linux/drivers/staging/panel/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *      - make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#include <linux/module.h>
  38
  39#include <linux/types.h>
  40#include <linux/errno.h>
  41#include <linux/signal.h>
  42#include <linux/sched.h>
  43#include <linux/spinlock.h>
  44#include <linux/interrupt.h>
  45#include <linux/miscdevice.h>
  46#include <linux/slab.h>
  47#include <linux/ioport.h>
  48#include <linux/fcntl.h>
  49#include <linux/init.h>
  50#include <linux/delay.h>
  51#include <linux/kernel.h>
  52#include <linux/ctype.h>
  53#include <linux/parport.h>
  54#include <linux/version.h>
  55#include <linux/list.h>
  56#include <linux/notifier.h>
  57#include <linux/reboot.h>
  58#include <generated/utsrelease.h>
  59
  60#include <linux/io.h>
  61#include <linux/uaccess.h>
  62#include <asm/system.h>
  63
  64#define LCD_MINOR               156
  65#define KEYPAD_MINOR            185
  66
  67#define PANEL_VERSION           "0.9.5"
  68
  69#define LCD_MAXBYTES            256     /* max burst write */
  70
  71#define KEYPAD_BUFFER           64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME         (HZ/50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START        (10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY        (2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO       (200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY               0x80    /* inverted input, active low */
  87#define PNL_PACK                0x40    /* direct input, active low */
  88#define PNL_POUTPA              0x20    /* direct input, active high */
  89#define PNL_PSELECD             0x10    /* direct input, active high */
  90#define PNL_PERRORP             0x08    /* direct input, active low */
  91
  92#define PNL_PBIDIR              0x20    /* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN              0x10
  95#define PNL_PSELECP             0x08    /* inverted output, active low */
  96#define PNL_PINITP              0x04    /* direct output, active low */
  97#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  98#define PNL_PSTROBE             0x01    /* inverted output */
  99
 100#define PNL_PD0                 0x01
 101#define PNL_PD1                 0x02
 102#define PNL_PD2                 0x04
 103#define PNL_PD3                 0x08
 104#define PNL_PD4                 0x10
 105#define PNL_PD5                 0x20
 106#define PNL_PD6                 0x40
 107#define PNL_PD7                 0x80
 108
 109#define PIN_NONE                0
 110#define PIN_STROBE              1
 111#define PIN_D0                  2
 112#define PIN_D1                  3
 113#define PIN_D2                  4
 114#define PIN_D3                  5
 115#define PIN_D4                  6
 116#define PIN_D5                  7
 117#define PIN_D6                  8
 118#define PIN_D7                  9
 119#define PIN_AUTOLF              14
 120#define PIN_INITP               16
 121#define PIN_SELECP              17
 122#define PIN_NOT_SET             127
 123
 124#define LCD_FLAG_S              0x0001
 125#define LCD_FLAG_ID             0x0002
 126#define LCD_FLAG_B              0x0004  /* blink on */
 127#define LCD_FLAG_C              0x0008  /* cursor on */
 128#define LCD_FLAG_D              0x0010  /* display on */
 129#define LCD_FLAG_F              0x0020  /* large font mode */
 130#define LCD_FLAG_N              0x0040  /* 2-rows mode */
 131#define LCD_FLAG_L              0x0080  /* backlight enabled */
 132
 133#define LCD_ESCAPE_LEN          24      /* max chars for LCD escape command */
 134#define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
 135
 136/* macros to simplify use of the parallel port */
 137#define r_ctr(x)        (parport_read_control((x)->port))
 138#define r_dtr(x)        (parport_read_data((x)->port))
 139#define r_str(x)        (parport_read_status((x)->port))
 140#define w_ctr(x, y)     do { parport_write_control((x)->port, (y)); } while (0)
 141#define w_dtr(x, y)     do { parport_write_data((x)->port, (y)); } while (0)
 142
 143/* this defines which bits are to be used and which ones to be ignored */
 144/* logical or of the output bits involved in the scan matrix */
 145static __u8 scan_mask_o;
 146/* logical or of the input bits involved in the scan matrix */
 147static __u8 scan_mask_i;
 148
 149typedef __u64 pmask_t;
 150
 151enum input_type {
 152        INPUT_TYPE_STD,
 153        INPUT_TYPE_KBD,
 154};
 155
 156enum input_state {
 157        INPUT_ST_LOW,
 158        INPUT_ST_RISING,
 159        INPUT_ST_HIGH,
 160        INPUT_ST_FALLING,
 161};
 162
 163struct logical_input {
 164        struct list_head list;
 165        pmask_t mask;
 166        pmask_t value;
 167        enum input_type type;
 168        enum input_state state;
 169        __u8 rise_time, fall_time;
 170        __u8 rise_timer, fall_timer, high_timer;
 171
 172        union {
 173                struct {        /* valid when type == INPUT_TYPE_STD */
 174                        void (*press_fct) (int);
 175                        void (*release_fct) (int);
 176                        int press_data;
 177                        int release_data;
 178                } std;
 179                struct {        /* valid when type == INPUT_TYPE_KBD */
 180                        /* strings can be non null-terminated */
 181                        char press_str[sizeof(void *) + sizeof(int)];
 182                        char repeat_str[sizeof(void *) + sizeof(int)];
 183                        char release_str[sizeof(void *) + sizeof(int)];
 184                } kbd;
 185        } u;
 186};
 187
 188LIST_HEAD(logical_inputs);      /* list of all defined logical inputs */
 189
 190/* physical contacts history
 191 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 192 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 193 * corresponds to the ground.
 194 * Within each group, bits are stored in the same order as read on the port :
 195 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 196 * So, each __u64 (or pmask_t) is represented like this :
 197 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 198 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 199 */
 200
 201/* what has just been read from the I/O ports */
 202static pmask_t phys_read;
 203/* previous phys_read */
 204static pmask_t phys_read_prev;
 205/* stabilized phys_read (phys_read|phys_read_prev) */
 206static pmask_t phys_curr;
 207/* previous phys_curr */
 208static pmask_t phys_prev;
 209/* 0 means that at least one logical signal needs be computed */
 210static char inputs_stable;
 211
 212/* these variables are specific to the keypad */
 213static char keypad_buffer[KEYPAD_BUFFER];
 214static int keypad_buflen;
 215static int keypad_start;
 216static char keypressed;
 217static wait_queue_head_t keypad_read_wait;
 218
 219/* lcd-specific variables */
 220
 221/* contains the LCD config state */
 222static unsigned long int lcd_flags;
 223/* contains the LCD X offset */
 224static unsigned long int lcd_addr_x;
 225/* contains the LCD Y offset */
 226static unsigned long int lcd_addr_y;
 227/* current escape sequence, 0 terminated */
 228static char lcd_escape[LCD_ESCAPE_LEN + 1];
 229/* not in escape state. >=0 = escape cmd len */
 230static int lcd_escape_len = -1;
 231
 232/*
 233 * Bit masks to convert LCD signals to parallel port outputs.
 234 * _d_ are values for data port, _c_ are for control port.
