linux/drivers/net/wimax/i2400m/netdev.c
<<
>>
Prefs
   1/*
   2 * Intel Wireless WiMAX Connection 2400m
   3 * Glue with the networking stack
   4 *
   5 *
   6 * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com>
   7 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
   8 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License version
  12 * 2 as published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  22 * 02110-1301, USA.
  23 *
  24 *
  25 * This implements an ethernet device for the i2400m.
  26 *
  27 * We fake being an ethernet device to simplify the support from user
  28 * space and from the other side. The world is (sadly) configured to
  29 * take in only Ethernet devices...
  30 *
  31 * Because of this, when using firmwares <= v1.3, there is an
  32 * copy-each-rxed-packet overhead on the RX path. Each IP packet has
  33 * to be reallocated to add an ethernet header (as there is no space
  34 * in what we get from the device). This is a known drawback and
  35 * firmwares >= 1.4 add header space that can be used to insert the
  36 * ethernet header without having to reallocate and copy.
  37 *
  38 * TX error handling is tricky; because we have to FIFO/queue the
  39 * buffers for transmission (as the hardware likes it aggregated), we
  40 * just give the skb to the TX subsystem and by the time it is
  41 * transmitted, we have long forgotten about it. So we just don't care
  42 * too much about it.
  43 *
  44 * Note that when the device is in idle mode with the basestation, we
  45 * need to negotiate coming back up online. That involves negotiation
  46 * and possible user space interaction. Thus, we defer to a workqueue
  47 * to do all that. By default, we only queue a single packet and drop
  48 * the rest, as potentially the time to go back from idle to normal is
  49 * long.
  50 *
  51 * ROADMAP
  52 *
  53 * i2400m_open         Called on ifconfig up
  54 * i2400m_stop         Called on ifconfig down
  55 *
  56 * i2400m_hard_start_xmit Called by the network stack to send a packet
  57 *   i2400m_net_wake_tx   Wake up device from basestation-IDLE & TX
  58 *     i2400m_wake_tx_work
  59 *       i2400m_cmd_exit_idle
  60 *       i2400m_tx
  61 *   i2400m_net_tx        TX a data frame
  62 *     i2400m_tx
  63 *
  64 * i2400m_change_mtu      Called on ifconfig mtu XXX
  65 *
  66 * i2400m_tx_timeout      Called when the device times out
  67 *
  68 * i2400m_net_rx          Called by the RX code when a data frame is
  69 *                        available (firmware <= 1.3)
  70 * i2400m_net_erx         Called by the RX code when a data frame is
  71 *                        available (firmware >= 1.4).
  72 * i2400m_netdev_setup    Called to setup all the netdev stuff from
  73 *                        alloc_netdev.
  74 */
  75#include <linux/if_arp.h>
  76#include <linux/slab.h>
  77#include <linux/netdevice.h>
  78#include <linux/ethtool.h>
  79#include "i2400m.h"
  80
  81
  82#define D_SUBMODULE netdev
  83#include "debug-levels.h"
  84
  85enum {
  86/* netdev interface */
  87        /* 20 secs? yep, this is the maximum timeout that the device
  88         * might take to get out of IDLE / negotiate it with the base
  89         * station. We add 1sec for good measure. */
  90        I2400M_TX_TIMEOUT = 21 * HZ,
  91        /*
  92         * Experimentation has determined that, 20 to be a good value
  93         * for minimizing the jitter in the throughput.
