linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats. 
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/stat.h>
  30#include <linux/fcntl.h>
  31#include <linux/swap.h>
  32#include <linux/string.h>
  33#include <linux/init.h>
  34#include <linux/pagemap.h>
  35#include <linux/perf_event.h>
  36#include <linux/highmem.h>
  37#include <linux/spinlock.h>
  38#include <linux/key.h>
  39#include <linux/personality.h>
  40#include <linux/binfmts.h>
  41#include <linux/utsname.h>
  42#include <linux/pid_namespace.h>
  43#include <linux/module.h>
  44#include <linux/namei.h>
  45#include <linux/proc_fs.h>
  46#include <linux/mount.h>
  47#include <linux/security.h>
  48#include <linux/syscalls.h>
  49#include <linux/tsacct_kern.h>
  50#include <linux/cn_proc.h>
  51#include <linux/audit.h>
  52#include <linux/tracehook.h>
  53#include <linux/kmod.h>
  54#include <linux/fsnotify.h>
  55#include <linux/fs_struct.h>
  56#include <linux/pipe_fs_i.h>
  57#include <linux/oom.h>
  58
  59#include <asm/uaccess.h>
  60#include <asm/mmu_context.h>
  61#include <asm/tlb.h>
  62#include "internal.h"
  63
  64int core_uses_pid;
  65char core_pattern[CORENAME_MAX_SIZE] = "core";
  66unsigned int core_pipe_limit;
  67int suid_dumpable = 0;
  68
  69struct core_name {
  70        char *corename;
  71        int used, size;
  72};
  73static atomic_t call_count = ATOMIC_INIT(1);
  74
  75/* The maximal length of core_pattern is also specified in sysctl.c */
  76
  77static LIST_HEAD(formats);
  78static DEFINE_RWLOCK(binfmt_lock);
  79
  80int __register_binfmt(struct linux_binfmt * fmt, int insert)
  81{
  82        if (!fmt)
  83                return -EINVAL;
  84        write_lock(&binfmt_lock);
  85        insert ? list_add(&fmt->lh, &formats) :
  86                 list_add_tail(&fmt->lh, &formats);
  87        write_unlock(&binfmt_lock);
  88        return 0;       
  89}
  90
  91EXPORT_SYMBOL(__register_binfmt);
  92
  93void unregister_binfmt(struct linux_binfmt * fmt)
  94{
  95        write_lock(&binfmt_lock);
  96        list_del(&fmt->lh);
  97        write_unlock(&binfmt_lock);
  98}
  99
 100EXPORT_SYMBOL(unregister_binfmt);
 101
 102static inline void put_binfmt(struct linux_binfmt * fmt)
 103{
 104        module_put(fmt->module);
 105}
 106
 107/*
 108 * Note that a shared library must be both readable and executable due to
 109 * security reasons.
 110 *
 111 * Also note that we take the address to load from from the file itself.
 112 */
 113SYSCALL_DEFINE1(uselib, const char __user *, library)
 114{
 115        struct file *file;
 116        char *tmp = getname(library);
 117        int error = PTR_ERR(tmp);
 118        static const struct open_flags uselib_flags = {
 119                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 120                .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
 121                .intent = LOOKUP_OPEN
 122        };
 123
 124        if (IS_ERR(tmp))
 125                goto out;
 126
 127        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
 128        putname(tmp);
 129        error = PTR_ERR(file);
 130        if (IS_ERR(file))
 131                goto out;
 132
 133        error = -EINVAL;
 134        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 135                goto exit;
 136
 137        error = -EACCES;
 138        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 139                goto exit;
 140
 141        fsnotify_open(file);
 142
 143        error = -ENOEXEC;
 144        if(file->f_op) {
 145                struct linux_binfmt * fmt;
 146
 147                read_lock(&binfmt_lock);
 148                list_for_each_entry(fmt, &formats, lh) {
 149                        if (!fmt->load_shlib)
 150                                continue;
 151                        if (!try_module_get(fmt->module))
 152                                continue;
 153                        read_unlock(&binfmt_lock);
 154                        error = fmt->load_shlib(file);
 155                        read_lock(&binfmt_lock);
 156                        put_binfmt(fmt);
 157                        if (error != -ENOEXEC)
 158                                break;
 159                }
 160                read_unlock(&binfmt_lock);
 161        }
 162exit:
 163        fput(file);
 164out:
 165        return error;
 166}
 167
 168#ifdef CONFIG_MMU
 169
 170void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 171{
 172        struct mm_struct *mm = current->mm;
 173        long diff = (long)(pages - bprm->vma_pages);
 174
 175        if (!mm || !diff)
 176                return;
 177
 178        bprm->vma_pages = pages;
 179
 180#ifdef SPLIT_RSS_COUNTING
 181        add_mm_counter(mm, MM_ANONPAGES, diff);
 182#else
 183        spin_lock(&mm->page_table_lock);
 184        add_mm_counter(mm, MM_ANONPAGES, diff);
 185        spin_unlock(&mm->page_table_lock);
 186#endif
 187}
 188
 189struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 190                int write)
 191{
 192        struct page *page;
 193        int ret;
 194
 195#ifdef CONFIG_STACK_GROWSUP
 196        if (write) {
 197                ret = expand_stack_downwards(bprm->vma, pos);
 198                if (ret < 0)
 199                        return NULL;
 200        }
 201#endif
 202        ret = get_user_pages(current, bprm->mm, pos,
 203                        1, write, 1, &page, NULL);
 204        if (ret <= 0)
 205                return NULL;
 206
 207        if (write) {
 208                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 209                struct rlimit *rlim;
 210
 211                acct_arg_size(bprm, size / PAGE_SIZE);
 212
 213                /*
 214                 * We've historically supported up to 32 pages (ARG_MAX)
 215                 * of argument strings even with small stacks
 216                 */
 217                if (size <= ARG_MAX)
 218                        return page;
 219
 220                /*
 221                 * Limit to 1/4-th the stack size for the argv+env strings.
 222                 * This ensures that:
 223                 *  - the remaining binfmt code will not run out of stack space,
 224                 *  - the program will have a reasonable amount of stack left
 225                 *    to work from.
 226                 */
 227                rlim = current->signal->rlim;
 228                if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 229                        put_page(page);
 230                        return NULL;
 231                }
 232        }
 233
 234        return page;
 235}
 236
 237static void put_arg_page(struct page *page)
 238{
 239        put_page(page);
 240}
 241
 242static void free_arg_page(struct linux_binprm *bprm, int i)
 243{
 244}
 245
 246static void free_arg_pages(struct linux_binprm *bprm)
 247{
 248}
 249
 250static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 251                struct page *page)
 252{
 253        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 254}
 255
 256static int __bprm_mm_init(struct linux_binprm *bprm)
 257{
 258        int err;
 259        struct vm_area_struct *vma = NULL;
 260        struct mm_struct *mm = bprm->mm;
 261
 262        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 263        if (!vma)
 264                return -ENOMEM;
 265
 266        down_write(&mm->mmap_sem);
 267        vma->vm_mm = mm;
 268
 269        /*
 270         * Place the stack at the largest stack address the architecture
 271         * supports. Later, we'll move this to an appropriate place. We don't
 272         * use STACK_TOP because that can depend on attributes which aren't
 273         * configured yet.