 235 * [0] = signal OFF, [1] = signal ON, [2] = mask
 236 */
 237#define BIT_CLR         0
 238#define BIT_SET         1
 239#define BIT_MSK         2
 240#define BIT_STATES      3
 241/*
 242 * one entry for each bit on the LCD
 243 */
 244#define LCD_BIT_E       0
 245#define LCD_BIT_RS      1
 246#define LCD_BIT_RW      2
 247#define LCD_BIT_BL      3
 248#define LCD_BIT_CL      4
 249#define LCD_BIT_DA      5
 250#define LCD_BITS        6
 251
 252/*
 253 * each bit can be either connected to a DATA or CTRL port
 254 */
 255#define LCD_PORT_C      0
 256#define LCD_PORT_D      1
 257#define LCD_PORTS       2
 258
 259static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 260
 261/*
 262 * LCD protocols
 263 */
 264#define LCD_PROTO_PARALLEL      0
 265#define LCD_PROTO_SERIAL        1
 266#define LCD_PROTO_TI_DA8XX_LCD  2
 267
 268/*
 269 * LCD character sets
 270 */
 271#define LCD_CHARSET_NORMAL      0
 272#define LCD_CHARSET_KS0074      1
 273
 274/*
 275 * LCD types
 276 */
 277#define LCD_TYPE_NONE           0
 278#define LCD_TYPE_OLD            1
 279#define LCD_TYPE_KS0074         2
 280#define LCD_TYPE_HANTRONIX      3
 281#define LCD_TYPE_NEXCOM         4
 282#define LCD_TYPE_CUSTOM         5
 283
 284/*
 285 * keypad types
 286 */
 287#define KEYPAD_TYPE_NONE        0
 288#define KEYPAD_TYPE_OLD         1
 289#define KEYPAD_TYPE_NEW         2
 290#define KEYPAD_TYPE_NEXCOM      3
 291
 292/*
 293 * panel profiles
 294 */
 295#define PANEL_PROFILE_CUSTOM    0
 296#define PANEL_PROFILE_OLD       1
 297#define PANEL_PROFILE_NEW       2
 298#define PANEL_PROFILE_HANTRONIX 3
 299#define PANEL_PROFILE_NEXCOM    4
 300#define PANEL_PROFILE_LARGE     5
 301
 302/*
 303 * Construct custom config from the kernel's configuration
 304 */
 305#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 306#define DEFAULT_PARPORT         0
 307#define DEFAULT_LCD             LCD_TYPE_OLD
 308#define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
 309#define DEFAULT_LCD_WIDTH       40
 310#define DEFAULT_LCD_BWIDTH      40
 311#define DEFAULT_LCD_HWIDTH      64
 312#define DEFAULT_LCD_HEIGHT      2
 313#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 314
 315#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 316#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 317#define DEFAULT_LCD_PIN_RW      PIN_INITP
 318#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 319#define DEFAULT_LCD_PIN_SDA     PIN_D0
 320#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 321#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 322
 323#ifdef CONFIG_PANEL_PROFILE
 324#undef DEFAULT_PROFILE
 325#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 326#endif
 327
 328#ifdef CONFIG_PANEL_PARPORT
 329#undef DEFAULT_PARPORT
 330#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 331#endif
 332
 333#if DEFAULT_PROFILE == 0        /* custom */
 334#ifdef CONFIG_PANEL_KEYPAD
 335#undef DEFAULT_KEYPAD
 336#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
 337#endif
 338
 339#ifdef CONFIG_PANEL_LCD
 340#undef DEFAULT_LCD
 341#define DEFAULT_LCD CONFIG_PANEL_LCD
 342#endif
 343
 344#ifdef CONFIG_PANEL_LCD_WIDTH
 345#undef DEFAULT_LCD_WIDTH
 346#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 347#endif
 348
 349#ifdef CONFIG_PANEL_LCD_BWIDTH
 350#undef DEFAULT_LCD_BWIDTH
 351#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 352#endif
 353
 354#ifdef CONFIG_PANEL_LCD_HWIDTH
 355#undef DEFAULT_LCD_HWIDTH
 356#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 357#endif
 358
 359#ifdef CONFIG_PANEL_LCD_HEIGHT
 360#undef DEFAULT_LCD_HEIGHT
 361#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 362#endif
 363
 364#ifdef CONFIG_PANEL_LCD_PROTO
 365#undef DEFAULT_LCD_PROTO
 366#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 367#endif
 368
 369#ifdef CONFIG_PANEL_LCD_PIN_E
 370#undef DEFAULT_LCD_PIN_E
 371#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 372#endif
 373
 374#ifdef CONFIG_PANEL_LCD_PIN_RS
 375#undef DEFAULT_LCD_PIN_RS
 376#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 377#endif
 378
 379#ifdef CONFIG_PANEL_LCD_PIN_RW
 380#undef DEFAULT_LCD_PIN_RW
 381#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 382#endif
 383
 384#ifdef CONFIG_PANEL_LCD_PIN_SCL
 385#undef DEFAULT_LCD_PIN_SCL
 386#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 387#endif
 388
 389#ifdef CONFIG_PANEL_LCD_PIN_SDA
 390#undef DEFAULT_LCD_PIN_SDA
 391#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 392#endif
 393
 394#ifdef CONFIG_PANEL_LCD_PIN_BL
 395#undef DEFAULT_LCD_PIN_BL
 396#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 397#endif
 398
 399#ifdef CONFIG_PANEL_LCD_CHARSET
 400#undef DEFAULT_LCD_CHARSET
 401#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 402#endif
 403
 404#endif /* DEFAULT_PROFILE == 0 */
 405
 406/* global variables */
 407static int keypad_open_cnt;     /* #times opened */
 408static int lcd_open_cnt;        /* #times opened */
 409static struct pardevice *pprt;
 410
 411static int lcd_initialized;
 412static int keypad_initialized;
 413
 414static int light_tempo;
 415
 416static char lcd_must_clear;
 417static char lcd_left_shift;
 418static char init_in_progress;
 419
 420static void (*lcd_write_cmd) (int);
 421static void (*lcd_write_data) (int);
 422static void (*lcd_clear_fast) (void);
 423
 424static DEFINE_SPINLOCK(pprt_lock);
 425static struct timer_list scan_timer;
 426
 427MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 428
 429static int parport = -1;
 430module_param(parport, int, 0000);
 431MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 432
 433static int lcd_height = -1;
 434module_param(lcd_height, int, 0000);
 435MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 436
 437static int lcd_width = -1;
 438module_param(lcd_width, int, 0000);
 439MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 440
 441static int lcd_bwidth = -1;     /* internal buffer width (usually 40) */
 442module_param(lcd_bwidth, int, 0000);
 443MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 444
 445static int lcd_hwidth = -1;     /* hardware buffer width (usually 64) */
 446module_param(lcd_hwidth, int, 0000);
 447MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 448
 449static int lcd_enabled = -1;
 450module_param(lcd_enabled, int, 0000);
 451MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 452
 453static int keypad_enabled = -1;
 454module_param(keypad_enabled, int, 0000);
 455MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 456
 457static int lcd_type = -1;
 458module_param(lcd_type, int, 0000);
 459MODULE_PARM_DESC(lcd_type,
 460                 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
 461                 "3=hantronix //, 4=nexcom //, 5=compiled-in");
 462
 463static int lcd_proto = -1;
 464module_param(lcd_proto, int, 0000);
 465MODULE_PARM_DESC(lcd_proto,
 466                "LCD communication: 0=parallel (//), 1=serial,"
 467                "2=TI LCD Interface");
 468
 469static int lcd_charset = -1;
 470module_param(lcd_charset, int, 0000);
 471MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 472
 473static int keypad_type = -1;
 474module_param(keypad_type, int, 0000);
 475MODULE_PARM_DESC(keypad_type,
 476                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
 477                 "3=nexcom 4 keys");
 478
 479static int profile = DEFAULT_PROFILE;
 480module_param(profile, int, 0000);
 481MODULE_PARM_DESC(profile,
 482                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 483                 "4=16x2 nexcom; default=40x2, old kp");
 484
 485/*
 486 * These are the parallel port pins the LCD control signals are connected to.
 487 * Set this to 0 if the signal is not used. Set it to its opposite value
 488 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 489 * pin has not been explicitly specified.
 490 *
 491 * WARNING! no check will be performed about collisions with keypad !
 492 */
 493
 494static int lcd_e_pin  = PIN_NOT_SET;
 495module_param(lcd_e_pin, int, 0000);
 496MODULE_PARM_DESC(lcd_e_pin,
 497                 "# of the // port pin connected to LCD 'E' signal, "
 498                 "with polarity (-17..17)");
 499
 500static int lcd_rs_pin = PIN_NOT_SET;
 501module_param(lcd_rs_pin, int, 0000);
 502MODULE_PARM_DESC(lcd_rs_pin,
 503                 "# of the // port pin connected to LCD 'RS' signal, "
 504                 "with polarity (-17..17)");
 505
 506static int lcd_rw_pin = PIN_NOT_SET;
 507module_param(lcd_rw_pin, int, 0000);
 508MODULE_PARM_DESC(lcd_rw_pin,
 509                 "# of the // port pin connected to LCD 'RW' signal, "
 510                 "with polarity (-17..17)");
 511
 512static int lcd_bl_pin = PIN_NOT_SET;
 513module_param(lcd_bl_pin, int, 0000);
 514MODULE_PARM_DESC(lcd_bl_pin,
 515                 "# of the // port pin connected to LCD backlight, "
 516                 "with polarity (-17..17)");
 517
 518static int lcd_da_pin = PIN_NOT_SET;
 519module_param(lcd_da_pin, int, 0000);
 520MODULE_PARM_DESC(lcd_da_pin,
 521                 "# of the // port pin connected to serial LCD 'SDA' "
 522                 "signal, with polarity (-17..17)");
 523
 524static int lcd_cl_pin = PIN_NOT_SET;
 525module_param(lcd_cl_pin, int, 0000);
 526MODULE_PARM_DESC(lcd_cl_pin,
 527                 "# of the // port pin connected to serial LCD 'SCL' "
 528                 "signal, with polarity (-17..17)");
 529
 530static unsigned char *lcd_char_conv;
 531
 532/* for some LCD drivers (ks0074) we need a charset conversion table. */
 533static unsigned char lcd_char_conv_ks0074[256] = {
 534        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 535        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 536        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 537        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 538        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 539        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 540        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 541        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 542        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 543        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 544        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 545        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 546        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 547        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 548        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 549        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 550        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 551        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 552        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 553        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 554        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 555        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 556        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 557        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 558        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 559        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 560        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 561        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 562        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 563        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 564        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 565        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 566        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 567};
 568
 569char old_keypad_profile[][4][9] = {
 570        {"S0", "Left\n", "Left\n", ""},
 571        {"S1", "Down\n", "Down\n", ""},
 572        {"S2", "Up\n", "Up\n", ""},
 573        {"S3", "Right\n", "Right\n", ""},
 574        {"S4", "Esc\n", "Esc\n", ""},
 575        {"S5", "Ret\n", "Ret\n", ""},
 576        {"", "", "", ""}
 577};
 578
 579/* signals, press, repeat, release */
 580char new_keypad_profile[][4][9] = {
 581        {"S0", "Left\n", "Left\n", ""},
 582        {"S1", "Down\n", "Down\n", ""},
 583        {"S2", "Up\n", "Up\n", ""},
 584        {"S3", "Right\n", "Right\n", ""},
 585        {"S4s5", "", "Esc\n", "Esc\n"},
 586        {"s4S5", "", "Ret\n", "Ret\n"},
 587        {"S4S5", "Help\n", "", ""},
 588        /* add new signals above this line */
 589        {"", "", "", ""}
 590};
 591
 592/* signals, press, repeat, release */
 593char nexcom_keypad_profile[][4][9] = {
 594        {"a-p-e-", "Down\n", "Down\n", ""},
 595        {"a-p-E-", "Ret\n", "Ret\n", ""},
 596        {"a-P-E-", "Esc\n", "Esc\n", ""},
 597        {"a-P-e-", "Up\n", "Up\n", ""},
 598        /* add new signals above this line */
 599        {"", "", "", ""}
 600};
 601
 602static char (*keypad_profile)[4][9] = old_keypad_profile;
 603
 604/* FIXME: this should be converted to a bit array containing signals states */
 605static struct {
 606        unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 607        unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 608        unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 609        unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 610        unsigned char cl; /* serial LCD clock (latch on rising edge) */
