU */
7337                sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7338                /* Check if we can use (if specified) user provided value */
7339                if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7340                        sp->lro_max_aggr_per_sess = lro_max_pkts;
7341        }
7342
7343        /* Enable Rx Traffic and interrupts on the NIC */
7344        if (start_nic(sp)) {
7345                DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7346                s2io_reset(sp);
7347                free_rx_buffers(sp);
7348                return -ENODEV;
7349        }
7350
7351        /* Add interrupt service routine */
7352        if (s2io_add_isr(sp) != 0) {
7353                if (sp->config.intr_type == MSI_X)
7354                        s2io_rem_isr(sp);
7355                s2io_reset(sp);
7356                free_rx_buffers(sp);
7357                return -ENODEV;
7358        }
7359
7360        S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7361
7362        set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7363
7364        /*  Enable select interrupts */
7365        en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7366        if (sp->config.intr_type != INTA) {
7367                interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7368                en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7369        } else {
7370                interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7371                interruptible |= TX_PIC_INTR;
7372                en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7373        }
7374
7375        return 0;
7376}
7377
7378/**
7379 * s2io_restart_nic - Resets the NIC.
7380 * @data : long pointer to the device private structure
7381 * Description:
7382 * This function is scheduled to be run by the s2io_tx_watchdog
7383 * function after 0.5 secs to reset the NIC. The idea is to reduce
7384 * the run time of the watch dog routine which is run holding a
7385 * spin lock.
7386 */
7387
7388static void s2io_restart_nic(struct work_struct *work)
7389{
7390        struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7391        struct net_device *dev = sp->dev;
7392
7393        rtnl_lock();
7394
7395        if (!netif_running(dev))
7396                goto out_unlock;
7397
7398        s2io_card_down(sp);
7399        if (s2io_card_up(sp)) {
7400                DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7401        }
7402        s2io_wake_all_tx_queue(sp);
7403        DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7404out_unlock:
7405        rtnl_unlock();
7406}
7407
7408/**
7409 *  s2io_tx_watchdog - Watchdog for transmit side.
7410 *  @dev : Pointer to net device structure
7411 *  Description:
7412 *  This function is triggered if the Tx Queue is stopped
7413 *  for a pre-defined amount of time when the Interface is still up.
7414 *  If the Interface is jammed in such a situation, the hardware is
7415 *  reset (by s2io_close) and restarted again (by s2io_open) to
7416 *  overcome any problem that might have been caused in the hardware.
7417 *  Return value:
7418 *  void
7419 */
7420
7421static void s2io_tx_watchdog(struct net_device *dev)
7422{
7423        struct s2io_nic *sp = netdev_priv(dev);
7424        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7425
7426        if (netif_carrier_ok(dev)) {
7427                swstats->watchdog_timer_cnt++;
7428                schedule_work(&sp->rst_timer_task);
7429                swstats->soft_reset_cnt++;
7430        }
7431}
7432
7433/**
7434 *   rx_osm_handler - To perform some OS related operations on SKB.
7435 *   @sp: private member of the device structure,pointer to s2io_nic structure.
7436 *   @skb : the socket buffer pointer.
7437 *   @len : length of the packet
7438 *   @cksum : FCS checksum of the frame.
7439 *   @ring_no : the ring from which this RxD was extracted.
7440 *   Description:
7441 *   This function is called by the Rx interrupt serivce routine to perform
7442 *   some OS related operations on the SKB before passing it to the upper
7443 *   layers. It mainly checks if the checksum is OK, if so adds it to the
7444 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7445 *   to the upper layer. If the checksum is wrong, it increments the Rx
7446 *   packet error count, frees the SKB and returns error.
7447 *   Return value:
7448 *   SUCCESS on success and -1 on failure.
7449 */
7450static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7451{
7452        struct s2io_nic *sp = ring_data->nic;
7453        struct net_device *dev = (struct net_device *)ring_data->dev;
7454        struct sk_buff *skb = (struct sk_buff *)
7455                ((unsigned long)rxdp->Host_Control);
7456        int ring_no = ring_data->ring_no;
7457        u16 l3_csum, l4_csum;
7458        unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7459        struct lro *uninitialized_var(lro);
7460        u8 err_mask;
7461        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7462
7463        skb->dev = dev;
7464
7465        if (err) {
7466                /* Check for parity error */
7467                if (err & 0x1)
7468                        swstats->parity_err_cnt++;
7469
7470                err_mask = err >> 48;
7471                switch (err_mask) {
7472                case 1:
7473                        swstats->rx_parity_err_cnt++;
7474                        break;
7475
7476                case 2:
7477                        swstats->rx_abort_cnt++;
7478                        break;
7479
7480                case 3:
7481                        swstats->rx_parity_abort_cnt++;
7482                        break;
7483
7484                case 4:
7485                        swstats->rx_rda_fail_cnt++;
7486                        break;
7487
7488                case 5:
7489                        swstats->rx_unkn_prot_cnt++;
7490                        break;
7491
7492                case 6:
7493                        swstats->rx_fcs_err_cnt++;
7494                        break;
7495
7496                case 7:
7497                        swstats->rx_buf_size_err_cnt++;
7498                        break;
7499
7500                case 8:
7501                        swstats->rx_rxd_corrupt_cnt++;
7502                        break;
7503
7504                case 15:
7505                        swstats->rx_unkn_err_cnt++;
7506                        break;
7507                }
7508                /*
7509                 * Drop the packet if bad transfer code. Exception being
7510                 * 0x5, which could be due to unsupported IPv6 extension header.
7511                 * In this case, we let stack handle the packet.
7512                 * Note that in this case, since checksum will be incorrect,
7513                 * stack will validate the same.