 274         */
 275        BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 276        vma->vm_end = STACK_TOP_MAX;
 277        vma->vm_start = vma->vm_end - PAGE_SIZE;
 278        vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 279        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 280        INIT_LIST_HEAD(&vma->anon_vma_chain);
 281
 282        err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
 283        if (err)
 284                goto err;
 285
 286        err = insert_vm_struct(mm, vma);
 287        if (err)
 288                goto err;
 289
 290        mm->stack_vm = mm->total_vm = 1;
 291        up_write(&mm->mmap_sem);
 292        bprm->p = vma->vm_end - sizeof(void *);
 293        return 0;
 294err:
 295        up_write(&mm->mmap_sem);
 296        bprm->vma = NULL;
 297        kmem_cache_free(vm_area_cachep, vma);
 298        return err;
 299}
 300
 301static bool valid_arg_len(struct linux_binprm *bprm, long len)
 302{
 303        return len <= MAX_ARG_STRLEN;
 304}
 305
 306#else
 307
 308void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 309{
 310}
 311
 312struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 313                int write)
 314{
 315        struct page *page;
 316
 317        page = bprm->page[pos / PAGE_SIZE];
 318        if (!page && write) {
 319                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 320                if (!page)
 321                        return NULL;
 322                bprm->page[pos / PAGE_SIZE] = page;
 323        }
 324
 325        return page;
 326}
 327
 328static void put_arg_page(struct page *page)
 329{
 330}
 331
 332static void free_arg_page(struct linux_binprm *bprm, int i)
 333{
 334        if (bprm->page[i]) {
 335                __free_page(bprm->page[i]);
 336                bprm->page[i] = NULL;
 337        }
 338}
 339
 340static void free_arg_pages(struct linux_binprm *bprm)
 341{
 342        int i;
 343
 344        for (i = 0; i < MAX_ARG_PAGES; i++)
 345                free_arg_page(bprm, i);
 346}
 347
 348static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 349                struct page *page)
 350{
 351}
 352
 353static int __bprm_mm_init(struct linux_binprm *bprm)
 354{
 355        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 356        return 0;
 357}
 358
 359static bool valid_arg_len(struct linux_binprm *bprm, long len)
 360{
 361        return len <= bprm->p;
 362}
 363
 364#endif /* CONFIG_MMU */
 365
 366/*
 367 * Create a new mm_struct and populate it with a temporary stack
 368 * vm_area_struct.  We don't have enough context at this point to set the stack
 369 * flags, permissions, and offset, so we use temporary values.  We'll update
 370 * them later in setup_arg_pages().
 371 */
 372int bprm_mm_init(struct linux_binprm *bprm)
 373{
 374        int err;
 375        struct mm_struct *mm = NULL;
 376
 377        bprm->mm = mm = mm_alloc();
 378        err = -ENOMEM;
 379        if (!mm)
 380                goto err;
 381
 382        err = init_new_context(current, mm);
 383        if (err)
 384                goto err;
 385
 386        err = __bprm_mm_init(bprm);
 387        if (err)
 388                goto err;
 389
 390        return 0;
 391
 392err:
 393        if (mm) {
 394                bprm->mm = NULL;
 395                mmdrop(mm);
 396        }
 397
 398        return err;
 399}
 400
 401/*
 402 * count() counts the number of strings in array ARGV.
 403 */
 404static int count(const char __user * const __user * argv, int max)
 405{
 406        int i = 0;
 407
 408        if (argv != NULL) {
 409                for (;;) {
 410                        const char __user * p;
 411
 412                        if (get_user(p, argv))
 413                                return -EFAULT;
 414                        if (!p)
 415                                break;
 416                        argv++;
 417                        if (i++ >= max)
 418                                return -E2BIG;
 419
 420                        if (fatal_signal_pending(current))
 421                                return -ERESTARTNOHAND;
 422                        cond_resched();
 423                }
 424        }
 425        return i;
 426}
 427
 428/*
 429 * 'copy_strings()' copies argument/environment strings from the old
 430 * processes's memory to the new process's stack.  The call to get_user_pages()
 431 * ensures the destination page is created and not swapped out.
 432 */
 433static int copy_strings(int argc, const char __user *const __user *argv,
 434                        struct linux_binprm *bprm)
 435{
 436        struct page *kmapped_page = NULL;
 437        char *kaddr = NULL;
 438        unsigned long kpos = 0;
 439        int ret;
 440
 441        while (argc-- > 0) {
 442                const char __user *str;
 443                int len;
 444                unsigned long pos;
 445
 446                if (get_user(str, argv+argc) ||
 447                                !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
 448                        ret = -EFAULT;
 449                        goto out;
 450                }
 451
 452                if (!valid_arg_len(bprm, len)) {
 453                        ret = -E2BIG;
 454                        goto out;
 455                }
 456
 457                /* We're going to work our way backwords. */
 458                pos = bprm->p;
 459                str += len;
 460                bprm->p -= len;
 461
 462                while (len > 0) {
 463                        int offset, bytes_to_copy;
 464
 465                        if (fatal_signal_pending(current)) {
 466                                ret = -ERESTARTNOHAND;
 467                                goto out;
 468                        }
 469                        cond_resched();
 470
 471                        offset = pos % PAGE_SIZE;
 472                        if (offset == 0)
 473                                offset = PAGE_SIZE;
 474
 475                        bytes_to_copy = offset;
 476                        if (bytes_to_copy > len)
 477                                bytes_to_copy = len;
 478
 479                        offset -= bytes_to_copy;
 480                        pos -= bytes_to_copy;
 481                        str -= bytes_to_copy;
 482                        len -= bytes_to_copy;
 483
 484                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 485                                struct page *page;
 486
 487                                page = get_arg_page(bprm, pos, 1);
 488                                if (!page) {
 489                                        ret = -E2BIG;
 490                                        goto out;
 491                                }
 492
 493                                if (kmapped_page) {
 494                                        flush_kernel_dcache_page(kmapped_page);
 495                                        kunmap(kmapped_page);
 496                                        put_arg_page(kmapped_page);
 497                                }
 498                                kmapped_page = page;
 499                                kaddr = kmap(kmapped_page);
 500                                kpos = pos & PAGE_MASK;
 501                                flush_arg_page(bprm, kpos, kmapped_page);
 502                        }
 503                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 504                                ret = -EFAULT;
 505                                goto out;
 506                        }
 507                }
 508        }
 509        ret = 0;
 510out:
 511        if (kmapped_page) {
 512                flush_kernel_dcache_page(kmapped_page);
 513                kunmap(kmapped_page);
 514                put_arg_page(kmapped_page);
 515        }
 516        return ret;
 517}
 518
 519/*
 520 * Like copy_strings, but get argv and its values from kernel memory.
 521 */
 522int copy_strings_kernel(int argc, const char *const *argv,
 523                        struct linux_binprm *bprm)
 524{
 525        int r;
 526        mm_segment_t oldfs = get_fs();
 527        set_fs(KERNEL_DS);
 528        r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
 529        set_fs(oldfs);
 530        return r;
 531}
 532EXPORT_SYMBOL(copy_strings_kernel);
 533
 534#ifdef CONFIG_MMU
 535
 536/*
 537 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 538 * the binfmt code determines where the new stack should reside, we shift it to
 539 * its final location.  The process proceeds as follows:
 540 *
 541 * 1) Use shift to calculate the new vma endpoints.
 542 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 543 *    arguments passed to subsequent functions are consistent.
 544 * 3) Move vma's page tables to the new range.
 545 * 4) Free up any cleared pgd range.
 546 * 5) Shrink the vma to cover only the new range.
 547 */
 548static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 549{
 550        struct mm_struct *mm = vma->vm_mm;
 551        unsigned long old_start = vma->vm_start;
 552        unsigned long old_end = vma->vm_end;
 553        unsigned long length = old_end - old_start;
 554        unsigned long new_start = old_start - shift;
 555        unsigned long new_end = old_end - shift;
 556        struct mmu_gather *tlb;
 557
 558        BUG_ON(new_start > new_end);
 559
 560        /*
 561         * ensure there are no vmas between where we want to go
 562         * and where we are
 563         */
 564        if (vma != find_vma(mm, new_start))
 565                return -EFAULT;
 566
 567        /*
 568         * cover the whole range: [new_start, old_end)
 569         */
 570        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 571                return -ENOMEM;
 572
 573        /*
 574         * move the page tables downwards, on failure we rely on
 575         * process cleanup to remove whatever mess we made.
 576         */
 577        if (length != move_page_tables(vma, old_start,
 578                                       vma, new_start, length))
 579                return -ENOMEM;
 580
 581        lru_add_drain();
 582        tlb = tlb_gather_mmu(mm, 0);
 583        if (new_end > old_start) {
 584                /*
 585                 * when the old and new regions overlap clear from new_end.
 586                 */
 587                free_pgd_range(tlb, new_end, old_end, new_end,
 588                        vma->vm_next ? vma->vm_next->vm_start : 0);
 589        } else {
 590                /*
 591                 * otherwise, clean from old_start; this is done to not touch
 592                 * the address space in [new_end, old_start) some architectures
 593                 * have constraints on va-space that make this illegal (IA64) -
 594                 * for the others its just a little faster.