 611        unsigned char da; /* serial LCD data */
 612} bits;
 613
 614static void init_scan_timer(void);
 615
 616/* sets data port bits according to current signals values */
 617static int set_data_bits(void)
 618{
 619        int val, bit;
 620
 621        val = r_dtr(pprt);
 622        for (bit = 0; bit < LCD_BITS; bit++)
 623                val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 624
 625        val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 626            | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 627            | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 628            | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 629            | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 630            | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 631
 632        w_dtr(pprt, val);
 633        return val;
 634}
 635
 636/* sets ctrl port bits according to current signals values */
 637static int set_ctrl_bits(void)
 638{
 639        int val, bit;
 640
 641        val = r_ctr(pprt);
 642        for (bit = 0; bit < LCD_BITS; bit++)
 643                val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 644
 645        val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 646            | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 647            | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 648            | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 649            | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 650            | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 651
 652        w_ctr(pprt, val);
 653        return val;
 654}
 655
 656/* sets ctrl & data port bits according to current signals values */
 657static void panel_set_bits(void)
 658{
 659        set_data_bits();
 660        set_ctrl_bits();
 661}
 662
 663/*
 664 * Converts a parallel port pin (from -25 to 25) to data and control ports
 665 * masks, and data and control port bits. The signal will be considered
 666 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 667 *
 668 * Result will be used this way :
 669 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 670 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 671 */
 672void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 673{
 674        int d_bit, c_bit, inv;
 675
 676        d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
 677        d_val[2] = c_val[2] = 0xFF;
 678
 679        if (pin == 0)
 680                return;
 681
 682        inv = (pin < 0);
 683        if (inv)
 684                pin = -pin;
 685
 686        d_bit = c_bit = 0;
 687
 688        switch (pin) {
 689        case PIN_STROBE:        /* strobe, inverted */
 690                c_bit = PNL_PSTROBE;
 691                inv = !inv;
 692                break;
 693        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 694                d_bit = 1 << (pin - 2);
 695                break;
 696        case PIN_AUTOLF:        /* autofeed, inverted */
 697                c_bit = PNL_PAUTOLF;
 698                inv = !inv;
 699                break;
 700        case PIN_INITP:         /* init, direct */
 701                c_bit = PNL_PINITP;
 702                break;
 703        case PIN_SELECP:        /* select_in, inverted */
 704                c_bit = PNL_PSELECP;
 705                inv = !inv;
 706                break;
 707        default:                /* unknown pin, ignore */
 708                break;
 709        }
 710
 711        if (c_bit) {
 712                c_val[2] &= ~c_bit;
 713                c_val[!inv] = c_bit;
 714        } else if (d_bit) {
 715                d_val[2] &= ~d_bit;
 716                d_val[!inv] = d_bit;
 717        }
 718}
 719
 720/* sleeps that many milliseconds with a reschedule */
 721static void long_sleep(int ms)
 722{
 723
 724        if (in_interrupt())
 725                mdelay(ms);
 726        else {
 727                current->state = TASK_INTERRUPTIBLE;
 728                schedule_timeout((ms * HZ + 999) / 1000);
 729        }
 730}
 731
 732/* send a serial byte to the LCD panel. The caller is responsible for locking
 733   if needed. */
 734static void lcd_send_serial(int byte)
 735{
 736        int bit;
 737
 738        /* the data bit is set on D0, and the clock on STROBE.
 739         * LCD reads D0 on STROBE's rising edge. */
 740        for (bit = 0; bit < 8; bit++) {
 741                bits.cl = BIT_CLR;      /* CLK low */
 742                panel_set_bits();
 743                bits.da = byte & 1;
 744                panel_set_bits();
 745                udelay(2);  /* maintain the data during 2 us before CLK up */
 746                bits.cl = BIT_SET;      /* CLK high */
 747                panel_set_bits();
 748                udelay(1);  /* maintain the strobe during 1 us */
 749                byte >>= 1;
 750        }
 751}
 752
 753/* turn the backlight on or off */
 754static void lcd_backlight(int on)
 755{
 756        if (lcd_bl_pin == PIN_NONE)
 757                return;
 758
 759        /* The backlight is activated by seting the AUTOFEED line to +5V  */
 760        spin_lock(&pprt_lock);
 761        bits.bl = on;
 762        panel_set_bits();
 763        spin_unlock(&pprt_lock);
 764}
 765
 766/* send a command to the LCD panel in serial mode */
 767static void lcd_write_cmd_s(int cmd)
 768{
 769        spin_lock(&pprt_lock);
 770        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 771        lcd_send_serial(cmd & 0x0F);
 772        lcd_send_serial((cmd >> 4) & 0x0F);
 773        udelay(40);             /* the shortest command takes at least 40 us */
 774        spin_unlock(&pprt_lock);
 775}
 776
 777/* send data to the LCD panel in serial mode */
 778static void lcd_write_data_s(int data)
 779{
 780        spin_lock(&pprt_lock);
 781        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 782        lcd_send_serial(data & 0x0F);
 783        lcd_send_serial((data >> 4) & 0x0F);
 784        udelay(40);             /* the shortest data takes at least 40 us */
 785        spin_unlock(&pprt_lock);
 786}
 787
 788/* send a command to the LCD panel in 8 bits parallel mode */
 789static void lcd_write_cmd_p8(int cmd)
 790{
 791        spin_lock(&pprt_lock);
 792        /* present the data to the data port */
 793        w_dtr(pprt, cmd);
 794        udelay(20);     /* maintain the data during 20 us before the strobe */
 795
 796        bits.e = BIT_SET;
 797        bits.rs = BIT_CLR;
 798        bits.rw = BIT_CLR;
 799        set_ctrl_bits();
 800
 801        udelay(40);     /* maintain the strobe during 40 us */
 802
 803        bits.e = BIT_CLR;
 804        set_ctrl_bits();
 805
 806        udelay(120);    /* the shortest command takes at least 120 us */
 807        spin_unlock(&pprt_lock);
 808}
 809
 810/* send data to the LCD panel in 8 bits parallel mode */
 811static void lcd_write_data_p8(int data)
 812{
 813        spin_lock(&pprt_lock);
 814        /* present the data to the data port */
 815        w_dtr(pprt, data);
 816        udelay(20);     /* maintain the data during 20 us before the strobe */
 817
 818        bits.e = BIT_SET;
 819        bits.rs = BIT_SET;
 820        bits.rw = BIT_CLR;
 821        set_ctrl_bits();
 822
 823        udelay(40);     /* maintain the strobe during 40 us */
 824
 825        bits.e = BIT_CLR;
 826        set_ctrl_bits();
 827
 828        udelay(45);     /* the shortest data takes at least 45 us */
 829        spin_unlock(&pprt_lock);
 830}
 831
 832/* send a command to the TI LCD panel */
 833static void lcd_write_cmd_tilcd(int cmd)
 834{
 835        spin_lock(&pprt_lock);
 836        /* present the data to the control port */
 837        w_ctr(pprt, cmd);
 838        udelay(60);
 839        spin_unlock(&pprt_lock);
 840}
 841
 842/* send data to the TI LCD panel */
 843static void lcd_write_data_tilcd(int data)
 844{
 845        spin_lock(&pprt_lock);
 846        /* present the data to the data port */
 847        w_dtr(pprt, data);
 848        udelay(60);
 849        spin_unlock(&pprt_lock);
 850}
 851
 852static void lcd_gotoxy(void)
 853{
 854        lcd_write_cmd(0x80      /* set DDRAM address */
 855                      | (lcd_addr_y ? lcd_hwidth : 0)
 856                      /* we force the cursor to stay at the end of the
 857                         line if it wants to go farther */
 858                      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
 859                         (lcd_hwidth - 1) : lcd_bwidth - 1));
 860}
 861
 862static void lcd_print(char c)
 863{
 864        if (lcd_addr_x < lcd_bwidth) {
 865                if (lcd_char_conv != NULL)
 866                        c = lcd_char_conv[(unsigned char)c];
 867                lcd_write_data(c);
 868                lcd_addr_x++;
 869        }
 870        /* prevents the cursor from wrapping onto the next line */
 871        if (lcd_addr_x == lcd_bwidth)
 872                lcd_gotoxy();
 873}
 874
 875/* fills the display with spaces and resets X/Y */
 876static void lcd_clear_fast_s(void)
 877{
 878        int pos;
 879        lcd_addr_x = lcd_addr_y = 0;
 880        lcd_gotoxy();
 881
 882        spin_lock(&pprt_lock);
 883        for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 884                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 885                lcd_send_serial(' ' & 0x0F);
 886                lcd_send_serial((' ' >> 4) & 0x0F);
 887                udelay(40);     /* the shortest data takes at least 40 us */
 888        }
 889        spin_unlock(&pprt_lock);
 890
 891        lcd_addr_x = lcd_addr_y = 0;
 892        lcd_gotoxy();
 893}
 894
 895/* fills the display with spaces and resets X/Y */
 896static void lcd_clear_fast_p8(void)
 897{
 898        int pos;
 899        lcd_addr_x = lcd_addr_y = 0;
 900        lcd_gotoxy();
 901
 902        spin_lock(&pprt_lock);
 903        for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 904                /* present the data to the data port */
 905                w_dtr(pprt, ' ');
 906
 907                /* maintain the data during 20 us before the strobe */
 908                udelay(20);
 909
 910                bits.e = BIT_SET;
 911                bits.rs = BIT_SET;
 912                bits.rw = BIT_CLR;
 913                set_ctrl_bits();
 914
 915                /* maintain the strobe during 40 us */
 916                udelay(40);
 917
 918                bits.e = BIT_CLR;
 919                set_ctrl_bits();
 920
 921                /* the shortest data takes at least 45 us */
 922                udelay(45);
 923        }
 924        spin_unlock(&pprt_lock);
 925
 926        lcd_addr_x = lcd_addr_y = 0;
 927        lcd_gotoxy();
 928}
 929
 930/* fills the display with spaces and resets X/Y */
 931static void lcd_clear_fast_tilcd(void)
 932{
 933        int pos;
 934        lcd_addr_x = lcd_addr_y = 0;
 935        lcd_gotoxy();
 936
 937        spin_lock(&pprt_lock);
 938        for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 939                /* present the data to the data port */
 940                w_dtr(pprt, ' ');
 941                udelay(60);
 942        }
 943
 944        spin_unlock(&pprt_lock);
 945
 946        lcd_addr_x = lcd_addr_y = 0;
 947        lcd_gotoxy();
 948}
 949
 950/* clears the display and resets X/Y */
 951static void lcd_clear_display(void)
 952{
 953        lcd_write_cmd(0x01);    /* clear display */
 954        lcd_addr_x = lcd_addr_y = 0;
 955        /* we must wait a few milliseconds (15) */
 956        long_sleep(15);
 957}
 958
 959static void lcd_init_display(void)
 960{
 961
 962        lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
 963            | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
 964
 965        long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
 966
 967        lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
 968        long_sleep(10);
 969        lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
 970        long_sleep(10);
 971        lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
 972        long_sleep(10);
 973
 974        lcd_write_cmd(0x30      /* set font height and lines number */
 975                      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
 976                      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
 977            );
 978        long_sleep(10);
 979
 980        lcd_write_cmd(0x08);    /* display off, cursor off, blink off */
 981        long_sleep(10);
 982
 983        lcd_write_cmd(0x08      /* set display mode */
 984                      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
 985                      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
 986                      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
 987            );
 988
 989        lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
 990
 991        long_sleep(10);
 992
 993        /* entry mode set : increment, cursor shifting */
 994        lcd_write_cmd(0x06);
 995
 996        lcd_clear_display();
 997}
 998
 999/*
1000 * These are the file operation function for user access to /dev/lcd
1001 * This function can also be called from inside the kernel, by
1002 * setting file and ppos to NULL.
