linux/drivers/net/wireless/ath/ath9k/hw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2010 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <asm/unaligned.h>
  20
  21#include "hw.h"
  22#include "hw-ops.h"
  23#include "rc.h"
  24#include "ar9003_mac.h"
  25
  26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27
  28MODULE_AUTHOR("Atheros Communications");
  29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31MODULE_LICENSE("Dual BSD/GPL");
  32
  33static int __init ath9k_init(void)
  34{
  35        return 0;
  36}
  37module_init(ath9k_init);
  38
  39static void __exit ath9k_exit(void)
  40{
  41        return;
  42}
  43module_exit(ath9k_exit);
  44
  45/* Private hardware callbacks */
  46
  47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  48{
  49        ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  50}
  51
  52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  53{
  54        ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  55}
  56
  57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  58                                        struct ath9k_channel *chan)
  59{
  60        return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  61}
  62
  63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  64{
  65        if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  66                return;
  67
  68        ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  69}
  70
  71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  72{
  73        /* You will not have this callback if using the old ANI */
  74        if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  75                return;
  76
  77        ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  78}
  79
  80/********************/
  81/* Helper Functions */
  82/********************/
  83
  84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  85{
  86        struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  87        struct ath_common *common = ath9k_hw_common(ah);
  88        unsigned int clockrate;
  89
  90        if (!ah->curchan) /* should really check for CCK instead */
  91                clockrate = ATH9K_CLOCK_RATE_CCK;
  92        else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  93                clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  94        else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  95                clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  96        else
  97                clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  98
  99        if (conf_is_ht40(conf))
 100                clockrate *= 2;
 101
 102        common->clockrate = clockrate;
 103}
 104
 105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
 106{
 107        struct ath_common *common = ath9k_hw_common(ah);
 108
 109        return usecs * common->clockrate;
 110}
 111
 112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
 113{
 114        int i;
 115
 116        BUG_ON(timeout < AH_TIME_QUANTUM);
 117
 118        for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
 119                if ((REG_READ(ah, reg) & mask) == val)
 120                        return true;
 121
 122                udelay(AH_TIME_QUANTUM);
 123        }
 124
 125        ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
 126                "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
 127                timeout, reg, REG_READ(ah, reg), mask, val);
 128
 129        return false;
 130}
 131EXPORT_SYMBOL(ath9k_hw_wait);
 132
 133u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 134{
 135        u32 retval;
 136        int i;
 137
 138        for (i = 0, retval = 0; i < n; i++) {
 139                retval = (retval << 1) | (val & 1);
 140                val >>= 1;
 141        }
 142        return retval;
 143}
 144
 145bool ath9k_get_channel_edges(struct ath_hw *ah,
 146                             u16 flags, u16 *low,
 147                             u16 *high)
 148{
 149        struct ath9k_hw_capabilities *pCap = &ah->caps;
 150
 151        if (flags & CHANNEL_5GHZ) {
 152                *low = pCap->low_5ghz_chan;
 153                *high = pCap->high_5ghz_chan;
 154                return true;
 155        }
 156        if ((flags & CHANNEL_2GHZ)) {
 157                *low = pCap->low_2ghz_chan;
 158                *high = pCap->high_2ghz_chan;
 159                return true;
 160        }
 161        return false;
 162}
 163
 164u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 165                           u8 phy, int kbps,
 166                           u32 frameLen, u16 rateix,
 167                           bool shortPreamble)
 168{
 169        u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 170
 171        if (kbps == 0)
 172                return 0;
 173
 174        switch (phy) {
 175        case WLAN_RC_PHY_CCK:
 176                phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 177                if (shortPreamble)
 178                        phyTime >>= 1;
 179                numBits = frameLen << 3;
 180                txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 181                break;
 182        case WLAN_RC_PHY_OFDM:
 183                if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 184                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 185                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 186                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 187                        txTime = OFDM_SIFS_TIME_QUARTER
 188                                + OFDM_PREAMBLE_TIME_QUARTER
 189                                + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 190                } else if (ah->curchan &&
 191                           IS_CHAN_HALF_RATE(ah->curchan)) {
 192                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 193                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 194                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 195                        txTime = OFDM_SIFS_TIME_HALF +
 196                                OFDM_PREAMBLE_TIME_HALF
 197                                + (numSymbols * OFDM_SYMBOL_TIME_HALF);
 198                } else {
 199                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 200                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 201                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 202                        txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 203                                + (numSymbols * OFDM_SYMBOL_TIME);
 204                }
 205                break;
 206        default:
 207                ath_err(ath9k_hw_common(ah),
 208                        "Unknown phy %u (rate ix %u)\n", phy, rateix);
 209                txTime = 0;
 210                break;
 211        }
 212
 213        return txTime;
 214}
 215EXPORT_SYMBOL(ath9k_hw_computetxtime);
 216
 217void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 218                                  struct ath9k_channel *chan,
 219                                  struct chan_centers *centers)
 220{
 221        int8_t extoff;
 222
 223        if (!IS_CHAN_HT40(chan)) {
 224                centers->ctl_center = centers->ext_center =
 225                        centers->synth_center = chan->channel;
 226                return;
 227        }
 228
 229        if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
 230            (chan->chanmode == CHANNEL_G_HT40PLUS)) {
 231                centers->synth_center =
 232                        chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 233                extoff = 1;
 234        } else {
 235                centers->synth_center =
 236                        chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 237                extoff = -1;
 238        }
 239
 240        centers->ctl_center =
 241                centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 242        /* 25 MHz spacing is supported by hw but not on upper layers */
 243        centers->ext_center =
 244                centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 245}
 246
 247/******************/
 248/* Chip Revisions */
 249/******************/
 250
 251static void ath9k_hw_read_revisions(struct ath_hw *ah)
 252{
 253        u32 val;
 254
 255        val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 256
 257        if (val == 0xFF) {
 258                val = REG_READ(ah, AR_SREV);
 259                ah->hw_version.macVersion =
 260                        (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 261                ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 262                ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 263        } else {
 264                if (!AR_SREV_9100(ah))
 265                        ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 266
 267                ah->hw_version.macRev = val & AR_SREV_REVISION;
 268
 269                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 270                        ah->is_pciexpress = true;
 271        }
 272}
 273
 274/************************************/
 275/* HW Attach, Detach, Init Routines */
 276/************************************/
 277
 278static void ath9k_hw_disablepcie(struct ath_hw *ah)
 279{
 280        if (!AR_SREV_5416(ah))
 281                return;
 282
 283        REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 284        REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 285        REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 286        REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 287        REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 288        REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 289        REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 290        REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 291        REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 292
 293        REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 294}
 295
 296/* This should work for all families including legacy */
 297static bool ath9k_hw_chip_test(struct ath_hw *ah)
 298{
 299        struct ath_common *common = ath9k_hw_common(ah);
 300        u32 regAddr[2] = { AR_STA_ID0 };
 301        u32 regHold[2];
 302        static const u32 patternData[4] = {
 303                0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 304        };
 305        int i, j, loop_max;
 306
 307        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 308                loop_max = 2;
 309                regAddr[1] = AR_PHY_BASE + (8 << 2);
 310        } else
 311                loop_max = 1;
 312
 313        for (i = 0; i < loop_max; i++) {
 314                u32 addr = regAddr[i];
 315                u32 wrData, rdData;
 316
 317                regHold[i] = REG_READ(ah, addr);
 318                for (j = 0; j < 0x100; j++) {
 319                        wrData = (j << 16) | j;
 320                        REG_WRITE(ah, addr, wrData);
 321                        rdData = REG_READ(ah, addr);
 322                        if (rdData != wrData) {
 323                                ath_err(common,
 324                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 325                                        addr, wrData, rdData);
 326                                return false;
 327                        }
 328                }
 329                for (j = 0; j < 4; j++) {
 330                        wrData = patternData[j];
 331                        REG_WRITE(ah, addr, wrData);
 332                        rdData = REG_READ(ah, addr);
 333                        if (wrData != rdData) {
 334                                ath_err(common,
 335                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 336                                        addr, wrData, rdData);
 337                                return false;
 338                        }
 339                }
 340                REG_WRITE(ah, regAddr[i], regHold[i]);
 341        }
 342        udelay(100);
 343
 344        return true;
 345}
 346
 347static void ath9k_hw_init_config(struct ath_hw *ah)
 348{
 349        int i;
 350
 351        ah->config.dma_beacon_response_time = 2;
 352        ah->config.sw_beacon_response_time = 10;
 353        ah->config.additional_swba_backoff = 0;
 354        ah->config.ack_6mb = 0x0;
 355        ah->config.cwm_ignore_extcca = 0;
 356        ah->config.pcie_powersave_enable = 0;
 357        ah->config.pcie_clock_req = 0;
 358        ah->config.pcie_waen = 0;
 359        ah->config.analog_shiftreg = 1;
 360        ah->config.enable_ani = true;
 361
 362        for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 363                ah->config.spurchans[i][0] = AR_NO_SPUR;
 364                ah->config.spurchans[i][1] = AR_NO_SPUR;
 365        }
 366
 367        if (ah->hw_version.devid != AR2427_DEVID_PCIE)
 368                ah->config.ht_enable = 1;
 369        else
 370                ah->config.ht_enable = 0;
 371
 372        /* PAPRD needs some more work to be enabled */
 373        ah->config.paprd_disable = 1;
 374
 375        ah->config.rx_intr_mitigation = true;
 376        ah->config.pcieSerDesWrite = true;
 377
 378        /*
 379         * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 380         * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 381         * This means we use it for all AR5416 devices, and the few
 382         * minor PCI AR9280 devices out there.