 595                 */
 596                free_pgd_range(tlb, old_start, old_end, new_end,
 597                        vma->vm_next ? vma->vm_next->vm_start : 0);
 598        }
 599        tlb_finish_mmu(tlb, new_end, old_end);
 600
 601        /*
 602         * Shrink the vma to just the new range.  Always succeeds.
 603         */
 604        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 605
 606        return 0;
 607}
 608
 609/*
 610 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 611 * the stack is optionally relocated, and some extra space is added.
 612 */
 613int setup_arg_pages(struct linux_binprm *bprm,
 614                    unsigned long stack_top,
 615                    int executable_stack)
 616{
 617        unsigned long ret;
 618        unsigned long stack_shift;
 619        struct mm_struct *mm = current->mm;
 620        struct vm_area_struct *vma = bprm->vma;
 621        struct vm_area_struct *prev = NULL;
 622        unsigned long vm_flags;
 623        unsigned long stack_base;
 624        unsigned long stack_size;
 625        unsigned long stack_expand;
 626        unsigned long rlim_stack;
 627
 628#ifdef CONFIG_STACK_GROWSUP
 629        /* Limit stack size to 1GB */
 630        stack_base = rlimit_max(RLIMIT_STACK);
 631        if (stack_base > (1 << 30))
 632                stack_base = 1 << 30;
 633
 634        /* Make sure we didn't let the argument array grow too large. */
 635        if (vma->vm_end - vma->vm_start > stack_base)
 636                return -ENOMEM;
 637
 638        stack_base = PAGE_ALIGN(stack_top - stack_base);
 639
 640        stack_shift = vma->vm_start - stack_base;
 641        mm->arg_start = bprm->p - stack_shift;
 642        bprm->p = vma->vm_end - stack_shift;
 643#else
 644        stack_top = arch_align_stack(stack_top);
 645        stack_top = PAGE_ALIGN(stack_top);
 646
 647        if (unlikely(stack_top < mmap_min_addr) ||
 648            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 649                return -ENOMEM;
 650
 651        stack_shift = vma->vm_end - stack_top;
 652
 653        bprm->p -= stack_shift;
 654        mm->arg_start = bprm->p;
 655#endif
 656
 657        if (bprm->loader)
 658                bprm->loader -= stack_shift;
 659        bprm->exec -= stack_shift;
 660
 661        down_write(&mm->mmap_sem);
 662        vm_flags = VM_STACK_FLAGS;
 663
 664        /*
 665         * Adjust stack execute permissions; explicitly enable for
 666         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 667         * (arch default) otherwise.
 668         */
 669        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 670                vm_flags |= VM_EXEC;
 671        else if (executable_stack == EXSTACK_DISABLE_X)
 672                vm_flags &= ~VM_EXEC;
 673        vm_flags |= mm->def_flags;
 674        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 675
 676        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 677                        vm_flags);
 678        if (ret)
 679                goto out_unlock;
 680        BUG_ON(prev != vma);
 681
 682        /* Move stack pages down in memory. */
 683        if (stack_shift) {
 684                ret = shift_arg_pages(vma, stack_shift);
 685                if (ret)
 686                        goto out_unlock;
 687        }
 688
 689        /* mprotect_fixup is overkill to remove the temporary stack flags */
 690        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 691
 692        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 693        stack_size = vma->vm_end - vma->vm_start;
 694        /*
 695         * Align this down to a page boundary as expand_stack
 696         * will align it up.
 697         */
 698        rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 699#ifdef CONFIG_STACK_GROWSUP
 700        if (stack_size + stack_expand > rlim_stack)
 701                stack_base = vma->vm_start + rlim_stack;
 702        else
 703                stack_base = vma->vm_end + stack_expand;
 704#else
 705        if (stack_size + stack_expand > rlim_stack)
 706                stack_base = vma->vm_end - rlim_stack;
 707        else
 708                stack_base = vma->vm_start - stack_expand;
 709#endif
 710        current->mm->start_stack = bprm->p;
 711        ret = expand_stack(vma, stack_base);
 712        if (ret)
 713                ret = -EFAULT;
 714
 715out_unlock:
 716        up_write(&mm->mmap_sem);
 717        return ret;
 718}
 719EXPORT_SYMBOL(setup_arg_pages);
 720
 721#endif /* CONFIG_MMU */
 722
 723struct file *open_exec(const char *name)
 724{
 725        struct file *file;
 726        int err;
 727        static const struct open_flags open_exec_flags = {
 728                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 729                .acc_mode = MAY_EXEC | MAY_OPEN,
 730                .intent = LOOKUP_OPEN
 731        };
 732
 733        file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
 734        if (IS_ERR(file))
 735                goto out;
 736
 737        err = -EACCES;
 738        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 739                goto exit;
 740
 741        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 742                goto exit;
 743
 744        fsnotify_open(file);
 745
 746        err = deny_write_access(file);
 747        if (err)
 748                goto exit;
 749
 750out:
 751        return file;
 752
 753exit:
 754        fput(file);
 755        return ERR_PTR(err);
 756}
 757EXPORT_SYMBOL(open_exec);
 758
 759int kernel_read(struct file *file, loff_t offset,
 760                char *addr, unsigned long count)
 761{
 762        mm_segment_t old_fs;
 763        loff_t pos = offset;
 764        int result;
 765
 766        old_fs = get_fs();
 767        set_fs(get_ds());
 768        /* The cast to a user pointer is valid due to the set_fs() */
 769        result = vfs_read(file, (void __user *)addr, count, &pos);
 770        set_fs(old_fs);
 771        return result;
 772}
 773
 774EXPORT_SYMBOL(kernel_read);
 775
 776static int exec_mmap(struct mm_struct *mm)
 777{
 778        struct task_struct *tsk;
 779        struct mm_struct * old_mm, *active_mm;
 780
 781        /* Notify parent that we're no longer interested in the old VM */
 782        tsk = current;
 783        old_mm = current->mm;
 784        sync_mm_rss(tsk, old_mm);
 785        mm_release(tsk, old_mm);
 786
 787        if (old_mm) {
 788                /*
 789                 * Make sure that if there is a core dump in progress
 790                 * for the old mm, we get out and die instead of going
 791                 * through with the exec.  We must hold mmap_sem around
 792                 * checking core_state and changing tsk->mm.
 793                 */
 794                down_read(&old_mm->mmap_sem);
 795                if (unlikely(old_mm->core_state)) {
 796                        up_read(&old_mm->mmap_sem);
 797                        return -EINTR;
 798                }
 799        }
 800        task_lock(tsk);
 801        active_mm = tsk->active_mm;
 802        tsk->mm = mm;
 803        tsk->active_mm = mm;
 804        activate_mm(active_mm, mm);
 805        if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
 806                atomic_dec(&old_mm->oom_disable_count);
 807                atomic_inc(&tsk->mm->oom_disable_count);
 808        }
 809        task_unlock(tsk);
 810        arch_pick_mmap_layout(mm);
 811        if (old_mm) {
 812                up_read(&old_mm->mmap_sem);
 813                BUG_ON(active_mm != old_mm);
 814                mm_update_next_owner(old_mm);
 815                mmput(old_mm);
 816                return 0;
 817        }
 818        mmdrop(active_mm);
 819        return 0;
 820}
 821
 822/*
 823 * This function makes sure the current process has its own signal table,
 824 * so that flush_signal_handlers can later reset the handlers without
 825 * disturbing other processes.  (Other processes might share the signal
 826 * table via the CLONE_SIGHAND option to clone().)
 827 */
 828static int de_thread(struct task_struct *tsk)
 829{
 830        struct signal_struct *sig = tsk->signal;
 831        struct sighand_struct *oldsighand = tsk->sighand;
 832        spinlock_t *lock = &oldsighand->siglock;
 833
 834        if (thread_group_empty(tsk))
 835                goto no_thread_group;
 836
 837        /*
 838         * Kill all other threads in the thread group.
 839         */
 840        spin_lock_irq(lock);
 841        if (signal_group_exit(sig)) {
 842                /*
 843                 * Another group action in progress, just
 844                 * return so that the signal is processed.