1003 *
1004 */
1005
1006static inline int handle_lcd_special_code(void)
1007{
1008        /* LCD special codes */
1009
1010        int processed = 0;
1011
1012        char *esc = lcd_escape + 2;
1013        int oldflags = lcd_flags;
1014
1015        /* check for display mode flags */
1016        switch (*esc) {
1017        case 'D':       /* Display ON */
1018                lcd_flags |= LCD_FLAG_D;
1019                processed = 1;
1020                break;
1021        case 'd':       /* Display OFF */
1022                lcd_flags &= ~LCD_FLAG_D;
1023                processed = 1;
1024                break;
1025        case 'C':       /* Cursor ON */
1026                lcd_flags |= LCD_FLAG_C;
1027                processed = 1;
1028                break;
1029        case 'c':       /* Cursor OFF */
1030                lcd_flags &= ~LCD_FLAG_C;
1031                processed = 1;
1032                break;
1033        case 'B':       /* Blink ON */
1034                lcd_flags |= LCD_FLAG_B;
1035                processed = 1;
1036                break;
1037        case 'b':       /* Blink OFF */
1038                lcd_flags &= ~LCD_FLAG_B;
1039                processed = 1;
1040                break;
1041        case '+':       /* Back light ON */
1042                lcd_flags |= LCD_FLAG_L;
1043                processed = 1;
1044                break;
1045        case '-':       /* Back light OFF */
1046                lcd_flags &= ~LCD_FLAG_L;
1047                processed = 1;
1048                break;
1049        case '*':
1050                /* flash back light using the keypad timer */
1051                if (scan_timer.function != NULL) {
1052                        if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1053                                lcd_backlight(1);
1054                        light_tempo = FLASH_LIGHT_TEMPO;
1055                }
1056                processed = 1;
1057                break;
1058        case 'f':       /* Small Font */
1059                lcd_flags &= ~LCD_FLAG_F;
1060                processed = 1;
1061                break;
1062        case 'F':       /* Large Font */
1063                lcd_flags |= LCD_FLAG_F;
1064                processed = 1;
1065                break;
1066        case 'n':       /* One Line */
1067                lcd_flags &= ~LCD_FLAG_N;
1068                processed = 1;
1069                break;
1070        case 'N':       /* Two Lines */
1071                lcd_flags |= LCD_FLAG_N;
1072                break;
1073        case 'l':       /* Shift Cursor Left */
1074                if (lcd_addr_x > 0) {
1075                        /* back one char if not at end of line */
1076                        if (lcd_addr_x < lcd_bwidth)
1077                                lcd_write_cmd(0x10);
1078                        lcd_addr_x--;
1079                }
1080                processed = 1;
1081                break;
1082        case 'r':       /* shift cursor right */
1083                if (lcd_addr_x < lcd_width) {
1084                        /* allow the cursor to pass the end of the line */
1085                        if (lcd_addr_x <
1086                            (lcd_bwidth - 1))
1087                                lcd_write_cmd(0x14);
1088                        lcd_addr_x++;
1089                }
1090                processed = 1;
1091                break;
1092        case 'L':       /* shift display left */
1093                lcd_left_shift++;
1094                lcd_write_cmd(0x18);
1095                processed = 1;
1096                break;
1097        case 'R':       /* shift display right */
1098                lcd_left_shift--;
1099                lcd_write_cmd(0x1C);
1100                processed = 1;
1101                break;
1102        case 'k': {     /* kill end of line */
1103                int x;
1104                for (x = lcd_addr_x; x < lcd_bwidth; x++)
1105                        lcd_write_data(' ');
1106
1107                /* restore cursor position */
1108                lcd_gotoxy();
1109                processed = 1;
1110                break;
1111        }
1112        case 'I':       /* reinitialize display */
1113                lcd_init_display();
1114                lcd_left_shift = 0;
1115                processed = 1;
1116                break;
1117        case 'G': {
1118                /* Generator : LGcxxxxx...xx; must have <c> between '0'
1119                 * and '7', representing the numerical ASCII code of the
1120                 * redefined character, and <xx...xx> a sequence of 16
1121                 * hex digits representing 8 bytes for each character.
1122                 * Most LCDs will only use 5 lower bits of the 7 first
1123                 * bytes.