7514                 */
7515                if (err_mask != 0x5) {
7516                        DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7517                                  dev->name, err_mask);
7518                        dev->stats.rx_crc_errors++;
7519                        swstats->mem_freed
7520                                += skb->truesize;
7521                        dev_kfree_skb(skb);
7522                        ring_data->rx_bufs_left -= 1;
7523                        rxdp->Host_Control = 0;
7524                        return 0;
7525                }
7526        }
7527
7528        rxdp->Host_Control = 0;
7529        if (sp->rxd_mode == RXD_MODE_1) {
7530                int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7531
7532                skb_put(skb, len);
7533        } else if (sp->rxd_mode == RXD_MODE_3B) {
7534                int get_block = ring_data->rx_curr_get_info.block_index;
7535                int get_off = ring_data->rx_curr_get_info.offset;
7536                int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7537                int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7538                unsigned char *buff = skb_push(skb, buf0_len);
7539
7540                struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7541                memcpy(buff, ba->ba_0, buf0_len);
7542                skb_put(skb, buf2_len);
7543        }
7544
7545        if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7546            ((!ring_data->lro) ||
7547             (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7548            (sp->rx_csum)) {
7549                l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7550                l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7551                if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7552                        /*
7553                         * NIC verifies if the Checksum of the received
7554                         * frame is Ok or not and accordingly returns
7555                         * a flag in the RxD.
7556                         */
7557                        skb->ip_summed = CHECKSUM_UNNECESSARY;
7558                        if (ring_data->lro) {
7559                                u32 tcp_len = 0;
7560                                u8 *tcp;
7561                                int ret = 0;
7562
7563                                ret = s2io_club_tcp_session(ring_data,
7564                                                            skb->data, &tcp,
7565                                                            &tcp_len, &lro,
7566                                                            rxdp, sp);
7567                                switch (ret) {
7568                                case 3: /* Begin anew */
7569                                        lro->parent = skb;
7570                                        goto aggregate;
7571                                case 1: /* Aggregate */
7572                                        lro_append_pkt(sp, lro, skb, tcp_len);
7573                                        goto aggregate;
7574                                case 4: /* Flush session */
7575                                        lro_append_pkt(sp, lro, skb, tcp_len);
7576                                        queue_rx_frame(lro->parent,
7577                                                       lro->vlan_tag);
7578                                        clear_lro_session(lro);
7579                                        swstats->flush_max_pkts++;
7580                                        goto aggregate;
7581                                case 2: /* Flush both */
7582                                        lro->parent->data_len = lro->frags_len;
7583                                        swstats->sending_both++;
7584                                        queue_rx_frame(lro->parent,
7585                                                       lro->vlan_tag);
7586                                        clear_lro_session(lro);
7587                                        goto send_up;
7588                                case 0: /* sessions exceeded */
7589                                case -1: /* non-TCP or not L2 aggregatable */
7590                                case 5: /*
7591                                         * First pkt in session not
7592                                         * L3/L4 aggregatable
7593                                         */
7594                                        break;
7595                                default:
7596                                        DBG_PRINT(ERR_DBG,
7597                                                  "%s: Samadhana!!\n",
7598                                                  __func__);
7599                                        BUG();
7600                                }
7601                        }
7602                } else {
7603                        /*
7604                         * Packet with erroneous checksum, let the
7605                         * upper layers deal with it.
7606                         */
7607                        skb_checksum_none_assert(skb);
7608                }
7609        } else
7610                skb_checksum_none_assert(skb);
7611
7612        swstats->mem_freed += skb->truesize;
7613send_up:
7614        skb_record_rx_queue(skb, ring_no);
7615        queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7616aggregate:
7617        sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7618        return SUCCESS;
7619}
7620
7621/**
7622 *  s2io_link - stops/starts the Tx queue.
7623 *  @sp : private member of the device structure, which is a pointer to the
7624 *  s2io_nic structure.
7625 *  @link : inidicates whether link is UP/DOWN.
7626 *  Description:
7627 *  This function stops/starts the Tx queue depending on whether the link
7628 *  status of the NIC is is down or up. This is called by the Alarm
7629 *  interrupt handler whenever a link change interrupt comes up.
7630 *  Return value:
7631 *  void.
7632 */
7633
7634static void s2io_link(struct s2io_nic *sp, int link)
7635{
7636        struct net_device *dev = (struct net_device *)sp->dev;
7637        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7638
7639        if (link != sp->last_link_state) {
7640                init_tti(sp, link);
7641                if (link == LINK_DOWN) {
7642                        DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7643                        s2io_stop_all_tx_queue(sp);
7644                        netif_carrier_off(dev);
7645                        if (swstats->link_up_cnt)
7646                                swstats->link_up_time =
7647                                        jiffies - sp->start_time;
7648                        swstats->link_down_cnt++;
7649                } else {
7650                        DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7651                        if (swstats->link_down_cnt)
7652                                swstats->link_down_time =
7653                                        jiffies - sp->start_time;
7654                        swstats->link_up_cnt++;
7655                        netif_carrier_on(dev);
7656                        s2io_wake_all_tx_queue(sp);
7657                }
7658        }
7659        sp->last_link_state = link;
7660        sp->start_time = jiffies;
7661}
7662
7663/**
7664 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7665 *  @sp : private member of the device structure, which is a pointer to the
7666 *  s2io_nic structure.
7667 *  Description:
7668 *  This function initializes a few of the PCI and PCI-X configuration registers
7669 *  with recommended values.
