linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/err.h>
  24#include <linux/mutex.h>
  25#include <linux/suspend.h>
  26#include <linux/delay.h>
  27#include <linux/regulator/consumer.h>
  28#include <linux/regulator/driver.h>
  29#include <linux/regulator/machine.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35
  36#define rdev_err(rdev, fmt, ...)                                        \
  37        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_warn(rdev, fmt, ...)                                       \
  39        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_info(rdev, fmt, ...)                                       \
  41        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_dbg(rdev, fmt, ...)                                        \
  43        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44
  45static DEFINE_MUTEX(regulator_list_mutex);
  46static LIST_HEAD(regulator_list);
  47static LIST_HEAD(regulator_map_list);
  48static bool has_full_constraints;
  49static bool board_wants_dummy_regulator;
  50
  51#ifdef CONFIG_DEBUG_FS
  52static struct dentry *debugfs_root;
  53#endif
  54
  55/*
  56 * struct regulator_map
  57 *
  58 * Used to provide symbolic supply names to devices.
  59 */
  60struct regulator_map {
  61        struct list_head list;
  62        const char *dev_name;   /* The dev_name() for the consumer */
  63        const char *supply;
  64        struct regulator_dev *regulator;
  65};
  66
  67/*
  68 * struct regulator
  69 *
  70 * One for each consumer device.
  71 */
  72struct regulator {
  73        struct device *dev;
  74        struct list_head list;
  75        int uA_load;
  76        int min_uV;
  77        int max_uV;
  78        char *supply_name;
  79        struct device_attribute dev_attr;
  80        struct regulator_dev *rdev;
  81};
  82
  83static int _regulator_is_enabled(struct regulator_dev *rdev);
  84static int _regulator_disable(struct regulator_dev *rdev,
  85                struct regulator_dev **supply_rdev_ptr);
  86static int _regulator_get_voltage(struct regulator_dev *rdev);
  87static int _regulator_get_current_limit(struct regulator_dev *rdev);
  88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  89static void _notifier_call_chain(struct regulator_dev *rdev,
  90                                  unsigned long event, void *data);
  91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  92                                     int min_uV, int max_uV);
  93
  94static const char *rdev_get_name(struct regulator_dev *rdev)
  95{
  96        if (rdev->constraints && rdev->constraints->name)
  97                return rdev->constraints->name;
  98        else if (rdev->desc->name)
  99                return rdev->desc->name;
 100        else
 101                return "";
 102}
 103
 104/* gets the regulator for a given consumer device */
 105static struct regulator *get_device_regulator(struct device *dev)
 106{
 107        struct regulator *regulator = NULL;
 108        struct regulator_dev *rdev;
 109
 110        mutex_lock(&regulator_list_mutex);
 111        list_for_each_entry(rdev, &regulator_list, list) {
 112                mutex_lock(&rdev->mutex);
 113                list_for_each_entry(regulator, &rdev->consumer_list, list) {
 114                        if (regulator->dev == dev) {
 115                                mutex_unlock(&rdev->mutex);
 116                                mutex_unlock(&regulator_list_mutex);
 117                                return regulator;
 118                        }
 119                }
 120                mutex_unlock(&rdev->mutex);
 121        }
 122        mutex_unlock(&regulator_list_mutex);
 123        return NULL;
 124}
 125
 126/* Platform voltage constraint check */
 127static int regulator_check_voltage(struct regulator_dev *rdev,
 128                                   int *min_uV, int *max_uV)
 129{
 130        BUG_ON(*min_uV > *max_uV);
 131
 132        if (!rdev->constraints) {
 133                rdev_err(rdev, "no constraints\n");
 134                return -ENODEV;
 135        }
 136        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 137                rdev_err(rdev, "operation not allowed\n");
 138                return -EPERM;
 139        }
 140
 141        if (*max_uV > rdev->constraints->max_uV)
 142                *max_uV = rdev->constraints->max_uV;
 143        if (*min_uV < rdev->constraints->min_uV)
 144                *min_uV = rdev->constraints->min_uV;
 145
 146        if (*min_uV > *max_uV)
 147                return -EINVAL;
 148
 149        return 0;
 150}
 151
 152/* Make sure we select a voltage that suits the needs of all
 153 * regulator consumers
 154 */
 155static int regulator_check_consumers(struct regulator_dev *rdev,
 156                                     int *min_uV, int *max_uV)
 157{
 158        struct regulator *regulator;
 159
 160        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 161                if (*max_uV > regulator->max_uV)
 162                        *max_uV = regulator->max_uV;
 163                if (*min_uV < regulator->min_uV)
 164                        *min_uV = regulator->min_uV;
 165        }
 166
 167        if (*min_uV > *max_uV)
 168                return -EINVAL;
 169
 170        return 0;
 171}
 172
 173/* current constraint check */
 174static int regulator_check_current_limit(struct regulator_dev *rdev,
 175                                        int *min_uA, int *max_uA)
 176{
 177        BUG_ON(*min_uA > *max_uA);
 178
 179        if (!rdev->constraints) {
 180                rdev_err(rdev, "no constraints\n");
 181                return -ENODEV;
 182        }
 183        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 184                rdev_err(rdev, "operation not allowed\n");
 185                return -EPERM;
 186        }
 187
 188        if (*max_uA > rdev->constraints->max_uA)
 189                *max_uA = rdev->constraints->max_uA;
 190        if (*min_uA < rdev->constraints->min_uA)
 191                *min_uA = rdev->constraints->min_uA;
 192
 193        if (*min_uA > *max_uA)
 194                return -EINVAL;
 195
 196        return 0;
 197}
 198
 199/* operating mode constraint check */
 200static int regulator_check_mode(struct regulator_dev *rdev, int mode)
 201{
 202        switch (mode) {
 203        case REGULATOR_MODE_FAST:
 204        case REGULATOR_MODE_NORMAL:
 205        case REGULATOR_MODE_IDLE:
 206        case REGULATOR_MODE_STANDBY:
 207                break;
 208        default:
 209                return -EINVAL;
 210        }
 211
 212        if (!rdev->constraints) {
 213                rdev_err(rdev, "no constraints\n");
 214                return -ENODEV;
 215        }
 216        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 217                rdev_err(rdev, "operation not allowed\n");
 218                return -EPERM;
 219        }
 220        if (!(rdev->constraints->valid_modes_mask & mode)) {
 221                rdev_err(rdev, "invalid mode %x\n", mode);
 222                return -EINVAL;
 223        }
 224        return 0;
 225}
 226
 227/* dynamic regulator mode switching constraint check */
 228static int regulator_check_drms(struct regulator_dev *rdev)
 229{
 230        if (!rdev->constraints) {
 231                rdev_err(rdev, "no constraints\n");
 232                return -ENODEV;
 233        }
 234        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 235                rdev_err(rdev, "operation not allowed\n");
 236                return -EPERM;
 237        }
 238        return 0;
 239}
 240
 241static ssize_t device_requested_uA_show(struct device *dev,
 242                             struct device_attribute *attr, char *buf)
 243{
 244        struct regulator *regulator;
 245
 246        regulator = get_device_regulator(dev);
 247        if (regulator == NULL)
 248                return 0;
 249
 250        return sprintf(buf, "%d\n", regulator->uA_load);
 251}
 252
 253static ssize_t regulator_uV_show(struct device *dev,
 254                                struct device_attribute *attr, char *buf)
 255{
 256        struct regulator_dev *rdev = dev_get_drvdata(dev);
 257        ssize_t ret;
 258
 259        mutex_lock(&rdev->mutex);
 260        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 261        mutex_unlock(&rdev->mutex);
 262
 263        return ret;
 264}
 265static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 266
 267static ssize_t regulator_uA_show(struct device *dev,
 268                                struct device_attribute *attr, char *buf)
 269{
 270        struct regulator_dev *rdev = dev_get_drvdata(dev);
 271
 272        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 273}
 274static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 275
 276static ssize_t regulator_name_show(struct device *dev,
 277                             struct device_attribute *attr, char *buf)
 278{
 279        struct regulator_dev *rdev = dev_get_drvdata(dev);
 280
 281        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 282}
 283
 284static ssize_t regulator_print_opmode(char *buf, int mode)
 285{
 286        switch (mode) {
 287        case REGULATOR_MODE_FAST:
 288                return sprintf(buf, "fast\n");
 289        case REGULATOR_MODE_NORMAL:
 290                return sprintf(buf, "normal\n");
 291        case REGULATOR_MODE_IDLE:
 292                return sprintf(buf, "idle\n");
 293        case REGULATOR_MODE_STANDBY:
 294                return sprintf(buf, "standby\n");
 295        }
 296        return sprintf(buf, "unknown\n");
 297}
 298
 299static ssize_t regulator_opmode_show(struct device *dev,
 300                                    struct device_attribute *attr, char *buf)
 301{
 302        struct regulator_dev *rdev = dev_get_drvdata(dev);
 303
 304        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 305}
 306static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 307
 308static ssize_t regulator_print_state(char *buf, int state)
 309{
 310        if (state > 0)
 311                return sprintf(buf, "enabled\n");
 312        else if (state == 0)
 313                return sprintf(buf, "disabled\n");
 314        else
 315                return sprintf(buf, "unknown\n");
 316}
 317
 318static ssize_t regulator_state_show(struct device *dev,
 319                                   struct device_attribute *attr, char *buf)
 320{
 321        struct regulator_dev *rdev = dev_get_drvdata(dev);
 322        ssize_t ret;
 323
 324        mutex_lock(&rdev->mutex);
 325        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 326        mutex_unlock(&rdev->mutex);
 327
 328        return ret;
 329}
 330static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 331
 332static ssize_t regulator_status_show(struct device *dev,
 333                                   struct device_attribute *attr, char *buf)
 334{
 335        struct regulator_dev *rdev = dev_get_drvdata(dev);
 336        int status;
 337        char *label;
 338
 339        status = rdev->desc->ops->get_status(rdev);
 340        if (status < 0)
 341                return status;
 342
 343        switch (status) {
 344        case REGULATOR_STATUS_OFF:
 345                label = "off";
 346                break;
 347        case REGULATOR_STATUS_ON:
 348                label = "on";
 349                break;
 350        case REGULATOR_STATUS_ERROR:
 351                label = "error";
 352                break;
 353        case REGULATOR_STATUS_FAST:
 354                label = "fast";
 355                break;
 356        case REGULATOR_STATUS_NORMAL:
 357                label = "normal";
 358                break;
 359        case REGULATOR_STATUS_IDLE:
 360                label = "idle";
 361                break;
 362        case REGULATOR_STATUS_STANDBY:
 363                label = "standby";
 364                break;
 365        default:
 366                return -ERANGE;
 367        }
 368
 369        return sprintf(buf, "%s\n", label);
 370}
 371static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 372
 373static ssize_t regulator_min_uA_show(struct device *dev,
 374                                    struct device_attribute *attr, char *buf)
 375{
 376        struct regulator_dev *rdev = dev_get_drvdata(dev);
 377
 378        if (!rdev->constraints)
 379                return sprintf(buf, "constraint not defined\n");
 380
 381        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 382}
 383static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 384
 385static ssize_t regulator_max_uA_show(struct device *dev,
 386                                    struct device_attribute *attr, char *buf)
 387{
 388        struct regulator_dev *rdev = dev_get_drvdata(dev);
 389
 390        if (!rdev->constraints)
 391                return sprintf(buf, "constraint not defined\n");
 392
 393        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 394}
 395static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 396
 397static ssize_t regulator_min_uV_show(struct device *dev,
 398                                    struct device_attribute *attr, char *buf)
 399{
 400        struct regulator_dev *rdev = dev_get_drvdata(dev);
 401
 402        if (!rdev->constraints)
 403                return sprintf(buf, "constraint not defined\n");
 404
 405        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 406}
 407static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 408
 409static ssize_t regulator_max_uV_show(struct device *dev,
 410                                    struct device_attribute *attr, char *buf)
 411{
 412        struct regulator_dev *rdev = dev_get_drvdata(dev);
 413
 414        if (!rdev->constraints)
 415                return sprintf(buf, "constraint not defined\n");
 416
 417        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 418}
 419static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 420