1124                 */
1125
1126                unsigned char cgbytes[8];
1127                unsigned char cgaddr;
1128                int cgoffset;
1129                int shift;
1130                char value;
1131                int addr;
1132
1133                if (strchr(esc, ';') == NULL)
1134                        break;
1135
1136                esc++;
1137
1138                cgaddr = *(esc++) - '0';
1139                if (cgaddr > 7) {
1140                        processed = 1;
1141                        break;
1142                }
1143
1144                cgoffset = 0;
1145                shift = 0;
1146                value = 0;
1147                while (*esc && cgoffset < 8) {
1148                        shift ^= 4;
1149                        if (*esc >= '0' && *esc <= '9')
1150                                value |= (*esc - '0') << shift;
1151                        else if (*esc >= 'A' && *esc <= 'Z')
1152                                value |= (*esc - 'A' + 10) << shift;
1153                        else if (*esc >= 'a' && *esc <= 'z')
1154                                value |= (*esc - 'a' + 10) << shift;
1155                        else {
1156                                esc++;
1157                                continue;
1158                        }
1159
1160                        if (shift == 0) {
1161                                cgbytes[cgoffset++] = value;
1162                                value = 0;
1163                        }
1164
1165                        esc++;
1166                }
1167
1168                lcd_write_cmd(0x40 | (cgaddr * 8));
1169                for (addr = 0; addr < cgoffset; addr++)
1170                        lcd_write_data(cgbytes[addr]);
1171
1172                /* ensures that we stop writing to CGRAM */
1173                lcd_gotoxy();
1174                processed = 1;
1175                break;
1176        }
1177        case 'x':       /* gotoxy : LxXXX[yYYY]; */
1178        case 'y':       /* gotoxy : LyYYY[xXXX]; */
1179                if (strchr(esc, ';') == NULL)
1180                        break;
1181
1182                while (*esc) {
1183                        char *endp;
1184
1185                        if (*esc == 'x') {
1186                                esc++;
1187                                lcd_addr_x = simple_strtoul(esc, &endp, 10);
1188                                esc = endp;
1189                        } else if (*esc == 'y') {
1190                                esc++;
1191                                lcd_addr_y = simple_strtoul(esc, &endp, 10);
1192                                esc = endp;
1193                        } else
1194                                break;
1195                }
1196
1197                lcd_gotoxy();
1198                processed = 1;
1199                break;
1200        }
1201
1202        /* Check wether one flag was changed */
1203        if (oldflags != lcd_flags) {
1204                /* check whether one of B,C,D flags were changed */
1205                if ((oldflags ^ lcd_flags) &
1206                    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1207                        /* set display mode */
1208                        lcd_write_cmd(0x08
1209                                      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1210                                      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1211                                      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1212                /* check whether one of F,N flags was changed */
1213                else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1214                        lcd_write_cmd(0x30
1215                                      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1216                                      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1217                /* check wether L flag was changed */
1218                else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1219                        if (lcd_flags & (LCD_FLAG_L))
1220                                lcd_backlight(1);
1221                        else if (light_tempo == 0)
1222                                /* switch off the light only when the tempo
1223                                   lighting is gone */
1224                                lcd_backlight(0);
1225                }
1226        }
1227
1228        return processed;
1229}
1230
1231static ssize_t lcd_write(struct file *file,
1232                         const char *buf, size_t count, loff_t *ppos)
1233{
1234        const char *tmp = buf;
1235        char c;
1236
1237        for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1238                if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1239                        /* let's be a little nice with other processes
1240                           that need some CPU */
1241                        schedule();
1242
1243                if (ppos == NULL && file == NULL)
1244                        /* let's not use get_user() from the kernel ! */
1245                        c = *tmp;
1246                else if (get_user(c, tmp))
1247                        return -EFAULT;
1248
1249                /* first, we'll test if we're in escape mode */
1250                if ((c != '\n') && lcd_escape_len >= 0) {
1251                        /* yes, let's add this char to the buffer */
1252                        lcd_escape[lcd_escape_len++] = c;
1253                        lcd_escape[lcd_escape_len] = 0;
1254                } else {
1255                        /* aborts any previous escape sequence */
1256                        lcd_escape_len = -1;
1257
1258                        switch (c) {
1259                        case LCD_ESCAPE_CHAR:
1260                                /* start of an escape sequence */
1261                                lcd_escape_len = 0;
1262                                lcd_escape[lcd_escape_len] = 0;
1263                                break;
1264                        case '\b':
1265                                /* go back one char and clear it */
1266                                if (lcd_addr_x > 0) {
1267                                        /* check if we're not at the
1268                                           end of the line */
1269                                        if (lcd_addr_x < lcd_bwidth)
1270                                                /* back one char */
1271                                                lcd_write_cmd(0x10);
1272                                        lcd_addr_x--;
1273                                }
1274                                /* replace with a space */
1275                                lcd_write_data(' ');
1276                                /* back one char again */
1277                                lcd_write_cmd(0x10);
1278                                break;
1279                        case '\014':
1280                                /* quickly clear the display */
1281                                lcd_clear_fast();
1282                                break;
1283                        case '\n':
1284                                /* flush the remainder of the current line and
1285                                   go to the beginning of the next line */
1286                                for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1287                                        lcd_write_data(' ');
1288                                lcd_addr_x = 0;
1289                                lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1290                                lcd_gotoxy();
1291                                break;
1292                        case '\r':
1293                                /* go to the beginning of the same line */
1294                                lcd_addr_x = 0;
1295                                lcd_gotoxy();
1296                                break;
1297                        case '\t':
1298                                /* print a space instead of the tab */
1299                                lcd_print(' ');
1300                                break;
1301                        default:
1302                                /* simply print this char */
1303                                lcd_print(c);
1304                                break;
1305                        }
1306                }
1307
1308                /* now we'll see if we're in an escape mode and if the current
1309                   escape sequence can be understood. */
1310                if (lcd_escape_len >= 2) {
1311                        int processed = 0;
1312
1313                        if (!strcmp(lcd_escape, "[2J")) {
1314                                /* clear the display */
1315                                lcd_clear_fast();
1316                                processed = 1;
1317                        } else if (!strcmp(lcd_escape, "[H")) {
1318                                /* cursor to home */
1319                                lcd_addr_x = lcd_addr_y = 0;
1320                                lcd_gotoxy();
1321                                processed = 1;
1322                        }
1323                        /* codes starting with ^[[L */
1324                        else if ((lcd_escape_len >= 3) &&
1325                                 (lcd_escape[0] == '[') &&
1326                                 (lcd_escape[1] == 'L')) {
1327                                processed = handle_lcd_special_code();
1328                        }
1329
1330                        /* LCD special escape codes */
1331                        /* flush the escape sequence if it's been processed
1332                           or if it is getting too long. */
1333                        if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1334                                lcd_escape_len = -1;
1335                } /* escape codes */
1336        }
1337
1338        return tmp - buf;
1339}
1340
1341static int lcd_open(struct inode *inode, struct file *file)
1342{
1343        if (lcd_open_cnt)
1344                return -EBUSY;  /* open only once at a time */
1345
1346        if (file->f_mode & FMODE_READ)  /* device is write-only */
1347                return -EPERM;
1348
1349        if (lcd_must_clear) {
1350                lcd_clear_display();
1351                lcd_must_clear = 0;
1352        }
1353        lcd_open_cnt++;
1354        return nonseekable_open(inode, file);
1355}
1356
1357static int lcd_release(struct inode *inode, struct file *file)
1358{
1359        lcd_open_cnt--;
1360        return 0;
1361}
1362
1363static const struct file_operations lcd_fops = {
1364        .write   = lcd_write,
1365        .open    = lcd_open,
1366        .release = lcd_release,
1367        .llseek  = no_llseek,
1368};
1369
1370static struct miscdevice lcd_dev = {
1371        LCD_MINOR,
1372        "lcd",
1373        &lcd_fops
1374};
1375
1376/* public function usable from the kernel for any purpose */
1377void panel_lcd_print(char *s)
1378{
1379        if (lcd_enabled && lcd_initialized)
1380                lcd_write(NULL, s, strlen(s), NULL);
1381}
1382
1383/* initialize the LCD driver */
1384void lcd_init(void)
1385{
1386        switch (lcd_type) {
1387        case LCD_TYPE_OLD:
1388                /* parallel mode, 8 bits */
1389                if (lcd_proto < 0)
1390                        lcd_proto = LCD_PROTO_PARALLEL;
1391                if (lcd_charset < 0)
1392                        lcd_charset = LCD_CHARSET_NORMAL;
1393                if (lcd_e_pin == PIN_NOT_SET)
1394                        lcd_e_pin = PIN_STROBE;
1395                if (lcd_rs_pin == PIN_NOT_SET)
1396                        lcd_rs_pin = PIN_AUTOLF;
1397
1398                if (lcd_width < 0)
1399                        lcd_width = 40;
1400                if (lcd_bwidth < 0)
1401                        lcd_bwidth = 40;
1402                if (lcd_hwidth < 0)
1403                        lcd_hwidth = 64;
1404                if (lcd_height < 0)
1405                        lcd_height = 2;
1406                break;
1407        case LCD_TYPE_KS0074:
1408                /* serial mode, ks0074 */
1409                if (lcd_proto < 0)
1410                        lcd_proto = LCD_PROTO_SERIAL;
1411                if (lcd_charset < 0)
1412                        lcd_charset = LCD_CHARSET_KS0074;
1413                if (lcd_bl_pin == PIN_NOT_SET)
1414                        lcd_bl_pin = PIN_AUTOLF;
1415                if (lcd_cl_pin == PIN_NOT_SET)
1416                        lcd_cl_pin = PIN_STROBE;
1417                if (lcd_da_pin == PIN_NOT_SET)
1418                        lcd_da_pin = PIN_D0;
1419
1420                if (lcd_width < 0)
1421                        lcd_width = 16;
1422                if (lcd_bwidth < 0)