 845                 */
 846                spin_unlock_irq(lock);
 847                return -EAGAIN;
 848        }
 849
 850        sig->group_exit_task = tsk;
 851        sig->notify_count = zap_other_threads(tsk);
 852        if (!thread_group_leader(tsk))
 853                sig->notify_count--;
 854
 855        while (sig->notify_count) {
 856                __set_current_state(TASK_UNINTERRUPTIBLE);
 857                spin_unlock_irq(lock);
 858                schedule();
 859                spin_lock_irq(lock);
 860        }
 861        spin_unlock_irq(lock);
 862
 863        /*
 864         * At this point all other threads have exited, all we have to
 865         * do is to wait for the thread group leader to become inactive,
 866         * and to assume its PID:
 867         */
 868        if (!thread_group_leader(tsk)) {
 869                struct task_struct *leader = tsk->group_leader;
 870
 871                sig->notify_count = -1; /* for exit_notify() */
 872                for (;;) {
 873                        write_lock_irq(&tasklist_lock);
 874                        if (likely(leader->exit_state))
 875                                break;
 876                        __set_current_state(TASK_UNINTERRUPTIBLE);
 877                        write_unlock_irq(&tasklist_lock);
 878                        schedule();
 879                }
 880
 881                /*
 882                 * The only record we have of the real-time age of a
 883                 * process, regardless of execs it's done, is start_time.
 884                 * All the past CPU time is accumulated in signal_struct
 885                 * from sister threads now dead.  But in this non-leader
 886                 * exec, nothing survives from the original leader thread,
 887                 * whose birth marks the true age of this process now.
 888                 * When we take on its identity by switching to its PID, we
 889                 * also take its birthdate (always earlier than our own).
 890                 */
 891                tsk->start_time = leader->start_time;
 892
 893                BUG_ON(!same_thread_group(leader, tsk));
 894                BUG_ON(has_group_leader_pid(tsk));
 895                /*
 896                 * An exec() starts a new thread group with the
 897                 * TGID of the previous thread group. Rehash the
 898                 * two threads with a switched PID, and release
 899                 * the former thread group leader:
 900                 */
 901
 902                /* Become a process group leader with the old leader's pid.
 903                 * The old leader becomes a thread of the this thread group.
 904                 * Note: The old leader also uses this pid until release_task
 905                 *       is called.  Odd but simple and correct.
 906                 */
 907                detach_pid(tsk, PIDTYPE_PID);
 908                tsk->pid = leader->pid;
 909                attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
 910                transfer_pid(leader, tsk, PIDTYPE_PGID);
 911                transfer_pid(leader, tsk, PIDTYPE_SID);
 912
 913                list_replace_rcu(&leader->tasks, &tsk->tasks);
 914                list_replace_init(&leader->sibling, &tsk->sibling);
 915
 916                tsk->group_leader = tsk;
 917                leader->group_leader = tsk;
 918
 919                tsk->exit_signal = SIGCHLD;
 920
 921                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 922                leader->exit_state = EXIT_DEAD;
 923                write_unlock_irq(&tasklist_lock);
 924
 925                release_task(leader);
 926        }
 927
 928        sig->group_exit_task = NULL;
 929        sig->notify_count = 0;
 930
 931no_thread_group:
 932        if (current->mm)
 933                setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
 934
 935        exit_itimers(sig);
 936        flush_itimer_signals();
 937
 938        if (atomic_read(&oldsighand->count) != 1) {
 939                struct sighand_struct *newsighand;
 940                /*
 941                 * This ->sighand is shared with the CLONE_SIGHAND
 942                 * but not CLONE_THREAD task, switch to the new one.
 943                 */
 944                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 945                if (!newsighand)
 946                        return -ENOMEM;
 947
 948                atomic_set(&newsighand->count, 1);
 949                memcpy(newsighand->action, oldsighand->action,
 950                       sizeof(newsighand->action));
 951
 952                write_lock_irq(&tasklist_lock);
 953                spin_lock(&oldsighand->siglock);
 954                rcu_assign_pointer(tsk->sighand, newsighand);
 955                spin_unlock(&oldsighand->siglock);
 956                write_unlock_irq(&tasklist_lock);
 957
 958                __cleanup_sighand(oldsighand);
 959        }
 960
 961        BUG_ON(!thread_group_leader(tsk));
 962        return 0;
 963}
 964
 965/*
 966 * These functions flushes out all traces of the currently running executable
 967 * so that a new one can be started
 968 */
 969static void flush_old_files(struct files_struct * files)
 970{
 971        long j = -1;
 972        struct fdtable *fdt;
 973
 974        spin_lock(&files->file_lock);
 975        for (;;) {
 976                unsigned long set, i;
 977
 978                j++;
 979                i = j * __NFDBITS;
 980                fdt = files_fdtable(files);
 981                if (i >= fdt->max_fds)
 982                        break;
 983                set = fdt->close_on_exec->fds_bits[j];
 984                if (!set)
 985                        continue;
 986                fdt->close_on_exec->fds_bits[j] = 0;
 987                spin_unlock(&files->file_lock);
 988                for ( ; set ; i++,set >>= 1) {
 989                        if (set & 1) {
 990                                sys_close(i);
 991                        }
 992                }
 993                spin_lock(&files->file_lock);
 994
 995        }
 996        spin_unlock(&files->file_lock);
 997}
 998
 999char *get_task_comm(char *buf, struct task_struct *tsk)
1000{
1001        /* buf must be at least sizeof(tsk->comm) in size */
1002        task_lock(tsk);
1003        strncpy(buf, tsk->comm, sizeof(tsk->comm));
1004        task_unlock(tsk);
1005        return buf;
1006}
1007
1008void set_task_comm(struct task_struct *tsk, char *buf)
1009{
1010        task_lock(tsk);
1011
1012        /*
1013         * Threads may access current->comm without holding
1014         * the task lock, so write the string carefully.
1015         * Readers without a lock may see incomplete new
1016         * names but are safe from non-terminating string reads.
1017         */
1018        memset(tsk->comm, 0, TASK_COMM_LEN);
1019        wmb();
1020        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1021        task_unlock(tsk);
1022        perf_event_comm(tsk);
1023}
1024
1025int flush_old_exec(struct linux_binprm * bprm)
1026{
1027        int retval;
1028
1029        /*
1030         * Make sure we have a private signal table and that
1031         * we are unassociated from the previous thread group.
1032         */
1033        retval = de_thread(current);
1034        if (retval)
1035                goto out;
1036
1037        set_mm_exe_file(bprm->mm, bprm->file);
1038
1039        /*
1040         * Release all of the old mmap stuff
1041         */
1042        acct_arg_size(bprm, 0);
1043        retval = exec_mmap(bprm->mm);
1044        if (retval)
1045                goto out;
1046
1047        bprm->mm = NULL;                /* We're using it now */
1048
1049        current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1050        flush_thread();
1051        current->personality &= ~bprm->per_clear;
1052
1053        return 0;
1054
1055out:
1056        return retval;
1057}
1058EXPORT_SYMBOL(flush_old_exec);
1059
1060void setup_new_exec(struct linux_binprm * bprm)
1061{
1062        int i, ch;
1063        const char *name;
1064        char tcomm[sizeof(current->comm)];
1065
1066        arch_pick_mmap_layout(current->mm);
1067
1068        /* This is the point of no return */
1069        current->sas_ss_sp = current->sas_ss_size = 0;
1070
1071        if (current_euid() == current_uid() && current_egid() == current_gid())
1072                set_dumpable(current->mm, 1);
1073        else
1074                set_dumpable(current->mm, suid_dumpable);
1075
1076        name = bprm->filename;
1077
1078        /* Copies the binary name from after last slash */
1079        for (i=0; (ch = *(name++)) != '\0';) {
1080                if (ch == '/')
1081                        i = 0; /* overwrite what we wrote */
1082                else
1083                        if (i < (sizeof(tcomm) - 1))
1084                                tcomm[i++] = ch;
1085        }
1086        tcomm[i] = '\0';
1087        set_task_comm(current, tcomm);
1088
1089        /* Set the new mm task size. We have to do that late because it may
1090         * depend on TIF_32BIT which is only updated in flush_thread() on
1091         * some architectures like powerpc
1092         */
1093        current->mm->task_size = TASK_SIZE;
1094
1095        /* install the new credentials */
1096        if (bprm->cred->uid != current_euid() ||
1097            bprm->cred->gid != current_egid()) {
1098                current->pdeath_signal = 0;
1099        } else if (file_permission(bprm->file, MAY_READ) ||
1100                   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1101                set_dumpable(current->mm, suid_dumpable);
1102        }
1103
1104        /*
1105         * Flush performance counters when crossing a
1106         * security domain:
1107         */
1108        if (!get_dumpable(current->mm))
1109                perf_event_exit_task(current);
1110
1111        /* An exec changes our domain. We are no longer part of the thread
1112           group */
1113
1114        current->self_exec_id++;
1115                        
1116        flush_signal_handlers(current, 0);
1117        flush_old_files(current->files);
1118}
1119EXPORT_SYMBOL(setup_new_exec);
1120
1121/*
1122 * Prepare credentials and lock ->cred_guard_mutex.
