linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_quota.h"
  43#include "xfs_rw.h"
  44#include "xfs_utils.h"
  45#include "xfs_trace.h"
  46
  47STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  48STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  49#if defined(DEBUG)
  50STATIC void     xlog_recover_check_summary(xlog_t *);
  51#else
  52#define xlog_recover_check_summary(log)
  53#endif
  54
  55/*
  56 * This structure is used during recovery to record the buf log items which
  57 * have been canceled and should not be replayed.
  58 */
  59struct xfs_buf_cancel {
  60        xfs_daddr_t             bc_blkno;
  61        uint                    bc_len;
  62        int                     bc_refcount;
  63        struct list_head        bc_list;
  64};
  65
  66/*
  67 * Sector aligned buffer routines for buffer create/read/write/access
  68 */
  69
  70/*
  71 * Verify the given count of basic blocks is valid number of blocks
  72 * to specify for an operation involving the given XFS log buffer.
  73 * Returns nonzero if the count is valid, 0 otherwise.
  74 */
  75
  76static inline int
  77xlog_buf_bbcount_valid(
  78        xlog_t          *log,
  79        int             bbcount)
  80{
  81        return bbcount > 0 && bbcount <= log->l_logBBsize;
  82}
  83
  84/*
  85 * Allocate a buffer to hold log data.  The buffer needs to be able
  86 * to map to a range of nbblks basic blocks at any valid (basic
  87 * block) offset within the log.
  88 */
  89STATIC xfs_buf_t *
  90xlog_get_bp(
  91        xlog_t          *log,
  92        int             nbblks)
  93{
  94        if (!xlog_buf_bbcount_valid(log, nbblks)) {
  95                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  96                        nbblks);
  97                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  98                return NULL;
  99        }
 100
 101        /*
 102         * We do log I/O in units of log sectors (a power-of-2
 103         * multiple of the basic block size), so we round up the
 104         * requested size to accommodate the basic blocks required
 105         * for complete log sectors.
 106         *
 107         * In addition, the buffer may be used for a non-sector-
 108         * aligned block offset, in which case an I/O of the
 109         * requested size could extend beyond the end of the
 110         * buffer.  If the requested size is only 1 basic block it
 111         * will never straddle a sector boundary, so this won't be
 112         * an issue.  Nor will this be a problem if the log I/O is
 113         * done in basic blocks (sector size 1).  But otherwise we
 114         * extend the buffer by one extra log sector to ensure
 115         * there's space to accommodate this possibility.
 116         */
 117        if (nbblks > 1 && log->l_sectBBsize > 1)
 118                nbblks += log->l_sectBBsize;
 119        nbblks = round_up(nbblks, log->l_sectBBsize);
 120
 121        return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
 122                                        BBTOB(nbblks), 0);
 123}
 124
 125STATIC void
 126xlog_put_bp(
 127        xfs_buf_t       *bp)
 128{
 129        xfs_buf_free(bp);
 130}
 131
 132/*
 133 * Return the address of the start of the given block number's data
 134 * in a log buffer.  The buffer covers a log sector-aligned region.