1423                        lcd_bwidth = 40;
1424                if (lcd_hwidth < 0)
1425                        lcd_hwidth = 16;
1426                if (lcd_height < 0)
1427                        lcd_height = 2;
1428                break;
1429        case LCD_TYPE_NEXCOM:
1430                /* parallel mode, 8 bits, generic */
1431                if (lcd_proto < 0)
1432                        lcd_proto = LCD_PROTO_PARALLEL;
1433                if (lcd_charset < 0)
1434                        lcd_charset = LCD_CHARSET_NORMAL;
1435                if (lcd_e_pin == PIN_NOT_SET)
1436                        lcd_e_pin = PIN_AUTOLF;
1437                if (lcd_rs_pin == PIN_NOT_SET)
1438                        lcd_rs_pin = PIN_SELECP;
1439                if (lcd_rw_pin == PIN_NOT_SET)
1440                        lcd_rw_pin = PIN_INITP;
1441
1442                if (lcd_width < 0)
1443                        lcd_width = 16;
1444                if (lcd_bwidth < 0)
1445                        lcd_bwidth = 40;
1446                if (lcd_hwidth < 0)
1447                        lcd_hwidth = 64;
1448                if (lcd_height < 0)
1449                        lcd_height = 2;
1450                break;
1451        case LCD_TYPE_CUSTOM:
1452                /* customer-defined */
1453                if (lcd_proto < 0)
1454                        lcd_proto = DEFAULT_LCD_PROTO;
1455                if (lcd_charset < 0)
1456                        lcd_charset = DEFAULT_LCD_CHARSET;
1457                /* default geometry will be set later */
1458                break;
1459        case LCD_TYPE_HANTRONIX:
1460                /* parallel mode, 8 bits, hantronix-like */
1461        default:
1462                if (lcd_proto < 0)
1463                        lcd_proto = LCD_PROTO_PARALLEL;
1464                if (lcd_charset < 0)
1465                        lcd_charset = LCD_CHARSET_NORMAL;
1466                if (lcd_e_pin == PIN_NOT_SET)
1467                        lcd_e_pin = PIN_STROBE;
1468                if (lcd_rs_pin == PIN_NOT_SET)
1469                        lcd_rs_pin = PIN_SELECP;
1470
1471                if (lcd_width < 0)
1472                        lcd_width = 16;
1473                if (lcd_bwidth < 0)
1474                        lcd_bwidth = 40;
1475                if (lcd_hwidth < 0)
1476                        lcd_hwidth = 64;
1477                if (lcd_height < 0)
1478                        lcd_height = 2;
1479                break;
1480        }
1481
1482        /* this is used to catch wrong and default values */
1483        if (lcd_width <= 0)
1484                lcd_width = DEFAULT_LCD_WIDTH;
1485        if (lcd_bwidth <= 0)
1486                lcd_bwidth = DEFAULT_LCD_BWIDTH;
1487        if (lcd_hwidth <= 0)
1488                lcd_hwidth = DEFAULT_LCD_HWIDTH;
1489        if (lcd_height <= 0)
1490                lcd_height = DEFAULT_LCD_HEIGHT;
1491
1492        if (lcd_proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1493                lcd_write_cmd = lcd_write_cmd_s;
1494                lcd_write_data = lcd_write_data_s;
1495                lcd_clear_fast = lcd_clear_fast_s;
1496
1497                if (lcd_cl_pin == PIN_NOT_SET)
1498                        lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1499                if (lcd_da_pin == PIN_NOT_SET)
1500                        lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1501
1502        } else if (lcd_proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1503                lcd_write_cmd = lcd_write_cmd_p8;
1504                lcd_write_data = lcd_write_data_p8;
1505                lcd_clear_fast = lcd_clear_fast_p8;
1506
1507                if (lcd_e_pin == PIN_NOT_SET)
1508                        lcd_e_pin = DEFAULT_LCD_PIN_E;
1509                if (lcd_rs_pin == PIN_NOT_SET)
1510                        lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1511                if (lcd_rw_pin == PIN_NOT_SET)
1512                        lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1513        } else {
1514                lcd_write_cmd = lcd_write_cmd_tilcd;
1515                lcd_write_data = lcd_write_data_tilcd;
1516                lcd_clear_fast = lcd_clear_fast_tilcd;
1517        }
1518
1519        if (lcd_bl_pin == PIN_NOT_SET)
1520                lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1521
1522        if (lcd_e_pin == PIN_NOT_SET)
1523                lcd_e_pin = PIN_NONE;
1524        if (lcd_rs_pin == PIN_NOT_SET)
1525                lcd_rs_pin = PIN_NONE;
1526        if (lcd_rw_pin == PIN_NOT_SET)
1527                lcd_rw_pin = PIN_NONE;
1528        if (lcd_bl_pin == PIN_NOT_SET)
1529                lcd_bl_pin = PIN_NONE;
1530        if (lcd_cl_pin == PIN_NOT_SET)
1531                lcd_cl_pin = PIN_NONE;
1532        if (lcd_da_pin == PIN_NOT_SET)
1533                lcd_da_pin = PIN_NONE;
1534
1535        if (lcd_charset < 0)
1536                lcd_charset = DEFAULT_LCD_CHARSET;
1537
1538        if (lcd_charset == LCD_CHARSET_KS0074)
1539                lcd_char_conv = lcd_char_conv_ks0074;
1540        else
1541                lcd_char_conv = NULL;
1542
1543        if (lcd_bl_pin != PIN_NONE)
1544                init_scan_timer();
1545
1546        pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1547                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1548        pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1549                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1550        pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1551                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1552        pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1553                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1554        pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1555                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1556        pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1557                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1558
1559        /* before this line, we must NOT send anything to the display.
1560         * Since lcd_init_display() needs to write data, we have to
1561         * enable mark the LCD initialized just before. */
1562        lcd_initialized = 1;
1563        lcd_init_display();
1564
1565        /* display a short message */
1566#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1567#ifdef CONFIG_PANEL_BOOT_MESSAGE
1568        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1569#endif
1570#else
1571        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1572                        PANEL_VERSION);
1573#endif
1574        lcd_addr_x = lcd_addr_y = 0;
1575        /* clear the display on the next device opening */
1576        lcd_must_clear = 1;
1577        lcd_gotoxy();
1578}
1579
1580/*
1581 * These are the file operation function for user access to /dev/keypad
1582 */
1583
1584static ssize_t keypad_read(struct file *file,
1585                           char *buf, size_t count, loff_t *ppos)
1586{
1587
1588        unsigned i = *ppos;
1589        char *tmp = buf;
1590
1591        if (keypad_buflen == 0) {
1592                if (file->f_flags & O_NONBLOCK)
1593                        return -EAGAIN;
1594
1595                interruptible_sleep_on(&keypad_read_wait);
1596                if (signal_pending(current))
1597                        return -EINTR;
1598        }
1599
1600        for (; count-- > 0 && (keypad_buflen > 0);
1601             ++i, ++tmp, --keypad_buflen) {
1602                put_user(keypad_buffer[keypad_start], tmp);
1603                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1604        }
1605        *ppos = i;
1606
1607        return tmp - buf;
1608}
1609
1610static int keypad_open(struct inode *inode, struct file *file)
1611{
1612
1613        if (keypad_open_cnt)
1614                return -EBUSY;  /* open only once at a time */
1615
1616        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1617                return -EPERM;
1618
1619        keypad_buflen = 0;      /* flush the buffer on opening */
1620        keypad_open_cnt++;
1621        return 0;
1622}
1623
1624static int keypad_release(struct inode *inode, struct file *file)
1625{
1626        keypad_open_cnt--;
1627        return 0;
1628}
1629
1630static const struct file_operations keypad_fops = {
1631        .read    = keypad_read,         /* read */
1632        .open    = keypad_open,         /* open */
1633        .release = keypad_release,      /* close */
1634        .llseek  = default_llseek,
1635};
1636
1637static struct miscdevice keypad_dev = {
1638        KEYPAD_MINOR,
1639        "keypad",
1640        &keypad_fops
1641};
1642
1643static void keypad_send_key(char *string, int max_len)
1644{
1645        if (init_in_progress)
1646                return;
1647
1648        /* send the key to the device only if a process is attached to it. */
1649        if (keypad_open_cnt > 0) {
1650                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1651                        keypad_buffer[(keypad_start + keypad_buflen++) %
1652                                      KEYPAD_BUFFER] = *string++;
1653                }
1654                wake_up_interruptible(&keypad_read_wait);
1655        }
1656}
1657
1658/* this function scans all the bits involving at least one logical signal,
1659 * and puts the results in the bitfield "phys_read" (one bit per established
1660 * contact), and sets "phys_read_prev" to "phys_read".
1661 *
1662 * Note: to debounce input signals, we will only consider as switched a signal
1663 * which is stable across 2 measures. Signals which are different between two
1664 * reads will be kept as they previously were in their logical form (phys_prev).
1665 * A signal which has just switched will have a 1 in
1666 * (phys_read ^ phys_read_prev).
1667 */
1668static void phys_scan_contacts(void)
1669{
1670        int bit, bitval;
1671        char oldval;
1672        char bitmask;
1673        char gndmask;
1674
1675        phys_prev = phys_curr;
1676        phys_read_prev = phys_read;
1677        phys_read = 0;          /* flush all signals */
1678
1679        /* keep track of old value, with all outputs disabled */
1680        oldval = r_dtr(pprt) | scan_mask_o;
1681        /* activate all keyboard outputs (active low) */
1682        w_dtr(pprt, oldval & ~scan_mask_o);
1683
1684        /* will have a 1 for each bit set to gnd */
1685        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1686        /* disable all matrix signals */
1687        w_dtr(pprt, oldval);
1688
1689        /* now that all outputs are cleared, the only active input bits are
1690         * directly connected to the ground
1691         */
1692
1693        /* 1 for each grounded input */
1694        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1695
1696        /* grounded inputs are signals 40-44 */
1697        phys_read |= (pmask_t) gndmask << 40;
1698
1699        if (bitmask != gndmask) {
1700                /* since clearing the outputs changed some inputs, we know
1701                 * that some input signals are currently tied to some outputs.
1702                 * So we'll scan them.
1703                 */
1704                for (bit = 0; bit < 8; bit++) {
1705                        bitval = 1 << bit;
1706
1707                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1708                                continue;
1709
1710                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1711                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1712                        phys_read |= (pmask_t) bitmask << (5 * bit);
1713                }
1714                w_dtr(pprt, oldval);    /* disable all outputs */
1715        }
1716        /* this is easy: use old bits when they are flapping,
1717         * use new ones when stable */
1718        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1719                    (phys_read & ~(phys_read ^ phys_read_prev));
1720}
1721
1722static inline int input_state_high(struct logical_input *input)
1723{
1724#if 0
1725        /* FIXME:
1726         * this is an invalid test. It tries to catch
1727         * transitions from single-key to multiple-key, but
1728         * doesn't take into account the contacts polarity.
1729         * The only solution to the problem is to parse keys
1730         * from the most complex to the simplest combinations,
1731         * and mark them as 'caught' once a combination
1732         * matches, then unmatch it for all other ones.
1733         */
1734
1735        /* try to catch dangerous transitions cases :
1736         * someone adds a bit, so this signal was a false
1737         * positive resulting from a transition. We should
1738         * invalidate the signal immediately and not call the
1739         * release function.