7670 *  Return value:
7671 *  void
7672 */
7673
7674static void s2io_init_pci(struct s2io_nic *sp)
7675{
7676        u16 pci_cmd = 0, pcix_cmd = 0;
7677
7678        /* Enable Data Parity Error Recovery in PCI-X command register. */
7679        pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7680                             &(pcix_cmd));
7681        pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7682                              (pcix_cmd | 1));
7683        pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7684                             &(pcix_cmd));
7685
7686        /* Set the PErr Response bit in PCI command register. */
7687        pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7688        pci_write_config_word(sp->pdev, PCI_COMMAND,
7689                              (pci_cmd | PCI_COMMAND_PARITY));
7690        pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7691}
7692
7693static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7694                            u8 *dev_multiq)
7695{
7696        int i;
7697
7698        if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7699                DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7700                          "(%d) not supported\n", tx_fifo_num);
7701
7702                if (tx_fifo_num < 1)
7703                        tx_fifo_num = 1;
7704                else
7705                        tx_fifo_num = MAX_TX_FIFOS;
7706
7707                DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7708        }
7709
7710        if (multiq)
7711                *dev_multiq = multiq;
7712
7713        if (tx_steering_type && (1 == tx_fifo_num)) {
7714                if (tx_steering_type != TX_DEFAULT_STEERING)
7715                        DBG_PRINT(ERR_DBG,
7716                                  "Tx steering is not supported with "
7717                                  "one fifo. Disabling Tx steering.\n");
7718                tx_steering_type = NO_STEERING;
7719        }
7720
7721        if ((tx_steering_type < NO_STEERING) ||
7722            (tx_steering_type > TX_DEFAULT_STEERING)) {
7723                DBG_PRINT(ERR_DBG,
7724                          "Requested transmit steering not supported\n");
7725                DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7726                tx_steering_type = NO_STEERING;
7727        }
7728
7729        if (rx_ring_num > MAX_RX_RINGS) {
7730                DBG_PRINT(ERR_DBG,
7731                          "Requested number of rx rings not supported\n");
7732                DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7733                          MAX_RX_RINGS);
7734                rx_ring_num = MAX_RX_RINGS;
7735        }
7736
7737        if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7738                DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7739                          "Defaulting to INTA\n");
7740                *dev_intr_type = INTA;
7741        }
7742
7743        if ((*dev_intr_type == MSI_X) &&
7744            ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7745             (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7746                DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7747                          "Defaulting to INTA\n");
7748                *dev_intr_type = INTA;
7749        }
7750
7751        if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7752                DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7753                DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7754                rx_ring_mode = 1;
7755        }
7756
7757        for (i = 0; i < MAX_RX_RINGS; i++)
7758                if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7759                        DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7760                                  "supported\nDefaulting to %d\n",
7761                                  MAX_RX_BLOCKS_PER_RING);
7762                        rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7763                }
7764
7765        return SUCCESS;
7766}
7767
7768/**
7769 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7770 * or Traffic class respectively.
7771 * @nic: device private variable
7772 * Description: The function configures the receive steering to
7773 * desired receive ring.
7774 * Return Value:  SUCCESS on success and
7775 * '-1' on failure (endian settings incorrect).
7776 */
7777static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7778{
7779        struct XENA_dev_config __iomem *bar0 = nic->bar0;
7780        register u64 val64 = 0;
7781
7782        if (ds_codepoint > 63)
7783                return FAILURE;
7784
7785        val64 = RTS_DS_MEM_DATA(ring);
7786        writeq(val64, &bar0->rts_ds_mem_data);
7787
7788        val64 = RTS_DS_MEM_CTRL_WE |
7789                RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7790                RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7791
7792        writeq(val64, &bar0->rts_ds_mem_ctrl);
7793
7794        return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7795                                     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7796                                     S2IO_BIT_RESET);
7797}
7798
7799static const struct net_device_ops s2io_netdev_ops = {
7800        .ndo_open               = s2io_open,
7801        .ndo_stop               = s2io_close,
7802        .ndo_get_stats          = s2io_get_stats,
7803        .ndo_start_xmit         = s2io_xmit,
7804        .ndo_validate_addr      = eth_validate_addr,
7805        .ndo_set_multicast_list = s2io_set_multicast,
7806        .ndo_do_ioctl           = s2io_ioctl,
7807        .ndo_set_mac_address    = s2io_set_mac_addr,
7808        .ndo_change_mtu         = s2io_change_mtu,
7809        .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7810        .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7811        .ndo_tx_timeout         = s2io_tx_watchdog,
7812#ifdef CONFIG_NET_POLL_CONTROLLER
7813        .ndo_poll_controller    = s2io_netpoll,
7814#endif
7815};
7816
7817/**
7818 *  s2io_init_nic - Initialization of the adapter .
7819 *  @pdev : structure containing the PCI related information of the device.
7820 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7821 *  Description:
7822 *  The function initializes an adapter identified by the pci_dec structure.
7823 *  All OS related initialization including memory and device structure and
7824 *  initlaization of the device private variable is done. Also the swapper
7825 *  control register is initialized to enable read and write into the I/O
7826 *  registers of the device.
7827 *  Return value:
7828 *  returns 0 on success and negative on failure.