1123 * install_exec_creds() commits the new creds and drops the lock.
1124 * Or, if exec fails before, free_bprm() should release ->cred and
1125 * and unlock.
1126 */
1127int prepare_bprm_creds(struct linux_binprm *bprm)
1128{
1129        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1130                return -ERESTARTNOINTR;
1131
1132        bprm->cred = prepare_exec_creds();
1133        if (likely(bprm->cred))
1134                return 0;
1135
1136        mutex_unlock(&current->signal->cred_guard_mutex);
1137        return -ENOMEM;
1138}
1139
1140void free_bprm(struct linux_binprm *bprm)
1141{
1142        free_arg_pages(bprm);
1143        if (bprm->cred) {
1144                mutex_unlock(&current->signal->cred_guard_mutex);
1145                abort_creds(bprm->cred);
1146        }
1147        kfree(bprm);
1148}
1149
1150/*
1151 * install the new credentials for this executable
1152 */
1153void install_exec_creds(struct linux_binprm *bprm)
1154{
1155        security_bprm_committing_creds(bprm);
1156
1157        commit_creds(bprm->cred);
1158        bprm->cred = NULL;
1159        /*
1160         * cred_guard_mutex must be held at least to this point to prevent
1161         * ptrace_attach() from altering our determination of the task's
1162         * credentials; any time after this it may be unlocked.
1163         */
1164        security_bprm_committed_creds(bprm);
1165        mutex_unlock(&current->signal->cred_guard_mutex);
1166}
1167EXPORT_SYMBOL(install_exec_creds);
1168
1169/*
1170 * determine how safe it is to execute the proposed program
1171 * - the caller must hold ->cred_guard_mutex to protect against
1172 *   PTRACE_ATTACH
1173 */
1174int check_unsafe_exec(struct linux_binprm *bprm)
1175{
1176        struct task_struct *p = current, *t;
1177        unsigned n_fs;
1178        int res = 0;
1179
1180        bprm->unsafe = tracehook_unsafe_exec(p);
1181
1182        n_fs = 1;
1183        spin_lock(&p->fs->lock);
1184        rcu_read_lock();
1185        for (t = next_thread(p); t != p; t = next_thread(t)) {
1186                if (t->fs == p->fs)
1187                        n_fs++;
1188        }
1189        rcu_read_unlock();
1190
1191        if (p->fs->users > n_fs) {
1192                bprm->unsafe |= LSM_UNSAFE_SHARE;
1193        } else {
1194                res = -EAGAIN;
1195                if (!p->fs->in_exec) {
1196                        p->fs->in_exec = 1;
1197                        res = 1;
1198                }
1199        }
1200        spin_unlock(&p->fs->lock);
1201
1202        return res;
1203}
1204
1205/* 
1206 * Fill the binprm structure from the inode. 
1207 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1208 *
1209 * This may be called multiple times for binary chains (scripts for example).
1210 */
1211int prepare_binprm(struct linux_binprm *bprm)
1212{
1213        umode_t mode;
1214        struct inode * inode = bprm->file->f_path.dentry->d_inode;
1215        int retval;
1216
1217        mode = inode->i_mode;
1218        if (bprm->file->f_op == NULL)
1219                return -EACCES;
1220
1221        /* clear any previous set[ug]id data from a previous binary */
1222        bprm->cred->euid = current_euid();
1223        bprm->cred->egid = current_egid();
1224
1225        if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1226                /* Set-uid? */
1227                if (mode & S_ISUID) {
1228                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1229                        bprm->cred->euid = inode->i_uid;
1230                }
1231
1232                /* Set-gid? */
1233                /*
1234                 * If setgid is set but no group execute bit then this
1235                 * is a candidate for mandatory locking, not a setgid
1236                 * executable.
1237                 */
1238                if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1239                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1240                        bprm->cred->egid = inode->i_gid;
1241                }
1242        }
1243
1244        /* fill in binprm security blob */
1245        retval = security_bprm_set_creds(bprm);
1246        if (retval)
1247                return retval;
1248        bprm->cred_prepared = 1;
1249
1250        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1251        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1252}
1253
1254EXPORT_SYMBOL(prepare_binprm);
1255
1256/*
1257 * Arguments are '\0' separated strings found at the location bprm->p
1258 * points to; chop off the first by relocating brpm->p to right after
1259 * the first '\0' encountered.
1260 */
1261int remove_arg_zero(struct linux_binprm *bprm)
1262{
1263        int ret = 0;
1264        unsigned long offset;
1265        char *kaddr;
1266        struct page *page;
1267
1268        if (!bprm->argc)
1269                return 0;
1270
1271        do {
1272                offset = bprm->p & ~PAGE_MASK;
1273                page = get_arg_page(bprm, bprm->p, 0);
1274                if (!page) {
1275                        ret = -EFAULT;
1276                        goto out;
1277                }
1278                kaddr = kmap_atomic(page, KM_USER0);
1279
1280                for (; offset < PAGE_SIZE && kaddr[offset];
1281                                offset++, bprm->p++)
1282                        ;
1283
1284                kunmap_atomic(kaddr, KM_USER0);
1285                put_arg_page(page);
1286
1287                if (offset == PAGE_SIZE)
1288                        free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1289        } while (offset == PAGE_SIZE);
1290
1291        bprm->p++;
1292        bprm->argc--;
1293        ret = 0;
1294
1295out:
1296        return ret;
1297}
1298EXPORT_SYMBOL(remove_arg_zero);
1299
1300/*
1301 * cycle the list of binary formats handler, until one recognizes the image
1302 */
1303int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1304{
1305        unsigned int depth = bprm->recursion_depth;
1306        int try,retval;
1307        struct linux_binfmt *fmt;
1308
1309        retval = security_bprm_check(bprm);
1310        if (retval)
1311                return retval;
1312
1313        /* kernel module loader fixup */
1314        /* so we don't try to load run modprobe in kernel space. */
1315        set_fs(USER_DS);
1316
1317        retval = audit_bprm(bprm);
1318        if (retval)
1319                return retval;
1320
1321        retval = -ENOENT;
1322        for (try=0; try<2; try++) {
1323                read_lock(&binfmt_lock);
1324                list_for_each_entry(fmt, &formats, lh) {
1325                        int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1326                        if (!fn)
1327                                continue;
1328                        if (!try_module_get(fmt->module))
1329                                continue;
1330                        read_unlock(&binfmt_lock);
1331                        retval = fn(bprm, regs);
1332                        /*
1333                         * Restore the depth counter to its starting value
1334                         * in this call, so we don't have to rely on every
1335                         * load_binary function to restore it on return.