 135 */
 136STATIC xfs_caddr_t
 137xlog_align(
 138        xlog_t          *log,
 139        xfs_daddr_t     blk_no,
 140        int             nbblks,
 141        xfs_buf_t       *bp)
 142{
 143        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 144
 145        ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
 146        return XFS_BUF_PTR(bp) + BBTOB(offset);
 147}
 148
 149
 150/*
 151 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 152 */
 153STATIC int
 154xlog_bread_noalign(
 155        xlog_t          *log,
 156        xfs_daddr_t     blk_no,
 157        int             nbblks,
 158        xfs_buf_t       *bp)
 159{
 160        int             error;
 161
 162        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 163                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 164                        nbblks);
 165                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 166                return EFSCORRUPTED;
 167        }
 168
 169        blk_no = round_down(blk_no, log->l_sectBBsize);
 170        nbblks = round_up(nbblks, log->l_sectBBsize);
 171
 172        ASSERT(nbblks > 0);
 173        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 174
 175        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 176        XFS_BUF_READ(bp);
 177        XFS_BUF_BUSY(bp);
 178        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 179        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 180
 181        xfsbdstrat(log->l_mp, bp);
 182        error = xfs_buf_iowait(bp);
 183        if (error)
 184                xfs_ioerror_alert("xlog_bread", log->l_mp,
 185                                  bp, XFS_BUF_ADDR(bp));
 186        return error;
 187}
 188
 189STATIC int
 190xlog_bread(
 191        xlog_t          *log,
 192        xfs_daddr_t     blk_no,
 193        int             nbblks,
 194        xfs_buf_t       *bp,
 195        xfs_caddr_t     *offset)
 196{
 197        int             error;
 198
 199        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 200        if (error)
 201                return error;
 202
 203        *offset = xlog_align(log, blk_no, nbblks, bp);
 204        return 0;
 205}
 206
 207/*
 208 * Write out the buffer at the given block for the given number of blocks.
 209 * The buffer is kept locked across the write and is returned locked.
 210 * This can only be used for synchronous log writes.
 211 */
 212STATIC int
 213xlog_bwrite(
 214        xlog_t          *log,
 215        xfs_daddr_t     blk_no,
 216        int             nbblks,
 217        xfs_buf_t       *bp)
 218{
 219        int             error;
 220
 221        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 222                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 223                        nbblks);
 224                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 225                return EFSCORRUPTED;
 226        }
 227
 228        blk_no = round_down(blk_no, log->l_sectBBsize);
 229        nbblks = round_up(nbblks, log->l_sectBBsize);
 230
 231        ASSERT(nbblks > 0);
 232        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 233
 234        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 235        XFS_BUF_ZEROFLAGS(bp);
 236        XFS_BUF_BUSY(bp);
 237        XFS_BUF_HOLD(bp);
 238        XFS_BUF_PSEMA(bp, PRIBIO);
 239        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 240        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 241
 242        if ((error = xfs_bwrite(log->l_mp, bp)))
 243                xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 244                                  bp, XFS_BUF_ADDR(bp));
 245        return error;
 246}
 247
 248#ifdef DEBUG
 249/*
 250 * dump debug superblock and log record information
 251 */
 252STATIC void
 253xlog_header_check_dump(
 254        xfs_mount_t             *mp,
 255        xlog_rec_header_t       *head)
 256{
 257        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 258                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 259        xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 260                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 261}
 262#else
 263#define xlog_header_check_dump(mp, head)
 264#endif
 265
 266/*
 267 * check log record header for recovery
 268 */
 269STATIC int
 270xlog_header_check_recover(
 271        xfs_mount_t             *mp,
 272        xlog_rec_header_t       *head)
 273{
 274        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 275
 276        /*
 277         * IRIX doesn't write the h_fmt field and leaves it zeroed
 278         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 279         * a dirty log created in IRIX.
 280         */
 281        if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
 282                xfs_warn(mp,
 283        "dirty log written in incompatible format - can't recover");
 284                xlog_header_check_dump(mp, head);
 285                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 286                                 XFS_ERRLEVEL_HIGH, mp);
 287                return XFS_ERROR(EFSCORRUPTED);
 288        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 289                xfs_warn(mp,
 290        "dirty log entry has mismatched uuid - can't recover");
 291                xlog_header_check_dump(mp, head);
 292                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 293                                 XFS_ERRLEVEL_HIGH, mp);
 294                return XFS_ERROR(EFSCORRUPTED);
 295        }
 296        return 0;
 297}
 298
 299/*
 300 * read the head block of the log and check the header
 301 */
 302STATIC int
 303xlog_header_check_mount(
 304        xfs_mount_t             *mp,
 305        xlog_rec_header_t       *head)
 306{
 307        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 308
 309        if (uuid_is_nil(&head->h_fs_uuid)) {
 310                /*
 311                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 312                 * h_fs_uuid is nil, we assume this log was last mounted
 313                 * by IRIX and continue.