 421static ssize_t regulator_total_uA_show(struct device *dev,
 422                                      struct device_attribute *attr, char *buf)
 423{
 424        struct regulator_dev *rdev = dev_get_drvdata(dev);
 425        struct regulator *regulator;
 426        int uA = 0;
 427
 428        mutex_lock(&rdev->mutex);
 429        list_for_each_entry(regulator, &rdev->consumer_list, list)
 430                uA += regulator->uA_load;
 431        mutex_unlock(&rdev->mutex);
 432        return sprintf(buf, "%d\n", uA);
 433}
 434static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 435
 436static ssize_t regulator_num_users_show(struct device *dev,
 437                                      struct device_attribute *attr, char *buf)
 438{
 439        struct regulator_dev *rdev = dev_get_drvdata(dev);
 440        return sprintf(buf, "%d\n", rdev->use_count);
 441}
 442
 443static ssize_t regulator_type_show(struct device *dev,
 444                                  struct device_attribute *attr, char *buf)
 445{
 446        struct regulator_dev *rdev = dev_get_drvdata(dev);
 447
 448        switch (rdev->desc->type) {
 449        case REGULATOR_VOLTAGE:
 450                return sprintf(buf, "voltage\n");
 451        case REGULATOR_CURRENT:
 452                return sprintf(buf, "current\n");
 453        }
 454        return sprintf(buf, "unknown\n");
 455}
 456
 457static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 458                                struct device_attribute *attr, char *buf)
 459{
 460        struct regulator_dev *rdev = dev_get_drvdata(dev);
 461
 462        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 463}
 464static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 465                regulator_suspend_mem_uV_show, NULL);
 466
 467static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 468                                struct device_attribute *attr, char *buf)
 469{
 470        struct regulator_dev *rdev = dev_get_drvdata(dev);
 471
 472        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 473}
 474static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 475                regulator_suspend_disk_uV_show, NULL);
 476
 477static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 478                                struct device_attribute *attr, char *buf)
 479{
 480        struct regulator_dev *rdev = dev_get_drvdata(dev);
 481
 482        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 483}
 484static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 485                regulator_suspend_standby_uV_show, NULL);
 486
 487static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 488                                struct device_attribute *attr, char *buf)
 489{
 490        struct regulator_dev *rdev = dev_get_drvdata(dev);
 491
 492        return regulator_print_opmode(buf,
 493                rdev->constraints->state_mem.mode);
 494}
 495static DEVICE_ATTR(suspend_mem_mode, 0444,
 496                regulator_suspend_mem_mode_show, NULL);
 497
 498static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 499                                struct device_attribute *attr, char *buf)
 500{
 501        struct regulator_dev *rdev = dev_get_drvdata(dev);
 502
 503        return regulator_print_opmode(buf,
 504                rdev->constraints->state_disk.mode);
 505}
 506static DEVICE_ATTR(suspend_disk_mode, 0444,
 507                regulator_suspend_disk_mode_show, NULL);
 508
 509static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 510                                struct device_attribute *attr, char *buf)
 511{
 512        struct regulator_dev *rdev = dev_get_drvdata(dev);
 513
 514        return regulator_print_opmode(buf,
 515                rdev->constraints->state_standby.mode);
 516}
 517static DEVICE_ATTR(suspend_standby_mode, 0444,
 518                regulator_suspend_standby_mode_show, NULL);
 519
 520static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 521                                   struct device_attribute *attr, char *buf)
 522{
 523        struct regulator_dev *rdev = dev_get_drvdata(dev);
 524
 525        return regulator_print_state(buf,
 526                        rdev->constraints->state_mem.enabled);
 527}
 528static DEVICE_ATTR(suspend_mem_state, 0444,
 529                regulator_suspend_mem_state_show, NULL);
 530
 531static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 532                                   struct device_attribute *attr, char *buf)
 533{
 534        struct regulator_dev *rdev = dev_get_drvdata(dev);
 535
 536        return regulator_print_state(buf,
 537                        rdev->constraints->state_disk.enabled);
 538}
 539static DEVICE_ATTR(suspend_disk_state, 0444,
 540                regulator_suspend_disk_state_show, NULL);
 541
 542static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 543                                   struct device_attribute *attr, char *buf)
 544{
 545        struct regulator_dev *rdev = dev_get_drvdata(dev);
 546
 547        return regulator_print_state(buf,
 548                        rdev->constraints->state_standby.enabled);
 549}
 550static DEVICE_ATTR(suspend_standby_state, 0444,
 551                regulator_suspend_standby_state_show, NULL);
 552
 553
 554/*
 555 * These are the only attributes are present for all regulators.
 556 * Other attributes are a function of regulator functionality.
 557 */
 558static struct device_attribute regulator_dev_attrs[] = {
 559        __ATTR(name, 0444, regulator_name_show, NULL),
 560        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 561        __ATTR(type, 0444, regulator_type_show, NULL),
 562        __ATTR_NULL,
 563};
 564
 565static void regulator_dev_release(struct device *dev)
 566{
 567        struct regulator_dev *rdev = dev_get_drvdata(dev);
 568        kfree(rdev);
 569}
 570
 571static struct class regulator_class = {
 572        .name = "regulator",
 573        .dev_release = regulator_dev_release,
 574        .dev_attrs = regulator_dev_attrs,
 575};
 576
 577/* Calculate the new optimum regulator operating mode based on the new total
 578 * consumer load. All locks held by caller */
 579static void drms_uA_update(struct regulator_dev *rdev)
 580{
 581        struct regulator *sibling;
 582        int current_uA = 0, output_uV, input_uV, err;
 583        unsigned int mode;
 584
 585        err = regulator_check_drms(rdev);
 586        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 587            (!rdev->desc->ops->get_voltage &&
 588             !rdev->desc->ops->get_voltage_sel) ||
 589            !rdev->desc->ops->set_mode)
 590                return;
 591
 592        /* get output voltage */
 593        output_uV = _regulator_get_voltage(rdev);
 594        if (output_uV <= 0)
 595                return;
 596
 597        /* get input voltage */
 598        input_uV = 0;
 599        if (rdev->supply)
 600                input_uV = _regulator_get_voltage(rdev);
 601        if (input_uV <= 0)
 602                input_uV = rdev->constraints->input_uV;
 603        if (input_uV <= 0)
 604                return;
 605
 606        /* calc total requested load */
 607        list_for_each_entry(sibling, &rdev->consumer_list, list)
 608                current_uA += sibling->uA_load;
 609
 610        /* now get the optimum mode for our new total regulator load */
 611        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 612                                                  output_uV, current_uA);
 613
 614        /* check the new mode is allowed */
 615        err = regulator_check_mode(rdev, mode);
 616        if (err == 0)
 617                rdev->desc->ops->set_mode(rdev, mode);
 618}
 619
 620static int suspend_set_state(struct regulator_dev *rdev,
 621        struct regulator_state *rstate)
 622{
 623        int ret = 0;
 624        bool can_set_state;
 625
 626        can_set_state = rdev->desc->ops->set_suspend_enable &&
 627                rdev->desc->ops->set_suspend_disable;
 628
 629        /* If we have no suspend mode configration don't set anything;
 630         * only warn if the driver actually makes the suspend mode
 631         * configurable.
 632         */
 633        if (!rstate->enabled && !rstate->disabled) {
 634                if (can_set_state)
 635                        rdev_warn(rdev, "No configuration\n");
 636                return 0;
 637        }
 638
 639        if (rstate->enabled && rstate->disabled) {
 640                rdev_err(rdev, "invalid configuration\n");
 641                return -EINVAL;
 642        }
 643
 644        if (!can_set_state) {
 645                rdev_err(rdev, "no way to set suspend state\n");
 646                return -EINVAL;
 647        }
 648
 649        if (rstate->enabled)
 650                ret = rdev->desc->ops->set_suspend_enable(rdev);
 651        else
 652                ret = rdev->desc->ops->set_suspend_disable(rdev);
 653        if (ret < 0) {
 654                rdev_err(rdev, "failed to enabled/disable\n");
 655                return ret;
 656        }
 657
 658        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 659                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 660                if (ret < 0) {
 661                        rdev_err(rdev, "failed to set voltage\n");
 662                        return ret;
 663                }
 664        }
 665
 666        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 667                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 668                if (ret < 0) {
 669                        rdev_err(rdev, "failed to set mode\n");
 670                        return ret;
 671                }
 672        }
 673        return ret;
 674}
 675
 676/* locks held by caller */
 677static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 678{
 679        if (!rdev->constraints)
 680                return -EINVAL;
 681
 682        switch (state) {
 683        case PM_SUSPEND_STANDBY:
 684                return suspend_set_state(rdev,
 685                        &rdev->constraints->state_standby);
 686        case PM_SUSPEND_MEM:
 687                return suspend_set_state(rdev,
 688                        &rdev->constraints->state_mem);
 689        case PM_SUSPEND_MAX:
 690                return suspend_set_state(rdev,
 691                        &rdev->constraints->state_disk);
 692        default:
 693                return -EINVAL;
 694        }
 695}
 696
 697static void print_constraints(struct regulator_dev *rdev)
 698{
 699        struct regulation_constraints *constraints = rdev->constraints;
 700        char buf[80] = "";
 701        int count = 0;
 702        int ret;
 703
 704        if (constraints->min_uV && constraints->max_uV) {
 705                if (constraints->min_uV == constraints->max_uV)
 706                        count += sprintf(buf + count, "%d mV ",
 707                                         constraints->min_uV / 1000);
 708                else
 709                        count += sprintf(buf + count, "%d <--> %d mV ",
 710                                         constraints->min_uV / 1000,
 711                                         constraints->max_uV / 1000);
 712        }
 713
 714        if (!constraints->min_uV ||
 715            constraints->min_uV != constraints->max_uV) {
 716                ret = _regulator_get_voltage(rdev);
 717                if (ret > 0)
 718                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 719        }
 720
 721        if (constraints->min_uA && constraints->max_uA) {
 722                if (constraints->min_uA == constraints->max_uA)
 723                        count += sprintf(buf + count, "%d mA ",
 724                                         constraints->min_uA / 1000);
 725                else
 726                        count += sprintf(buf + count, "%d <--> %d mA ",
 727                                         constraints->min_uA / 1000,
 728                                         constraints->max_uA / 1000);
 729        }
 730
 731        if (!constraints->min_uA ||
 732            constraints->min_uA != constraints->max_uA) {
 733                ret = _regulator_get_current_limit(rdev);
 734                if (ret > 0)
 735                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 736        }
 737
 738        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 739                count += sprintf(buf + count, "fast ");
 740        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 741                count += sprintf(buf + count, "normal ");
 742        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 743                count += sprintf(buf + count, "idle ");
 744        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 745                count += sprintf(buf + count, "standby");
 746
 747        rdev_info(rdev, "%s\n", buf);
 748}
 749
 750static int machine_constraints_voltage(struct regulator_dev *rdev,
 751        struct regulation_constraints *constraints)
 752{
 753        struct regulator_ops *ops = rdev->desc->ops;
 754        int ret;
 755
 756        /* do we need to apply the constraint voltage */
 757        if (rdev->constraints->apply_uV &&
 758            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 759                ret = _regulator_do_set_voltage(rdev,
 760                                                rdev->constraints->min_uV,
 761                                                rdev->constraints->max_uV);
 762                if (ret < 0) {
 763                        rdev_err(rdev, "failed to apply %duV constraint\n",
 764                                 rdev->constraints->min_uV);
 765                        rdev->constraints = NULL;
 766                        return ret;
 767                }
 768        }
 769
 770        /* constrain machine-level voltage specs to fit
 771         * the actual range supported by this regulator.