 383         *
 384         * Serialization is required because these devices do not handle
 385         * well the case of two concurrent reads/writes due to the latency
 386         * involved. During one read/write another read/write can be issued
 387         * on another CPU while the previous read/write may still be working
 388         * on our hardware, if we hit this case the hardware poops in a loop.
 389         * We prevent this by serializing reads and writes.
 390         *
 391         * This issue is not present on PCI-Express devices or pre-AR5416
 392         * devices (legacy, 802.11abg).
 393         */
 394        if (num_possible_cpus() > 1)
 395                ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 396}
 397
 398static void ath9k_hw_init_defaults(struct ath_hw *ah)
 399{
 400        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 401
 402        regulatory->country_code = CTRY_DEFAULT;
 403        regulatory->power_limit = MAX_RATE_POWER;
 404        regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
 405
 406        ah->hw_version.magic = AR5416_MAGIC;
 407        ah->hw_version.subvendorid = 0;
 408
 409        ah->atim_window = 0;
 410        ah->sta_id1_defaults =
 411                AR_STA_ID1_CRPT_MIC_ENABLE |
 412                AR_STA_ID1_MCAST_KSRCH;
 413        ah->enable_32kHz_clock = DONT_USE_32KHZ;
 414        ah->slottime = 20;
 415        ah->globaltxtimeout = (u32) -1;
 416        ah->power_mode = ATH9K_PM_UNDEFINED;
 417}
 418
 419static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 420{
 421        struct ath_common *common = ath9k_hw_common(ah);
 422        u32 sum;
 423        int i;
 424        u16 eeval;
 425        static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 426
 427        sum = 0;
 428        for (i = 0; i < 3; i++) {
 429                eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 430                sum += eeval;
 431                common->macaddr[2 * i] = eeval >> 8;
 432                common->macaddr[2 * i + 1] = eeval & 0xff;
 433        }
 434        if (sum == 0 || sum == 0xffff * 3)
 435                return -EADDRNOTAVAIL;
 436
 437        return 0;
 438}
 439
 440static int ath9k_hw_post_init(struct ath_hw *ah)
 441{
 442        struct ath_common *common = ath9k_hw_common(ah);
 443        int ecode;
 444
 445        if (common->bus_ops->ath_bus_type != ATH_USB) {
 446                if (!ath9k_hw_chip_test(ah))
 447                        return -ENODEV;
 448        }
 449
 450        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 451                ecode = ar9002_hw_rf_claim(ah);
 452                if (ecode != 0)
 453                        return ecode;
 454        }
 455
 456        ecode = ath9k_hw_eeprom_init(ah);
 457        if (ecode != 0)
 458                return ecode;
 459
 460        ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
 461                "Eeprom VER: %d, REV: %d\n",
 462                ah->eep_ops->get_eeprom_ver(ah),
 463                ah->eep_ops->get_eeprom_rev(ah));
 464
 465        ecode = ath9k_hw_rf_alloc_ext_banks(ah);
 466        if (ecode) {
 467                ath_err(ath9k_hw_common(ah),
 468                        "Failed allocating banks for external radio\n");
 469                ath9k_hw_rf_free_ext_banks(ah);
 470                return ecode;
 471        }
 472
 473        if (!AR_SREV_9100(ah)) {
 474                ath9k_hw_ani_setup(ah);
 475                ath9k_hw_ani_init(ah);
 476        }
 477
 478        return 0;
 479}
 480
 481static void ath9k_hw_attach_ops(struct ath_hw *ah)
 482{
 483        if (AR_SREV_9300_20_OR_LATER(ah))
 484                ar9003_hw_attach_ops(ah);
 485        else
 486                ar9002_hw_attach_ops(ah);
 487}
 488
 489/* Called for all hardware families */
 490static int __ath9k_hw_init(struct ath_hw *ah)
 491{
 492        struct ath_common *common = ath9k_hw_common(ah);
 493        int r = 0;
 494
 495        if (ah->hw_version.devid == AR5416_AR9100_DEVID)
 496                ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 497
 498        ath9k_hw_read_revisions(ah);
 499
 500        /*
 501         * Read back AR_WA into a permanent copy and set bits 14 and 17.
 502         * We need to do this to avoid RMW of this register. We cannot
 503         * read the reg when chip is asleep.
 504         */
 505        ah->WARegVal = REG_READ(ah, AR_WA);
 506        ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 507                         AR_WA_ASPM_TIMER_BASED_DISABLE);
 508
 509        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 510                ath_err(common, "Couldn't reset chip\n");
 511                return -EIO;
 512        }
 513
 514        ath9k_hw_init_defaults(ah);
 515        ath9k_hw_init_config(ah);
 516
 517        ath9k_hw_attach_ops(ah);
 518
 519        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 520                ath_err(common, "Couldn't wakeup chip\n");
 521                return -EIO;
 522        }
 523
 524        if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 525                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 526                    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
 527                     !ah->is_pciexpress)) {
 528                        ah->config.serialize_regmode =
 529                                SER_REG_MODE_ON;
 530                } else {
 531                        ah->config.serialize_regmode =
 532                                SER_REG_MODE_OFF;
 533                }
 534        }
 535
 536        ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
 537                ah->config.serialize_regmode);
 538
 539        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 540                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 541        else
 542                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 543
 544        switch (ah->hw_version.macVersion) {
 545        case AR_SREV_VERSION_5416_PCI:
 546        case AR_SREV_VERSION_5416_PCIE:
 547        case AR_SREV_VERSION_9160:
 548        case AR_SREV_VERSION_9100:
 549        case AR_SREV_VERSION_9280:
 550        case AR_SREV_VERSION_9285:
 551        case AR_SREV_VERSION_9287:
 552        case AR_SREV_VERSION_9271:
 553        case AR_SREV_VERSION_9300:
 554        case AR_SREV_VERSION_9485:
 555                break;
 556        default:
 557                ath_err(common,
 558                        "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 559                        ah->hw_version.macVersion, ah->hw_version.macRev);
 560                return -EOPNOTSUPP;
 561        }
 562
 563        if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
 564                ah->is_pciexpress = false;
 565
 566        ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 567        ath9k_hw_init_cal_settings(ah);
 568
 569        ah->ani_function = ATH9K_ANI_ALL;
 570        if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
 571                ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
 572        if (!AR_SREV_9300_20_OR_LATER(ah))
 573                ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 574
 575        ath9k_hw_init_mode_regs(ah);
 576
 577
 578        if (ah->is_pciexpress)
 579                ath9k_hw_configpcipowersave(ah, 0, 0);
 580        else
 581                ath9k_hw_disablepcie(ah);
 582
 583        if (!AR_SREV_9300_20_OR_LATER(ah))
 584                ar9002_hw_cck_chan14_spread(ah);
 585
 586        r = ath9k_hw_post_init(ah);
 587        if (r)
 588                return r;
 589
 590        ath9k_hw_init_mode_gain_regs(ah);
 591        r = ath9k_hw_fill_cap_info(ah);
 592        if (r)
 593                return r;
 594
 595        r = ath9k_hw_init_macaddr(ah);
 596        if (r) {
 597                ath_err(common, "Failed to initialize MAC address\n");
 598                return r;
 599        }
 600
 601        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 602                ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 603        else
 604                ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 605
 606        ah->bb_watchdog_timeout_ms = 25;
 607
 608        common->state = ATH_HW_INITIALIZED;
 609
 610        return 0;
 611}
 612
 613int ath9k_hw_init(struct ath_hw *ah)
 614{
 615        int ret;
 616        struct ath_common *common = ath9k_hw_common(ah);
 617
 618        /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
 619        switch (ah->hw_version.devid) {
 620        case AR5416_DEVID_PCI:
 621        case AR5416_DEVID_PCIE:
 622        case AR5416_AR9100_DEVID:
 623        case AR9160_DEVID_PCI:
 624        case AR9280_DEVID_PCI:
 625        case AR9280_DEVID_PCIE:
 626        case AR9285_DEVID_PCIE:
 627        case AR9287_DEVID_PCI:
 628        case AR9287_DEVID_PCIE:
 629        case AR2427_DEVID_PCIE:
 630        case AR9300_DEVID_PCIE:
 631        case AR9300_DEVID_AR9485_PCIE:
 632                break;
 633        default:
 634                if (common->bus_ops->ath_bus_type == ATH_USB)
 635                        break;
 636                ath_err(common, "Hardware device ID 0x%04x not supported\n",
 637                        ah->hw_version.devid);
 638                return -EOPNOTSUPP;
 639        }
 640
 641        ret = __ath9k_hw_init(ah);
 642        if (ret) {
 643                ath_err(common,
 644                        "Unable to initialize hardware; initialization status: %d\n",
 645                        ret);
 646                return ret;
 647        }
 648
 649        return 0;
 650}
 651EXPORT_SYMBOL(ath9k_hw_init);
 652
 653static void ath9k_hw_init_qos(struct ath_hw *ah)
 654{
 655        ENABLE_REGWRITE_BUFFER(ah);
 656
 657        REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 658        REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 659
 660        REG_WRITE(ah, AR_QOS_NO_ACK,
 661                  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 662                  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 663                  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 664
 665        REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 666        REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 667        REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 668        REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 669        REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 670
 671        REGWRITE_BUFFER_FLUSH(ah);