7829 */
7830
7831static int __devinit
7832s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7833{
7834        struct s2io_nic *sp;
7835        struct net_device *dev;
7836        int i, j, ret;
7837        int dma_flag = false;
7838        u32 mac_up, mac_down;
7839        u64 val64 = 0, tmp64 = 0;
7840        struct XENA_dev_config __iomem *bar0 = NULL;
7841        u16 subid;
7842        struct config_param *config;
7843        struct mac_info *mac_control;
7844        int mode;
7845        u8 dev_intr_type = intr_type;
7846        u8 dev_multiq = 0;
7847
7848        ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7849        if (ret)
7850                return ret;
7851
7852        ret = pci_enable_device(pdev);
7853        if (ret) {
7854                DBG_PRINT(ERR_DBG,
7855                          "%s: pci_enable_device failed\n", __func__);
7856                return ret;
7857        }
7858
7859        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7860                DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7861                dma_flag = true;
7862                if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7863                        DBG_PRINT(ERR_DBG,
7864                                  "Unable to obtain 64bit DMA "
7865                                  "for consistent allocations\n");
7866                        pci_disable_device(pdev);
7867                        return -ENOMEM;
7868                }
7869        } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7870                DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7871        } else {
7872                pci_disable_device(pdev);
7873                return -ENOMEM;
7874        }
7875        ret = pci_request_regions(pdev, s2io_driver_name);
7876        if (ret) {
7877                DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7878                          __func__, ret);
7879                pci_disable_device(pdev);
7880                return -ENODEV;
7881        }
7882        if (dev_multiq)
7883                dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7884        else
7885                dev = alloc_etherdev(sizeof(struct s2io_nic));
7886        if (dev == NULL) {
7887                DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7888                pci_disable_device(pdev);
7889                pci_release_regions(pdev);
7890                return -ENODEV;
7891        }
7892
7893        pci_set_master(pdev);
7894        pci_set_drvdata(pdev, dev);
7895        SET_NETDEV_DEV(dev, &pdev->dev);
7896
7897        /*  Private member variable initialized to s2io NIC structure */
7898        sp = netdev_priv(dev);
7899        sp->dev = dev;
7900        sp->pdev = pdev;
7901        sp->high_dma_flag = dma_flag;
7902        sp->device_enabled_once = false;
7903        if (rx_ring_mode == 1)
7904                sp->rxd_mode = RXD_MODE_1;
7905        if (rx_ring_mode == 2)
7906                sp->rxd_mode = RXD_MODE_3B;
7907
7908        sp->config.intr_type = dev_intr_type;
7909
7910        if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7911            (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7912                sp->device_type = XFRAME_II_DEVICE;
7913        else
7914                sp->device_type = XFRAME_I_DEVICE;
7915
7916
7917        /* Initialize some PCI/PCI-X fields of the NIC. */
7918        s2io_init_pci(sp);
7919
7920        /*
7921         * Setting the device configuration parameters.
7922         * Most of these parameters can be specified by the user during
7923         * module insertion as they are module loadable parameters. If
7924         * these parameters are not not specified during load time, they
7925         * are initialized with default values.
7926         */
7927        config = &sp->config;
7928        mac_control = &sp->mac_control;
7929
7930        config->napi = napi;
7931        config->tx_steering_type = tx_steering_type;
7932
7933        /* Tx side parameters. */
7934        if (config->tx_steering_type == TX_PRIORITY_STEERING)
7935                config->tx_fifo_num = MAX_TX_FIFOS;
7936        else
7937                config->tx_fifo_num = tx_fifo_num;
7938
7939        /* Initialize the fifos used for tx steering */
7940        if (config->tx_fifo_num < 5) {
7941                if (config->tx_fifo_num  == 1)
7942                        sp->total_tcp_fifos = 1;
7943                else
7944                        sp->total_tcp_fifos = config->tx_fifo_num - 1;
7945                sp->udp_fifo_idx = config->tx_fifo_num - 1;
7946                sp->total_udp_fifos = 1;
7947                sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7948        } else {
7949                sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7950                                       FIFO_OTHER_MAX_NUM);
7951                sp->udp_fifo_idx = sp->total_tcp_fifos;
7952                sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7953                sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7954        }
7955
7956        config->multiq = dev_multiq;
7957        for (i = 0; i < config->tx_fifo_num; i++) {
7958                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7959
7960                tx_cfg->fifo_len = tx_fifo_len[i];
7961                tx_cfg->fifo_priority = i;
7962        }
7963
7964        /* mapping the QoS priority to the configured fifos */
7965        for (i = 0; i < MAX_TX_FIFOS; i++)
7966                config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7967
7968        /* map the hashing selector table to the configured fifos */
7969        for (i = 0; i < config->tx_fifo_num; i++)
7970                sp->fifo_selector[i] = fifo_selector[i];
7971
7972
7973        config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7974        for (i = 0; i < config->tx_fifo_num; i++) {
7975                struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7976
7977                tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7978                if (tx_cfg->fifo_len < 65) {
7979                        config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7980                        break;
7981                }
7982        }
7983        /* + 2 because one Txd for skb->data and one Txd for UFO */
7984        config->max_txds = MAX_SKB_FRAGS + 2;
7985
7986        /* Rx side parameters. */
7987        config->rx_ring_num = rx_ring_num;
7988        for (i = 0; i < config->rx_ring_num; i++) {
7989                struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7990                struct ring_info *ring = &mac_control->rings[i];
7991
7992                rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7993                rx_cfg->ring_priority = i;
7994                ring->rx_bufs_left = 0;
7995                ring->rxd_mode = sp->rxd_mode;
7996                ring->rxd_count = rxd_count[sp->rxd_mode];
7997                ring->pdev = sp->pdev;
7998                ring->dev = sp->dev;
7999        }
8000
8001        for (i = 0; i < rx_ring_num; i++) {
8002                struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
8003
8004                rx_cfg->ring_org = RING_ORG_BUFF1;
8005                rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
8006        }
8007
8008        /*  Setting Mac Control parameters */
8009        mac_control->rmac_pause_time = rmac_pause_time;
8010        mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8011        mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8012