 772         */
 773        if (ops->list_voltage && rdev->desc->n_voltages) {
 774                int     count = rdev->desc->n_voltages;
 775                int     i;
 776                int     min_uV = INT_MAX;
 777                int     max_uV = INT_MIN;
 778                int     cmin = constraints->min_uV;
 779                int     cmax = constraints->max_uV;
 780
 781                /* it's safe to autoconfigure fixed-voltage supplies
 782                   and the constraints are used by list_voltage. */
 783                if (count == 1 && !cmin) {
 784                        cmin = 1;
 785                        cmax = INT_MAX;
 786                        constraints->min_uV = cmin;
 787                        constraints->max_uV = cmax;
 788                }
 789
 790                /* voltage constraints are optional */
 791                if ((cmin == 0) && (cmax == 0))
 792                        return 0;
 793
 794                /* else require explicit machine-level constraints */
 795                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 796                        rdev_err(rdev, "invalid voltage constraints\n");
 797                        return -EINVAL;
 798                }
 799
 800                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 801                for (i = 0; i < count; i++) {
 802                        int     value;
 803
 804                        value = ops->list_voltage(rdev, i);
 805                        if (value <= 0)
 806                                continue;
 807
 808                        /* maybe adjust [min_uV..max_uV] */
 809                        if (value >= cmin && value < min_uV)
 810                                min_uV = value;
 811                        if (value <= cmax && value > max_uV)
 812                                max_uV = value;
 813                }
 814
 815                /* final: [min_uV..max_uV] valid iff constraints valid */
 816                if (max_uV < min_uV) {
 817                        rdev_err(rdev, "unsupportable voltage constraints\n");
 818                        return -EINVAL;
 819                }
 820
 821                /* use regulator's subset of machine constraints */
 822                if (constraints->min_uV < min_uV) {
 823                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 824                                 constraints->min_uV, min_uV);
 825                        constraints->min_uV = min_uV;
 826                }
 827                if (constraints->max_uV > max_uV) {
 828                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 829                                 constraints->max_uV, max_uV);
 830                        constraints->max_uV = max_uV;
 831                }
 832        }
 833
 834        return 0;
 835}
 836
 837/**
 838 * set_machine_constraints - sets regulator constraints
 839 * @rdev: regulator source
 840 * @constraints: constraints to apply
 841 *
 842 * Allows platform initialisation code to define and constrain
 843 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 844 * Constraints *must* be set by platform code in order for some
 845 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 846 * set_mode.
 847 */
 848static int set_machine_constraints(struct regulator_dev *rdev,
 849        const struct regulation_constraints *constraints)
 850{
 851        int ret = 0;
 852        struct regulator_ops *ops = rdev->desc->ops;
 853
 854        rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 855                                    GFP_KERNEL);
 856        if (!rdev->constraints)
 857                return -ENOMEM;
 858
 859        ret = machine_constraints_voltage(rdev, rdev->constraints);
 860        if (ret != 0)
 861                goto out;
 862
 863        /* do we need to setup our suspend state */
 864        if (constraints->initial_state) {
 865                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 866                if (ret < 0) {
 867                        rdev_err(rdev, "failed to set suspend state\n");
 868                        rdev->constraints = NULL;
 869                        goto out;
 870                }
 871        }
 872
 873        if (constraints->initial_mode) {
 874                if (!ops->set_mode) {
 875                        rdev_err(rdev, "no set_mode operation\n");
 876                        ret = -EINVAL;
 877                        goto out;
 878                }
 879
 880                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 881                if (ret < 0) {
 882                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 883                        goto out;
 884                }
 885        }
 886
 887        /* If the constraints say the regulator should be on at this point
 888         * and we have control then make sure it is enabled.
 889         */
 890        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 891            ops->enable) {
 892                ret = ops->enable(rdev);
 893                if (ret < 0) {
 894                        rdev_err(rdev, "failed to enable\n");
 895                        rdev->constraints = NULL;
 896                        goto out;
 897                }
 898        }
 899
 900        print_constraints(rdev);
 901out:
 902        return ret;
 903}
 904
 905/**
 906 * set_supply - set regulator supply regulator
 907 * @rdev: regulator name
 908 * @supply_rdev: supply regulator name
 909 *
 910 * Called by platform initialisation code to set the supply regulator for this
 911 * regulator. This ensures that a regulators supply will also be enabled by the
 912 * core if it's child is enabled.
 913 */
 914static int set_supply(struct regulator_dev *rdev,
 915        struct regulator_dev *supply_rdev)
 916{
 917        int err;
 918
 919        err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
 920                                "supply");
 921        if (err) {
 922                rdev_err(rdev, "could not add device link %s err %d\n",
 923                         supply_rdev->dev.kobj.name, err);
 924                       goto out;
 925        }
 926        rdev->supply = supply_rdev;
 927        list_add(&rdev->slist, &supply_rdev->supply_list);
 928out:
 929        return err;
 930}
 931
 932/**
 933 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 934 * @rdev:         regulator source
 935 * @consumer_dev: device the supply applies to
 936 * @consumer_dev_name: dev_name() string for device supply applies to
 937 * @supply:       symbolic name for supply
 938 *
 939 * Allows platform initialisation code to map physical regulator
 940 * sources to symbolic names for supplies for use by devices.  Devices
 941 * should use these symbolic names to request regulators, avoiding the
 942 * need to provide board-specific regulator names as platform data.
 943 *
 944 * Only one of consumer_dev and consumer_dev_name may be specified.
 945 */
 946static int set_consumer_device_supply(struct regulator_dev *rdev,
 947        struct device *consumer_dev, const char *consumer_dev_name,
 948        const char *supply)
 949{
 950        struct regulator_map *node;
 951        int has_dev;
 952
 953        if (consumer_dev && consumer_dev_name)
 954                return -EINVAL;
 955
 956        if (!consumer_dev_name && consumer_dev)
 957                consumer_dev_name = dev_name(consumer_dev);
 958
 959        if (supply == NULL)
 960                return -EINVAL;
 961
 962        if (consumer_dev_name != NULL)
 963                has_dev = 1;
 964        else
 965                has_dev = 0;
 966
 967        list_for_each_entry(node, &regulator_map_list, list) {
 968                if (node->dev_name && consumer_dev_name) {
 969                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
 970                                continue;
 971                } else if (node->dev_name || consumer_dev_name) {
 972                        continue;
 973                }
 974
 975                if (strcmp(node->supply, supply) != 0)
 976                        continue;
 977
 978                dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
 979                        dev_name(&node->regulator->dev),
 980                        node->regulator->desc->name,
 981                        supply,
 982                        dev_name(&rdev->dev), rdev_get_name(rdev));
 983                return -EBUSY;
 984        }
 985
 986        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
 987        if (node == NULL)
 988                return -ENOMEM;
 989
 990        node->regulator = rdev;
 991        node->supply = supply;
 992
 993        if (has_dev) {
 994                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
 995                if (node->dev_name == NULL) {
 996                        kfree(node);
 997                        return -ENOMEM;
 998                }
 999        }
1000
1001        list_add(&node->list, &regulator_map_list);
1002        return 0;
1003}
1004
1005static void unset_regulator_supplies(struct regulator_dev *rdev)
1006{
1007        struct regulator_map *node, *n;
1008
1009        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010                if (rdev == node->regulator) {
1011                        list_del(&node->list);
1012                        kfree(node->dev_name);
1013                        kfree(node);
1014                }
1015        }
1016}
1017
1018#define REG_STR_SIZE    32
1019
1020static struct regulator *create_regulator(struct regulator_dev *rdev,
1021                                          struct device *dev,
1022                                          const char *supply_name)
1023{
1024        struct regulator *regulator;
1025        char buf[REG_STR_SIZE];
1026        int err, size;
1027
1028        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029        if (regulator == NULL)
1030                return NULL;
1031
1032        mutex_lock(&rdev->mutex);
1033        regulator->rdev = rdev;
1034        list_add(&regulator->list, &rdev->consumer_list);
1035
1036        if (dev) {
1037                /* create a 'requested_microamps_name' sysfs entry */
1038                size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039                        supply_name);
1040                if (size >= REG_STR_SIZE)
1041                        goto overflow_err;
1042
1043                regulator->dev = dev;
1044                sysfs_attr_init(&regulator->dev_attr.attr);
1045                regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046                if (regulator->dev_attr.attr.name == NULL)
1047                        goto attr_name_err;
1048
1049                regulator->dev_attr.attr.mode = 0444;
1050                regulator->dev_attr.show = device_requested_uA_show;
1051                err = device_create_file(dev, &regulator->dev_attr);
1052                if (err < 0) {
1053                        rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054                        goto attr_name_err;
1055                }
1056
1057                /* also add a link to the device sysfs entry */
1058                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059                                 dev->kobj.name, supply_name);
1060                if (size >= REG_STR_SIZE)
1061                        goto attr_err;
1062
1063                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064                if (regulator->supply_name == NULL)
1065                        goto attr_err;
1066
1067                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068                                        buf);
1069                if (err) {
1070                        rdev_warn(rdev, "could not add device link %s err %d\n",
1071                                  dev->kobj.name, err);
1072                        goto link_name_err;
1073                }
1074        }
1075        mutex_unlock(&rdev->mutex);
1076        return regulator;
1077link_name_err:
1078        kfree(regulator->supply_name);
1079attr_err:
1080        device_remove_file(regulator->dev, &regulator->dev_attr);
1081attr_name_err:
1082        kfree(regulator->dev_attr.attr.name);
1083overflow_err:
1084        list_del(&regulator->list);
1085        kfree(regulator);
1086        mutex_unlock(&rdev->mutex);
1087        return NULL;
1088}
1089
1090static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091{
1092        if (!rdev->desc->ops->enable_time)
1093                return 0;
1094        return rdev->desc->ops->enable_time(rdev);
1095}
1096
1097/* Internal regulator request function */
1098static struct regulator *_regulator_get(struct device *dev, const char *id,
1099                                        int exclusive)
1100{
1101        struct regulator_dev *rdev;
1102        struct regulator_map *map;
1103        struct regulator *regulator = ERR_PTR(-ENODEV);
1104        const char *devname = NULL;
1105        int ret;
1106
1107        if (id == NULL) {
1108                pr_err("get() with no identifier\n");
1109                return regulator;
1110        }
1111
1112        if (dev)
1113                devname = dev_name(dev);
1114
1115        mutex_lock(&regulator_list_mutex);
1116
1117        list_for_each_entry(map, &regulator_map_list, list) {
1118                /* If the mapping has a device set up it must match */
1119                if (map->dev_name &&
1120                    (!devname || strcmp(map->dev_name, devname)))
1121                        continue;
1122
1123                if (strcmp(map->supply, id) == 0) {
1124                        rdev = map->regulator;
1125                        goto found;
1126                }
1127        }
1128
1129        if (board_wants_dummy_regulator) {
1130                rdev = dummy_regulator_rdev;
1131                goto found;
1132        }
1133
1134#ifdef CONFIG_REGULATOR_DUMMY
1135        if (!devname)
1136                devname = "deviceless";
1137
1138        /* If the board didn't flag that it was fully constrained then
1139         * substitute in a dummy regulator so consumers can continue.