 672}
 673
 674unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 675{
 676                REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK)));
 677                udelay(100);
 678                REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK));
 679
 680                while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
 681                        udelay(100);
 682
 683                return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 684}
 685EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 686
 687#define DPLL2_KD_VAL            0x3D
 688#define DPLL2_KI_VAL            0x06
 689#define DPLL3_PHASE_SHIFT_VAL   0x1
 690
 691static void ath9k_hw_init_pll(struct ath_hw *ah,
 692                              struct ath9k_channel *chan)
 693{
 694        u32 pll;
 695
 696        if (AR_SREV_9485(ah)) {
 697                REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
 698                REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
 699
 700                REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 701                              AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
 702
 703                REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 704                udelay(1000);
 705
 706                REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
 707
 708                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 709                              AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
 710                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 711                              AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
 712
 713                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 714                              AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
 715                REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
 716                udelay(1000);
 717        }
 718
 719        pll = ath9k_hw_compute_pll_control(ah, chan);
 720
 721        REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 722
 723        /* Switch the core clock for ar9271 to 117Mhz */
 724        if (AR_SREV_9271(ah)) {
 725                udelay(500);
 726                REG_WRITE(ah, 0x50040, 0x304);
 727        }
 728
 729        udelay(RTC_PLL_SETTLE_DELAY);
 730
 731        REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 732}
 733
 734static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 735                                          enum nl80211_iftype opmode)
 736{
 737        u32 imr_reg = AR_IMR_TXERR |
 738                AR_IMR_TXURN |
 739                AR_IMR_RXERR |
 740                AR_IMR_RXORN |
 741                AR_IMR_BCNMISC;
 742
 743        if (AR_SREV_9300_20_OR_LATER(ah)) {
 744                imr_reg |= AR_IMR_RXOK_HP;
 745                if (ah->config.rx_intr_mitigation)
 746                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 747                else
 748                        imr_reg |= AR_IMR_RXOK_LP;
 749
 750        } else {
 751                if (ah->config.rx_intr_mitigation)
 752                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 753                else
 754                        imr_reg |= AR_IMR_RXOK;
 755        }
 756
 757        if (ah->config.tx_intr_mitigation)
 758                imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 759        else
 760                imr_reg |= AR_IMR_TXOK;
 761
 762        if (opmode == NL80211_IFTYPE_AP)
 763                imr_reg |= AR_IMR_MIB;
 764
 765        ENABLE_REGWRITE_BUFFER(ah);
 766
 767        REG_WRITE(ah, AR_IMR, imr_reg);
 768        ah->imrs2_reg |= AR_IMR_S2_GTT;
 769        REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 770
 771        if (!AR_SREV_9100(ah)) {
 772                REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 773                REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
 774                REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 775        }
 776
 777        REGWRITE_BUFFER_FLUSH(ah);
 778
 779        if (AR_SREV_9300_20_OR_LATER(ah)) {
 780                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 781                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 782                REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 783                REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 784        }
 785}
 786
 787static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 788{
 789        u32 val = ath9k_hw_mac_to_clks(ah, us);
 790        val = min(val, (u32) 0xFFFF);
 791        REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 792}
 793
 794static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 795{
 796        u32 val = ath9k_hw_mac_to_clks(ah, us);
 797        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 798        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 799}
 800
 801static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 802{
 803        u32 val = ath9k_hw_mac_to_clks(ah, us);
 804        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 805        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 806}
 807
 808static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
 809{
 810        if (tu > 0xFFFF) {
 811                ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
 812                        "bad global tx timeout %u\n", tu);
 813                ah->globaltxtimeout = (u32) -1;
 814                return false;
 815        } else {
 816                REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
 817                ah->globaltxtimeout = tu;
 818                return true;
 819        }
 820}
 821
 822void ath9k_hw_init_global_settings(struct ath_hw *ah)
 823{
 824        struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
 825        int acktimeout;
 826        int slottime;
 827        int sifstime;
 828
 829        ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
 830                ah->misc_mode);
 831
 832        if (ah->misc_mode != 0)
 833                REG_WRITE(ah, AR_PCU_MISC,
 834                          REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
 835
 836        if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
 837                sifstime = 16;
 838        else
 839                sifstime = 10;
 840
 841        /* As defined by IEEE 802.11-2007 17.3.8.6 */
 842        slottime = ah->slottime + 3 * ah->coverage_class;
 843        acktimeout = slottime + sifstime;
 844
 845        /*
 846         * Workaround for early ACK timeouts, add an offset to match the
 847         * initval's 64us ack timeout value.
 848         * This was initially only meant to work around an issue with delayed
 849         * BA frames in some implementations, but it has been found to fix ACK
 850         * timeout issues in other cases as well.
 851         */
 852        if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
 853                acktimeout += 64 - sifstime - ah->slottime;
 854
 855        ath9k_hw_setslottime(ah, ah->slottime);
 856        ath9k_hw_set_ack_timeout(ah, acktimeout);
 857        ath9k_hw_set_cts_timeout(ah, acktimeout);
 858        if (ah->globaltxtimeout != (u32) -1)
 859                ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
 860}
 861EXPORT_SYMBOL(ath9k_hw_init_global_settings);
 862
 863void ath9k_hw_deinit(struct ath_hw *ah)
 864{
 865        struct ath_common *common = ath9k_hw_common(ah);
 866
 867        if (common->state < ATH_HW_INITIALIZED)
 868                goto free_hw;
 869
 870        ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
 871
 872free_hw:
 873        ath9k_hw_rf_free_ext_banks(ah);
 874}
 875EXPORT_SYMBOL(ath9k_hw_deinit);
 876
 877/*******/
 878/* INI */
 879/*******/
 880
 881u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
 882{
 883        u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
 884
 885        if (IS_CHAN_B(chan))
 886                ctl |= CTL_11B;
 887        else if (IS_CHAN_G(chan))
 888                ctl |= CTL_11G;
 889        else
 890                ctl |= CTL_11A;
 891
 892        return ctl;
 893}
 894
 895/****************************************/
 896/* Reset and Channel Switching Routines */
 897/****************************************/
 898
 899static inline void ath9k_hw_set_dma(struct ath_hw *ah)
 900{
 901        struct ath_common *common = ath9k_hw_common(ah);
 902        u32 regval;
 903
 904        ENABLE_REGWRITE_BUFFER(ah);
 905
 906        /*
 907         * set AHB_MODE not to do cacheline prefetches
 908        */
 909        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 910                regval = REG_READ(ah, AR_AHB_MODE);
 911                REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
 912        }
 913
 914        /*
 915         * let mac dma reads be in 128 byte chunks
 916         */
 917        regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
 918        REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
 919
 920        REGWRITE_BUFFER_FLUSH(ah);
 921
 922        /*
 923         * Restore TX Trigger Level to its pre-reset value.
 924         * The initial value depends on whether aggregation is enabled, and is
 925         * adjusted whenever underruns are detected.
 926         */
 927        if (!AR_SREV_9300_20_OR_LATER(ah))
 928                REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
 929
 930        ENABLE_REGWRITE_BUFFER(ah);
 931
 932        /*
 933         * let mac dma writes be in 128 byte chunks
 934         */
 935        regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
 936        REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
 937
 938        /*
 939         * Setup receive FIFO threshold to hold off TX activities
 940         */
 941        REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
 942
 943        if (AR_SREV_9300_20_OR_LATER(ah)) {
 944                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
 945                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
 946
 947                ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
 948                        ah->caps.rx_status_len);
 949        }
 950
 951        /*
 952         * reduce the number of usable entries in PCU TXBUF to avoid
 953         * wrap around issues.
 954         */
 955        if (AR_SREV_9285(ah)) {
 956                /* For AR9285 the number of Fifos are reduced to half.