8013
8014        /*  initialize the shared memory used by the NIC and the host */
8015        if (init_shared_mem(sp)) {
8016                DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
8017                ret = -ENOMEM;
8018                goto mem_alloc_failed;
8019        }
8020
8021        sp->bar0 = pci_ioremap_bar(pdev, 0);
8022        if (!sp->bar0) {
8023                DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
8024                          dev->name);
8025                ret = -ENOMEM;
8026                goto bar0_remap_failed;
8027        }
8028
8029        sp->bar1 = pci_ioremap_bar(pdev, 2);
8030        if (!sp->bar1) {
8031                DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
8032                          dev->name);
8033                ret = -ENOMEM;
8034                goto bar1_remap_failed;
8035        }
8036
8037        dev->irq = pdev->irq;
8038        dev->base_addr = (unsigned long)sp->bar0;
8039
8040        /* Initializing the BAR1 address as the start of the FIFO pointer. */
8041        for (j = 0; j < MAX_TX_FIFOS; j++) {
8042                mac_control->tx_FIFO_start[j] =
8043                        (struct TxFIFO_element __iomem *)
8044                        (sp->bar1 + (j * 0x00020000));
8045        }
8046
8047        /*  Driver entry points */
8048        dev->netdev_ops = &s2io_netdev_ops;
8049        SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8050        dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8051        dev->features |= NETIF_F_LRO;
8052        dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8053        if (sp->high_dma_flag == true)
8054                dev->features |= NETIF_F_HIGHDMA;
8055        dev->features |= NETIF_F_TSO;
8056        dev->features |= NETIF_F_TSO6;
8057        if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
8058                dev->features |= NETIF_F_UFO;
8059                dev->features |= NETIF_F_HW_CSUM;
8060        }
8061        dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8062        INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8063        INIT_WORK(&sp->set_link_task, s2io_set_link);
8064
8065        pci_save_state(sp->pdev);
8066
8067        /* Setting swapper control on the NIC, for proper reset operation */
8068        if (s2io_set_swapper(sp)) {
8069                DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8070                          dev->name);
8071                ret = -EAGAIN;
8072                goto set_swap_failed;
8073        }
8074
8075        /* Verify if the Herc works on the slot its placed into */
8076        if (sp->device_type & XFRAME_II_DEVICE) {
8077                mode = s2io_verify_pci_mode(sp);
8078                if (mode < 0) {
8079                        DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8080                                  __func__);
8081                        ret = -EBADSLT;
8082                        goto set_swap_failed;
8083                }
8084        }
8085
8086        if (sp->config.intr_type == MSI_X) {
8087                sp->num_entries = config->rx_ring_num + 1;
8088                ret = s2io_enable_msi_x(sp);
8089
8090                if (!ret) {
8091                        ret = s2io_test_msi(sp);
8092                        /* rollback MSI-X, will re-enable during add_isr() */
8093                        remove_msix_isr(sp);
8094                }
8095                if (ret) {
8096
8097                        DBG_PRINT(ERR_DBG,
8098                                  "MSI-X requested but failed to enable\n");
8099                        sp->config.intr_type = INTA;
8100                }
8101        }
8102
8103        if (config->intr_type ==  MSI_X) {
8104                for (i = 0; i < config->rx_ring_num ; i++) {
8105                        struct ring_info *ring = &mac_control->rings[i];
8106
8107                        netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8108                }
8109        } else {
8110                netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8111        }
8112
8113        /* Not needed for Herc */
8114        if (sp->device_type & XFRAME_I_DEVICE) {
8115                /*
8116                 * Fix for all "FFs" MAC address problems observed on
8117                 * Alpha platforms
8118                 */
8119                fix_mac_address(sp);
8120                s2io_reset(sp);
8121        }
8122
8123        /*
8124         * MAC address initialization.
8125         * For now only one mac address will be read and used.
8126         */
8127        bar0 = sp->bar0;
8128        val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8129                RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8130        writeq(val64, &bar0->rmac_addr_cmd_mem);
8131        wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8132                              RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8133                              S2IO_BIT_RESET);
8134        tmp64 = readq(&bar0->rmac_addr_data0_mem);
8135        mac_down = (u32)tmp64;
8136        mac_up = (u32) (tmp64 >> 32);
8137
8138        sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8139        sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8140        sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8141        sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8142        sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8143        sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8144
8145        /*  Set the factory defined MAC address initially   */
8146        dev->addr_len = ETH_ALEN;
8147        memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8148        memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8149
8150        /* initialize number of multicast & unicast MAC entries variables */
8151        if (sp->device_type == XFRAME_I_DEVICE) {
8152                config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8153                config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8154                config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8155        } else if (sp->device_type == XFRAME_II_DEVICE) {
8156                config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8157                config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8158                config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8159        }
8160
8161        /* store mac addresses from CAM to s2io_nic structure */
8162        do_s2io_store_unicast_mc(sp);
8163
8164        /* Configure MSIX vector for number of rings configured plus one */
8165        if ((sp->device_type == XFRAME_II_DEVICE) &&
8166            (config->intr_type == MSI_X))
8167                sp->num_entries = config->rx_ring_num + 1;
8168
8169        /* Store the values of the MSIX table in the s2io_nic structure */
8170        store_xmsi_data(sp);
8171        /* reset Nic and bring it to known state */
8172        s2io_reset(sp);
8173
8174        /*
8175         * Initialize link state flags
8176         * and the card state parameter
8177         */
8178        sp->state = 0;
8179
8180        /* Initialize spinlocks */
8181        for (i = 0; i < sp->config.tx_fifo_num; i++) {
8182                struct fifo_info *fifo = &mac_control->fifos[i];
8183
8184                spin_lock_init(&fifo->tx_lock);
8185        }
8186
8187        /*
8188         * SXE-002: Configure link and activity LED to init state
8189         * on driver load.