1140         */
1141        if (!has_full_constraints) {
1142                pr_warn("%s supply %s not found, using dummy regulator\n",
1143                        devname, id);
1144                rdev = dummy_regulator_rdev;
1145                goto found;
1146        }
1147#endif
1148
1149        mutex_unlock(&regulator_list_mutex);
1150        return regulator;
1151
1152found:
1153        if (rdev->exclusive) {
1154                regulator = ERR_PTR(-EPERM);
1155                goto out;
1156        }
1157
1158        if (exclusive && rdev->open_count) {
1159                regulator = ERR_PTR(-EBUSY);
1160                goto out;
1161        }
1162
1163        if (!try_module_get(rdev->owner))
1164                goto out;
1165
1166        regulator = create_regulator(rdev, dev, id);
1167        if (regulator == NULL) {
1168                regulator = ERR_PTR(-ENOMEM);
1169                module_put(rdev->owner);
1170        }
1171
1172        rdev->open_count++;
1173        if (exclusive) {
1174                rdev->exclusive = 1;
1175
1176                ret = _regulator_is_enabled(rdev);
1177                if (ret > 0)
1178                        rdev->use_count = 1;
1179                else
1180                        rdev->use_count = 0;
1181        }
1182
1183out:
1184        mutex_unlock(&regulator_list_mutex);
1185
1186        return regulator;
1187}
1188
1189/**
1190 * regulator_get - lookup and obtain a reference to a regulator.
1191 * @dev: device for regulator "consumer"
1192 * @id: Supply name or regulator ID.
1193 *
1194 * Returns a struct regulator corresponding to the regulator producer,
1195 * or IS_ERR() condition containing errno.
1196 *
1197 * Use of supply names configured via regulator_set_device_supply() is
1198 * strongly encouraged.  It is recommended that the supply name used
1199 * should match the name used for the supply and/or the relevant
1200 * device pins in the datasheet.
1201 */
1202struct regulator *regulator_get(struct device *dev, const char *id)
1203{
1204        return _regulator_get(dev, id, 0);
1205}
1206EXPORT_SYMBOL_GPL(regulator_get);
1207
1208/**
1209 * regulator_get_exclusive - obtain exclusive access to a regulator.
1210 * @dev: device for regulator "consumer"
1211 * @id: Supply name or regulator ID.
1212 *
1213 * Returns a struct regulator corresponding to the regulator producer,
1214 * or IS_ERR() condition containing errno.  Other consumers will be
1215 * unable to obtain this reference is held and the use count for the
1216 * regulator will be initialised to reflect the current state of the
1217 * regulator.
1218 *
1219 * This is intended for use by consumers which cannot tolerate shared
1220 * use of the regulator such as those which need to force the
1221 * regulator off for correct operation of the hardware they are
1222 * controlling.
1223 *
1224 * Use of supply names configured via regulator_set_device_supply() is
1225 * strongly encouraged.  It is recommended that the supply name used
1226 * should match the name used for the supply and/or the relevant
1227 * device pins in the datasheet.
1228 */
1229struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1230{
1231        return _regulator_get(dev, id, 1);
1232}
1233EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1234
1235/**
1236 * regulator_put - "free" the regulator source
1237 * @regulator: regulator source
1238 *
1239 * Note: drivers must ensure that all regulator_enable calls made on this
1240 * regulator source are balanced by regulator_disable calls prior to calling
1241 * this function.
1242 */
1243void regulator_put(struct regulator *regulator)
1244{
1245        struct regulator_dev *rdev;
1246
1247        if (regulator == NULL || IS_ERR(regulator))
1248                return;
1249
1250        mutex_lock(&regulator_list_mutex);
1251        rdev = regulator->rdev;
1252
1253        /* remove any sysfs entries */
1254        if (regulator->dev) {
1255                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256                kfree(regulator->supply_name);
1257                device_remove_file(regulator->dev, &regulator->dev_attr);
1258                kfree(regulator->dev_attr.attr.name);
1259        }
1260        list_del(&regulator->list);
1261        kfree(regulator);
1262
1263        rdev->open_count--;
1264        rdev->exclusive = 0;
1265
1266        module_put(rdev->owner);
1267        mutex_unlock(&regulator_list_mutex);
1268}
1269EXPORT_SYMBOL_GPL(regulator_put);
1270
1271static int _regulator_can_change_status(struct regulator_dev *rdev)
1272{
1273        if (!rdev->constraints)
1274                return 0;
1275
1276        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277                return 1;
1278        else
1279                return 0;
1280}
1281
1282/* locks held by regulator_enable() */
1283static int _regulator_enable(struct regulator_dev *rdev)
1284{
1285        int ret, delay;
1286
1287        if (rdev->use_count == 0) {
1288                /* do we need to enable the supply regulator first */
1289                if (rdev->supply) {
1290                        mutex_lock(&rdev->supply->mutex);
1291                        ret = _regulator_enable(rdev->supply);
1292                        mutex_unlock(&rdev->supply->mutex);
1293                        if (ret < 0) {
1294                                rdev_err(rdev, "failed to enable: %d\n", ret);
1295                                return ret;
1296                        }
1297                }
1298        }
1299
1300        /* check voltage and requested load before enabling */
1301        if (rdev->constraints &&
1302            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303                drms_uA_update(rdev);
1304
1305        if (rdev->use_count == 0) {
1306                /* The regulator may on if it's not switchable or left on */
1307                ret = _regulator_is_enabled(rdev);
1308                if (ret == -EINVAL || ret == 0) {
1309                        if (!_regulator_can_change_status(rdev))
1310                                return -EPERM;
1311
1312                        if (!rdev->desc->ops->enable)
1313                                return -EINVAL;
1314
1315                        /* Query before enabling in case configuration
1316                         * dependent.  */
1317                        ret = _regulator_get_enable_time(rdev);
1318                        if (ret >= 0) {
1319                                delay = ret;
1320                        } else {
1321                                rdev_warn(rdev, "enable_time() failed: %d\n",
1322                                           ret);
1323                                delay = 0;
1324                        }
1325
1326                        trace_regulator_enable(rdev_get_name(rdev));
1327
1328                        /* Allow the regulator to ramp; it would be useful
1329                         * to extend this for bulk operations so that the
1330                         * regulators can ramp together.  */
1331                        ret = rdev->desc->ops->enable(rdev);
1332                        if (ret < 0)
1333                                return ret;
1334
1335                        trace_regulator_enable_delay(rdev_get_name(rdev));
1336
1337                        if (delay >= 1000) {
1338                                mdelay(delay / 1000);
1339                                udelay(delay % 1000);
1340                        } else if (delay) {
1341                                udelay(delay);
1342                        }
1343
1344                        trace_regulator_enable_complete(rdev_get_name(rdev));
1345
1346                } else if (ret < 0) {
1347                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348                        return ret;
1349                }
1350                /* Fallthrough on positive return values - already enabled */
1351        }
1352
1353        rdev->use_count++;
1354
1355        return 0;
1356}
1357
1358/**
1359 * regulator_enable - enable regulator output
1360 * @regulator: regulator source
1361 *
1362 * Request that the regulator be enabled with the regulator output at
1363 * the predefined voltage or current value.  Calls to regulator_enable()
1364 * must be balanced with calls to regulator_disable().
1365 *
1366 * NOTE: the output value can be set by other drivers, boot loader or may be
1367 * hardwired in the regulator.
1368 */
1369int regulator_enable(struct regulator *regulator)
1370{
1371        struct regulator_dev *rdev = regulator->rdev;
1372        int ret = 0;
1373
1374        mutex_lock(&rdev->mutex);
1375        ret = _regulator_enable(rdev);
1376        mutex_unlock(&rdev->mutex);
1377        return ret;
1378}
1379EXPORT_SYMBOL_GPL(regulator_enable);
1380
1381/* locks held by regulator_disable() */
1382static int _regulator_disable(struct regulator_dev *rdev,
1383                struct regulator_dev **supply_rdev_ptr)
1384{
1385        int ret = 0;
1386        *supply_rdev_ptr = NULL;
1387
1388        if (WARN(rdev->use_count <= 0,
1389                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390                return -EIO;
1391
1392        /* are we the last user and permitted to disable ? */
1393        if (rdev->use_count == 1 &&
1394            (rdev->constraints && !rdev->constraints->always_on)) {
1395
1396                /* we are last user */
1397                if (_regulator_can_change_status(rdev) &&
1398                    rdev->desc->ops->disable) {
1399                        trace_regulator_disable(rdev_get_name(rdev));
1400
1401                        ret = rdev->desc->ops->disable(rdev);
1402                        if (ret < 0) {
1403                                rdev_err(rdev, "failed to disable\n");
1404                                return ret;
1405                        }
1406
1407                        trace_regulator_disable_complete(rdev_get_name(rdev));
1408
1409                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410                                             NULL);
1411                }
1412
1413                /* decrease our supplies ref count and disable if required */
1414                *supply_rdev_ptr = rdev->supply;
1415
1416                rdev->use_count = 0;
1417        } else if (rdev->use_count > 1) {
1418
1419                if (rdev->constraints &&
1420                        (rdev->constraints->valid_ops_mask &
1421                        REGULATOR_CHANGE_DRMS))
1422                        drms_uA_update(rdev);
1423
1424                rdev->use_count--;
1425        }
1426        return ret;
1427}
1428
1429/**
1430 * regulator_disable - disable regulator output
1431 * @regulator: regulator source
1432 *
1433 * Disable the regulator output voltage or current.  Calls to
1434 * regulator_enable() must be balanced with calls to
1435 * regulator_disable().
1436 *
1437 * NOTE: this will only disable the regulator output if no other consumer
1438 * devices have it enabled, the regulator device supports disabling and
1439 * machine constraints permit this operation.
1440 */
1441int regulator_disable(struct regulator *regulator)
1442{
1443        struct regulator_dev *rdev = regulator->rdev;
1444        struct regulator_dev *supply_rdev = NULL;
1445        int ret = 0;
1446
1447        mutex_lock(&rdev->mutex);
1448        ret = _regulator_disable(rdev, &supply_rdev);
1449        mutex_unlock(&rdev->mutex);
1450
1451        /* decrease our supplies ref count and disable if required */
1452        while (supply_rdev != NULL) {
1453                rdev = supply_rdev;
1454
1455                mutex_lock(&rdev->mutex);
1456                _regulator_disable(rdev, &supply_rdev);
1457                mutex_unlock(&rdev->mutex);
1458        }
1459
1460        return ret;
1461}
1462EXPORT_SYMBOL_GPL(regulator_disable);
1463
1464/* locks held by regulator_force_disable() */
1465static int _regulator_force_disable(struct regulator_dev *rdev,
1466                struct regulator_dev **supply_rdev_ptr)
1467{
1468        int ret = 0;
1469
1470        /* force disable */
1471        if (rdev->desc->ops->disable) {
1472                /* ah well, who wants to live forever... */
1473                ret = rdev->desc->ops->disable(rdev);
1474                if (ret < 0) {
1475                        rdev_err(rdev, "failed to force disable\n");
1476                        return ret;
1477                }
1478                /* notify other consumers that power has been forced off */
1479                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480                        REGULATOR_EVENT_DISABLE, NULL);
1481        }
1482
1483        /* decrease our supplies ref count and disable if required */
1484        *supply_rdev_ptr = rdev->supply;
1485
1486        rdev->use_count = 0;
1487        return ret;
1488}
1489
1490/**
1491 * regulator_force_disable - force disable regulator output
1492 * @regulator: regulator source
1493 *
1494 * Forcibly disable the regulator output voltage or current.