 957                 * So set the usable tx buf size also to half to
 958                 * avoid data/delimiter underruns
 959                 */
 960                REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
 961                          AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
 962        } else if (!AR_SREV_9271(ah)) {
 963                REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
 964                          AR_PCU_TXBUF_CTRL_USABLE_SIZE);
 965        }
 966
 967        REGWRITE_BUFFER_FLUSH(ah);
 968
 969        if (AR_SREV_9300_20_OR_LATER(ah))
 970                ath9k_hw_reset_txstatus_ring(ah);
 971}
 972
 973static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
 974{
 975        u32 val;
 976
 977        val = REG_READ(ah, AR_STA_ID1);
 978        val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
 979        switch (opmode) {
 980        case NL80211_IFTYPE_AP:
 981                REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
 982                          | AR_STA_ID1_KSRCH_MODE);
 983                REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
 984                break;
 985        case NL80211_IFTYPE_ADHOC:
 986        case NL80211_IFTYPE_MESH_POINT:
 987                REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
 988                          | AR_STA_ID1_KSRCH_MODE);
 989                REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
 990                break;
 991        case NL80211_IFTYPE_STATION:
 992                REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
 993                break;
 994        default:
 995                if (ah->is_monitoring)
 996                        REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
 997                break;
 998        }
 999}
1000
1001void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1002                                   u32 *coef_mantissa, u32 *coef_exponent)
1003{
1004        u32 coef_exp, coef_man;
1005
1006        for (coef_exp = 31; coef_exp > 0; coef_exp--)
1007                if ((coef_scaled >> coef_exp) & 0x1)
1008                        break;
1009
1010        coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1011
1012        coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1013
1014        *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1015        *coef_exponent = coef_exp - 16;
1016}
1017
1018static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1019{
1020        u32 rst_flags;
1021        u32 tmpReg;
1022
1023        if (AR_SREV_9100(ah)) {
1024                u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1025                val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1026                val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1027                REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1028                (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1029        }
1030
1031        ENABLE_REGWRITE_BUFFER(ah);
1032
1033        if (AR_SREV_9300_20_OR_LATER(ah)) {
1034                REG_WRITE(ah, AR_WA, ah->WARegVal);
1035                udelay(10);
1036        }
1037
1038        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1039                  AR_RTC_FORCE_WAKE_ON_INT);
1040
1041        if (AR_SREV_9100(ah)) {
1042                rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1043                        AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1044        } else {
1045                tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1046                if (tmpReg &
1047                    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1048                     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1049                        u32 val;
1050                        REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1051
1052                        val = AR_RC_HOSTIF;
1053                        if (!AR_SREV_9300_20_OR_LATER(ah))
1054                                val |= AR_RC_AHB;
1055                        REG_WRITE(ah, AR_RC, val);
1056
1057                } else if (!AR_SREV_9300_20_OR_LATER(ah))
1058                        REG_WRITE(ah, AR_RC, AR_RC_AHB);
1059
1060                rst_flags = AR_RTC_RC_MAC_WARM;
1061                if (type == ATH9K_RESET_COLD)
1062                        rst_flags |= AR_RTC_RC_MAC_COLD;
1063        }
1064
1065        REG_WRITE(ah, AR_RTC_RC, rst_flags);
1066
1067        REGWRITE_BUFFER_FLUSH(ah);
1068
1069        udelay(50);
1070
1071        REG_WRITE(ah, AR_RTC_RC, 0);
1072        if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1073                ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1074                        "RTC stuck in MAC reset\n");
1075                return false;
1076        }
1077
1078        if (!AR_SREV_9100(ah))
1079                REG_WRITE(ah, AR_RC, 0);
1080
1081        if (AR_SREV_9100(ah))
1082                udelay(50);
1083
1084        return true;
1085}
1086
1087static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1088{
1089        ENABLE_REGWRITE_BUFFER(ah);
1090
1091        if (AR_SREV_9300_20_OR_LATER(ah)) {
1092                REG_WRITE(ah, AR_WA, ah->WARegVal);
1093                udelay(10);
1094        }
1095
1096        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1097                  AR_RTC_FORCE_WAKE_ON_INT);
1098
1099        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1100                REG_WRITE(ah, AR_RC, AR_RC_AHB);
1101
1102        REG_WRITE(ah, AR_RTC_RESET, 0);
1103
1104        REGWRITE_BUFFER_FLUSH(ah);
1105
1106        if (!AR_SREV_9300_20_OR_LATER(ah))
1107                udelay(2);
1108
1109        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1110                REG_WRITE(ah, AR_RC, 0);
1111
1112        REG_WRITE(ah, AR_RTC_RESET, 1);
1113
1114        if (!ath9k_hw_wait(ah,
1115                           AR_RTC_STATUS,
1116                           AR_RTC_STATUS_M,
1117                           AR_RTC_STATUS_ON,
1118                           AH_WAIT_TIMEOUT)) {
1119                ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1120                        "RTC not waking up\n");
1121                return false;
1122        }
1123
1124        return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1125}
1126
1127static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1128{
1129        if (AR_SREV_9300_20_OR_LATER(ah)) {
1130                REG_WRITE(ah, AR_WA, ah->WARegVal);
1131                udelay(10);
1132        }
1133
1134        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1135                  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1136
1137        switch (type) {
1138        case ATH9K_RESET_POWER_ON:
1139                return ath9k_hw_set_reset_power_on(ah);
1140        case ATH9K_RESET_WARM:
1141        case ATH9K_RESET_COLD:
1142                return ath9k_hw_set_reset(ah, type);
1143        default:
1144                return false;
1145        }
1146}
1147
1148static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1149                                struct ath9k_channel *chan)
1150{
1151        if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1152                if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1153                        return false;
1154        } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1155                return false;
1156
1157        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1158                return false;
1159
1160        ah->chip_fullsleep = false;
1161        ath9k_hw_init_pll(ah, chan);
1162        ath9k_hw_set_rfmode(ah, chan);
1163
1164        return true;
1165}
1166
1167static bool ath9k_hw_channel_change(struct ath_hw *ah,
1168                                    struct ath9k_channel *chan)
1169{
1170        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1171        struct ath_common *common = ath9k_hw_common(ah);
1172        struct ieee80211_channel *channel = chan->chan;
1173        u32 qnum;
1174        int r;
1175
1176        for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1177                if (ath9k_hw_numtxpending(ah, qnum)) {
1178                        ath_dbg(common, ATH_DBG_QUEUE,
1179                                "Transmit frames pending on queue %d\n", qnum);
1180                        return false;
1181                }
1182        }
1183
1184        if (!ath9k_hw_rfbus_req(ah)) {
1185                ath_err(common, "Could not kill baseband RX\n");
1186                return false;
1187        }
1188
1189        ath9k_hw_set_channel_regs(ah, chan);
1190
1191        r = ath9k_hw_rf_set_freq(ah, chan);
1192        if (r) {
1193                ath_err(common, "Failed to set channel\n");
1194                return false;
1195        }
1196        ath9k_hw_set_clockrate(ah);
1197
1198        ah->eep_ops->set_txpower(ah, chan,
1199                             ath9k_regd_get_ctl(regulatory, chan),
1200                             channel->max_antenna_gain * 2,
1201                             channel->max_power * 2,
1202                             min((u32) MAX_RATE_POWER,
1203                             (u32) regulatory->power_limit), false);
1204
1205        ath9k_hw_rfbus_done(ah);
1206
1207        if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1208                ath9k_hw_set_delta_slope(ah, chan);
1209
1210        ath9k_hw_spur_mitigate_freq(ah, chan);
1211
1212        return true;
1213}
1214
1215bool ath9k_hw_check_alive(struct ath_hw *ah)
1216{
1217        int count = 50;
1218        u32 reg;
1219
1220        if (AR_SREV_9285_12_OR_LATER(ah))
1221                return true;
1222
1223        do {
1224                reg = REG_READ(ah, AR_OBS_BUS_1);
1225
1226                if ((reg & 0x7E7FFFEF) == 0x00702400)
1227                        continue;
1228
1229                switch (reg & 0x7E000B00) {
1230                case 0x1E000000:
1231                case 0x52000B00:
1232                case 0x18000B00:
1233                        continue;
1234                default:
1235                        return true;
1236                }
1237        } while (count-- > 0);
1238
1239        return false;
1240}
1241EXPORT_SYMBOL(ath9k_hw_check_alive);
1242
1243int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1244                   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1245{
1246        struct ath_common *common = ath9k_hw_common(ah);
1247        u32 saveLedState;
1248        struct ath9k_channel *curchan = ah->curchan;
1249        u32 saveDefAntenna;
1250        u32 macStaId1;
1251        u64 tsf = 0;
1252        int i, r;
1253
1254        ah->txchainmask = common->tx_chainmask;
1255        ah->rxchainmask = common->rx_chainmask;
1256
1257        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1258                return -EIO;
1259
1260        if (curchan && !ah->chip_fullsleep)
1261                ath9k_hw_getnf(ah, curchan);
1262
1263        ah->caldata = caldata;
1264        if (caldata &&
1265            (chan->channel != caldata->channel ||
1266             (chan->channelFlags & ~CHANNEL_CW_INT) !=
1267             (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1268                /* Operating channel changed, reset channel calibration data */
1269                memset(caldata, 0, sizeof(*caldata));
1270                ath9k_init_nfcal_hist_buffer(ah, chan);
1271        }
1272
1273        if (bChannelChange &&
1274            (ah->chip_fullsleep != true) &&
1275            (ah->curchan != NULL) &&
1276            (chan->channel != ah->curchan->channel) &&
1277            ((chan->channelFlags & CHANNEL_ALL) ==
1278             (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1279            (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1280
1281                if (ath9k_hw_channel_change(ah, chan)) {
1282                        ath9k_hw_loadnf(ah, ah->curchan);
1283                        ath9k_hw_start_nfcal(ah, true);
1284                        if (AR_SREV_9271(ah))
1285                                ar9002_hw_load_ani_reg(ah, chan);
1286                        return 0;
1287                }
1288        }
1289
1290        saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1291        if (saveDefAntenna == 0)
1292                saveDefAntenna = 1;
1293
1294        macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1295
1296        /* For chips on which RTC reset is done, save TSF before it gets cleared */
1297        if (AR_SREV_9100(ah) ||
1298            (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1299                tsf = ath9k_hw_gettsf64(ah);
1300
1301        saveLedState = REG_READ(ah, AR_CFG_LED) &
1302                (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1303                 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1304
1305        ath9k_hw_mark_phy_inactive(ah);
1306
1307        ah->paprd_table_write_done = false;
1308
1309        /* Only required on the first reset */
1310        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1311                REG_WRITE(ah,
1312                          AR9271_RESET_POWER_DOWN_CONTROL,
1313                          AR9271_RADIO_RF_RST);
1314                udelay(50);
1315        }
1316
1317        if (!ath9k_hw_chip_reset(ah, chan)) {
1318                ath_err(common, "Chip reset failed\n");
1319                return -EINVAL;
1320        }
1321
1322        /* Only required on the first reset */
1323        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1324                ah->htc_reset_init = false;
1325                REG_WRITE(ah,
1326                          AR9271_RESET_POWER_DOWN_CONTROL,
1327                          AR9271_GATE_MAC_CTL);
1328                udelay(50);
1329        }
1330
1331        /* Restore TSF */
1332        if (tsf)
1333                ath9k_hw_settsf64(ah, tsf);
1334
1335        if (AR_SREV_9280_20_OR_LATER(ah))
1336                REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1337
1338        if (!AR_SREV_9300_20_OR_LATER(ah))
1339                ar9002_hw_enable_async_fifo(ah);
1340
1341        r = ath9k_hw_process_ini(ah, chan);
1342        if (r)
1343                return r;
1344
1345        /*
1346         * Some AR91xx SoC devices frequently fail to accept TSF writes
1347         * right after the chip reset. When that happens, write a new
1348         * value after the initvals have been applied, with an offset
1349         * based on measured time difference
1350         */
1351        if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1352                tsf += 1500;
1353                ath9k_hw_settsf64(ah, tsf);
1354        }
1355
1356        /* Setup MFP options for CCMP */
1357        if (AR_SREV_9280_20_OR_LATER(ah)) {
1358                /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1359                 * frames when constructing CCMP AAD. */
1360                REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1361                              0xc7ff);
1362                ah->sw_mgmt_crypto = false;
1363        } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1364                /* Disable hardware crypto for management frames */
1365                REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1366                            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1367                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1368                            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1369                ah->sw_mgmt_crypto = true;
1370        } else
1371                ah->sw_mgmt_crypto = true;
1372
1373        if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1374                ath9k_hw_set_delta_slope(ah, chan);
1375
1376        ath9k_hw_spur_mitigate_freq(ah, chan);
1377        ah->eep_ops->set_board_values(ah, chan);
1378
1379        ENABLE_REGWRITE_BUFFER(ah);
1380
1381        REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1382        REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1383                  | macStaId1
1384                  | AR_STA_ID1_RTS_USE_DEF
1385                  | (ah->config.