  94         */
  95        I2400M_TX_QLEN = 20,
  96};
  97
  98
  99static
 100int i2400m_open(struct net_device *net_dev)
 101{
 102        int result;
 103        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 104        struct device *dev = i2400m_dev(i2400m);
 105
 106        d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
 107        /* Make sure we wait until init is complete... */
 108        mutex_lock(&i2400m->init_mutex);
 109        if (i2400m->updown)
 110                result = 0;
 111        else
 112                result = -EBUSY;
 113        mutex_unlock(&i2400m->init_mutex);
 114        d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
 115                net_dev, i2400m, result);
 116        return result;
 117}
 118
 119
 120static
 121int i2400m_stop(struct net_device *net_dev)
 122{
 123        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 124        struct device *dev = i2400m_dev(i2400m);
 125
 126        d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
 127        i2400m_net_wake_stop(i2400m);
 128        d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
 129        return 0;
 130}
 131
 132
 133/*
 134 * Wake up the device and transmit a held SKB, then restart the net queue
 135 *
 136 * When the device goes into basestation-idle mode, we need to tell it
 137 * to exit that mode; it will negotiate with the base station, user
 138 * space may have to intervene to rehandshake crypto and then tell us
 139 * when it is ready to transmit the packet we have "queued". Still we
 140 * need to give it sometime after it reports being ok.
 141 *
 142 * On error, there is not much we can do. If the error was on TX, we
 143 * still wake the queue up to see if the next packet will be luckier.
 144 *
 145 * If _cmd_exit_idle() fails...well, it could be many things; most
 146 * commonly it is that something else took the device out of IDLE mode
 147 * (for example, the base station). In that case we get an -EILSEQ and
 148 * we are just going to ignore that one. If the device is back to
 149 * connected, then fine -- if it is someother state, the packet will
 150 * be dropped anyway.
 151 */
 152void i2400m_wake_tx_work(struct work_struct *ws)
 153{
 154        int result;
 155        struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
 156        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 157        struct device *dev = i2400m_dev(i2400m);
 158        struct sk_buff *skb = i2400m->wake_tx_skb;
 159        unsigned long flags;
 160
 161        spin_lock_irqsave(&i2400m->tx_lock, flags);
 162        skb = i2400m->wake_tx_skb;
 163        i2400m->wake_tx_skb = NULL;
 164        spin_unlock_irqrestore(&i2400m->tx_lock, flags);
 165
 166        d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb);
 167        result = -EINVAL;
 168        if (skb == NULL) {
 169                dev_err(dev, "WAKE&TX: skb disappeared!\n");
 170                goto out_put;
 171        }
 172        /* If we have, somehow, lost the connection after this was
 173         * queued, don't do anything; this might be the device got
 174         * reset or just disconnected. */
 175        if (unlikely(!netif_carrier_ok(net_dev)))
 176                goto out_kfree;
 177        result = i2400m_cmd_exit_idle(i2400m);
 178        if (result == -EILSEQ)
 179                result = 0;
 180        if (result < 0) {
 181                dev_err(dev, "WAKE&TX: device didn't get out of idle: "
 182                        "%d - resetting\n", result);
 183                i2400m_reset(i2400m, I2400M_RT_BUS);
 184                goto error;
 185        }
 186        result = wait_event_timeout(i2400m->state_wq,
 187                                    i2400m->state != I2400M_SS_IDLE,
 188                                    net_dev->watchdog_timeo - HZ/2);
 189        if (result == 0)
 190                result = -ETIMEDOUT;
 191        if (result < 0) {
 192                dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
 193                        "%d - resetting\n", result);
 194                i2400m_reset(i2400m, I2400M_RT_BUS);
 195                goto error;
 196        }
 197        msleep(20);     /* device still needs some time or it drops it */
 198        result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
 199error:
 200        netif_wake_queue(net_dev);
 201out_kfree:
 202        kfree_skb(skb); /* refcount transferred by _hard_start_xmit() */
 203out_put:
 204        i2400m_put(i2400m);
 205        d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n",
 206                ws, i2400m, skb, result);
 207}
 208
 209
 210/*
 211 * Prepare the data payload TX header
 212 *
 213 * The i2400m expects a 4 byte header in front of a data packet.
 214 *
 215 * Because we pretend to be an ethernet device, this packet comes with
 216 * an ethernet header. Pull it and push our header.