1495 * NOTE: this *will* disable the regulator output even if other consumer
1496 * devices have it enabled. This should be used for situations when device
1497 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1498 */
1499int regulator_force_disable(struct regulator *regulator)
1500{
1501        struct regulator_dev *supply_rdev = NULL;
1502        int ret;
1503
1504        mutex_lock(&regulator->rdev->mutex);
1505        regulator->uA_load = 0;
1506        ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507        mutex_unlock(&regulator->rdev->mutex);
1508
1509        if (supply_rdev)
1510                regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1511
1512        return ret;
1513}
1514EXPORT_SYMBOL_GPL(regulator_force_disable);
1515
1516static int _regulator_is_enabled(struct regulator_dev *rdev)
1517{
1518        /* If we don't know then assume that the regulator is always on */
1519        if (!rdev->desc->ops->is_enabled)
1520                return 1;
1521
1522        return rdev->desc->ops->is_enabled(rdev);
1523}
1524
1525/**
1526 * regulator_is_enabled - is the regulator output enabled
1527 * @regulator: regulator source
1528 *
1529 * Returns positive if the regulator driver backing the source/client
1530 * has requested that the device be enabled, zero if it hasn't, else a
1531 * negative errno code.
1532 *
1533 * Note that the device backing this regulator handle can have multiple
1534 * users, so it might be enabled even if regulator_enable() was never
1535 * called for this particular source.
1536 */
1537int regulator_is_enabled(struct regulator *regulator)
1538{
1539        int ret;
1540
1541        mutex_lock(&regulator->rdev->mutex);
1542        ret = _regulator_is_enabled(regulator->rdev);
1543        mutex_unlock(&regulator->rdev->mutex);
1544
1545        return ret;
1546}
1547EXPORT_SYMBOL_GPL(regulator_is_enabled);
1548
1549/**
1550 * regulator_count_voltages - count regulator_list_voltage() selectors
1551 * @regulator: regulator source
1552 *
1553 * Returns number of selectors, or negative errno.  Selectors are
1554 * numbered starting at zero, and typically correspond to bitfields
1555 * in hardware registers.
1556 */
1557int regulator_count_voltages(struct regulator *regulator)
1558{
1559        struct regulator_dev    *rdev = regulator->rdev;
1560
1561        return rdev->desc->n_voltages ? : -EINVAL;
1562}
1563EXPORT_SYMBOL_GPL(regulator_count_voltages);
1564
1565/**
1566 * regulator_list_voltage - enumerate supported voltages
1567 * @regulator: regulator source
1568 * @selector: identify voltage to list
1569 * Context: can sleep
1570 *
1571 * Returns a voltage that can be passed to @regulator_set_voltage(),
1572 * zero if this selector code can't be used on this system, or a
1573 * negative errno.
1574 */
1575int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1576{
1577        struct regulator_dev    *rdev = regulator->rdev;
1578        struct regulator_ops    *ops = rdev->desc->ops;
1579        int                     ret;
1580
1581        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582                return -EINVAL;
1583
1584        mutex_lock(&rdev->mutex);
1585        ret = ops->list_voltage(rdev, selector);
1586        mutex_unlock(&rdev->mutex);
1587
1588        if (ret > 0) {
1589                if (ret < rdev->constraints->min_uV)
1590                        ret = 0;
1591                else if (ret > rdev->constraints->max_uV)
1592                        ret = 0;
1593        }
1594
1595        return ret;
1596}
1597EXPORT_SYMBOL_GPL(regulator_list_voltage);
1598
1599/**
1600 * regulator_is_supported_voltage - check if a voltage range can be supported
1601 *
1602 * @regulator: Regulator to check.
1603 * @min_uV: Minimum required voltage in uV.
1604 * @max_uV: Maximum required voltage in uV.
1605 *
1606 * Returns a boolean or a negative error code.
1607 */
1608int regulator_is_supported_voltage(struct regulator *regulator,
1609                                   int min_uV, int max_uV)
1610{
1611        int i, voltages, ret;
1612
1613        ret = regulator_count_voltages(regulator);
1614        if (ret < 0)
1615                return ret;
1616        voltages = ret;
1617
1618        for (i = 0; i < voltages; i++) {
1619                ret = regulator_list_voltage(regulator, i);
1620
1621                if (ret >= min_uV && ret <= max_uV)
1622                        return 1;
1623        }
1624
1625        return 0;
1626}
1627
1628static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629                                     int min_uV, int max_uV)
1630{
1631        int ret;
1632        int delay = 0;
1633        unsigned int selector;
1634
1635        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1636
1637        if (rdev->desc->ops->set_voltage) {
1638                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1639                                                   &selector);
1640
1641                if (rdev->desc->ops->list_voltage)
1642                        selector = rdev->desc->ops->list_voltage(rdev,
1643                                                                 selector);
1644                else
1645                        selector = -1;
1646        } else if (rdev->desc->ops->set_voltage_sel) {
1647                int best_val = INT_MAX;
1648                int i;
1649
1650                selector = 0;
1651
1652                /* Find the smallest voltage that falls within the specified
1653                 * range.
1654                 */
1655                for (i = 0; i < rdev->desc->n_voltages; i++) {
1656                        ret = rdev->desc->ops->list_voltage(rdev, i);
1657                        if (ret < 0)
1658                                continue;
1659
1660                        if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1661                                best_val = ret;
1662                                selector = i;
1663                        }
1664                }
1665
1666                /*
1667                 * If we can't obtain the old selector there is not enough
1668                 * info to call set_voltage_time_sel().
1669                 */
1670                if (rdev->desc->ops->set_voltage_time_sel &&
1671                    rdev->desc->ops->get_voltage_sel) {
1672                        unsigned int old_selector = 0;
1673
1674                        ret = rdev->desc->ops->get_voltage_sel(rdev);
1675                        if (ret < 0)
1676                                return ret;
1677                        old_selector = ret;
1678                        delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1679                                                old_selector, selector);
1680                }
1681
1682                if (best_val != INT_MAX) {
1683                        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1684                        selector = best_val;
1685                } else {
1686                        ret = -EINVAL;
1687                }
1688        } else {
1689                ret = -EINVAL;
1690        }
1691
1692        /* Insert any necessary delays */
1693        if (delay >= 1000) {
1694                mdelay(delay / 1000);
1695                udelay(delay % 1000);
1696        } else if (delay) {
1697                udelay(delay);
1698        }
1699
1700        if (ret == 0)
1701                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1702                                     NULL);
1703
1704        trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1705
1706        return ret;
1707}
1708
1709/**
1710 * regulator_set_voltage - set regulator output voltage
1711 * @regulator: regulator source
1712 * @min_uV: Minimum required voltage in uV
1713 * @max_uV: Maximum acceptable voltage in uV
1714 *
1715 * Sets a voltage regulator to the desired output voltage. This can be set
1716 * during any regulator state. IOW, regulator can be disabled or enabled.
1717 *
1718 * If the regulator is enabled then the voltage will change to the new value
1719 * immediately otherwise if the regulator is disabled the regulator will
1720 * output at the new voltage when enabled.
1721 *
1722 * NOTE: If the regulator is shared between several devices then the lowest
1723 * request voltage that meets the system constraints will be used.
1724 * Regulator system constraints must be set for this regulator before
1725 * calling this function otherwise this call will fail.
1726 */
1727int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1728{
1729        struct regulator_dev *rdev = regulator->rdev;
1730        int ret = 0;
1731
1732        mutex_lock(&rdev->mutex);
1733
1734        /* If we're setting the same range as last time the change
1735         * should be a noop (some cpufreq implementations use the same
1736         * voltage for multiple frequencies, for example).
1737         */
1738        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1739                goto out;
1740
1741        /* sanity check */
1742        if (!rdev->desc->ops->set_voltage &&
1743            !rdev->desc->ops->set_voltage_sel) {
1744                ret = -EINVAL;
1745                goto out;
1746        }
1747
1748        /* constraints check */
1749        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1750        if (ret < 0)
1751                goto out;
1752        regulator->min_uV = min_uV;
1753        regulator->max_uV = max_uV;
1754
1755        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1756        if (ret < 0)
1757                goto out;
1758
1759        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1760
1761out:
1762        mutex_unlock(&rdev->mutex);
1763        return ret;
1764}
1765EXPORT_SYMBOL_GPL(regulator_set_voltage);
1766
1767/**
1768 * regulator_set_voltage_time - get raise/fall time
1769 * @regulator: regulator source
1770 * @old_uV: starting voltage in microvolts
1771 * @new_uV: target voltage in microvolts
1772 *
1773 * Provided with the starting and ending voltage, this function attempts to
1774 * calculate the time in microseconds required to rise or fall to this new
1775 * voltage.
1776 */
1777int regulator_set_voltage_time(struct regulator *regulator,
1778                               int old_uV, int new_uV)
1779{
1780        struct regulator_dev    *rdev = regulator->rdev;
1781        struct regulator_ops    *ops = rdev->desc->ops;
1782        int old_sel = -1;
1783        int new_sel = -1;
1784        int voltage;
1785        int i;
1786
1787        /* Currently requires operations to do this */
1788        if (!ops->list_voltage || !ops->set_voltage_time_sel
1789            || !rdev->desc->n_voltages)
1790                return -EINVAL;
1791
1792        for (i = 0; i < rdev->desc->n_voltages; i++) {
1793                /* We only look for exact voltage matches here */
1794                voltage = regulator_list_voltage(regulator, i);
1795                if (voltage < 0)
1796                        return -EINVAL;
1797                if (voltage == 0)
1798                        continue;
1799                if (voltage == old_uV)
1800                        old_sel = i;
1801                if (voltage == new_uV)
1802                        new_sel = i;
1803        }
1804
1805        if (old_sel < 0 || new_sel < 0)
1806                return -EINVAL;
1807
1808        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1809}
1810EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1811
1812/**
1813 * regulator_sync_voltage - re-apply last regulator output voltage
1814 * @regulator: regulator source
1815 *
1816 * Re-apply the last configured voltage.  This is intended to be used
1817 * where some external control source the consumer is cooperating with
1818 * has caused the configured voltage to change.
1819 */
1820int regulator_sync_voltage(struct regulator *regulator)
1821{
1822        struct regulator_dev *rdev = regulator->rdev;
1823        int ret, min_uV, max_uV;
1824
1825        mutex_lock(&rdev->mutex);
1826
1827        if (!rdev->desc->ops->set_voltage &&
1828            !rdev->desc->ops->set_voltage_sel) {
1829                ret = -EINVAL;
1830                goto out;
1831        }
1832
1833        /* This is only going to work if we've had a voltage configured. */
1834        if (!regulator->min_uV && !regulator->max_uV) {
1835                ret = -EINVAL;
1836                goto out;
1837        }
1838
1839        min_uV = regulator->min_uV;
1840        max_uV = regulator->max_uV;
1841
1842        /* This should be a paranoia check... */
1843        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1844        if (ret < 0)
1845                goto out;
1846
1847        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1848        if (ret < 0)
1849                goto out;
1850
1851        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1852
1853out:
1854        mutex_unlock(&rdev->mutex);
1855        return ret;
1856}
1857EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1858
1859static int _regulator_get_voltage(struct regulator_dev *rdev)
1860{
1861        int sel;
1862
1863        if (rdev->desc->ops->get_voltage_sel) {
1864                sel = rdev->desc->ops->get_voltage_sel(rdev);
1865                if (sel < 0)
1866                        return sel;
1867                return rdev->desc->ops->list_voltage(rdev, sel);
1868        }
1869        if (rdev->desc->ops->get_voltage)
1870                return rdev->desc->ops->get_voltage(rdev);
1871        else
1872                return -EINVAL;
1873}
1874
1875/**
1876 * regulator_get_voltage - get regulator output voltage
1877 * @regulator: regulator source
1878 *
1879 * This returns the current regulator voltage in uV.