1386                     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1387                  | ah->sta_id1_defaults);
1388        ath_hw_setbssidmask(common);
1389        REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1390        ath9k_hw_write_associd(ah);
1391        REG_WRITE(ah, AR_ISR, ~0);
1392        REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1393
1394        REGWRITE_BUFFER_FLUSH(ah);
1395
1396        ath9k_hw_set_operating_mode(ah, ah->opmode);
1397
1398        r = ath9k_hw_rf_set_freq(ah, chan);
1399        if (r)
1400                return r;
1401
1402        ath9k_hw_set_clockrate(ah);
1403
1404        ENABLE_REGWRITE_BUFFER(ah);
1405
1406        for (i = 0; i < AR_NUM_DCU; i++)
1407                REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1408
1409        REGWRITE_BUFFER_FLUSH(ah);
1410
1411        ah->intr_txqs = 0;
1412        for (i = 0; i < ah->caps.total_queues; i++)
1413                ath9k_hw_resettxqueue(ah, i);
1414
1415        ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1416        ath9k_hw_ani_cache_ini_regs(ah);
1417        ath9k_hw_init_qos(ah);
1418
1419        if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1420                ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1421
1422        ath9k_hw_init_global_settings(ah);
1423
1424        if (!AR_SREV_9300_20_OR_LATER(ah)) {
1425                ar9002_hw_update_async_fifo(ah);
1426                ar9002_hw_enable_wep_aggregation(ah);
1427        }
1428
1429        REG_WRITE(ah, AR_STA_ID1,
1430                  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1431
1432        ath9k_hw_set_dma(ah);
1433
1434        REG_WRITE(ah, AR_OBS, 8);
1435
1436        if (ah->config.rx_intr_mitigation) {
1437                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1438                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1439        }
1440
1441        if (ah->config.tx_intr_mitigation) {
1442                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1443                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1444        }
1445
1446        ath9k_hw_init_bb(ah, chan);
1447
1448        if (!ath9k_hw_init_cal(ah, chan))
1449                return -EIO;
1450
1451        ENABLE_REGWRITE_BUFFER(ah);
1452
1453        ath9k_hw_restore_chainmask(ah);
1454        REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1455
1456        REGWRITE_BUFFER_FLUSH(ah);
1457
1458        /*
1459         * For big endian systems turn on swapping for descriptors
1460         */
1461        if (AR_SREV_9100(ah)) {
1462                u32 mask;
1463                mask = REG_READ(ah, AR_CFG);
1464                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1465                        ath_dbg(common, ATH_DBG_RESET,
1466                                "CFG Byte Swap Set 0x%x\n", mask);
1467                } else {
1468                        mask =
1469                                INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1470                        REG_WRITE(ah, AR_CFG, mask);
1471                        ath_dbg(common, ATH_DBG_RESET,
1472                                "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1473                }
1474        } else {
1475                if (common->bus_ops->ath_bus_type == ATH_USB) {
1476                        /* Configure AR9271 target WLAN */
1477                        if (AR_SREV_9271(ah))
1478                                REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1479                        else
1480                                REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1481                }
1482#ifdef __BIG_ENDIAN
1483                else
1484                        REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1485#endif
1486        }
1487
1488        if (ah->btcoex_hw.enabled)
1489                ath9k_hw_btcoex_enable(ah);
1490
1491        if (AR_SREV_9300_20_OR_LATER(ah))
1492                ar9003_hw_bb_watchdog_config(ah);
1493
1494        return 0;
1495}
1496EXPORT_SYMBOL(ath9k_hw_reset);
1497
1498/******************************/
1499/* Power Management (Chipset) */
1500/******************************/
1501
1502/*
1503 * Notify Power Mgt is disabled in self-generated frames.
1504 * If requested, force chip to sleep.
1505 */
1506static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1507{
1508        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1509        if (setChip) {
1510                /*
1511                 * Clear the RTC force wake bit to allow the
1512                 * mac to go to sleep.
1513                 */
1514                REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1515                            AR_RTC_FORCE_WAKE_EN);
1516                if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1517                        REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1518
1519                /* Shutdown chip. Active low */
1520                if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1521                        REG_CLR_BIT(ah, (AR_RTC_RESET),
1522                                    AR_RTC_RESET_EN);
1523        }
1524
1525        /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1526        if (AR_SREV_9300_20_OR_LATER(ah))
1527                REG_WRITE(ah, AR_WA,
1528                          ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1529}
1530
1531/*
1532 * Notify Power Management is enabled in self-generating
1533 * frames. If request, set power mode of chip to
1534 * auto/normal.  Duration in units of 128us (1/8 TU).
1535 */
1536static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1537{
1538        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1539        if (setChip) {
1540                struct ath9k_hw_capabilities *pCap = &ah->caps;
1541
1542                if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1543                        /* Set WakeOnInterrupt bit; clear ForceWake bit */
1544                        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1545                                  AR_RTC_FORCE_WAKE_ON_INT);
1546                } else {
1547                        /*
1548                         * Clear the RTC force wake bit to allow the
1549                         * mac to go to sleep.
1550                         */
1551                        REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1552                                    AR_RTC_FORCE_WAKE_EN);
1553                }
1554        }
1555
1556        /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1557        if (AR_SREV_9300_20_OR_LATER(ah))
1558                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1559}
1560
1561static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1562{
1563        u32 val;
1564        int i;
1565
1566        /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1567        if (AR_SREV_9300_20_OR_LATER(ah)) {
1568                REG_WRITE(ah, AR_WA, ah->WARegVal);
1569                udelay(10);
1570        }
1571
1572        if (setChip) {
1573                if ((REG_READ(ah, AR_RTC_STATUS) &
1574                     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1575                        if (ath9k_hw_set_reset_reg(ah,
1576                                           ATH9K_RESET_POWER_ON) != true) {
1577                                return false;
1578                        }
1579                        if (!AR_SREV_9300_20_OR_LATER(ah))
1580                                ath9k_hw_init_pll(ah, NULL);
1581                }
1582                if (AR_SREV_9100(ah))
1583                        REG_SET_BIT(ah, AR_RTC_RESET,
1584                                    AR_RTC_RESET_EN);
1585
1586                REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1587                            AR_RTC_FORCE_WAKE_EN);
1588                udelay(50);
1589
1590                for (i = POWER_UP_TIME / 50; i > 0; i--) {
1591                        val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1592                        if (val == AR_RTC_STATUS_ON)
1593                                break;
1594                        udelay(50);
1595                        REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1596                                    AR_RTC_FORCE_WAKE_EN);
1597                }
1598                if (i == 0) {
1599                        ath_err(ath9k_hw_common(ah),
1600                                "Failed to wakeup in %uus\n",
1601                                POWER_UP_TIME / 20);
1602                        return false;
1603                }
1604        }
1605
1606        REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1607
1608        return true;
1609}
1610
1611bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1612{
1613        struct ath_common *common = ath9k_hw_common(ah);
1614        int status = true, setChip = true;
1615        static const char *modes[] = {
1616                "AWAKE",
1617                "FULL-SLEEP",
1618                "NETWORK SLEEP",
1619                "UNDEFINED"
1620        };
1621
1622        if (ah->power_mode == mode)
1623                return status;
1624
1625        ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1626                modes[ah->power_mode], modes[mode]);
1627
1628        switch (mode) {
1629        case ATH9K_PM_AWAKE:
1630                status = ath9k_hw_set_power_awake(ah, setChip);
1631                break;
1632        case ATH9K_PM_FULL_SLEEP:
1633                ath9k_set_power_sleep(ah, setChip);
1634                ah->chip_fullsleep = true;
1635                break;
1636        case ATH9K_PM_NETWORK_SLEEP:
1637                ath9k_set_power_network_sleep(ah, setChip);
1638                break;
1639        default:
1640                ath_err(common, "Unknown power mode %u\n", mode);
1641                return false;
1642        }
1643        ah->power_mode = mode;
1644
1645        /*
1646         * XXX: If this warning never comes up after a while then
1647         * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1648         * ath9k_hw_setpower() return type void.