1740         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1741         */
1742        if (((phys_prev & input->mask) == input->value)
1743            && ((phys_curr & input->mask) > input->value)) {
1744                input->state = INPUT_ST_LOW; /* invalidate */
1745                return 1;
1746        }
1747#endif
1748
1749        if ((phys_curr & input->mask) == input->value) {
1750                if ((input->type == INPUT_TYPE_STD) &&
1751                    (input->high_timer == 0)) {
1752                        input->high_timer++;
1753                        if (input->u.std.press_fct != NULL)
1754                                input->u.std.press_fct(input->u.std.press_data);
1755                } else if (input->type == INPUT_TYPE_KBD) {
1756                        /* will turn on the light */
1757                        keypressed = 1;
1758
1759                        if (input->high_timer == 0) {
1760                                char *press_str = input->u.kbd.press_str;
1761                                if (press_str[0])
1762                                        keypad_send_key(press_str,
1763                                                        sizeof(press_str));
1764                        }
1765
1766                        if (input->u.kbd.repeat_str[0]) {
1767                                char *repeat_str = input->u.kbd.repeat_str;
1768                                if (input->high_timer >= KEYPAD_REP_START) {
1769                                        input->high_timer -= KEYPAD_REP_DELAY;
1770                                        keypad_send_key(repeat_str,
1771                                                        sizeof(repeat_str));
1772                                }
1773                                /* we will need to come back here soon */
1774                                inputs_stable = 0;
1775                        }
1776
1777                        if (input->high_timer < 255)
1778                                input->high_timer++;
1779                }
1780                return 1;
1781        } else {
1782                /* else signal falling down. Let's fall through. */
1783                input->state = INPUT_ST_FALLING;
1784                input->fall_timer = 0;
1785        }
1786        return 0;
1787}
1788
1789static inline void input_state_falling(struct logical_input *input)
1790{
1791#if 0
1792        /* FIXME !!! same comment as in input_state_high */
1793        if (((phys_prev & input->mask) == input->value)
1794            && ((phys_curr & input->mask) > input->value)) {
1795                input->state = INPUT_ST_LOW;    /* invalidate */
1796                return;
1797        }
1798#endif
1799
1800        if ((phys_curr & input->mask) == input->value) {
1801                if (input->type == INPUT_TYPE_KBD) {
1802                        /* will turn on the light */
1803                        keypressed = 1;
1804
1805                        if (input->u.kbd.repeat_str[0]) {
1806                                char *repeat_str = input->u.kbd.repeat_str;
1807                                if (input->high_timer >= KEYPAD_REP_START)
1808                                        input->high_timer -= KEYPAD_REP_DELAY;
1809                                        keypad_send_key(repeat_str,
1810                                                        sizeof(repeat_str));
1811                                /* we will need to come back here soon */
1812                                inputs_stable = 0;
1813                        }
1814
1815                        if (input->high_timer < 255)
1816                                input->high_timer++;
1817                }
1818                input->state = INPUT_ST_HIGH;
1819        } else if (input->fall_timer >= input->fall_time) {
1820                /* call release event */
1821                if (input->type == INPUT_TYPE_STD) {
1822                        void (*release_fct)(int) = input->u.std.release_fct;
1823                        if (release_fct != NULL)
1824                                release_fct(input->u.std.release_data);
1825                } else if (input->type == INPUT_TYPE_KBD) {
1826                        char *release_str = input->u.kbd.release_str;
1827                        if (release_str[0])
1828                                keypad_send_key(release_str,
1829                                                sizeof(release_str));
1830                }
1831
1832                input->state = INPUT_ST_LOW;
1833        } else {
1834                input->fall_timer++;
1835                inputs_stable = 0;
1836        }
1837}
1838
1839static void panel_process_inputs(void)
1840{
1841        struct list_head *item;
1842        struct logical_input *input;
1843
1844#if 0
1845        printk(KERN_DEBUG
1846               "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1847               phys_prev, phys_curr);
1848#endif
1849
1850        keypressed = 0;
1851        inputs_stable = 1;
1852        list_for_each(item, &logical_inputs) {
1853                input = list_entry(item, struct logical_input, list);
1854
1855                switch (input->state) {
1856                case INPUT_ST_LOW:
1857                        if ((phys_curr & input->mask) != input->value)
1858                                break;
1859                        /* if all needed ones were already set previously,
1860                         * this means that this logical signal has been
1861                         * activated by the releasing of another combined
1862                         * signal, so we don't want to match.
1863                         * eg: AB -(release B)-> A -(release A)-> 0 :
1864                         *     don't match A.
1865                         */
1866                        if ((phys_prev & input->mask) == input->value)
1867                                break;
1868                        input->rise_timer = 0;
1869                        input->state = INPUT_ST_RISING;
1870                        /* no break here, fall through */
1871                case INPUT_ST_RISING:
1872                        if ((phys_curr & input->mask) != input->value) {
1873                                input->state = INPUT_ST_LOW;
1874                                break;
1875                        }
1876                        if (input->rise_timer < input->rise_time) {
1877                                inputs_stable = 0;
1878                                input->rise_timer++;
1879                                break;
1880                        }
1881                        input->high_timer = 0;
1882                        input->state = INPUT_ST_HIGH;
1883                        /* no break here, fall through */
1884                case INPUT_ST_HIGH:
1885                        if (input_state_high(input))
1886                                break;
1887                        /* no break here, fall through */
1888                case INPUT_ST_FALLING:
1889                        input_state_falling(input);
1890                }
1891        }
1892}
1893
1894static void panel_scan_timer(void)
1895{
1896        if (keypad_enabled && keypad_initialized) {
1897                if (spin_trylock(&pprt_lock)) {
1898                        phys_scan_contacts();
1899
1900                        /* no need for the parport anymore */
1901                        spin_unlock(&pprt_lock);
1902                }
1903
1904                if (!inputs_stable || phys_curr != phys_prev)
1905                        panel_process_inputs();
1906        }
1907
1908        if (lcd_enabled && lcd_initialized) {
1909                if (keypressed) {
1910                        if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1911                                lcd_backlight(1);
1912                        light_tempo = FLASH_LIGHT_TEMPO;
1913                } else if (light_tempo > 0) {
1914                        light_tempo--;
1915                        if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1916                                lcd_backlight(0);
1917                }
1918        }
1919
1920        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1921}
1922
1923static void init_scan_timer(void)
1924{
1925        if (scan_timer.function != NULL)
1926                return;         /* already started */
1927
1928        init_timer(&scan_timer);
1929        scan_timer.expires = jiffies + INPUT_POLL_TIME;
1930        scan_timer.data = 0;
1931        scan_timer.function = (void *)&panel_scan_timer;
1932        add_timer(&scan_timer);
1933}
1934
1935/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1936 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1937 * corresponding to out and in bits respectively.
1938 * returns 1 if ok, 0 if error (in which case, nothing is written).
1939 */
1940static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1941                           char *imask, char *omask)
1942{
1943        static char sigtab[10] = "EeSsPpAaBb";
1944        char im, om;
1945        pmask_t m, v;
1946
1947        om = im = m = v = 0ULL;
1948        while (*name) {
1949                int in, out, bit, neg;
1950                for (in = 0; (in < sizeof(sigtab)) &&
1951                             (sigtab[in] != *name); in++)
1952                        ;
1953                if (in >= sizeof(sigtab))
1954                        return 0;       /* input name not found */
1955                neg = (in & 1); /* odd (lower) names are negated */
1956                in >>= 1;
1957                im |= (1 << in);
1958
1959                name++;
1960                if (isdigit(*name)) {
1961                        out = *name - '0';
1962                        om |= (1 << out);
1963                } else if (*name == '-')
1964                        out = 8;
1965                else
1966                        return 0;       /* unknown bit name */
1967
1968                bit = (out * 5) + in;
1969
1970                m |= 1ULL << bit;
1971                if (!neg)
1972                        v |= 1ULL << bit;
1973                name++;
1974        }
1975        *mask = m;
1976        *value = v;
1977        if (imask)
1978                *imask |= im;
1979        if (omask)
1980                *omask |= om;
1981        return 1;
1982}
1983
1984/* tries to bind a key to the signal name <name>. The key will send the
1985 * strings <press>, <repeat>, <release> for these respective events.
1986 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1987 */
1988static struct logical_input *panel_bind_key(char *name, char *press,
1989                                            char *repeat, char *release)
1990{
1991        struct logical_input *key;
1992
1993        key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1994        if (!key) {
1995                printk(KERN_ERR "panel: not enough memory\n");
1996                return NULL;
1997        }
1998        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1999                             &scan_mask_o)) {
2000                kfree(key);
2001                return NULL;
2002        }
2003
2004        key->type = INPUT_TYPE_KBD;
2005        key->state = INPUT_ST_LOW;
2006        key->rise_time = 1;
2007        key->fall_time = 1;
2008
2009#if 0
2010        printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
2011               key->value);
2012#endif
2013        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2014        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2015        strncpy(key->u.kbd.release_str, release,
2016                sizeof(key->u.kbd.release_str));
2017        list_add(&key->list, &logical_inputs);
2018        return key;
2019}
2020
2021#if 0
2022/* tries to bind a callback function to the signal name <name>. The function
2023 * <press_fct> will be called with the <press_data> arg when the signal is
2024 * activated, and so on for <release_fct>/<release_data>
2025 * Returns the pointer to the new signal if ok, NULL if the signal could not
2026 * be bound.