8190         */
8191        subid = sp->pdev->subsystem_device;
8192        if ((subid & 0xFF) >= 0x07) {
8193                val64 = readq(&bar0->gpio_control);
8194                val64 |= 0x0000800000000000ULL;
8195                writeq(val64, &bar0->gpio_control);
8196                val64 = 0x0411040400000000ULL;
8197                writeq(val64, (void __iomem *)bar0 + 0x2700);
8198                val64 = readq(&bar0->gpio_control);
8199        }
8200
8201        sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8202
8203        if (register_netdev(dev)) {
8204                DBG_PRINT(ERR_DBG, "Device registration failed\n");
8205                ret = -ENODEV;
8206                goto register_failed;
8207        }
8208        s2io_vpd_read(sp);
8209        DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8210        DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8211                  sp->product_name, pdev->revision);
8212        DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8213                  s2io_driver_version);
8214        DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8215        DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8216        if (sp->device_type & XFRAME_II_DEVICE) {
8217                mode = s2io_print_pci_mode(sp);
8218                if (mode < 0) {
8219                        ret = -EBADSLT;
8220                        unregister_netdev(dev);
8221                        goto set_swap_failed;
8222                }
8223        }
8224        switch (sp->rxd_mode) {
8225        case RXD_MODE_1:
8226                DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8227                          dev->name);
8228                break;
8229        case RXD_MODE_3B:
8230                DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8231                          dev->name);
8232                break;
8233        }
8234
8235        switch (sp->config.napi) {
8236        case 0:
8237                DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8238                break;
8239        case 1:
8240                DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8241                break;
8242        }
8243
8244        DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8245                  sp->config.tx_fifo_num);
8246
8247        DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8248                  sp->config.rx_ring_num);
8249
8250        switch (sp->config.intr_type) {
8251        case INTA:
8252                DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8253                break;
8254        case MSI_X:
8255                DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8256                break;
8257        }
8258        if (sp->config.multiq) {
8259                for (i = 0; i < sp->config.tx_fifo_num; i++) {
8260                        struct fifo_info *fifo = &mac_control->fifos[i];
8261
8262                        fifo->multiq = config->multiq;
8263                }
8264                DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8265                          dev->name);
8266        } else
8267                DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8268                          dev->name);
8269
8270        switch (sp->config.tx_steering_type) {
8271        case NO_STEERING:
8272                DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8273                          dev->name);
8274                break;
8275        case TX_PRIORITY_STEERING:
8276                DBG_PRINT(ERR_DBG,
8277                          "%s: Priority steering enabled for transmit\n",
8278                          dev->name);
8279                break;
8280        case TX_DEFAULT_STEERING:
8281                DBG_PRINT(ERR_DBG,
8282                          "%s: Default steering enabled for transmit\n",
8283                          dev->name);
8284        }
8285
8286        DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8287                  dev->name);
8288        if (ufo)
8289                DBG_PRINT(ERR_DBG,
8290                          "%s: UDP Fragmentation Offload(UFO) enabled\n",
8291                          dev->name);
8292        /* Initialize device name */
8293        sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8294
8295        if (vlan_tag_strip)
8296                sp->vlan_strip_flag = 1;
8297        else
8298                sp->vlan_strip_flag = 0;
8299
8300        /*
8301         * Make Link state as off at this point, when the Link change
8302         * interrupt comes the state will be automatically changed to
8303         * the right state.
8304         */
8305        netif_carrier_off(dev);
8306
8307        return 0;
8308
8309register_failed:
8310set_swap_failed:
8311        iounmap(sp->bar1);
8312bar1_remap_failed:
8313        iounmap(sp->bar0);
8314bar0_remap_failed:
8315mem_alloc_failed:
8316        free_shared_mem(sp);
8317        pci_disable_device(pdev);
8318        pci_release_regions(pdev);
8319        pci_set_drvdata(pdev, NULL);
8320        free_netdev(dev);
8321
8322        return ret;
8323}
8324
8325/**
8326 * s2io_rem_nic - Free the PCI device
8327 * @pdev: structure containing the PCI related information of the device.
8328 * Description: This function is called by the Pci subsystem to release a
8329 * PCI device and free up all resource held up by the device. This could
8330 * be in response to a Hot plug event or when the driver is to be removed
8331 * from memory.
8332 */
8333
8334static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8335{
8336        struct net_device *dev = pci_get_drvdata(pdev);
8337        struct s2io_nic *sp;
8338
8339        if (dev == NULL) {
8340                DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8341                return;
8342        }
8343
8344        sp = netdev_priv(dev);
8345
8346        cancel_work_sync(&sp->rst_timer_task);
8347        cancel_work_sync(&sp->set_link_task);
8348
8349        unregister_netdev(dev);
8350
8351        free_shared_mem(sp);
8352        iounmap(sp->bar0);
8353        iounmap(sp->bar1);
8354        pci_release_regions(pdev);
8355        pci_set_drvdata(pdev, NULL);
8356        free_netdev(dev);
8357        pci_disable_device(pdev);
8358}
8359
8360/**
8361 * s2io_starter - Entry point for the driver
8362 * Description: This function is the entry point for the driver. It verifies
8363 * the module loadable parameters and initializes PCI configuration space.
8364 */
8365
8366static int __init s2io_starter(void)
8367{
8368        return pci_register_driver(&s2io_driver);
8369}
8370
8371/**
8372 * s2io_closer - Cleanup routine for the driver
8373 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8374 */
8375
8376static __exit void s2io_closer(void)
8377{
8378        pci_unregister_driver(&s2io_driver);
8379        DBG_PRINT(INIT_DBG, "cleanup done\n");
8380}
8381
8382module_init(s2io_starter);
8383module_exit(s2io_closer);
8384
8385static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8386                                struct tcphdr **tcp, struct RxD_t *rxdp,
8387                                struct s2io_nic *sp)
8388{
8389        int ip_off;
8390        u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8391
8392        if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8393                DBG_PRINT(INIT_DBG,
8394                          "%s: Non-TCP frames not supported for LRO\n",
8395                          __func__);
8396                return -1;
8397        }
8398
8399        /* Checking for DIX type or DIX type with VLAN */
8400        if ((l2_type == 0) || (l2_type == 4)) {
8401                ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8402                /*
8403                 * If vlan stripping is disabled and the frame is VLAN tagged,
8404                 * shift the offset by the VLAN header size bytes.