 217 */
 218static
 219void i2400m_tx_prep_header(struct sk_buff *skb)
 220{
 221        struct i2400m_pl_data_hdr *pl_hdr;
 222        skb_pull(skb, ETH_HLEN);
 223        pl_hdr = (struct i2400m_pl_data_hdr *) skb_push(skb, sizeof(*pl_hdr));
 224        pl_hdr->reserved = 0;
 225}
 226
 227
 228
 229/*
 230 * Cleanup resources acquired during i2400m_net_wake_tx()
 231 *
 232 * This is called by __i2400m_dev_stop and means we have to make sure
 233 * the workqueue is flushed from any pending work.
 234 */
 235void i2400m_net_wake_stop(struct i2400m *i2400m)
 236{
 237        struct device *dev = i2400m_dev(i2400m);
 238
 239        d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
 240        /* See i2400m_hard_start_xmit(), references are taken there
 241         * and here we release them if the work was still
 242         * pending. Note we can't differentiate work not pending vs
 243         * never scheduled, so the NULL check does that. */
 244        if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
 245            && i2400m->wake_tx_skb != NULL) {
 246                unsigned long flags;
 247                struct sk_buff *wake_tx_skb;
 248                spin_lock_irqsave(&i2400m->tx_lock, flags);
 249                wake_tx_skb = i2400m->wake_tx_skb;      /* compat help */
 250                i2400m->wake_tx_skb = NULL;     /* compat help */
 251                spin_unlock_irqrestore(&i2400m->tx_lock, flags);
 252                i2400m_put(i2400m);
 253                kfree_skb(wake_tx_skb);
 254        }
 255        d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
 256}
 257
 258
 259/*
 260 * TX an skb to an idle device
 261 *
 262 * When the device is in basestation-idle mode, we need to wake it up
 263 * and then TX. So we queue a work_struct for doing so.
 264 *
 265 * We need to get an extra ref for the skb (so it is not dropped), as
 266 * well as be careful not to queue more than one request (won't help
 267 * at all). If more than one request comes or there are errors, we
 268 * just drop the packets (see i2400m_hard_start_xmit()).
 269 */
 270static
 271int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
 272                       struct sk_buff *skb)
 273{
 274        int result;
 275        struct device *dev = i2400m_dev(i2400m);
 276        unsigned long flags;
 277
 278        d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
 279        if (net_ratelimit()) {
 280                d_printf(3, dev, "WAKE&NETTX: "
 281                         "skb %p sending %d bytes to radio\n",
 282                         skb, skb->len);
 283                d_dump(4, dev, skb->data, skb->len);
 284        }
 285        /* We hold a ref count for i2400m and skb, so when
 286         * stopping() the device, we need to cancel that work
 287         * and if pending, release those resources. */
 288        result = 0;
 289        spin_lock_irqsave(&i2400m->tx_lock, flags);
 290        if (!work_pending(&i2400m->wake_tx_ws)) {
 291                netif_stop_queue(net_dev);
 292                i2400m_get(i2400m);
 293                i2400m->wake_tx_skb = skb_get(skb);     /* transfer ref count */
 294                i2400m_tx_prep_header(skb);
 295                result = schedule_work(&i2400m->wake_tx_ws);
 296                WARN_ON(result == 0);
 297        }
 298        spin_unlock_irqrestore(&i2400m->tx_lock, flags);
 299        if (result == 0) {
 300                /* Yes, this happens even if we stopped the
 301                 * queue -- blame the queue disciplines that
 302                 * queue without looking -- I guess there is a reason
 303                 * for that. */
 304                if (net_ratelimit())
 305                        d_printf(1, dev, "NETTX: device exiting idle, "
 306                                 "dropping skb %p, queue running %d\n",
 307                                 skb, netif_queue_stopped(net_dev));
 308                result = -EBUSY;
 309        }
 310        d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
 311        return result;
 312}
 313
 314
 315/*
 316 * Transmit a packet to the base station on behalf of the network stack.