1336                         */
1337                        bprm->recursion_depth = depth;
1338                        if (retval >= 0) {
1339                                if (depth == 0)
1340                                        tracehook_report_exec(fmt, bprm, regs);
1341                                put_binfmt(fmt);
1342                                allow_write_access(bprm->file);
1343                                if (bprm->file)
1344                                        fput(bprm->file);
1345                                bprm->file = NULL;
1346                                current->did_exec = 1;
1347                                proc_exec_connector(current);
1348                                return retval;
1349                        }
1350                        read_lock(&binfmt_lock);
1351                        put_binfmt(fmt);
1352                        if (retval != -ENOEXEC || bprm->mm == NULL)
1353                                break;
1354                        if (!bprm->file) {
1355                                read_unlock(&binfmt_lock);
1356                                return retval;
1357                        }
1358                }
1359                read_unlock(&binfmt_lock);
1360                if (retval != -ENOEXEC || bprm->mm == NULL) {
1361                        break;
1362#ifdef CONFIG_MODULES
1363                } else {
1364#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1365                        if (printable(bprm->buf[0]) &&
1366                            printable(bprm->buf[1]) &&
1367                            printable(bprm->buf[2]) &&
1368                            printable(bprm->buf[3]))
1369                                break; /* -ENOEXEC */
1370                        request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1371#endif
1372                }
1373        }
1374        return retval;
1375}
1376
1377EXPORT_SYMBOL(search_binary_handler);
1378
1379/*
1380 * sys_execve() executes a new program.
1381 */
1382int do_execve(const char * filename,
1383        const char __user *const __user *argv,
1384        const char __user *const __user *envp,
1385        struct pt_regs * regs)
1386{
1387        struct linux_binprm *bprm;
1388        struct file *file;
1389        struct files_struct *displaced;
1390        bool clear_in_exec;
1391        int retval;
1392
1393        retval = unshare_files(&displaced);
1394        if (retval)
1395                goto out_ret;
1396
1397        retval = -ENOMEM;
1398        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1399        if (!bprm)
1400                goto out_files;
1401
1402        retval = prepare_bprm_creds(bprm);
1403        if (retval)
1404                goto out_free;
1405
1406        retval = check_unsafe_exec(bprm);
1407        if (retval < 0)
1408                goto out_free;
1409        clear_in_exec = retval;
1410        current->in_execve = 1;
1411
1412        file = open_exec(filename);
1413        retval = PTR_ERR(file);
1414        if (IS_ERR(file))
1415                goto out_unmark;
1416
1417        sched_exec();
1418
1419        bprm->file = file;
1420        bprm->filename = filename;
1421        bprm->interp = filename;
1422
1423        retval = bprm_mm_init(bprm);
1424        if (retval)
1425                goto out_file;
1426
1427        bprm->argc = count(argv, MAX_ARG_STRINGS);
1428        if ((retval = bprm->argc) < 0)
1429                goto out;
1430
1431        bprm->envc = count(envp, MAX_ARG_STRINGS);
1432        if ((retval = bprm->envc) < 0)
1433                goto out;
1434
1435        retval = prepare_binprm(bprm);
1436        if (retval < 0)
1437                goto out;
1438
1439        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1440        if (retval < 0)
1441                goto out;
1442
1443        bprm->exec = bprm->p;
1444        retval = copy_strings(bprm->envc, envp, bprm);
1445        if (retval < 0)
1446                goto out;
1447
1448        retval = copy_strings(bprm->argc, argv, bprm);
1449        if (retval < 0)
1450                goto out;
1451
1452        retval = search_binary_handler(bprm,regs);
1453        if (retval < 0)
1454                goto out;
1455
1456        /* execve succeeded */
1457        current->fs->in_exec = 0;
1458        current->in_execve = 0;
1459        acct_update_integrals(current);
1460        free_bprm(bprm);
1461        if (displaced)
1462                put_files_struct(displaced);
1463        return retval;
1464
1465out:
1466        if (bprm->mm) {
1467                acct_arg_size(bprm, 0);
1468                mmput(bprm->mm);
1469        }
1470
1471out_file:
1472        if (bprm->file) {
1473                allow_write_access(bprm->file);
1474                fput(bprm->file);
1475        }
1476
1477out_unmark:
1478        if (clear_in_exec)
1479                current->fs->in_exec = 0;
1480        current->in_execve = 0;
1481
1482out_free:
1483        free_bprm(bprm);
1484
1485out_files:
1486        if (displaced)
1487                reset_files_struct(displaced);
1488out_ret:
1489        return retval;
1490}
1491
1492void set_binfmt(struct linux_binfmt *new)
1493{
1494        struct mm_struct *mm = current->mm;
1495
1496        if (mm->binfmt)
1497                module_put(mm->binfmt->module);
1498
1499        mm->binfmt = new;
1500        if (new)
1501                __module_get(new->module);
1502}
1503
1504EXPORT_SYMBOL(set_binfmt);
1505
1506static int expand_corename(struct core_name *cn)
1507{
1508        char *old_corename = cn->corename;
1509
1510        cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1511        cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1512
1513        if (!cn->corename) {
1514                kfree(old_corename);
1515                return -ENOMEM;
1516        }
1517
1518        return 0;
1519}
1520
1521static int cn_printf(struct core_name *cn, const char *fmt, ...)
1522{
1523        char *cur;
1524        int need;
1525        int ret;
1526        va_list arg;
1527
1528        va_start(arg, fmt);
1529        need = vsnprintf(NULL, 0, fmt, arg);
1530        va_end(arg);
1531
1532        if (likely(need < cn->size - cn->used - 1))
1533                goto out_printf;
1534
1535        ret = expand_corename(cn);
1536        if (ret)
1537                goto expand_fail;
1538
1539out_printf:
1540        cur = cn->corename + cn->used;
1541        va_start(arg, fmt);
1542        vsnprintf(cur, need + 1, fmt, arg);
1543        va_end(arg);
1544        cn->used += need;
1545        return 0;
1546
1547expand_fail:
1548        return ret;
1549}
1550
1551/* format_corename will inspect the pattern parameter, and output a
1552 * name into corename, which must have space for at least
1553 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1554 */
1555static int format_corename(struct core_name *cn, long signr)
1556{
1557        const struct cred *cred = current_cred();
1558        const char *pat_ptr = core_pattern;
1559        int ispipe = (*pat_ptr == '|');
1560        int pid_in_pattern = 0;
1561        int err = 0;
1562
1563        cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1564        cn->corename = kmalloc(cn->size, GFP_KERNEL);
1565        cn->used = 0;
1566
1567        if (!cn->corename)
1568                return -ENOMEM;
1569
1570        /* Repeat as long as we have more pattern to process and more output
1571           space */
1572        while (*pat_ptr) {
1573                if (*pat_ptr != '%') {
1574                        if (*pat_ptr == 0)
1575                                goto out;
1576                        err = cn_printf(cn, "%c", *pat_ptr++);
1577                } else {
1578                        switch (*++pat_ptr) {
1579                        /* single % at the end, drop that */
1580                        case 0:
1581                                goto out;
1582                        /* Double percent, output one percent */
1583                        case '%':
1584                                err = cn_printf(cn, "%c", '%');
1585                                break;
1586                        /* pid */
1587                        case 'p':
1588                                pid_in_pattern = 1;
1589                                err = cn_printf(cn, "%d",
1590                                              task_tgid_vnr(current));
1591                                break;
1592                        /* uid */
1593                        case 'u':
1594                                err = cn_printf(cn, "%d", cred->uid);
1595                                break;
1596                        /* gid */
1597                        case 'g':
1598                                err = cn_printf(cn, "%d", cred->gid);
1599                                break;
1600                        /* signal that caused the coredump */
1601                        case 's':
1602                                err = cn_printf(cn, "%ld", signr);
1603                                break;
1604                        /* UNIX time of coredump */
1605                        case 't': {
1606                                struct timeval tv;
1607                                do_gettimeofday(&tv);
1608                                err = cn_printf(cn, "%lu", tv.tv_sec);
1609                                break;
1610                        }
1611                        /* hostname */
1612                        case 'h':
1613                                down_read(&uts_sem);
1614                                err = cn_printf(cn, "%s",
1615                                              utsname()->nodename);
1616                                up_read(&uts_sem);
1617                                break;
1618                        /* executable */
1619                        case 'e':
1620                                err = cn_printf(cn, "%s", current->comm);
1621                                break;
1622                        /* core limit size */
1623                        case 'c':
1624                                err = cn_printf(cn, "%lu",
1625                                              rlimit(RLIMIT_CORE));
1626                                break;
1627                        default:
1628                                break;
1629                        }
1630                        ++pat_ptr;
1631                }
1632
1633                if (err)
1634                        return err;
1635        }
1636
1637        /* Backward compatibility with core_uses_pid:
1638         *
1639         * If core_pattern does not include a %p (as is the default)
1640         * and core_uses_pid is set, then .%pid will be appended to
1641         * the filename. Do not do this for piped commands. */
1642        if (!ispipe && !pid_in_pattern && core_uses_pid) {
1643                err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1644                if (err)
1645                        return err;
1646        }
1647out:
1648        return ispipe;
1649}
1650
1651static int zap_process(struct task_struct *start, int exit_code)
1652{
1653        struct task_struct *t;
1654        int nr = 0;
1655
1656        start->signal->flags = SIGNAL_GROUP_EXIT;
1657        start->signal->group_exit_code = exit_code;
1658        start->signal->group_stop_count = 0;
1659
1660        t = start;
1661        do {
1662                if (t != current && t->mm) {
1663                        sigaddset(&t->pending.signal, SIGKILL);
1664                        signal_wake_up(t, 1);
1665                        nr++;
1666                }
1667        } while_each_thread(start, t);
1668
1669        return nr;
1670}
1671
1672static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1673                                struct core_state *core_state, int exit_code)
1674{
1675        struct task_struct *g, *p;
1676        unsigned long flags;
1677        int nr = -EAGAIN;
1678
1679        spin_lock_irq(&tsk->sighand->siglock);
1680        if (!signal_group_exit(tsk->signal)) {
1681                mm->core_state = core_state;
1682                nr = zap_process(tsk, exit_code);
1683        }
1684        spin_unlock_irq(&tsk->sighand->siglock);
1685        if (unlikely(nr < 0))
1686                return nr;
1687
1688        if (atomic_read(&mm->mm_users) == nr + 1)
1689                goto done;
1690        /*
1691         * We should find and kill all tasks which use this mm, and we should
1692         * count them correctly into ->nr_threads. We don't take tasklist
1693         * lock, but this is safe wrt:
1694         *
1695         * fork:
1696         *      None of sub-threads can fork after zap_process(leader). All
1697         *      processes which were created before this point should be
1698         *      visible to zap_threads() because copy_process() adds the new
1699         *      process to the tail of init_task.tasks list, and lock/unlock
1700         *      of ->siglock provides a memory barrier.