1880 *
1881 * NOTE: If the regulator is disabled it will return the voltage value. This
1882 * function should not be used to determine regulator state.
1883 */
1884int regulator_get_voltage(struct regulator *regulator)
1885{
1886        int ret;
1887
1888        mutex_lock(&regulator->rdev->mutex);
1889
1890        ret = _regulator_get_voltage(regulator->rdev);
1891
1892        mutex_unlock(&regulator->rdev->mutex);
1893
1894        return ret;
1895}
1896EXPORT_SYMBOL_GPL(regulator_get_voltage);
1897
1898/**
1899 * regulator_set_current_limit - set regulator output current limit
1900 * @regulator: regulator source
1901 * @min_uA: Minimuum supported current in uA
1902 * @max_uA: Maximum supported current in uA
1903 *
1904 * Sets current sink to the desired output current. This can be set during
1905 * any regulator state. IOW, regulator can be disabled or enabled.
1906 *
1907 * If the regulator is enabled then the current will change to the new value
1908 * immediately otherwise if the regulator is disabled the regulator will
1909 * output at the new current when enabled.
1910 *
1911 * NOTE: Regulator system constraints must be set for this regulator before
1912 * calling this function otherwise this call will fail.
1913 */
1914int regulator_set_current_limit(struct regulator *regulator,
1915                               int min_uA, int max_uA)
1916{
1917        struct regulator_dev *rdev = regulator->rdev;
1918        int ret;
1919
1920        mutex_lock(&rdev->mutex);
1921
1922        /* sanity check */
1923        if (!rdev->desc->ops->set_current_limit) {
1924                ret = -EINVAL;
1925                goto out;
1926        }
1927
1928        /* constraints check */
1929        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1930        if (ret < 0)
1931                goto out;
1932
1933        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1934out:
1935        mutex_unlock(&rdev->mutex);
1936        return ret;
1937}
1938EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1939
1940static int _regulator_get_current_limit(struct regulator_dev *rdev)
1941{
1942        int ret;
1943
1944        mutex_lock(&rdev->mutex);
1945
1946        /* sanity check */
1947        if (!rdev->desc->ops->get_current_limit) {
1948                ret = -EINVAL;
1949                goto out;
1950        }
1951
1952        ret = rdev->desc->ops->get_current_limit(rdev);
1953out:
1954        mutex_unlock(&rdev->mutex);
1955        return ret;
1956}
1957
1958/**
1959 * regulator_get_current_limit - get regulator output current
1960 * @regulator: regulator source
1961 *
1962 * This returns the current supplied by the specified current sink in uA.
1963 *
1964 * NOTE: If the regulator is disabled it will return the current value. This
1965 * function should not be used to determine regulator state.
1966 */
1967int regulator_get_current_limit(struct regulator *regulator)
1968{
1969        return _regulator_get_current_limit(regulator->rdev);
1970}
1971EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1972
1973/**
1974 * regulator_set_mode - set regulator operating mode
1975 * @regulator: regulator source
1976 * @mode: operating mode - one of the REGULATOR_MODE constants
1977 *
1978 * Set regulator operating mode to increase regulator efficiency or improve
1979 * regulation performance.
1980 *
1981 * NOTE: Regulator system constraints must be set for this regulator before
1982 * calling this function otherwise this call will fail.
1983 */
1984int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1985{
1986        struct regulator_dev *rdev = regulator->rdev;
1987        int ret;
1988        int regulator_curr_mode;
1989
1990        mutex_lock(&rdev->mutex);
1991
1992        /* sanity check */
1993        if (!rdev->desc->ops->set_mode) {
1994                ret = -EINVAL;
1995                goto out;
1996        }
1997
1998        /* return if the same mode is requested */
1999        if (rdev->desc->ops->get_mode) {
2000                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2001                if (regulator_curr_mode == mode) {
2002                        ret = 0;
2003                        goto out;
2004                }
2005        }
2006
2007        /* constraints check */
2008        ret = regulator_check_mode(rdev, mode);
2009        if (ret < 0)
2010                goto out;
2011
2012        ret = rdev->desc->ops->set_mode(rdev, mode);
2013out:
2014        mutex_unlock(&rdev->mutex);
2015        return ret;
2016}
2017EXPORT_SYMBOL_GPL(regulator_set_mode);
2018
2019static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2020{
2021        int ret;
2022
2023        mutex_lock(&rdev->mutex);
2024
2025        /* sanity check */
2026        if (!rdev->desc->ops->get_mode) {
2027                ret = -EINVAL;
2028                goto out;
2029        }
2030
2031        ret = rdev->desc->ops->get_mode(rdev);
2032out:
2033        mutex_unlock(&rdev->mutex);
2034        return ret;
2035}
2036
2037/**
2038 * regulator_get_mode - get regulator operating mode
2039 * @regulator: regulator source
2040 *
2041 * Get the current regulator operating mode.
2042 */
2043unsigned int regulator_get_mode(struct regulator *regulator)
2044{
2045        return _regulator_get_mode(regulator->rdev);
2046}
2047EXPORT_SYMBOL_GPL(regulator_get_mode);
2048
2049/**
2050 * regulator_set_optimum_mode - set regulator optimum operating mode
2051 * @regulator: regulator source
2052 * @uA_load: load current
2053 *
2054 * Notifies the regulator core of a new device load. This is then used by
2055 * DRMS (if enabled by constraints) to set the most efficient regulator
2056 * operating mode for the new regulator loading.
2057 *
2058 * Consumer devices notify their supply regulator of the maximum power
2059 * they will require (can be taken from device datasheet in the power
2060 * consumption tables) when they change operational status and hence power
2061 * state. Examples of operational state changes that can affect power
2062 * consumption are :-
2063 *
2064 *    o Device is opened / closed.
2065 *    o Device I/O is about to begin or has just finished.
2066 *    o Device is idling in between work.
2067 *
2068 * This information is also exported via sysfs to userspace.
2069 *
2070 * DRMS will sum the total requested load on the regulator and change
2071 * to the most efficient operating mode if platform constraints allow.
2072 *
2073 * Returns the new regulator mode or error.
2074 */
2075int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2076{
2077        struct regulator_dev *rdev = regulator->rdev;
2078        struct regulator *consumer;
2079        int ret, output_uV, input_uV, total_uA_load = 0;
2080        unsigned int mode;
2081
2082        mutex_lock(&rdev->mutex);
2083
2084        regulator->uA_load = uA_load;
2085        ret = regulator_check_drms(rdev);
2086        if (ret < 0)
2087                goto out;
2088        ret = -EINVAL;
2089
2090        /* sanity check */
2091        if (!rdev->desc->ops->get_optimum_mode)
2092                goto out;
2093
2094        /* get output voltage */
2095        output_uV = _regulator_get_voltage(rdev);
2096        if (output_uV <= 0) {
2097                rdev_err(rdev, "invalid output voltage found\n");
2098                goto out;
2099        }
2100
2101        /* get input voltage */
2102        input_uV = 0;
2103        if (rdev->supply)
2104                input_uV = _regulator_get_voltage(rdev->supply);
2105        if (input_uV <= 0)
2106                input_uV = rdev->constraints->input_uV;
2107        if (input_uV <= 0) {
2108                rdev_err(rdev, "invalid input voltage found\n");
2109                goto out;
2110        }
2111
2112        /* calc total requested load for this regulator */
2113        list_for_each_entry(consumer, &rdev->consumer_list, list)
2114                total_uA_load += consumer->uA_load;
2115
2116        mode = rdev->desc->ops->get_optimum_mode(rdev,
2117                                                 input_uV, output_uV,
2118                                                 total_uA_load);
2119        ret = regulator_check_mode(rdev, mode);
2120        if (ret < 0) {
2121                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2122                         total_uA_load, input_uV, output_uV);
2123                goto out;
2124        }
2125
2126        ret = rdev->desc->ops->set_mode(rdev, mode);
2127        if (ret < 0) {
2128                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2129                goto out;
2130        }
2131        ret = mode;
2132out:
2133        mutex_unlock(&rdev->mutex);
2134        return ret;
2135}
2136EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2137
2138/**
2139 * regulator_register_notifier - register regulator event notifier
2140 * @regulator: regulator source
2141 * @nb: notifier block
2142 *
2143 * Register notifier block to receive regulator events.
2144 */
2145int regulator_register_notifier(struct regulator *regulator,
2146                              struct notifier_block *nb)
2147{
2148        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2149                                                nb);
2150}
2151EXPORT_SYMBOL_GPL(regulator_register_notifier);
2152
2153/**
2154 * regulator_unregister_notifier - unregister regulator event notifier
2155 * @regulator: regulator source
2156 * @nb: notifier block
2157 *
2158 * Unregister regulator event notifier block.
2159 */
2160int regulator_unregister_notifier(struct regulator *regulator,
2161                                struct notifier_block *nb)
2162{
2163        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2164                                                  nb);
2165}
2166EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2167
2168/* notify regulator consumers and downstream regulator consumers.
2169 * Note mutex must be held by caller.
2170 */
2171static void _notifier_call_chain(struct regulator_dev *rdev,
2172                                  unsigned long event, void *data)
2173{
2174        struct regulator_dev *_rdev;
2175
2176        /* call rdev chain first */
2177        blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2178
2179        /* now notify regulator we supply */
2180        list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2181                mutex_lock(&_rdev->mutex);
2182                _notifier_call_chain(_rdev, event, data);
2183                mutex_unlock(&_rdev->mutex);
2184        }
2185}
2186
2187/**
2188 * regulator_bulk_get - get multiple regulator consumers
2189 *
2190 * @dev:           Device to supply
2191 * @num_consumers: Number of consumers to register
2192 * @consumers:     Configuration of consumers; clients are stored here.
2193 *
2194 * @return 0 on success, an errno on failure.
2195 *
2196 * This helper function allows drivers to get several regulator
2197 * consumers in one operation.  If any of the regulators cannot be
2198 * acquired then any regulators that were allocated will be freed
2199 * before returning to the caller.
2200 */
2201int regulator_bulk_get(struct device *dev, int num_consumers,
2202                       struct regulator_bulk_data *consumers)
2203{
2204        int i;
2205        int ret;
2206
2207        for (i = 0; i < num_consumers; i++)
2208                consumers[i].consumer = NULL;
2209
2210        for (i = 0; i < num_consumers; i++) {
2211                consumers[i].consumer = regulator_get(dev,
2212                                                      consumers[i].supply);
2213                if (IS_ERR(consumers[i].consumer)) {
2214                        ret = PTR_ERR(consumers[i].consumer);
2215                        dev_err(dev, "Failed to get supply '%s': %d\n",
2216                                consumers[i].supply, ret);
2217                        consumers[i].consumer = NULL;
2218                        goto err;
2219                }
2220        }
2221
2222        return 0;
2223
2224err:
2225        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2226                regulator_put(consumers[i].consumer);
2227
2228        return ret;
2229}
2230EXPORT_SYMBOL_GPL(regulator_bulk_get);
2231
2232/**
2233 * regulator_bulk_enable - enable multiple regulator consumers
2234 *
2235 * @num_consumers: Number of consumers
2236 * @consumers:     Consumer data; clients are stored here.