 317 *
 318 * Returns: 0 if ok, < 0 errno code on error.
 319 *
 320 * We need to pull the ethernet header and add the hardware header,
 321 * which is currently set to all zeroes and reserved.
 322 */
 323static
 324int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
 325                  struct sk_buff *skb)
 326{
 327        int result;
 328        struct device *dev = i2400m_dev(i2400m);
 329
 330        d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
 331                  i2400m, net_dev, skb);
 332        /* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
 333        net_dev->trans_start = jiffies;
 334        i2400m_tx_prep_header(skb);
 335        d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
 336                 skb, skb->len);
 337        d_dump(4, dev, skb->data, skb->len);
 338        result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
 339        d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
 340                i2400m, net_dev, skb, result);
 341        return result;
 342}
 343
 344
 345/*
 346 * Transmit a packet to the base station on behalf of the network stack
 347 *
 348 *
 349 * Returns: NETDEV_TX_OK (always, even in case of error)
 350 *
 351 * In case of error, we just drop it. Reasons:
 352 *
 353 *  - we add a hw header to each skb, and if the network stack
 354 *    retries, we have no way to know if that skb has it or not.
 355 *
 356 *  - network protocols have their own drop-recovery mechanisms
 357 *
 358 *  - there is not much else we can do
 359 *
 360 * If the device is idle, we need to wake it up; that is an operation
 361 * that will sleep. See i2400m_net_wake_tx() for details.
 362 */
 363static
 364netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
 365                                         struct net_device *net_dev)
 366{
 367        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 368        struct device *dev = i2400m_dev(i2400m);
 369        int result;
 370
 371        d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
 372        if (skb_header_cloned(skb)) {
 373                /*
 374                 * Make tcpdump/wireshark happy -- if they are
 375                 * running, the skb is cloned and we will overwrite
 376                 * the mac fields in i2400m_tx_prep_header. Expand
 377                 * seems to fix this...
 378                 */
 379                result = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 380                if (result) {
 381                        result = NETDEV_TX_BUSY;
 382                        goto error_expand;
 383                }
 384        }
 385
 386        if (i2400m->state == I2400M_SS_IDLE)
 387                result = i2400m_net_wake_tx(i2400m, net_dev, skb);
 388        else
 389                result = i2400m_net_tx(i2400m, net_dev, skb);
 390        if (result <  0)
 391                net_dev->stats.tx_dropped++;
 392        else {
 393                net_dev->stats.tx_packets++;
 394                net_dev->stats.tx_bytes += skb->len;
 395        }
 396        result = NETDEV_TX_OK;
 397error_expand:
 398        kfree_skb(skb);
 399        d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
 400        return result;
 401}
 402
 403
 404static
 405int i2400m_change_mtu(struct net_device *net_dev, int new_mtu)
 406{
 407        int result;
 408        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 409        struct device *dev = i2400m_dev(i2400m);
 410
 411        if (new_mtu >= I2400M_MAX_MTU) {
 412                dev_err(dev, "Cannot change MTU to %d (max is %d)\n",
 413                        new_mtu, I2400M_MAX_MTU);
 414                result = -EINVAL;
 415        } else {
 416                net_dev->mtu = new_mtu;
 417                result = 0;
 418        }
 419        return result;
 420}
 421
 422
 423static
 424void i2400m_tx_timeout(struct net_device *net_dev)
 425{
 426        /*
 427         * We might want to kick the device
 428         *
 429         * There is not much we can do though, as the device requires
 430         * that we send the data aggregated. By the time we receive
 431         * this, there might be data pending to be sent or not...
 432         */
 433        net_dev->stats.tx_errors++;
 434}
 435
 436
 437/*
 438 * Create a fake ethernet header
 439 *
 440 * For emulating an ethernet device, every received IP header has to
 441 * be prefixed with an ethernet header. Fake it with the given
 442 * protocol.