1649         */
1650
1651        if (!(ah->ah_flags & AH_UNPLUGGED))
1652                ATH_DBG_WARN_ON_ONCE(!status);
1653
1654        return status;
1655}
1656EXPORT_SYMBOL(ath9k_hw_setpower);
1657
1658/*******************/
1659/* Beacon Handling */
1660/*******************/
1661
1662void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1663{
1664        int flags = 0;
1665
1666        ENABLE_REGWRITE_BUFFER(ah);
1667
1668        switch (ah->opmode) {
1669        case NL80211_IFTYPE_ADHOC:
1670        case NL80211_IFTYPE_MESH_POINT:
1671                REG_SET_BIT(ah, AR_TXCFG,
1672                            AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1673                REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1674                          TU_TO_USEC(next_beacon +
1675                                     (ah->atim_window ? ah->
1676                                      atim_window : 1)));
1677                flags |= AR_NDP_TIMER_EN;
1678        case NL80211_IFTYPE_AP:
1679                REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1680                REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1681                          TU_TO_USEC(next_beacon -
1682                                     ah->config.
1683                                     dma_beacon_response_time));
1684                REG_WRITE(ah, AR_NEXT_SWBA,
1685                          TU_TO_USEC(next_beacon -
1686                                     ah->config.
1687                                     sw_beacon_response_time));
1688                flags |=
1689                        AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1690                break;
1691        default:
1692                ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1693                        "%s: unsupported opmode: %d\n",
1694                        __func__, ah->opmode);
1695                return;
1696                break;
1697        }
1698
1699        REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1700        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1701        REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1702        REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1703
1704        REGWRITE_BUFFER_FLUSH(ah);
1705
1706        beacon_period &= ~ATH9K_BEACON_ENA;
1707        if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1708                ath9k_hw_reset_tsf(ah);
1709        }
1710
1711        REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1712}
1713EXPORT_SYMBOL(ath9k_hw_beaconinit);
1714
1715void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1716                                    const struct ath9k_beacon_state *bs)
1717{
1718        u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1719        struct ath9k_hw_capabilities *pCap = &ah->caps;
1720        struct ath_common *common = ath9k_hw_common(ah);
1721
1722        ENABLE_REGWRITE_BUFFER(ah);
1723
1724        REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1725
1726        REG_WRITE(ah, AR_BEACON_PERIOD,
1727                  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1728        REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1729                  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1730
1731        REGWRITE_BUFFER_FLUSH(ah);
1732
1733        REG_RMW_FIELD(ah, AR_RSSI_THR,
1734                      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1735
1736        beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1737
1738        if (bs->bs_sleepduration > beaconintval)
1739                beaconintval = bs->bs_sleepduration;
1740
1741        dtimperiod = bs->bs_dtimperiod;
1742        if (bs->bs_sleepduration > dtimperiod)
1743                dtimperiod = bs->bs_sleepduration;
1744
1745        if (beaconintval == dtimperiod)
1746                nextTbtt = bs->bs_nextdtim;
1747        else
1748                nextTbtt = bs->bs_nexttbtt;
1749
1750        ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1751        ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1752        ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1753        ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1754
1755        ENABLE_REGWRITE_BUFFER(ah);
1756
1757        REG_WRITE(ah, AR_NEXT_DTIM,
1758                  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1759        REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1760
1761        REG_WRITE(ah, AR_SLEEP1,
1762                  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1763                  | AR_SLEEP1_ASSUME_DTIM);
1764
1765        if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1766                beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1767        else
1768                beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1769
1770        REG_WRITE(ah, AR_SLEEP2,
1771                  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1772
1773        REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1774        REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1775
1776        REGWRITE_BUFFER_FLUSH(ah);
1777
1778        REG_SET_BIT(ah, AR_TIMER_MODE,
1779                    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1780                    AR_DTIM_TIMER_EN);
1781
1782        /* TSF Out of Range Threshold */
1783        REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1784}
1785EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1786
1787/*******************/
1788/* HW Capabilities */
1789/*******************/
1790
1791int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1792{
1793        struct ath9k_hw_capabilities *pCap = &ah->caps;
1794        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1795        struct ath_common *common = ath9k_hw_common(ah);
1796        struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1797
1798        u16 capField = 0, eeval;
1799        u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1800
1801        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1802        regulatory->current_rd = eeval;
1803
1804        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1805        if (AR_SREV_9285_12_OR_LATER(ah))
1806                eeval |= AR9285_RDEXT_DEFAULT;
1807        regulatory->current_rd_ext = eeval;
1808
1809        capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1810
1811        if (ah->opmode != NL80211_IFTYPE_AP &&
1812            ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1813                if (regulatory->current_rd == 0x64 ||
1814                    regulatory->current_rd == 0x65)
1815                        regulatory->current_rd += 5;
1816                else if (regulatory->current_rd == 0x41)
1817                        regulatory->current_rd = 0x43;
1818                ath_dbg(common, ATH_DBG_REGULATORY,
1819                        "regdomain mapped to 0x%x\n", regulatory->current_rd);
1820        }
1821
1822        eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1823        if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1824                ath_err(common,
1825                        "no band has been marked as supported in EEPROM\n");
1826                return -EINVAL;
1827        }
1828
1829        if (eeval & AR5416_OPFLAGS_11A)
1830                pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1831
1832        if (eeval & AR5416_OPFLAGS_11G)
1833                pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1834
1835        pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1836        /*
1837         * For AR9271 we will temporarilly uses the rx chainmax as read from
1838         * the EEPROM.
1839         */
1840        if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1841            !(eeval & AR5416_OPFLAGS_11A) &&
1842            !(AR_SREV_9271(ah)))
1843                /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1844                pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1845        else
1846                /* Use rx_chainmask from EEPROM. */
1847                pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1848
1849        ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1850
1851        /* enable key search for every frame in an aggregate */
1852        if (AR_SREV_9300_20_OR_LATER(ah))
1853                ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1854
1855        pCap->low_2ghz_chan = 2312;
1856        pCap->high_2ghz_chan = 2732;
1857
1858        pCap->low_5ghz_chan = 4920;
1859        pCap->high_5ghz_chan = 6100;
1860
1861        common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1862
1863        if (ah->config.ht_enable)
1864                pCap->hw_caps |= ATH9K_HW_CAP_HT;
1865        else
1866                pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1867
1868        if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1869                pCap->total_queues =
1870                        MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1871        else
1872                pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1873
1874        if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1875                pCap->keycache_size =
1876                        1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1877        else
1878                pCap->keycache_size = AR_KEYTABLE_SIZE;
1879
1880        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1881                pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1882        else
1883                pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1884
1885        if (AR_SREV_9271(ah))
1886                pCap->num_gpio_pins = AR9271_NUM_GPIO;
1887        else if (AR_DEVID_7010(ah))
1888                pCap->num_gpio_pins = AR7010_NUM_GPIO;
1889        else if (AR_SREV_9285_12_OR_LATER(ah))
1890                pCap->num_gpio_pins = AR9285_NUM_GPIO;
1891        else if (AR_SREV_9280_20_OR_LATER(ah))
1892                pCap->num_gpio_pins = AR928X_NUM_GPIO;
1893        else
1894                pCap->num_gpio_pins = AR_NUM_GPIO;
1895
1896        if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1897                pCap->hw_caps |= ATH9K_HW_CAP_CST;
1898                pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1899        } else {
1900                pCap->rts_aggr_limit = (8 * 1024);
1901        }
1902
1903        pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1904
1905#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1906        ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1907        if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1908                ah->rfkill_gpio =
1909                        MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1910                ah->rfkill_polarity =
1911                        MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1912
1913                pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1914        }
1915#endif
1916        if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1917                pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1918        else
1919                pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1920
1921        if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1922                pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1923        else
1924                pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1925
1926        if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1927                pCap->reg_cap =
1928                        AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1929                        AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1930                        AR_EEPROM_EEREGCAP_EN_KK_U2 |
1931                        AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1932        } else {
1933                pCap->reg_cap =
1934                        AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1935                        AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1936        }
1937
1938        /* Advertise midband for AR5416 with FCC midband set in eeprom */
1939        if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1940            AR_SREV_5416(ah))
1941                pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1942
1943        if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1944                btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1945                btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1946