2237 * @return         0 on success, an errno on failure
2238 *
2239 * This convenience API allows consumers to enable multiple regulator
2240 * clients in a single API call.  If any consumers cannot be enabled
2241 * then any others that were enabled will be disabled again prior to
2242 * return.
2243 */
2244int regulator_bulk_enable(int num_consumers,
2245                          struct regulator_bulk_data *consumers)
2246{
2247        int i;
2248        int ret;
2249
2250        for (i = 0; i < num_consumers; i++) {
2251                ret = regulator_enable(consumers[i].consumer);
2252                if (ret != 0)
2253                        goto err;
2254        }
2255
2256        return 0;
2257
2258err:
2259        pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2260        for (--i; i >= 0; --i)
2261                regulator_disable(consumers[i].consumer);
2262
2263        return ret;
2264}
2265EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2266
2267/**
2268 * regulator_bulk_disable - disable multiple regulator consumers
2269 *
2270 * @num_consumers: Number of consumers
2271 * @consumers:     Consumer data; clients are stored here.
2272 * @return         0 on success, an errno on failure
2273 *
2274 * This convenience API allows consumers to disable multiple regulator
2275 * clients in a single API call.  If any consumers cannot be enabled
2276 * then any others that were disabled will be disabled again prior to
2277 * return.
2278 */
2279int regulator_bulk_disable(int num_consumers,
2280                           struct regulator_bulk_data *consumers)
2281{
2282        int i;
2283        int ret;
2284
2285        for (i = 0; i < num_consumers; i++) {
2286                ret = regulator_disable(consumers[i].consumer);
2287                if (ret != 0)
2288                        goto err;
2289        }
2290
2291        return 0;
2292
2293err:
2294        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2295        for (--i; i >= 0; --i)
2296                regulator_enable(consumers[i].consumer);
2297
2298        return ret;
2299}
2300EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2301
2302/**
2303 * regulator_bulk_free - free multiple regulator consumers
2304 *
2305 * @num_consumers: Number of consumers
2306 * @consumers:     Consumer data; clients are stored here.
2307 *
2308 * This convenience API allows consumers to free multiple regulator
2309 * clients in a single API call.
2310 */
2311void regulator_bulk_free(int num_consumers,
2312                         struct regulator_bulk_data *consumers)
2313{
2314        int i;
2315
2316        for (i = 0; i < num_consumers; i++) {
2317                regulator_put(consumers[i].consumer);
2318                consumers[i].consumer = NULL;
2319        }
2320}
2321EXPORT_SYMBOL_GPL(regulator_bulk_free);
2322
2323/**
2324 * regulator_notifier_call_chain - call regulator event notifier
2325 * @rdev: regulator source
2326 * @event: notifier block
2327 * @data: callback-specific data.
2328 *
2329 * Called by regulator drivers to notify clients a regulator event has
2330 * occurred. We also notify regulator clients downstream.
2331 * Note lock must be held by caller.
2332 */
2333int regulator_notifier_call_chain(struct regulator_dev *rdev,
2334                                  unsigned long event, void *data)
2335{
2336        _notifier_call_chain(rdev, event, data);
2337        return NOTIFY_DONE;
2338
2339}
2340EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2341
2342/**
2343 * regulator_mode_to_status - convert a regulator mode into a status
2344 *
2345 * @mode: Mode to convert
2346 *
2347 * Convert a regulator mode into a status.
2348 */
2349int regulator_mode_to_status(unsigned int mode)
2350{
2351        switch (mode) {
2352        case REGULATOR_MODE_FAST:
2353                return REGULATOR_STATUS_FAST;
2354        case REGULATOR_MODE_NORMAL:
2355                return REGULATOR_STATUS_NORMAL;
2356        case REGULATOR_MODE_IDLE:
2357                return REGULATOR_STATUS_IDLE;
2358        case REGULATOR_STATUS_STANDBY:
2359                return REGULATOR_STATUS_STANDBY;
2360        default:
2361                return 0;
2362        }
2363}
2364EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2365
2366/*
2367 * To avoid cluttering sysfs (and memory) with useless state, only
2368 * create attributes that can be meaningfully displayed.
2369 */
2370static int add_regulator_attributes(struct regulator_dev *rdev)
2371{
2372        struct device           *dev = &rdev->dev;
2373        struct regulator_ops    *ops = rdev->desc->ops;
2374        int                     status = 0;
2375
2376        /* some attributes need specific methods to be displayed */
2377        if (ops->get_voltage || ops->get_voltage_sel) {
2378                status = device_create_file(dev, &dev_attr_microvolts);
2379                if (status < 0)
2380                        return status;
2381        }
2382        if (ops->get_current_limit) {
2383                status = device_create_file(dev, &dev_attr_microamps);
2384                if (status < 0)
2385                        return status;
2386        }
2387        if (ops->get_mode) {
2388                status = device_create_file(dev, &dev_attr_opmode);
2389                if (status < 0)
2390                        return status;
2391        }
2392        if (ops->is_enabled) {
2393                status = device_create_file(dev, &dev_attr_state);
2394                if (status < 0)
2395                        return status;
2396        }
2397        if (ops->get_status) {
2398                status = device_create_file(dev, &dev_attr_status);
2399                if (status < 0)
2400                        return status;
2401        }
2402
2403        /* some attributes are type-specific */
2404        if (rdev->desc->type == REGULATOR_CURRENT) {
2405                status = device_create_file(dev, &dev_attr_requested_microamps);
2406                if (status < 0)
2407                        return status;
2408        }
2409
2410        /* all the other attributes exist to support constraints;
2411         * don't show them if there are no constraints, or if the
2412         * relevant supporting methods are missing.
2413         */
2414        if (!rdev->constraints)
2415                return status;
2416
2417        /* constraints need specific supporting methods */
2418        if (ops->set_voltage || ops->set_voltage_sel) {
2419                status = device_create_file(dev, &dev_attr_min_microvolts);
2420                if (status < 0)
2421                        return status;
2422                status = device_create_file(dev, &dev_attr_max_microvolts);
2423                if (status < 0)
2424                        return status;
2425        }
2426        if (ops->set_current_limit) {
2427                status = device_create_file(dev, &dev_attr_min_microamps);
2428                if (status < 0)
2429                        return status;
2430                status = device_create_file(dev, &dev_attr_max_microamps);
2431                if (status < 0)
2432                        return status;
2433        }
2434
2435        /* suspend mode constraints need multiple supporting methods */
2436        if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2437                return status;
2438
2439        status = device_create_file(dev, &dev_attr_suspend_standby_state);
2440        if (status < 0)
2441                return status;
2442        status = device_create_file(dev, &dev_attr_suspend_mem_state);
2443        if (status < 0)
2444                return status;
2445        status = device_create_file(dev, &dev_attr_suspend_disk_state);
2446        if (status < 0)
2447                return status;
2448
2449        if (ops->set_suspend_voltage) {
2450                status = device_create_file(dev,
2451                                &dev_attr_suspend_standby_microvolts);
2452                if (status < 0)
2453                        return status;
2454                status = device_create_file(dev,
2455                                &dev_attr_suspend_mem_microvolts);
2456                if (status < 0)
2457                        return status;
2458                status = device_create_file(dev,
2459                                &dev_attr_suspend_disk_microvolts);
2460                if (status < 0)
2461                        return status;
2462        }
2463
2464        if (ops->set_suspend_mode) {
2465                status = device_create_file(dev,
2466                                &dev_attr_suspend_standby_mode);
2467                if (status < 0)
2468                        return status;
2469                status = device_create_file(dev,
2470                                &dev_attr_suspend_mem_mode);
2471                if (status < 0)
2472                        return status;
2473                status = device_create_file(dev,
2474                                &dev_attr_suspend_disk_mode);
2475                if (status < 0)
2476                        return status;
2477        }
2478
2479        return status;
2480}
2481
2482static void rdev_init_debugfs(struct regulator_dev *rdev)
2483{
2484#ifdef CONFIG_DEBUG_FS
2485        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2486        if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2487                rdev_warn(rdev, "Failed to create debugfs directory\n");
2488                rdev->debugfs = NULL;
2489                return;
2490        }
2491
2492        debugfs_create_u32("use_count", 0444, rdev->debugfs,
2493                           &rdev->use_count);
2494        debugfs_create_u32("open_count", 0444, rdev->debugfs,
2495                           &rdev->open_count);
2496#endif
2497}
2498
2499/**
2500 * regulator_register - register regulator
2501 * @regulator_desc: regulator to register
2502 * @dev: struct device for the regulator
2503 * @init_data: platform provided init data, passed through by driver
2504 * @driver_data: private regulator data
2505 *
2506 * Called by regulator drivers to register a regulator.
2507 * Returns 0 on success.