 443 */
 444static
 445void i2400m_rx_fake_eth_header(struct net_device *net_dev,
 446                               void *_eth_hdr, __be16 protocol)
 447{
 448        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 449        struct ethhdr *eth_hdr = _eth_hdr;
 450
 451        memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest));
 452        memcpy(eth_hdr->h_source, i2400m->src_mac_addr,
 453               sizeof(eth_hdr->h_source));
 454        eth_hdr->h_proto = protocol;
 455}
 456
 457
 458/*
 459 * i2400m_net_rx - pass a network packet to the stack
 460 *
 461 * @i2400m: device instance
 462 * @skb_rx: the skb where the buffer pointed to by @buf is
 463 * @i: 1 if payload is the only one
 464 * @buf: pointer to the buffer containing the data
 465 * @len: buffer's length
 466 *
 467 * This is only used now for the v1.3 firmware. It will be deprecated
 468 * in >= 2.6.31.
 469 *
 470 * Note that due to firmware limitations, we don't have space to add
 471 * an ethernet header, so we need to copy each packet. Firmware
 472 * versions >= v1.4 fix this [see i2400m_net_erx()].
 473 *
 474 * We just clone the skb and set it up so that it's skb->data pointer
 475 * points to "buf" and it's length.
 476 *
 477 * Note that if the payload is the last (or the only one) in a
 478 * multi-payload message, we don't clone the SKB but just reuse it.
 479 *
 480 * This function is normally run from a thread context. However, we
 481 * still use netif_rx() instead of netif_receive_skb() as was
 482 * recommended in the mailing list. Reason is in some stress tests
 483 * when sending/receiving a lot of data we seem to hit a softlock in
 484 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
 485 * netif_rx() took care of the issue.
 486 *
 487 * This is, of course, still open to do more research on why running
 488 * with netif_receive_skb() hits this softlock. FIXME.
 489 *
 490 * FIXME: currently we don't do any efforts at distinguishing if what
 491 * we got was an IPv4 or IPv6 header, to setup the protocol field
 492 * correctly.
 493 */
 494void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
 495                   unsigned i, const void *buf, int buf_len)
 496{
 497        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 498        struct device *dev = i2400m_dev(i2400m);
 499        struct sk_buff *skb;
 500
 501        d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
 502                  i2400m, buf, buf_len);
 503        if (i) {
 504                skb = skb_get(skb_rx);
 505                d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
 506                skb_pull(skb, buf - (void *) skb->data);
 507                skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
 508        } else {
 509                /* Yes, this is bad -- a lot of overhead -- see
 510                 * comments at the top of the file */
 511                skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
 512                if (skb == NULL) {
 513                        dev_err(dev, "NETRX: no memory to realloc skb\n");
 514                        net_dev->stats.rx_dropped++;
 515                        goto error_skb_realloc;
 516                }
 517                memcpy(skb_put(skb, buf_len), buf, buf_len);
 518        }
 519        i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
 520                                  skb->data - ETH_HLEN,
 521                                  cpu_to_be16(ETH_P_IP));
 522        skb_set_mac_header(skb, -ETH_HLEN);
 523        skb->dev = i2400m->wimax_dev.net_dev;
 524        skb->protocol = htons(ETH_P_IP);
 525        net_dev->stats.rx_packets++;
 526        net_dev->stats.rx_bytes += buf_len;
 527        d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
 528                buf_len);
 529        d_dump(4, dev, buf, buf_len);
 530        netif_rx_ni(skb);       /* see notes in function header */
 531error_skb_realloc:
 532        d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
 533                i2400m, buf, buf_len);
 534}
 535
 536
 537/*
 538 * i2400m_net_erx - pass a network packet to the stack (extended version)
 539 *
 540 * @i2400m: device descriptor
 541 * @skb: the skb where the packet is - the skb should be set to point
 542 *     at the IP packet; this function will add ethernet headers if
 543 *     needed.