1947                if (AR_SREV_9285(ah)) {
1948                        btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1949                        btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1950                } else {
1951                        btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1952                }
1953        } else {
1954                btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1955        }
1956
1957        if (AR_SREV_9300_20_OR_LATER(ah)) {
1958                pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1959                if (!AR_SREV_9485(ah))
1960                        pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1961
1962                pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1963                pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1964                pCap->rx_status_len = sizeof(struct ar9003_rxs);
1965                pCap->tx_desc_len = sizeof(struct ar9003_txc);
1966                pCap->txs_len = sizeof(struct ar9003_txs);
1967                if (!ah->config.paprd_disable &&
1968                    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1969                        pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1970        } else {
1971                pCap->tx_desc_len = sizeof(struct ath_desc);
1972                if (AR_SREV_9280_20(ah) &&
1973                    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1974                      AR5416_EEP_MINOR_VER_16) ||
1975                     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1976                        pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1977        }
1978
1979        if (AR_SREV_9300_20_OR_LATER(ah))
1980                pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1981
1982        if (AR_SREV_9300_20_OR_LATER(ah))
1983                ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1984
1985        if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1986                pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1987
1988        if (AR_SREV_9285(ah))
1989                if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1990                        ant_div_ctl1 =
1991                                ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1992                        if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1993                                pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1994                }
1995        if (AR_SREV_9300_20_OR_LATER(ah)) {
1996                if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1997                        pCap->hw_caps |= ATH9K_HW_CAP_APM;
1998        }
1999
2000
2001
2002        if (AR_SREV_9485_10(ah)) {
2003                pCap->pcie_lcr_extsync_en = true;
2004                pCap->pcie_lcr_offset = 0x80;
2005        }
2006
2007        tx_chainmask = pCap->tx_chainmask;
2008        rx_chainmask = pCap->rx_chainmask;
2009        while (tx_chainmask || rx_chainmask) {
2010                if (tx_chainmask & BIT(0))
2011                        pCap->max_txchains++;
2012                if (rx_chainmask & BIT(0))
2013                        pCap->max_rxchains++;
2014
2015                tx_chainmask >>= 1;
2016                rx_chainmask >>= 1;
2017        }
2018
2019        return 0;
2020}
2021
2022/****************************/
2023/* GPIO / RFKILL / Antennae */
2024/****************************/
2025
2026static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2027                                         u32 gpio, u32 type)
2028{
2029        int addr;
2030        u32 gpio_shift, tmp;
2031
2032        if (gpio > 11)
2033                addr = AR_GPIO_OUTPUT_MUX3;
2034        else if (gpio > 5)
2035                addr = AR_GPIO_OUTPUT_MUX2;
2036        else
2037                addr = AR_GPIO_OUTPUT_MUX1;
2038
2039        gpio_shift = (gpio % 6) * 5;
2040
2041        if (AR_SREV_9280_20_OR_LATER(ah)
2042            || (addr != AR_GPIO_OUTPUT_MUX1)) {
2043                REG_RMW(ah, addr, (type << gpio_shift),
2044                        (0x1f << gpio_shift));
2045        } else {
2046                tmp = REG_READ(ah, addr);
2047                tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2048                tmp &= ~(0x1f << gpio_shift);
2049                tmp |= (type << gpio_shift);
2050                REG_WRITE(ah, addr, tmp);
2051        }
2052}
2053
2054void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2055{
2056        u32 gpio_shift;
2057
2058        BUG_ON(gpio >= ah->caps.num_gpio_pins);
2059
2060        if (AR_DEVID_7010(ah)) {
2061                gpio_shift = gpio;
2062                REG_RMW(ah, AR7010_GPIO_OE,
2063                        (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2064                        (AR7010_GPIO_OE_MASK << gpio_shift));
2065                return;
2066        }
2067
2068        gpio_shift = gpio << 1;
2069        REG_RMW(ah,
2070                AR_GPIO_OE_OUT,
2071                (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2072                (AR_GPIO_OE_OUT_DRV << gpio_shift));
2073}
2074EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2075
2076u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2077{
2078#define MS_REG_READ(x, y) \
2079        (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2080
2081        if (gpio >= ah->caps.num_gpio_pins)
2082                return 0xffffffff;
2083
2084        if (AR_DEVID_7010(ah)) {
2085                u32 val;
2086                val = REG_READ(ah, AR7010_GPIO_IN);
2087                return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2088        } else if (AR_SREV_9300_20_OR_LATER(ah))
2089                return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2090                        AR_GPIO_BIT(gpio)) != 0;
2091        else if (AR_SREV_9271(ah))
2092                return MS_REG_READ(AR9271, gpio) != 0;
2093        else if (AR_SREV_9287_11_OR_LATER(ah))
2094                return MS_REG_READ(AR9287, gpio) != 0;
2095        else if (AR_SREV_9285_12_OR_LATER(ah))
2096                return MS_REG_READ(AR9285, gpio) != 0;
2097        else if (AR_SREV_9280_20_OR_LATER(ah))
2098                return MS_REG_READ(AR928X, gpio) != 0;
2099        else
2100                return MS_REG_READ(AR, gpio) != 0;
2101}
2102EXPORT_SYMBOL(ath9k_hw_gpio_get);
2103
2104void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2105                         u32 ah_signal_type)
2106{
2107        u32 gpio_shift;
2108
2109        if (AR_DEVID_7010(ah)) {
2110                gpio_shift = gpio;
2111                REG_RMW(ah, AR7010_GPIO_OE,
2112                        (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2113                        (AR7010_GPIO_OE_MASK << gpio_shift));
2114                return;
2115        }
2116
2117        ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2118        gpio_shift = 2 * gpio;
2119        REG_RMW(ah,
2120                AR_GPIO_OE_OUT,
2121                (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2122                (AR_GPIO_OE_OUT_DRV << gpio_shift));
2123}
2124EXPORT_SYMBOL(ath9k_hw_cfg_output);
2125
2126void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2127{
2128        if (AR_DEVID_7010(ah)) {
2129                val = val ? 0 : 1;
2130                REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2131                        AR_GPIO_BIT(gpio));
2132                return;
2133        }
2134
2135        if (AR_SREV_9271(ah))
2136                val = ~val;
2137
2138        REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2139                AR_GPIO_BIT(gpio));
2140}
2141EXPORT_SYMBOL(ath9k_hw_set_gpio);
2142
2143u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2144{
2145        return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2146}
2147EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2148
2149void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2150{
2151        REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2152}
2153EXPORT_SYMBOL(ath9k_hw_setantenna);
2154
2155/*********************/
2156/* General Operation */
2157/*********************/
2158
2159u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2160{
2161        u32 bits = REG_READ(ah, AR_RX_FILTER);
2162        u32 phybits = REG_READ(ah, AR_PHY_ERR);
2163
2164        if (phybits & AR_PHY_ERR_RADAR)
2165                bits |= ATH9K_RX_FILTER_PHYRADAR;
2166        if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2167                bits |= ATH9K_RX_FILTER_PHYERR;
2168
2169        return bits;
2170}
2171EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2172
2173void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2174{
2175        u32 phybits;
2176
2177        ENABLE_REGWRITE_BUFFER(ah);
2178
2179        REG_WRITE(ah, AR_RX_FILTER, bits);
2180
2181        phybits = 0;
2182        if (bits & ATH9K_RX_FILTER_PHYRADAR)
2183                phybits |= AR_PHY_ERR_RADAR;
2184        if (bits & ATH9K_RX_FILTER_PHYERR)
2185                phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2186        REG_WRITE(ah, AR_PHY_ERR, phybits);
2187
2188        if (phybits)
2189                REG_WRITE(ah, AR_RXCFG,
2190                          REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2191        else
2192                REG_WRITE(ah, AR_RXCFG,
2193                          REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2194
2195        REGWRITE_BUFFER_FLUSH(ah);
2196}
2197EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2198
2199bool ath9k_hw_phy_disable(struct ath_hw *ah)
2200{
2201        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2202                return false;
2203
2204        ath9k_hw_init_pll(ah, NULL);
2205        return true;
2206}
2207EXPORT_SYMBOL(ath9k_hw_phy_disable);
2208
2209bool ath9k_hw_disable(struct ath_hw *ah)
2210{
2211        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2212                return false;
2213
2214        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2215                return false;
2216
2217        ath9k_hw_init_pll(ah, NULL);
2218        return true;
2219}
2220EXPORT_SYMBOL(ath9k_hw_disable);
2221
2222void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2223{
2224        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2225        struct ath9k_channel *chan = ah->curchan;
2226        struct ieee80211_channel *channel = chan->chan;
2227
2228        regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2229
2230        ah->eep_ops->set_txpower(ah, chan,
2231                                 ath9k_regd_get_ctl(regulatory, chan),
2232                                 channel->max_antenna_gain * 2,
2233                                 channel->max_power * 2,
2234                                 min((u32) MAX_RATE_POWER,
2235                                 (u32) regulatory->power_limit), test);
2236}
2237EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2238
2239void ath9k_hw_setopmode(struct ath_hw *ah)
2240{
2241        ath9k_hw_set_operating_mode(ah, ah->opmode);
2242}
2243EXPORT_SYMBOL(ath9k_hw_setopmode);
2244
2245void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2246{
2247        REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2248        REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2249}
2250EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2251
2252void ath9k_hw_write_associd(struct ath_hw *ah)
2253{
2254        struct ath_common *common = ath9k_hw_common(ah);
2255
2256        REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2257        REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2258                  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2259}
2260EXPORT_SYMBOL(ath9k_hw_write_associd);
2261
2262#define ATH9K_MAX_TSF_READ 10
2263
2264u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2265{
2266        u32 tsf_lower, tsf_upper1, tsf_upper2;
2267        int i;
2268
2269        tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2270        for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2271                tsf_lower = REG_READ(ah, AR_TSF_L32);
2272                tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2273                if (tsf_upper2 == tsf_upper1)
2274                        break;
2275                tsf_upper1 = tsf_upper2;
2276        }