 314                 */
 315                xfs_warn(mp, "nil uuid in log - IRIX style log");
 316        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 317                xfs_warn(mp, "log has mismatched uuid - can't recover");
 318                xlog_header_check_dump(mp, head);
 319                XFS_ERROR_REPORT("xlog_header_check_mount",
 320                                 XFS_ERRLEVEL_HIGH, mp);
 321                return XFS_ERROR(EFSCORRUPTED);
 322        }
 323        return 0;
 324}
 325
 326STATIC void
 327xlog_recover_iodone(
 328        struct xfs_buf  *bp)
 329{
 330        if (XFS_BUF_GETERROR(bp)) {
 331                /*
 332                 * We're not going to bother about retrying
 333                 * this during recovery. One strike!
 334                 */
 335                xfs_ioerror_alert("xlog_recover_iodone",
 336                                        bp->b_target->bt_mount, bp,
 337                                        XFS_BUF_ADDR(bp));
 338                xfs_force_shutdown(bp->b_target->bt_mount,
 339                                        SHUTDOWN_META_IO_ERROR);
 340        }
 341        XFS_BUF_CLR_IODONE_FUNC(bp);
 342        xfs_buf_ioend(bp, 0);
 343}
 344
 345/*
 346 * This routine finds (to an approximation) the first block in the physical
 347 * log which contains the given cycle.  It uses a binary search algorithm.
 348 * Note that the algorithm can not be perfect because the disk will not
 349 * necessarily be perfect.
 350 */
 351STATIC int
 352xlog_find_cycle_start(
 353        xlog_t          *log,
 354        xfs_buf_t       *bp,
 355        xfs_daddr_t     first_blk,
 356        xfs_daddr_t     *last_blk,
 357        uint            cycle)
 358{
 359        xfs_caddr_t     offset;
 360        xfs_daddr_t     mid_blk;
 361        xfs_daddr_t     end_blk;
 362        uint            mid_cycle;
 363        int             error;
 364
 365        end_blk = *last_blk;
 366        mid_blk = BLK_AVG(first_blk, end_blk);
 367        while (mid_blk != first_blk && mid_blk != end_blk) {
 368                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 369                if (error)
 370                        return error;
 371                mid_cycle = xlog_get_cycle(offset);
 372                if (mid_cycle == cycle)
 373                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 374                else
 375                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 376                mid_blk = BLK_AVG(first_blk, end_blk);
 377        }
 378        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 379               (mid_blk == end_blk && mid_blk-1 == first_blk));
 380
 381        *last_blk = end_blk;
 382
 383        return 0;
 384}
 385
 386/*
 387 * Check that a range of blocks does not contain stop_on_cycle_no.
 388 * Fill in *new_blk with the block offset where such a block is
 389 * found, or with -1 (an invalid block number) if there is no such
 390 * block in the range.  The scan needs to occur from front to back
 391 * and the pointer into the region must be updated since a later
 392 * routine will need to perform another test.
 393 */
 394STATIC int
 395xlog_find_verify_cycle(
 396        xlog_t          *log,
 397        xfs_daddr_t     start_blk,
 398        int             nbblks,
 399        uint            stop_on_cycle_no,
 400        xfs_daddr_t     *new_blk)
 401{
 402        xfs_daddr_t     i, j;
 403        uint            cycle;
 404        xfs_buf_t       *bp;
 405        xfs_daddr_t     bufblks;
 406        xfs_caddr_t     buf = NULL;
 407        int             error = 0;
 408
 409        /*
 410         * Greedily allocate a buffer big enough to handle the full
 411         * range of basic blocks we'll be examining.  If that fails,
 412         * try a smaller size.  We need to be able to read at least
 413         * a log sector, or we're out of luck.