2508 */
2509struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2510        struct device *dev, const struct regulator_init_data *init_data,
2511        void *driver_data)
2512{
2513        static atomic_t regulator_no = ATOMIC_INIT(0);
2514        struct regulator_dev *rdev;
2515        int ret, i;
2516
2517        if (regulator_desc == NULL)
2518                return ERR_PTR(-EINVAL);
2519
2520        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2521                return ERR_PTR(-EINVAL);
2522
2523        if (regulator_desc->type != REGULATOR_VOLTAGE &&
2524            regulator_desc->type != REGULATOR_CURRENT)
2525                return ERR_PTR(-EINVAL);
2526
2527        if (!init_data)
2528                return ERR_PTR(-EINVAL);
2529
2530        /* Only one of each should be implemented */
2531        WARN_ON(regulator_desc->ops->get_voltage &&
2532                regulator_desc->ops->get_voltage_sel);
2533        WARN_ON(regulator_desc->ops->set_voltage &&
2534                regulator_desc->ops->set_voltage_sel);
2535
2536        /* If we're using selectors we must implement list_voltage. */
2537        if (regulator_desc->ops->get_voltage_sel &&
2538            !regulator_desc->ops->list_voltage) {
2539                return ERR_PTR(-EINVAL);
2540        }
2541        if (regulator_desc->ops->set_voltage_sel &&
2542            !regulator_desc->ops->list_voltage) {
2543                return ERR_PTR(-EINVAL);
2544        }
2545
2546        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2547        if (rdev == NULL)
2548                return ERR_PTR(-ENOMEM);
2549
2550        mutex_lock(&regulator_list_mutex);
2551
2552        mutex_init(&rdev->mutex);
2553        rdev->reg_data = driver_data;
2554        rdev->owner = regulator_desc->owner;
2555        rdev->desc = regulator_desc;
2556        INIT_LIST_HEAD(&rdev->consumer_list);
2557        INIT_LIST_HEAD(&rdev->supply_list);
2558        INIT_LIST_HEAD(&rdev->list);
2559        INIT_LIST_HEAD(&rdev->slist);
2560        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2561
2562        /* preform any regulator specific init */
2563        if (init_data->regulator_init) {
2564                ret = init_data->regulator_init(rdev->reg_data);
2565                if (ret < 0)
2566                        goto clean;
2567        }
2568
2569        /* register with sysfs */
2570        rdev->dev.class = &regulator_class;
2571        rdev->dev.parent = dev;
2572        dev_set_name(&rdev->dev, "regulator.%d",
2573                     atomic_inc_return(&regulator_no) - 1);
2574        ret = device_register(&rdev->dev);
2575        if (ret != 0) {
2576                put_device(&rdev->dev);
2577                goto clean;
2578        }
2579
2580        dev_set_drvdata(&rdev->dev, rdev);
2581
2582        /* set regulator constraints */
2583        ret = set_machine_constraints(rdev, &init_data->constraints);
2584        if (ret < 0)
2585                goto scrub;
2586
2587        /* add attributes supported by this regulator */
2588        ret = add_regulator_attributes(rdev);
2589        if (ret < 0)
2590                goto scrub;
2591
2592        /* set supply regulator if it exists */
2593        if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2594                dev_err(dev,
2595                        "Supply regulator specified by both name and dev\n");
2596                ret = -EINVAL;
2597                goto scrub;
2598        }
2599
2600        if (init_data->supply_regulator) {
2601                struct regulator_dev *r;
2602                int found = 0;
2603
2604                list_for_each_entry(r, &regulator_list, list) {
2605                        if (strcmp(rdev_get_name(r),
2606                                   init_data->supply_regulator) == 0) {
2607                                found = 1;
2608                                break;
2609                        }
2610                }
2611
2612                if (!found) {
2613                        dev_err(dev, "Failed to find supply %s\n",
2614                                init_data->supply_regulator);
2615                        ret = -ENODEV;
2616                        goto scrub;
2617                }
2618
2619                ret = set_supply(rdev, r);
2620                if (ret < 0)
2621                        goto scrub;
2622        }
2623
2624        if (init_data->supply_regulator_dev) {
2625                dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2626                ret = set_supply(rdev,
2627                        dev_get_drvdata(init_data->supply_regulator_dev));
2628                if (ret < 0)
2629                        goto scrub;
2630        }
2631
2632        /* add consumers devices */
2633        for (i = 0; i < init_data->num_consumer_supplies; i++) {
2634                ret = set_consumer_device_supply(rdev,
2635                        init_data->consumer_supplies[i].dev,
2636                        init_data->consumer_supplies[i].dev_name,
2637                        init_data->consumer_supplies[i].supply);
2638                if (ret < 0) {
2639                        dev_err(dev, "Failed to set supply %s\n",
2640                                init_data->consumer_supplies[i].supply);
2641                        goto unset_supplies;
2642                }
2643        }
2644
2645        list_add(&rdev->list, &regulator_list);
2646
2647        rdev_init_debugfs(rdev);
2648out:
2649        mutex_unlock(&regulator_list_mutex);
2650        return rdev;
2651
2652unset_supplies:
2653        unset_regulator_supplies(rdev);
2654
2655scrub:
2656        device_unregister(&rdev->dev);
2657        /* device core frees rdev */
2658        rdev = ERR_PTR(ret);
2659        goto out;
2660
2661clean:
2662        kfree(rdev);
2663        rdev = ERR_PTR(ret);
2664        goto out;
2665}
2666EXPORT_SYMBOL_GPL(regulator_register);
2667
2668/**
2669 * regulator_unregister - unregister regulator
2670 * @rdev: regulator to unregister
2671 *
2672 * Called by regulator drivers to unregister a regulator.
2673 */
2674void regulator_unregister(struct regulator_dev *rdev)
2675{
2676        if (rdev == NULL)
2677                return;
2678
2679        mutex_lock(&regulator_list_mutex);
2680#ifdef CONFIG_DEBUG_FS
2681        debugfs_remove_recursive(rdev->debugfs);
2682#endif
2683        WARN_ON(rdev->open_count);
2684        unset_regulator_supplies(rdev);
2685        list_del(&rdev->list);
2686        if (rdev->supply)
2687                sysfs_remove_link(&rdev->dev.kobj, "supply");
2688        device_unregister(&rdev->dev);
2689        kfree(rdev->constraints);
2690        mutex_unlock(&regulator_list_mutex);
2691}
2692EXPORT_SYMBOL_GPL(regulator_unregister);
2693
2694/**
2695 * regulator_suspend_prepare - prepare regulators for system wide suspend
2696 * @state: system suspend state
2697 *
2698 * Configure each regulator with it's suspend operating parameters for state.
2699 * This will usually be called by machine suspend code prior to supending.
2700 */
2701int regulator_suspend_prepare(suspend_state_t state)
2702{
2703        struct regulator_dev *rdev;
2704        int ret = 0;
2705
2706        /* ON is handled by regulator active state */
2707        if (state == PM_SUSPEND_ON)
2708                return -EINVAL;
2709
2710        mutex_lock(&regulator_list_mutex);
2711        list_for_each_entry(rdev, &regulator_list, list) {
2712
2713                mutex_lock(&rdev->mutex);
2714                ret = suspend_prepare(rdev, state);
2715                mutex_unlock(&rdev->mutex);
2716
2717                if (ret < 0) {
2718                        rdev_err(rdev, "failed to prepare\n");
2719                        goto out;
2720                }
2721        }
2722out:
2723        mutex_unlock(&regulator_list_mutex);
2724        return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2727
2728/**
2729 * regulator_suspend_finish - resume regulators from system wide suspend
2730 *
2731 * Turn on regulators that might be turned off by regulator_suspend_prepare
2732 * and that should be turned on according to the regulators properties.
2733 */
2734int regulator_suspend_finish(void)
2735{
2736        struct regulator_dev *rdev;
2737        int ret = 0, error;
2738
2739        mutex_lock(&regulator_list_mutex);
2740        list_for_each_entry(rdev, &regulator_list, list) {
2741                struct regulator_ops *ops = rdev->desc->ops;
2742
2743                mutex_lock(&rdev->mutex);
2744                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2745                                ops->enable) {
2746                        error = ops->enable(rdev);
2747                        if (error)
2748                                ret = error;
2749                } else {
2750                        if (!has_full_constraints)
2751                                goto unlock;
2752                        if (!ops->disable)
2753                                goto unlock;
2754                        if (ops->is_enabled && !ops->is_enabled(rdev))
2755                                goto unlock;
2756
2757                        error = ops->disable(rdev);
2758                        if (error)
2759                                ret = error;
2760                }
2761unlock:
2762                mutex_unlock(&rdev->mutex);
2763        }
2764        mutex_unlock(&regulator_list_mutex);
2765        return ret;
2766}
2767EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2768
2769/**
2770 * regulator_has_full_constraints - the system has fully specified constraints
2771 *
2772 * Calling this function will cause the regulator API to disable all
2773 * regulators which have a zero use count and don't have an always_on
2774 * constraint in a late_initcall.
2775 *
2776 * The intention is that this will become the default behaviour in a
2777 * future kernel release so users are encouraged to use this facility
2778 * now.
2779 */
2780void regulator_has_full_constraints(void)
2781{
2782        has_full_constraints = 1;
2783}
2784EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2785
2786/**
2787 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2788 *
2789 * Calling this function will cause the regulator API to provide a
2790 * dummy regulator to consumers if no physical regulator is found,
2791 * allowing most consumers to proceed as though a regulator were
2792 * configured.  This allows systems such as those with software
2793 * controllable regulators for the CPU core only to be brought up more
2794 * readily.
2795 */
2796void regulator_use_dummy_regulator(void)
2797{
2798        board_wants_dummy_regulator = true;
2799}
2800EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2801
2802/**
2803 * rdev_get_drvdata - get rdev regulator driver data
2804 * @rdev: regulator
2805 *
2806 * Get rdev regulator driver private data. This call can be used in the
2807 * regulator driver context.
2808 */
2809void *rdev_get_drvdata(struct regulator_dev *rdev)
2810{
2811        return rdev->reg_data;
2812}
2813EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2814
2815/**
2816 * regulator_get_drvdata - get regulator driver data
2817 * @regulator: regulator
2818 *
2819 * Get regulator driver private data. This call can be used in the consumer
2820 * driver context when non API regulator specific functions need to be called.
2821 */
2822void *regulator_get_drvdata(struct regulator *regulator)
2823{
2824        return regulator->rdev->reg_data;
2825}
2826EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2827
2828/**
2829 * regulator_set_drvdata - set regulator driver data
2830 * @regulator: regulator
2831 * @data: data
2832 */
2833void regulator_set_drvdata(struct regulator *regulator, void *data)
2834{
2835        regulator->rdev->reg_data = data;
2836}
2837EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2838
2839/**
2840 * regulator_get_id - get regulator ID
2841 * @rdev: regulator
2842 */
2843int rdev_get_id(struct regulator_dev *rdev)
2844{
2845        return rdev->desc->id;
2846}
2847EXPORT_SYMBOL_GPL(rdev_get_id);
2848
2849struct device *rdev_get_dev(struct regulator_dev *rdev)
2850{
2851        return &rdev->dev;
2852}
2853EXPORT_SYMBOL_GPL(rdev_get_dev);
2854
2855void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2856{
2857        return reg_init_data->driver_data;
2858}
2859EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2860
2861static int __init regulator_init(void)
2862{
2863        int ret;
2864
2865        ret = class_register(&regulator_class);
2866
2867#ifdef CONFIG_DEBUG_FS
2868        debugfs_root = debugfs_create_dir("regulator", NULL);
2869        if (IS_ERR(debugfs_root) || !debugfs_root) {
2870                pr_warn("regulator: Failed to create debugfs directory\n");
2871                debugfs_root = NULL;
2872        }
2873#endif
2874
2875        regulator_dummy_init();
2876
2877        return ret;
2878}
2879
2880/* init early to allow our consumers to complete system booting */
2881core_initcall(regulator_init);
2882
2883static int __init regulator_init_complete(void)
2884{
2885        struct regulator_dev *rdev;
2886        struct regulator_ops *ops;
2887        struct regulation_constraints *c;
2888        int enabled, ret;
2889
2890        mutex_lock(&regulator_list_mutex);
2891
2892        /* If we have a full configuration then disable any regulators
2893         * which are not in use or always_on.  This will become the
2894         * default behaviour in the future.
2895         */
2896        list_for_each_entry(rdev, &regulator_list, list) {
2897                ops = rdev->desc->ops;
2898                c = rdev->constraints;
2899
2900                if (!ops->disable || (c && c->always_on))
2901                        continue;
2902
2903                mutex_lock(&rdev->mutex);
2904
2905                if (rdev->use_count)
2906                        goto unlock;
2907
2908                /* If we can't read the status assume it's on. */
2909                if (ops->is_enabled)
2910                        enabled = ops->is_enabled(rdev);
2911                else
2912                        enabled = 1;
2913
2914                if (!enabled)
2915                        goto unlock;
2916
2917                if (has_full_constraints) {
2918                        /* We log since this may kill the system if it
2919                         * goes wrong. */
2920                        rdev_info(rdev, "disabling\n");
2921                        ret = ops->disable(rdev);
2922                        if (ret != 0) {
2923                                rdev_err(rdev, "couldn't disable: %d\n", ret);
2924                        }
2925                } else {
2926                        /* The intention is that in future we will
2927                         * assume that full constraints are provided
2928                         * so warn even if we aren't going to do
2929                         * anything here.
2930                         */
2931                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
2932                }
2933
2934unlock:
2935                mutex_unlock(&rdev->mutex);
2936        }
2937
2938        mutex_unlock(&regulator_list_mutex);
2939
2940        return 0;
2941}
2942late_initcall(regulator_init_complete);
2943