2027 */
2028static struct logical_input *panel_bind_callback(char *name,
2029                                                 void (*press_fct) (int),
2030                                                 int press_data,
2031                                                 void (*release_fct) (int),
2032                                                 int release_data)
2033{
2034        struct logical_input *callback;
2035
2036        callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2037        if (!callback) {
2038                printk(KERN_ERR "panel: not enough memory\n");
2039                return NULL;
2040        }
2041        memset(callback, 0, sizeof(struct logical_input));
2042        if (!input_name2mask(name, &callback->mask, &callback->value,
2043                             &scan_mask_i, &scan_mask_o))
2044                return NULL;
2045
2046        callback->type = INPUT_TYPE_STD;
2047        callback->state = INPUT_ST_LOW;
2048        callback->rise_time = 1;
2049        callback->fall_time = 1;
2050        callback->u.std.press_fct = press_fct;
2051        callback->u.std.press_data = press_data;
2052        callback->u.std.release_fct = release_fct;
2053        callback->u.std.release_data = release_data;
2054        list_add(&callback->list, &logical_inputs);
2055        return callback;
2056}
2057#endif
2058
2059static void keypad_init(void)
2060{
2061        int keynum;
2062        init_waitqueue_head(&keypad_read_wait);
2063        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
2064
2065        /* Let's create all known keys */
2066
2067        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2068                panel_bind_key(keypad_profile[keynum][0],
2069                               keypad_profile[keynum][1],
2070                               keypad_profile[keynum][2],
2071                               keypad_profile[keynum][3]);
2072        }
2073
2074        init_scan_timer();
2075        keypad_initialized = 1;
2076}
2077
2078/**************************************************/
2079/* device initialization                          */
2080/**************************************************/
2081
2082static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2083                            void *unused)
2084{
2085        if (lcd_enabled && lcd_initialized) {
2086                switch (code) {
2087                case SYS_DOWN:
2088                        panel_lcd_print
2089                            ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2090                        break;
2091                case SYS_HALT:
2092                        panel_lcd_print
2093                            ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2094                        break;
2095                case SYS_POWER_OFF:
2096                        panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2097                        break;
2098                default:
2099                        break;
2100                }
2101        }
2102        return NOTIFY_DONE;
2103}
2104
2105static struct notifier_block panel_notifier = {
2106        panel_notify_sys,
2107        NULL,
2108        0
2109};
2110
2111static void panel_attach(struct parport *port)
2112{
2113        if (port->number != parport)
2114                return;
2115
2116        if (pprt) {
2117                printk(KERN_ERR
2118                       "panel_attach(): port->number=%d parport=%d, "
2119                       "already registered !\n",
2120                       port->number, parport);
2121                return;
2122        }
2123
2124        pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2125                                       NULL,
2126                                       /*PARPORT_DEV_EXCL */
2127                                       0, (void *)&pprt);
2128        if (pprt == NULL) {
2129                pr_err("panel_attach(): port->number=%d parport=%d, "
2130                       "parport_register_device() failed\n",
2131                       port->number, parport);
2132                return;
2133        }
2134
2135        if (parport_claim(pprt)) {
2136                printk(KERN_ERR
2137                       "Panel: could not claim access to parport%d. "
2138                       "Aborting.\n", parport);
2139                goto err_unreg_device;
2140        }
2141
2142        /* must init LCD first, just in case an IRQ from the keypad is
2143         * generated at keypad init
2144         */
2145        if (lcd_enabled) {
2146                lcd_init();
2147                if (misc_register(&lcd_dev))
2148                        goto err_unreg_device;
2149        }
2150
2151        if (keypad_enabled) {
2152                keypad_init();
2153                if (misc_register(&keypad_dev))
2154                        goto err_lcd_unreg;
2155        }
2156        return;
2157
2158err_lcd_unreg:
2159        if (lcd_enabled)
2160                misc_deregister(&lcd_dev);
2161err_unreg_device:
2162        parport_unregister_device(pprt);
2163        pprt = NULL;
2164}
2165
2166static void panel_detach(struct parport *port)
2167{
2168        if (port->number != parport)
2169                return;
2170
2171        if (!pprt) {
2172                printk(KERN_ERR
2173                       "panel_detach(): port->number=%d parport=%d, "
2174                       "nothing to unregister.\n",
2175                       port->number, parport);
2176                return;
2177        }
2178
2179        if (keypad_enabled && keypad_initialized) {
2180                misc_deregister(&keypad_dev);
2181                keypad_initialized = 0;
2182        }
2183
2184        if (lcd_enabled && lcd_initialized) {
2185                misc_deregister(&lcd_dev);
2186                lcd_initialized = 0;
2187        }
2188
2189        parport_release(pprt);
2190        parport_unregister_device(pprt);
2191        pprt = NULL;
2192}
2193
2194static struct parport_driver panel_driver = {
2195        .name = "panel",
2196        .attach = panel_attach,
2197        .detach = panel_detach,
2198};
2199
2200/* init function */
2201int panel_init(void)
2202{
2203        /* for backwards compatibility */
2204        if (keypad_type < 0)
2205                keypad_type = keypad_enabled;
2206
2207        if (lcd_type < 0)
2208                lcd_type = lcd_enabled;
2209
2210        if (parport < 0)
2211                parport = DEFAULT_PARPORT;
2212
2213        /* take care of an eventual profile */
2214        switch (profile) {
2215        case PANEL_PROFILE_CUSTOM:
2216                /* custom profile */
2217                if (keypad_type < 0)
2218                        keypad_type = DEFAULT_KEYPAD;
2219                if (lcd_type < 0)
2220                        lcd_type = DEFAULT_LCD;
2221                break;
2222        case PANEL_PROFILE_OLD:
2223                /* 8 bits, 2*16, old keypad */
2224                if (keypad_type < 0)
2225                        keypad_type = KEYPAD_TYPE_OLD;
2226                if (lcd_type < 0)
2227                        lcd_type = LCD_TYPE_OLD;
2228                if (lcd_width < 0)
2229                        lcd_width = 16;
2230                if (lcd_hwidth < 0)
2231                        lcd_hwidth = 16;
2232                break;
2233        case PANEL_PROFILE_NEW:
2234                /* serial, 2*16, new keypad */
2235                if (keypad_type < 0)
2236                        keypad_type = KEYPAD_TYPE_NEW;
2237                if (lcd_type < 0)
2238                        lcd_type = LCD_TYPE_KS0074;
2239                break;
2240        case PANEL_PROFILE_HANTRONIX:
2241                /* 8 bits, 2*16 hantronix-like, no keypad */
2242                if (keypad_type < 0)
2243                        keypad_type = KEYPAD_TYPE_NONE;
2244                if (lcd_type < 0)
2245                        lcd_type = LCD_TYPE_HANTRONIX;
2246                break;
2247        case PANEL_PROFILE_NEXCOM:
2248                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2249                if (keypad_type < 0)
2250                        keypad_type = KEYPAD_TYPE_NEXCOM;
2251                if (lcd_type < 0)
2252                        lcd_type = LCD_TYPE_NEXCOM;
2253                break;
2254        case PANEL_PROFILE_LARGE:
2255                /* 8 bits, 2*40, old keypad */
2256                if (keypad_type < 0)
2257                        keypad_type = KEYPAD_TYPE_OLD;
2258                if (lcd_type < 0)
2259                        lcd_type = LCD_TYPE_OLD;
2260                break;
2261        }
2262
2263        lcd_enabled = (lcd_type > 0);
2264        keypad_enabled = (keypad_type > 0);
2265
2266        switch (keypad_type) {
2267        case KEYPAD_TYPE_OLD:
2268                keypad_profile = old_keypad_profile;
2269                break;
2270        case KEYPAD_TYPE_NEW:
2271                keypad_profile = new_keypad_profile;
2272                break;
2273        case KEYPAD_TYPE_NEXCOM:
2274                keypad_profile = nexcom_keypad_profile;
2275                break;
2276        default:
2277                keypad_profile = NULL;
2278                break;
2279        }
2280
2281        /* tells various subsystems about the fact that we are initializing */
2282        init_in_progress = 1;
2283
2284        if (parport_register_driver(&panel_driver)) {
2285                printk(KERN_ERR
2286                       "Panel: could not register with parport. Aborting.\n");
2287                return -EIO;
2288        }
2289
2290        if (!lcd_enabled && !keypad_enabled) {
2291                /* no device enabled, let's release the parport */
2292                if (pprt) {
2293                        parport_release(pprt);
2294                        parport_unregister_device(pprt);
2295                        pprt = NULL;
2296                }
2297                parport_unregister_driver(&panel_driver);
2298                printk(KERN_ERR "Panel driver version " PANEL_VERSION
2299                       " disabled.\n");
2300                return -ENODEV;
2301        }
2302
2303        register_reboot_notifier(&panel_notifier);
2304
2305        if (pprt)
2306                printk(KERN_INFO "Panel driver version " PANEL_VERSION
2307                       " registered on parport%d (io=0x%lx).\n", parport,
2308                       pprt->port->base);
2309        else
2310                printk(KERN_INFO "Panel driver version " PANEL_VERSION
2311                       " not yet registered\n");
2312        /* tells various subsystems about the fact that initialization
2313           is finished */
2314        init_in_progress = 0;
2315        return 0;
2316}
2317
2318static int __init panel_init_module(void)
2319{
2320        return panel_init();
2321}
2322
2323static void __exit panel_cleanup_module(void)
2324{
2325        unregister_reboot_notifier(&panel_notifier);
2326
2327        if (scan_timer.function != NULL)
2328                del_timer(&scan_timer);
2329
2330        if (pprt != NULL) {
2331                if (keypad_enabled) {
2332                        misc_deregister(&keypad_dev);
2333                        keypad_initialized = 0;
2334                }
2335
2336                if (lcd_enabled) {
2337                        panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2338                                        "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2339                        misc_deregister(&lcd_dev);
2340                        lcd_initialized = 0;
2341                }
2342
2343                /* TODO: free all input signals */
2344                parport_release(pprt);
2345                parport_unregister_device(pprt);
2346                pprt = NULL;
2347        }
2348        parport_unregister_driver(&panel_driver);
2349}
2350
2351module_init(panel_init_module);
2352module_exit(panel_cleanup_module);
2353MODULE_AUTHOR("Willy Tarreau");
2354MODULE_LICENSE("GPL");
2355
2356/*
2357 * Local variables:
2358 *  c-indent-level: 4
2359 *  tab-width: 8
2360 * End:
2361 */
2362