 414         */
 415        bufblks = 1 << ffs(nbblks);
 416        while (!(bp = xlog_get_bp(log, bufblks))) {
 417                bufblks >>= 1;
 418                if (bufblks < log->l_sectBBsize)
 419                        return ENOMEM;
 420        }
 421
 422        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 423                int     bcount;
 424
 425                bcount = min(bufblks, (start_blk + nbblks - i));
 426
 427                error = xlog_bread(log, i, bcount, bp, &buf);
 428                if (error)
 429                        goto out;
 430
 431                for (j = 0; j < bcount; j++) {
 432                        cycle = xlog_get_cycle(buf);
 433                        if (cycle == stop_on_cycle_no) {
 434                                *new_blk = i+j;
 435                                goto out;
 436                        }
 437
 438                        buf += BBSIZE;
 439                }
 440        }
 441
 442        *new_blk = -1;
 443
 444out:
 445        xlog_put_bp(bp);
 446        return error;
 447}
 448
 449/*
 450 * Potentially backup over partial log record write.
 451 *
 452 * In the typical case, last_blk is the number of the block directly after
 453 * a good log record.  Therefore, we subtract one to get the block number
 454 * of the last block in the given buffer.  extra_bblks contains the number
 455 * of blocks we would have read on a previous read.  This happens when the
 456 * last log record is split over the end of the physical log.
 457 *
 458 * extra_bblks is the number of blocks potentially verified on a previous
 459 * call to this routine.
 460 */
 461STATIC int
 462xlog_find_verify_log_record(
 463        xlog_t                  *log,
 464        xfs_daddr_t             start_blk,
 465        xfs_daddr_t             *last_blk,
 466        int                     extra_bblks)
 467{
 468        xfs_daddr_t             i;
 469        xfs_buf_t               *bp;
 470        xfs_caddr_t             offset = NULL;
 471        xlog_rec_header_t       *head = NULL;
 472        int                     error = 0;
 473        int                     smallmem = 0;
 474        int                     num_blks = *last_blk - start_blk;
 475        int                     xhdrs;
 476
 477        ASSERT(start_blk != 0 || *last_blk != start_blk);
 478
 479        if (!(bp = xlog_get_bp(log, num_blks))) {
 480                if (!(bp = xlog_get_bp(log, 1)))
 481                        return ENOMEM;
 482                smallmem = 1;
 483        } else {
 484                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 485                if (error)
 486                        goto out;
 487                offset += ((num_blks - 1) << BBSHIFT);
 488        }
 489
 490        for (i = (*last_blk) - 1; i >= 0; i--) {
 491                if (i < start_blk) {
 492                        /* valid log record not found */
 493                        xfs_warn(log->l_mp,
 494                "Log inconsistent (didn't find previous header)");
 495                        ASSERT(0);
 496                        error = XFS_ERROR(EIO);
 497                        goto out;
 498                }
 499
 500                if (smallmem) {
 501                        error = xlog_bread(log, i, 1, bp, &offset);
 502                        if (error)
 503                                goto out;
 504                }
 505
 506                head = (xlog_rec_header_t *)offset;
 507
 508                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
 509                        break;
 510
 511                if (!smallmem)
 512                        offset -= BBSIZE;
 513        }
 514
 515        /*
 516         * We hit the beginning of the physical log & still no header.  Return
 517         * to caller.  If caller can handle a return of -1, then this routine
 518         * will be called again for the end of the physical log.
 519         */
 520        if (i == -1) {
 521                error = -1;
 522                goto out;
 523        }
 524
 525        /*
 526         * We have the final block of the good log (the first block
 527         * of the log record _before_ the head. So we check the uuid.
 528         */
 529        if ((error = xlog_header_check_mount(log->l_mp, head)))
 530                goto out;
 531
 532        /*
 533         * We may have found a log record header before we expected one.
 534         * last_blk will be the 1st block # with a given cycle #.  We may end
 535         * up reading an entire log record.  In this case, we don't want to
 536         * reset last_blk.  Only when last_blk points in the middle of a log
 537         * record do we update last_blk.