 544 * @cs: packet type
 545 *
 546 * This is only used now for firmware >= v1.4. Note it is quite
 547 * similar to i2400m_net_rx() (used only for v1.3 firmware).
 548 *
 549 * This function is normally run from a thread context. However, we
 550 * still use netif_rx() instead of netif_receive_skb() as was
 551 * recommended in the mailing list. Reason is in some stress tests
 552 * when sending/receiving a lot of data we seem to hit a softlock in
 553 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
 554 * netif_rx() took care of the issue.
 555 *
 556 * This is, of course, still open to do more research on why running
 557 * with netif_receive_skb() hits this softlock. FIXME.
 558 */
 559void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb,
 560                    enum i2400m_cs cs)
 561{
 562        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 563        struct device *dev = i2400m_dev(i2400m);
 564        int protocol;
 565
 566        d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n",
 567                  i2400m, skb, skb->len, cs);
 568        switch(cs) {
 569        case I2400M_CS_IPV4_0:
 570        case I2400M_CS_IPV4:
 571                protocol = ETH_P_IP;
 572                i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
 573                                          skb->data - ETH_HLEN,
 574                                          cpu_to_be16(ETH_P_IP));
 575                skb_set_mac_header(skb, -ETH_HLEN);
 576                skb->dev = i2400m->wimax_dev.net_dev;
 577                skb->protocol = htons(ETH_P_IP);
 578                net_dev->stats.rx_packets++;
 579                net_dev->stats.rx_bytes += skb->len;
 580                break;
 581        default:
 582                dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs);
 583                goto error;
 584
 585        }
 586        d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n",
 587                 skb->len);
 588        d_dump(4, dev, skb->data, skb->len);
 589        netif_rx_ni(skb);       /* see notes in function header */
 590error:
 591        d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n",
 592                i2400m, skb, skb->len, cs);
 593}
 594
 595static const struct net_device_ops i2400m_netdev_ops = {
 596        .ndo_open = i2400m_open,
 597        .ndo_stop = i2400m_stop,
 598        .ndo_start_xmit = i2400m_hard_start_xmit,
 599        .ndo_tx_timeout = i2400m_tx_timeout,
 600        .ndo_change_mtu = i2400m_change_mtu,
 601};
 602
 603static void i2400m_get_drvinfo(struct net_device *net_dev,
 604                               struct ethtool_drvinfo *info)
 605{
 606        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 607
 608        strncpy(info->driver, KBUILD_MODNAME, sizeof(info->driver) - 1);
 609        strncpy(info->fw_version, i2400m->fw_name, sizeof(info->fw_version) - 1);
 610        if (net_dev->dev.parent)
 611                strncpy(info->bus_info, dev_name(net_dev->dev.parent),
 612                        sizeof(info->bus_info) - 1);
 613}
 614
 615static const struct ethtool_ops i2400m_ethtool_ops = {
 616        .get_drvinfo = i2400m_get_drvinfo,
 617        .get_link = ethtool_op_get_link,
 618};
 619
 620/**
 621 * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
 622 *
 623 * Called by alloc_netdev()
 624 */
 625void i2400m_netdev_setup(struct net_device *net_dev)
 626{
 627        d_fnstart(3, NULL, "(net_dev %p)\n", net_dev);
 628        ether_setup(net_dev);
 629        net_dev->mtu = I2400M_MAX_MTU;
 630        net_dev->tx_queue_len = I2400M_TX_QLEN;
 631        net_dev->features =
 632                  NETIF_F_VLAN_CHALLENGED
 633                | NETIF_F_HIGHDMA;
 634        net_dev->flags =
 635                IFF_NOARP               /* i2400m is apure IP device */
 636                & (~IFF_BROADCAST       /* i2400m is P2P */
 637                   & ~IFF_MULTICAST);
 638        net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
 639        net_dev->netdev_ops = &i2400m_netdev_ops;
 640        net_dev->ethtool_ops = &i2400m_ethtool_ops;
 641        d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
 642}
 643EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
 644
 645