8405                 */
8406                if ((!sp->vlan_strip_flag) &&
8407                    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8408                        ip_off += HEADER_VLAN_SIZE;
8409        } else {
8410                /* LLC, SNAP etc are considered non-mergeable */
8411                return -1;
8412        }
8413
8414        *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8415        ip_len = (u8)((*ip)->ihl);
8416        ip_len <<= 2;
8417        *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8418
8419        return 0;
8420}
8421
8422static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8423                                  struct tcphdr *tcp)
8424{
8425        DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8426        if ((lro->iph->saddr != ip->saddr) ||
8427            (lro->iph->daddr != ip->daddr) ||
8428            (lro->tcph->source != tcp->source) ||
8429            (lro->tcph->dest != tcp->dest))
8430                return -1;
8431        return 0;
8432}
8433
8434static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8435{
8436        return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8437}
8438
8439static void initiate_new_session(struct lro *lro, u8 *l2h,
8440                                 struct iphdr *ip, struct tcphdr *tcp,
8441                                 u32 tcp_pyld_len, u16 vlan_tag)
8442{
8443        DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8444        lro->l2h = l2h;
8445        lro->iph = ip;
8446        lro->tcph = tcp;
8447        lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8448        lro->tcp_ack = tcp->ack_seq;
8449        lro->sg_num = 1;
8450        lro->total_len = ntohs(ip->tot_len);
8451        lro->frags_len = 0;
8452        lro->vlan_tag = vlan_tag;
8453        /*
8454         * Check if we saw TCP timestamp.
8455         * Other consistency checks have already been done.
8456         */
8457        if (tcp->doff == 8) {
8458                __be32 *ptr;
8459                ptr = (__be32 *)(tcp+1);
8460                lro->saw_ts = 1;
8461                lro->cur_tsval = ntohl(*(ptr+1));
8462                lro->cur_tsecr = *(ptr+2);
8463        }
8464        lro->in_use = 1;
8465}
8466
8467static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8468{
8469        struct iphdr *ip = lro->iph;
8470        struct tcphdr *tcp = lro->tcph;
8471        __sum16 nchk;
8472        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8473
8474        DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8475
8476        /* Update L3 header */
8477        ip->tot_len = htons(lro->total_len);
8478        ip->check = 0;
8479        nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8480        ip->check = nchk;
8481
8482        /* Update L4 header */
8483        tcp->ack_seq = lro->tcp_ack;
8484        tcp->window = lro->window;
8485
8486        /* Update tsecr field if this session has timestamps enabled */
8487        if (lro->saw_ts) {
8488                __be32 *ptr = (__be32 *)(tcp + 1);
8489                *(ptr+2) = lro->cur_tsecr;
8490        }
8491
8492        /* Update counters required for calculation of
8493         * average no. of packets aggregated.
8494         */
8495        swstats->sum_avg_pkts_aggregated += lro->sg_num;
8496        swstats->num_aggregations++;
8497}
8498
8499static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8500                             struct tcphdr *tcp, u32 l4_pyld)
8501{
8502        DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8503        lro->total_len += l4_pyld;
8504        lro->frags_len += l4_pyld;
8505        lro->tcp_next_seq += l4_pyld;
8506        lro->sg_num++;
8507
8508        /* Update ack seq no. and window ad(from this pkt) in LRO object */
8509        lro->tcp_ack = tcp->ack_seq;
8510        lro->window = tcp->window;
8511
8512        if (lro->saw_ts) {
8513                __be32 *ptr;
8514                /* Update tsecr and tsval from this packet */
8515                ptr = (__be32 *)(tcp+1);
8516                lro->cur_tsval = ntohl(*(ptr+1));
8517                lro->cur_tsecr = *(ptr + 2);
8518        }
8519}
8520
8521static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8522                                    struct tcphdr *tcp, u32 tcp_pyld_len)
8523{
8524        u8 *ptr;
8525
8526        DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8527
8528        if (!tcp_pyld_len) {
8529                /* Runt frame or a pure ack */
8530                return -1;
8531        }
8532
8533        if (ip->ihl != 5) /* IP has options */
8534                return -1;
8535
8536        /* If we see CE codepoint in IP header, packet is not mergeable */
8537        if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8538                return -1;
8539
8540        /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8541        if (tcp->urg || tcp->psh || tcp->rst ||
8542            tcp->syn || tcp->fin ||
8543            tcp->ece || tcp->cwr || !tcp->ack) {
8544                /*
8545                 * Currently recognize only the ack control word and
8546                 * any other control field being set would result in
8547                 * flushing the LRO session
8548                 */
8549                return -1;
8550        }
8551
8552        /*
8553         * Allow only one TCP timestamp option. Don't aggregate if
8554         * any other options are detected.
8555         */
8556        if (tcp->doff != 5 && tcp->doff != 8)
8557                return -1;
8558
8559        if (tcp->doff == 8) {
8560                ptr = (u8 *)(tcp + 1);
8561                while (*ptr == TCPOPT_NOP)
8562                        ptr++;
8563                if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8564                        return -1;
8565
8566                /* Ensure timestamp value increases monotonically */
8567                if (l_lro)
8568                        if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8569                                return -1;
8570
8571                /* timestamp echo reply should be non-zero */
8572                if (*((__be32 *)(ptr+6)) == 0)
8573                        return -1;
8574        }
8575
8576        return 0;
8577}
8578
8579static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8580                                 u8 **tcp, u32 *tcp_len, struct lro **lro,
8581                                 struct RxD_t *rxdp, struct s2io_nic *sp)
8582{
8583        struct iphdr *ip;
8584        struct tcphdr *tcph;
8585        int ret = 0, i;
8586        u16 vlan_tag = 0;
8587        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8588
8589        ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8590                                   rxdp, sp);
8591        if (ret)
8592                return ret;
8593
8594        DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8595
8596        vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8597        tcph = (struct tcphdr *)*tcp;
8598        *tcp_len = get_l4_pyld_length(ip, tcph);
8599        for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8600                struct lro *l_lro = &ring_data->lro0_n[i];
8601                if (l_lro->in_use) {
8602                        if (check_for_socket_match(l_lro, ip, tcph))
8603                                continue;
8604                        /* Sock pair matched */
8605                        *lro = l_lro;
8606
8607                        if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8608                                DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8609                                          "expected 0x%x, actual 0x%x\n",
8610                                          __func__,
8611                                          (*lro)->tcp_next_seq,
8612                                          ntohl(tcph->seq));
8613
8614                                swstats->outof_sequence_pkts++;
8615                                ret = 2;
8616                                break;
8617                        }
8618
8619                        if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8620                                                      *tcp_len))
8621                                ret = 1; /* Aggregate */
8622                        else
8623                                ret = 2; /* Flush both */
8624                        break;
8625                }
8626        }
8627
8628        if (ret == 0) {
8629                /* Before searching for available LRO objects,
8630                 * check if the pkt is L3/L4 aggregatable. If not
8631                 * don't create new LRO session. Just send this
8632                 * packet up.