 538         */
 539        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 540                uint    h_size = be32_to_cpu(head->h_size);
 541
 542                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 543                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 544                        xhdrs++;
 545        } else {
 546                xhdrs = 1;
 547        }
 548
 549        if (*last_blk - i + extra_bblks !=
 550            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 551                *last_blk = i;
 552
 553out:
 554        xlog_put_bp(bp);
 555        return error;
 556}
 557
 558/*
 559 * Head is defined to be the point of the log where the next log write
 560 * write could go.  This means that incomplete LR writes at the end are
 561 * eliminated when calculating the head.  We aren't guaranteed that previous
 562 * LR have complete transactions.  We only know that a cycle number of
 563 * current cycle number -1 won't be present in the log if we start writing
 564 * from our current block number.
 565 *
 566 * last_blk contains the block number of the first block with a given
 567 * cycle number.
 568 *
 569 * Return: zero if normal, non-zero if error.
 570 */
 571STATIC int
 572xlog_find_head(
 573        xlog_t          *log,
 574        xfs_daddr_t     *return_head_blk)
 575{
 576        xfs_buf_t       *bp;
 577        xfs_caddr_t     offset;
 578        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 579        int             num_scan_bblks;
 580        uint            first_half_cycle, last_half_cycle;
 581        uint            stop_on_cycle;
 582        int             error, log_bbnum = log->l_logBBsize;
 583
 584        /* Is the end of the log device zeroed? */
 585        if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 586                *return_head_blk = first_blk;
 587
 588                /* Is the whole lot zeroed? */
 589                if (!first_blk) {
 590                        /* Linux XFS shouldn't generate totally zeroed logs -
 591                         * mkfs etc write a dummy unmount record to a fresh
 592                         * log so we can store the uuid in there
 593                         */
 594                        xfs_warn(log->l_mp, "totally zeroed log");
 595                }
 596
 597                return 0;
 598        } else if (error) {
 599                xfs_warn(log->l_mp, "empty log check failed");
 600                return error;
 601        }
 602
 603        first_blk = 0;                  /* get cycle # of 1st block */
 604        bp = xlog_get_bp(log, 1);
 605        if (!bp)
 606                return ENOMEM;
 607
 608        error = xlog_bread(log, 0, 1, bp, &offset);
 609        if (error)
 610                goto bp_err;
 611
 612        first_half_cycle = xlog_get_cycle(offset);
 613
 614        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 615        error = xlog_bread(log, last_blk, 1, bp, &offset);
 616        if (error)
 617                goto bp_err;
 618
 619        last_half_cycle = xlog_get_cycle(offset);
 620        ASSERT(last_half_cycle != 0);
 621
 622        /*
 623         * If the 1st half cycle number is equal to the last half cycle number,
 624         * then the entire log is stamped with the same cycle number.  In this
 625         * case, head_blk can't be set to zero (which makes sense).  The below
 626         * math doesn't work out properly with head_blk equal to zero.  Instead,
 627         * we set it to log_bbnum which is an invalid block number, but this
 628         * value makes the math correct.  If head_blk doesn't changed through
 629         * all the tests below, *head_blk is set to zero at the very end rather
 630         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 631         * in a circular file.
 632         */
 633        if (first_half_cycle == last_half_cycle) {
 634                /*
 635                 * In this case we believe that the entire log should have
 636                 * cycle number last_half_cycle.  We need to scan backwards
 637                 * from the end verifying that there are no holes still
 638                 * containing last_half_cycle - 1.  If we find such a hole,
 639                 * then the start of that hole will be the new head.  The
 640                 * simple case looks like
 641                 *        x | x ... | x - 1 | x
 642                 * Another case that fits this picture would be
 643                 *        x | x + 1 | x ... | x
 644                 * In this case the head really is somewhere at the end of the
 645                 * log, as one of the latest writes at the beginning was
 646                 * incomplete.