2277
2278        WARN_ON( i == ATH9K_MAX_TSF_READ );
2279
2280        return (((u64)tsf_upper1 << 32) | tsf_lower);
2281}
2282EXPORT_SYMBOL(ath9k_hw_gettsf64);
2283
2284void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2285{
2286        REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2287        REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2288}
2289EXPORT_SYMBOL(ath9k_hw_settsf64);
2290
2291void ath9k_hw_reset_tsf(struct ath_hw *ah)
2292{
2293        if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2294                           AH_TSF_WRITE_TIMEOUT))
2295                ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2296                        "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2297
2298        REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2299}
2300EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2301
2302void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2303{
2304        if (setting)
2305                ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2306        else
2307                ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2308}
2309EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2310
2311void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2312{
2313        struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2314        u32 macmode;
2315
2316        if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2317                macmode = AR_2040_JOINED_RX_CLEAR;
2318        else
2319                macmode = 0;
2320
2321        REG_WRITE(ah, AR_2040_MODE, macmode);
2322}
2323
2324/* HW Generic timers configuration */
2325
2326static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2327{
2328        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2329        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2330        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2331        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2332        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2333        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2334        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2335        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2336        {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2337        {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2338                                AR_NDP2_TIMER_MODE, 0x0002},
2339        {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2340                                AR_NDP2_TIMER_MODE, 0x0004},
2341        {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2342                                AR_NDP2_TIMER_MODE, 0x0008},
2343        {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2344                                AR_NDP2_TIMER_MODE, 0x0010},
2345        {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2346                                AR_NDP2_TIMER_MODE, 0x0020},
2347        {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2348                                AR_NDP2_TIMER_MODE, 0x0040},
2349        {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2350                                AR_NDP2_TIMER_MODE, 0x0080}
2351};
2352
2353/* HW generic timer primitives */
2354
2355/* compute and clear index of rightmost 1 */
2356static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2357{
2358        u32 b;
2359
2360        b = *mask;
2361        b &= (0-b);
2362        *mask &= ~b;
2363        b *= debruijn32;
2364        b >>= 27;
2365
2366        return timer_table->gen_timer_index[b];
2367}
2368
2369static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2370{
2371        return REG_READ(ah, AR_TSF_L32);
2372}
2373
2374struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2375                                          void (*trigger)(void *),
2376                                          void (*overflow)(void *),
2377                                          void *arg,
2378                                          u8 timer_index)
2379{
2380        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2381        struct ath_gen_timer *timer;
2382
2383        timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2384
2385        if (timer == NULL) {
2386                ath_err(ath9k_hw_common(ah),
2387                        "Failed to allocate memory for hw timer[%d]\n",
2388                        timer_index);
2389                return NULL;
2390        }
2391
2392        /* allocate a hardware generic timer slot */
2393        timer_table->timers[timer_index] = timer;
2394        timer->index = timer_index;
2395        timer->trigger = trigger;
2396        timer->overflow = overflow;
2397        timer->arg = arg;
2398
2399        return timer;
2400}
2401EXPORT_SYMBOL(ath_gen_timer_alloc);
2402
2403void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2404                              struct ath_gen_timer *timer,
2405                              u32 timer_next,
2406                              u32 timer_period)
2407{
2408        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2409        u32 tsf;
2410
2411        BUG_ON(!timer_period);
2412
2413        set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2414
2415        tsf = ath9k_hw_gettsf32(ah);
2416
2417        ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2418                "current tsf %x period %x timer_next %x\n",
2419                tsf, timer_period, timer_next);
2420
2421        /*
2422         * Pull timer_next forward if the current TSF already passed it
2423         * because of software latency
2424         */
2425        if (timer_next < tsf)
2426                timer_next = tsf + timer_period;
2427
2428        /*
2429         * Program generic timer registers
2430         */
2431        REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2432                 timer_next);
2433        REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2434                  timer_period);
2435        REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2436                    gen_tmr_configuration[timer->index].mode_mask);
2437
2438        /* Enable both trigger and thresh interrupt masks */
2439        REG_SET_BIT(ah, AR_IMR_S5,
2440                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2441                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2442}
2443EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2444
2445void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2446{
2447        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2448
2449        if ((timer->index < AR_FIRST_NDP_TIMER) ||
2450                (timer->index >= ATH_MAX_GEN_TIMER)) {
2451                return;
2452        }
2453
2454        /* Clear generic timer enable bits. */
2455        REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2456                        gen_tmr_configuration[timer->index].mode_mask);
2457
2458        /* Disable both trigger and thresh interrupt masks */
2459        REG_CLR_BIT(ah, AR_IMR_S5,
2460                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2461                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2462
2463        clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2464}
2465EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2466
2467void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2468{
2469        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2470
2471        /* free the hardware generic timer slot */
2472        timer_table->timers[timer->index] = NULL;
2473        kfree(timer);
2474}
2475EXPORT_SYMBOL(ath_gen_timer_free);
2476
2477/*
2478 * Generic Timer Interrupts handling
2479 */
2480void ath_gen_timer_isr(struct ath_hw *ah)
2481{
2482        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2483        struct ath_gen_timer *timer;
2484        struct ath_common *common = ath9k_hw_common(ah);
2485        u32 trigger_mask, thresh_mask, index;
2486
2487        /* get hardware generic timer interrupt status */
2488        trigger_mask = ah->intr_gen_timer_trigger;
2489        thresh_mask = ah->intr_gen_timer_thresh;
2490        trigger_mask &= timer_table->timer_mask.val;
2491        thresh_mask &= timer_table->timer_mask.val;
2492
2493        trigger_mask &= ~thresh_mask;
2494
2495        while (thresh_mask) {
2496                index = rightmost_index(timer_table, &thresh_mask);
2497                timer = timer_table->timers[index];
2498                BUG_ON(!timer);
2499                ath_dbg(common, ATH_DBG_HWTIMER,
2500                        "TSF overflow for Gen timer %d\n", index);
2501                timer->overflow(timer->arg);
2502        }
2503
2504        while (trigger_mask) {
2505                index = rightmost_index(timer_table, &trigger_mask);
2506                timer = timer_table->timers[index];
2507                BUG_ON(!timer);
2508                ath_dbg(common, ATH_DBG_HWTIMER,
2509                        "Gen timer[%d] trigger\n", index);
2510                timer->trigger(timer->arg);
2511        }
2512}
2513EXPORT_SYMBOL(ath_gen_timer_isr);
2514
2515/********/
2516/* HTC  */
2517/********/
2518
2519void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2520{
2521        ah->htc_reset_init = true;
2522}
2523EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2524
2525static struct {
2526        u32 version;
2527        const char * name;
2528} ath_mac_bb_names[] = {
2529        /* Devices with external radios */
2530        { AR_SREV_VERSION_5416_PCI,     "5416" },
2531        { AR_SREV_VERSION_5416_PCIE,    "5418" },
2532        { AR_SREV_VERSION_9100,         "9100" },
2533        { AR_SREV_VERSION_9160,         "9160" },
2534        /* Single-chip solutions */
2535        { AR_SREV_VERSION_9280,         "9280" },
2536        { AR_SREV_VERSION_9285,         "9285" },
2537        { AR_SREV_VERSION_9287,         "9287" },
2538        { AR_SREV_VERSION_9271,         "9271" },
2539        { AR_SREV_VERSION_9300,         "9300" },
2540        { AR_SREV_VERSION_9485,         "9485" },
2541};
2542
2543/* For devices with external radios */
2544static struct {
2545        u16 version;
2546        const char * name;
2547} ath_rf_names[] = {
2548        { 0,                            "5133" },
2549        { AR_RAD5133_SREV_MAJOR,        "5133" },
2550        { AR_RAD5122_SREV_MAJOR,        "5122" },
2551        { AR_RAD2133_SREV_MAJOR,        "2133" },
2552        { AR_RAD2122_SREV_MAJOR,        "2122" }
2553};
2554
2555/*
2556 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2557 */
2558static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2559{
2560        int i;
2561
2562        for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2563                if (ath_mac_bb_names[i].version == mac_bb_version) {
2564                        return ath_mac_bb_names[i].name;
2565                }
2566        }
2567
2568        return "????";
2569}
2570
2571/*
2572 * Return the RF name. "????" is returned if the RF is unknown.
2573 * Used for devices with external radios.
2574 */
2575static const char *ath9k_hw_rf_name(u16 rf_version)
2576{
2577        int i;
2578
2579        for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2580                if (ath_rf_names[i].version == rf_version) {
2581                        return ath_rf_names[i].name;
2582                }
2583        }
2584
2585        return "????";
2586}
2587
2588void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2589{
2590        int used;
2591
2592        /* chipsets >= AR9280 are single-chip */
2593        if (AR_SREV_9280_20_OR_LATER(ah)) {
2594                used = snprintf(hw_name, len,
2595                               "Atheros AR%s Rev:%x",
2596                               ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2597                               ah->hw_version.macRev);
2598        }
2599        else {
2600                used = snprintf(hw_name, len,
2601                               "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2602                               ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2603                               ah->hw_version.macRev,
2604                               ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2605                                                AR_RADIO_SREV_MAJOR)),
2606                               ah->hw_version.phyRev);
2607        }
2608
2609        hw_name[used] = '\0';
2610}
2611EXPORT_SYMBOL(ath9k_hw_name);
2612