1701         *
1702         * do_exit:
1703         *      The caller holds mm->mmap_sem. This means that the task which
1704         *      uses this mm can't pass exit_mm(), so it can't exit or clear
1705         *      its ->mm.
1706         *
1707         * de_thread:
1708         *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1709         *      we must see either old or new leader, this does not matter.
1710         *      However, it can change p->sighand, so lock_task_sighand(p)
1711         *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1712         *      it can't fail.
1713         *
1714         *      Note also that "g" can be the old leader with ->mm == NULL
1715         *      and already unhashed and thus removed from ->thread_group.
1716         *      This is OK, __unhash_process()->list_del_rcu() does not
1717         *      clear the ->next pointer, we will find the new leader via
1718         *      next_thread().
1719         */
1720        rcu_read_lock();
1721        for_each_process(g) {
1722                if (g == tsk->group_leader)
1723                        continue;
1724                if (g->flags & PF_KTHREAD)
1725                        continue;
1726                p = g;
1727                do {
1728                        if (p->mm) {
1729                                if (unlikely(p->mm == mm)) {
1730                                        lock_task_sighand(p, &flags);
1731                                        nr += zap_process(p, exit_code);
1732                                        unlock_task_sighand(p, &flags);
1733                                }
1734                                break;
1735                        }
1736                } while_each_thread(g, p);
1737        }
1738        rcu_read_unlock();
1739done:
1740        atomic_set(&core_state->nr_threads, nr);
1741        return nr;
1742}
1743
1744static int coredump_wait(int exit_code, struct core_state *core_state)
1745{
1746        struct task_struct *tsk = current;
1747        struct mm_struct *mm = tsk->mm;
1748        struct completion *vfork_done;
1749        int core_waiters = -EBUSY;
1750
1751        init_completion(&core_state->startup);
1752        core_state->dumper.task = tsk;
1753        core_state->dumper.next = NULL;
1754
1755        down_write(&mm->mmap_sem);
1756        if (!mm->core_state)
1757                core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1758        up_write(&mm->mmap_sem);
1759
1760        if (unlikely(core_waiters < 0))
1761                goto fail;
1762
1763        /*
1764         * Make sure nobody is waiting for us to release the VM,
1765         * otherwise we can deadlock when we wait on each other
1766         */
1767        vfork_done = tsk->vfork_done;
1768        if (vfork_done) {
1769                tsk->vfork_done = NULL;
1770                complete(vfork_done);
1771        }
1772
1773        if (core_waiters)
1774                wait_for_completion(&core_state->startup);
1775fail:
1776        return core_waiters;
1777}
1778
1779static void coredump_finish(struct mm_struct *mm)
1780{
1781        struct core_thread *curr, *next;
1782        struct task_struct *task;
1783
1784        next = mm->core_state->dumper.next;
1785        while ((curr = next) != NULL) {
1786                next = curr->next;
1787                task = curr->task;
1788                /*
1789                 * see exit_mm(), curr->task must not see
1790                 * ->task == NULL before we read ->next.
1791                 */
1792                smp_mb();
1793                curr->task = NULL;
1794                wake_up_process(task);
1795        }
1796
1797        mm->core_state = NULL;
1798}
1799
1800/*
1801 * set_dumpable converts traditional three-value dumpable to two flags and
1802 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1803 * these bits are not changed atomically.  So get_dumpable can observe the
1804 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1805 * return either old dumpable or new one by paying attention to the order of
1806 * modifying the bits.
1807 *
1808 * dumpable |   mm->flags (binary)
1809 * old  new | initial interim  final
1810 * ---------+-----------------------
1811 *  0    1  |   00      01      01
1812 *  0    2  |   00      10(*)   11
1813 *  1    0  |   01      00      00
1814 *  1    2  |   01      11      11
1815 *  2    0  |   11      10(*)   00
1816 *  2    1  |   11      11      01
1817 *
1818 * (*) get_dumpable regards interim value of 10 as 11.
1819 */
1820void set_dumpable(struct mm_struct *mm, int value)
1821{
1822        switch (value) {
1823        case 0:
1824                clear_bit(MMF_DUMPABLE, &mm->flags);
1825                smp_wmb();
1826                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1827                break;
1828        case 1:
1829                set_bit(MMF_DUMPABLE, &mm->flags);
1830                smp_wmb();
1831                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1832                break;
1833        case 2:
1834                set_bit(MMF_DUMP_SECURELY, &mm->flags);
1835                smp_wmb();
1836                set_bit(MMF_DUMPABLE, &mm->flags);
1837                break;
1838        }
1839}
1840
1841static int __get_dumpable(unsigned long mm_flags)
1842{
1843        int ret;
1844
1845        ret = mm_flags & MMF_DUMPABLE_MASK;
1846        return (ret >= 2) ? 2 : ret;
1847}
1848
1849int get_dumpable(struct mm_struct *mm)
1850{
1851        return __get_dumpable(mm->flags);
1852}
1853
1854static void wait_for_dump_helpers(struct file *file)
1855{
1856        struct pipe_inode_info *pipe;
1857
1858        pipe = file->f_path.dentry->d_inode->i_pipe;
1859
1860        pipe_lock(pipe);
1861        pipe->readers++;
1862        pipe->writers--;
1863
1864        while ((pipe->readers > 1) && (!signal_pending(current))) {
1865                wake_up_interruptible_sync(&pipe->wait);
1866                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1867                pipe_wait(pipe);
1868        }
1869
1870        pipe->readers--;
1871        pipe->writers++;
1872        pipe_unlock(pipe);
1873
1874}
1875
1876
1877/*
1878 * umh_pipe_setup
1879 * helper function to customize the process used
1880 * to collect the core in userspace.  Specifically
1881 * it sets up a pipe and installs it as fd 0 (stdin)
1882 * for the process.  Returns 0 on success, or
1883 * PTR_ERR on failure.