8633                 */
8634                if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8635                        return 5;
8636
8637                for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8638                        struct lro *l_lro = &ring_data->lro0_n[i];
8639                        if (!(l_lro->in_use)) {
8640                                *lro = l_lro;
8641                                ret = 3; /* Begin anew */
8642                                break;
8643                        }
8644                }
8645        }
8646
8647        if (ret == 0) { /* sessions exceeded */
8648                DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8649                          __func__);
8650                *lro = NULL;
8651                return ret;
8652        }
8653
8654        switch (ret) {
8655        case 3:
8656                initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8657                                     vlan_tag);
8658                break;
8659        case 2:
8660                update_L3L4_header(sp, *lro);
8661                break;
8662        case 1:
8663                aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8664                if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8665                        update_L3L4_header(sp, *lro);
8666                        ret = 4; /* Flush the LRO */
8667                }
8668                break;
8669        default:
8670                DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8671                break;
8672        }
8673
8674        return ret;
8675}
8676
8677static void clear_lro_session(struct lro *lro)
8678{
8679        static u16 lro_struct_size = sizeof(struct lro);
8680
8681        memset(lro, 0, lro_struct_size);
8682}
8683
8684static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8685{
8686        struct net_device *dev = skb->dev;
8687        struct s2io_nic *sp = netdev_priv(dev);
8688
8689        skb->protocol = eth_type_trans(skb, dev);
8690        if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8691                /* Queueing the vlan frame to the upper layer */
8692                if (sp->config.napi)
8693                        vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8694                else
8695                        vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8696        } else {
8697                if (sp->config.napi)
8698                        netif_receive_skb(skb);
8699                else
8700                        netif_rx(skb);
8701        }
8702}
8703
8704static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8705                           struct sk_buff *skb, u32 tcp_len)
8706{
8707        struct sk_buff *first = lro->parent;
8708        struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8709
8710        first->len += tcp_len;
8711        first->data_len = lro->frags_len;
8712        skb_pull(skb, (skb->len - tcp_len));
8713        if (skb_shinfo(first)->frag_list)
8714                lro->last_frag->next = skb;
8715        else
8716                skb_shinfo(first)->frag_list = skb;
8717        first->truesize += skb->truesize;
8718        lro->last_frag = skb;
8719        swstats->clubbed_frms_cnt++;
8720}
8721
8722/**
8723 * s2io_io_error_detected - called when PCI error is detected
8724 * @pdev: Pointer to PCI device
8725 * @state: The current pci connection state
8726 *
8727 * This function is called after a PCI bus error affecting
8728 * this device has been detected.
8729 */
8730static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8731                                               pci_channel_state_t state)
8732{
8733        struct net_device *netdev = pci_get_drvdata(pdev);
8734        struct s2io_nic *sp = netdev_priv(netdev);
8735
8736        netif_device_detach(netdev);
8737
8738        if (state == pci_channel_io_perm_failure)
8739                return PCI_ERS_RESULT_DISCONNECT;
8740
8741        if (netif_running(netdev)) {
8742                /* Bring down the card, while avoiding PCI I/O */
8743                do_s2io_card_down(sp, 0);
8744        }
8745        pci_disable_device(pdev);
8746
8747        return PCI_ERS_RESULT_NEED_RESET;
8748}
8749
8750/**
8751 * s2io_io_slot_reset - called after the pci bus has been reset.
8752 * @pdev: Pointer to PCI device
8753 *
8754 * Restart the card from scratch, as if from a cold-boot.
8755 * At this point, the card has exprienced a hard reset,
8756 * followed by fixups by BIOS, and has its config space
8757 * set up identically to what it was at cold boot.
8758 */
8759static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8760{
8761        struct net_device *netdev = pci_get_drvdata(pdev);
8762        struct s2io_nic *sp = netdev_priv(netdev);
8763
8764        if (pci_enable_device(pdev)) {
8765                pr_err("Cannot re-enable PCI device after reset.\n");
8766                return PCI_ERS_RESULT_DISCONNECT;
8767        }
8768
8769        pci_set_master(pdev);
8770        s2io_reset(sp);
8771
8772        return PCI_ERS_RESULT_RECOVERED;
8773}
8774
8775/**
8776 * s2io_io_resume - called when traffic can start flowing again.
8777 * @pdev: Pointer to PCI device
8778 *
8779 * This callback is called when the error recovery driver tells
8780 * us that its OK to resume normal operation.
8781 */
8782static void s2io_io_resume(struct pci_dev *pdev)
8783{
8784        struct net_device *netdev = pci_get_drvdata(pdev);
8785        struct s2io_nic *sp = netdev_priv(netdev);
8786
8787        if (netif_running(netdev)) {
8788                if (s2io_card_up(sp)) {
8789                        pr_err("Can't bring device back up after reset.\n");
8790                        return;
8791                }
8792
8793                if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8794                        s2io_card_down(sp);
8795                        pr_err("Can't restore mac addr after reset.\n");
8796                        return;
8797                }
8798        }
8799
8800        netif_device_attach(netdev);
8801        netif_tx_wake_all_queues(netdev);
8802}
8803