1884 * Note that it also sets the core limit to 1.  This
1885 * is a special value that we use to trap recursive
1886 * core dumps
1887 */
1888static int umh_pipe_setup(struct subprocess_info *info)
1889{
1890        struct file *rp, *wp;
1891        struct fdtable *fdt;
1892        struct coredump_params *cp = (struct coredump_params *)info->data;
1893        struct files_struct *cf = current->files;
1894
1895        wp = create_write_pipe(0);
1896        if (IS_ERR(wp))
1897                return PTR_ERR(wp);
1898
1899        rp = create_read_pipe(wp, 0);
1900        if (IS_ERR(rp)) {
1901                free_write_pipe(wp);
1902                return PTR_ERR(rp);
1903        }
1904
1905        cp->file = wp;
1906
1907        sys_close(0);
1908        fd_install(0, rp);
1909        spin_lock(&cf->file_lock);
1910        fdt = files_fdtable(cf);
1911        FD_SET(0, fdt->open_fds);
1912        FD_CLR(0, fdt->close_on_exec);
1913        spin_unlock(&cf->file_lock);
1914
1915        /* and disallow core files too */
1916        current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1917
1918        return 0;
1919}
1920
1921void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1922{
1923        struct core_state core_state;
1924        struct core_name cn;
1925        struct mm_struct *mm = current->mm;
1926        struct linux_binfmt * binfmt;
1927        const struct cred *old_cred;
1928        struct cred *cred;
1929        int retval = 0;
1930        int flag = 0;
1931        int ispipe;
1932        static atomic_t core_dump_count = ATOMIC_INIT(0);
1933        struct coredump_params cprm = {
1934                .signr = signr,
1935                .regs = regs,
1936                .limit = rlimit(RLIMIT_CORE),
1937                /*
1938                 * We must use the same mm->flags while dumping core to avoid
1939                 * inconsistency of bit flags, since this flag is not protected
1940                 * by any locks.
1941                 */
1942                .mm_flags = mm->flags,
1943        };
1944
1945        audit_core_dumps(signr);
1946
1947        binfmt = mm->binfmt;
1948        if (!binfmt || !binfmt->core_dump)
1949                goto fail;
1950        if (!__get_dumpable(cprm.mm_flags))
1951                goto fail;
1952
1953        cred = prepare_creds();
1954        if (!cred)
1955                goto fail;
1956        /*
1957         *      We cannot trust fsuid as being the "true" uid of the
1958         *      process nor do we know its entire history. We only know it
1959         *      was tainted so we dump it as root in mode 2.
1960         */
1961        if (__get_dumpable(cprm.mm_flags) == 2) {
1962                /* Setuid core dump mode */
1963                flag = O_EXCL;          /* Stop rewrite attacks */
1964                cred->fsuid = 0;        /* Dump root private */
1965        }
1966
1967        retval = coredump_wait(exit_code, &core_state);
1968        if (retval < 0)
1969                goto fail_creds;
1970
1971        old_cred = override_creds(cred);
1972
1973        /*
1974         * Clear any false indication of pending signals that might
1975         * be seen by the filesystem code called to write the core file.
1976         */
1977        clear_thread_flag(TIF_SIGPENDING);
1978
1979        ispipe = format_corename(&cn, signr);
1980
1981        if (ispipe == -ENOMEM) {
1982                printk(KERN_WARNING "format_corename failed\n");
1983                printk(KERN_WARNING "Aborting core\n");
1984                goto fail_corename;
1985        }
1986
1987        if (ispipe) {
1988                int dump_count;
1989                char **helper_argv;
1990
1991                if (cprm.limit == 1) {
1992                        /*
1993                         * Normally core limits are irrelevant to pipes, since
1994                         * we're not writing to the file system, but we use
1995                         * cprm.limit of 1 here as a speacial value. Any
1996                         * non-1 limit gets set to RLIM_INFINITY below, but
1997                         * a limit of 0 skips the dump.  This is a consistent
1998                         * way to catch recursive crashes.  We can still crash
1999                         * if the core_pattern binary sets RLIM_CORE =  !1
2000                         * but it runs as root, and can do lots of stupid things
2001                         * Note that we use task_tgid_vnr here to grab the pid
2002                         * of the process group leader.  That way we get the
2003                         * right pid if a thread in a multi-threaded
2004                         * core_pattern process dies.
2005                         */
2006                        printk(KERN_WARNING
2007                                "Process %d(%s) has RLIMIT_CORE set to 1\n",
2008                                task_tgid_vnr(current), current->comm);
2009                        printk(KERN_WARNING "Aborting core\n");
2010                        goto fail_unlock;
2011                }
2012                cprm.limit = RLIM_INFINITY;
2013
2014                dump_count = atomic_inc_return(&core_dump_count);
2015                if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2016                        printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2017                               task_tgid_vnr(current), current->comm);
2018                        printk(KERN_WARNING "Skipping core dump\n");
2019                        goto fail_dropcount;
2020                }
2021
2022                helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2023                if (!helper_argv) {
2024                        printk(KERN_WARNING "%s failed to allocate memory\n",
2025                               __func__);
2026                        goto fail_dropcount;
2027                }
2028
2029                retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2030                                        NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2031                                        NULL, &cprm);
2032                argv_free(helper_argv);
2033                if (retval) {
2034                        printk(KERN_INFO "Core dump to %s pipe failed\n",
2035                               cn.corename);
2036                        goto close_fail;
2037                }
2038        } else {
2039                struct inode *inode;
2040
2041                if (cprm.limit < binfmt->min_coredump)
2042                        goto fail_unlock;
2043
2044                cprm.file = filp_open(cn.corename,
2045                                 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2046                                 0600);
2047                if (IS_ERR(cprm.file))
2048                        goto fail_unlock;
2049
2050                inode = cprm.file->f_path.dentry->d_inode;
2051                if (inode->i_nlink > 1)
2052                        goto close_fail;
2053                if (d_unhashed(cprm.file->f_path.dentry))
2054                        goto close_fail;
2055                /*
2056                 * AK: actually i see no reason to not allow this for named
2057                 * pipes etc, but keep the previous behaviour for now.
2058                 */
2059                if (!S_ISREG(inode->i_mode))
2060                        goto close_fail;
2061                /*
2062                 * Dont allow local users get cute and trick others to coredump
2063                 * into their pre-created files.
2064                 */
2065                if (inode->i_uid != current_fsuid())
2066                        goto close_fail;
2067                if (!cprm.file->f_op || !cprm.file->f_op->write)
2068                        goto close_fail;
2069                if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2070                        goto close_fail;
2071        }
2072
2073        retval = binfmt->core_dump(&cprm);
2074        if (retval)
2075                current->signal->group_exit_code |= 0x80;
2076
2077        if (ispipe && core_pipe_limit)
2078                wait_for_dump_helpers(cprm.file);
2079close_fail:
2080        if (cprm.file)
2081                filp_close(cprm.file, NULL);
2082fail_dropcount:
2083        if (ispipe)
2084                atomic_dec(&core_dump_count);
2085fail_unlock:
2086        kfree(cn.corename);
2087fail_corename:
2088        coredump_finish(mm);
2089        revert_creds(old_cred);
2090fail_creds:
2091        put_cred(cred);
2092fail:
2093        return;
2094}
2095
2096/*
2097 * Core dumping helper functions.  These are the only things you should
2098 * do on a core-file: use only these functions to write out all the
2099 * necessary info.
2100 */
2101int dump_write(struct file *file, const void *addr, int nr)
2102{
2103        return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2104}
2105EXPORT_SYMBOL(dump_write);
2106
2107int dump_seek(struct file *file, loff_t off)
2108{
2109        int ret = 1;
2110
2111        if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2112                if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2113                        return 0;
2114        } else {
2115                char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2116
2117                if (!buf)
2118                        return 0;
2119                while (off > 0) {
2120                        unsigned long n = off;
2121
2122                        if (n > PAGE_SIZE)
2123                                n = PAGE_SIZE;
2124                        if (!dump_write(file, buf, n)) {
2125                                ret = 0;
2126                                break;
2127                        }
2128                        off -= n;
2129                }
2130                free_page((unsigned long)buf);
2131        }
2132        return ret;
2133}
2134EXPORT_SYMBOL(dump_seek);
2135