 647                 * One more case is
 648                 *        x | x + 1 | x ... | x - 1 | x
 649                 * This is really the combination of the above two cases, and
 650                 * the head has to end up at the start of the x-1 hole at the
 651                 * end of the log.
 652                 *
 653                 * In the 256k log case, we will read from the beginning to the
 654                 * end of the log and search for cycle numbers equal to x-1.
 655                 * We don't worry about the x+1 blocks that we encounter,
 656                 * because we know that they cannot be the head since the log
 657                 * started with x.
 658                 */
 659                head_blk = log_bbnum;
 660                stop_on_cycle = last_half_cycle - 1;
 661        } else {
 662                /*
 663                 * In this case we want to find the first block with cycle
 664                 * number matching last_half_cycle.  We expect the log to be
 665                 * some variation on
 666                 *        x + 1 ... | x ... | x
 667                 * The first block with cycle number x (last_half_cycle) will
 668                 * be where the new head belongs.  First we do a binary search
 669                 * for the first occurrence of last_half_cycle.  The binary
 670                 * search may not be totally accurate, so then we scan back
 671                 * from there looking for occurrences of last_half_cycle before
 672                 * us.  If that backwards scan wraps around the beginning of
 673                 * the log, then we look for occurrences of last_half_cycle - 1
 674                 * at the end of the log.  The cases we're looking for look
 675                 * like
 676                 *                               v binary search stopped here
 677                 *        x + 1 ... | x | x + 1 | x ... | x
 678                 *                   ^ but we want to locate this spot
 679                 * or
 680                 *        <---------> less than scan distance
 681                 *        x + 1 ... | x ... | x - 1 | x
 682                 *                           ^ we want to locate this spot
 683                 */
 684                stop_on_cycle = last_half_cycle;
 685                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 686                                                &head_blk, last_half_cycle)))
 687                        goto bp_err;
 688        }
 689
 690        /*
 691         * Now validate the answer.  Scan back some number of maximum possible
 692         * blocks and make sure each one has the expected cycle number.  The
 693         * maximum is determined by the total possible amount of buffering
 694         * in the in-core log.  The following number can be made tighter if
 695         * we actually look at the block size of the filesystem.
 696         */
 697        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 698        if (head_blk >= num_scan_bblks) {
 699                /*
 700                 * We are guaranteed that the entire check can be performed
 701                 * in one buffer.
 702                 */
 703                start_blk = head_blk - num_scan_bblks;
 704                if ((error = xlog_find_verify_cycle(log,
 705                                                start_blk, num_scan_bblks,
 706                                                stop_on_cycle, &new_blk)))
 707                        goto bp_err;
 708                if (new_blk != -1)
 709                        head_blk = new_blk;
 710        } else {                /* need to read 2 parts of log */
 711                /*
 712                 * We are going to scan backwards in the log in two parts.
 713                 * First we scan the physical end of the log.  In this part
 714                 * of the log, we are looking for blocks with cycle number
 715                 * last_half_cycle - 1.
 716                 * If we find one, then we know that the log starts there, as
 717                 * we've found a hole that didn't get written in going around
 718                 * the end of the physical log.  The simple case for this is
 719                 *        x + 1 ... | x ... | x - 1 | x
 720                 *        <---------> less than scan distance
 721                 * If all of the blocks at the end of the log have cycle number
 722                 * last_half_cycle, then we check the blocks at the start of
 723                 * the log looking for occurrences of last_half_cycle.  If we
 724                 * find one, then our current estimate for the location of the
 725                 * first occurrence of last_half_cycle is wrong and we move
 726                 * back to the hole we've found.  This case looks like
 727                 *        x + 1 ... | x | x + 1 | x ...
 728                 *                               ^ binary search stopped here
 729                 * Another case we need to handle that only occurs in 256k
 730                 * logs is
 731                 *        x + 1 ... | x ... | x+1 | x ...
 732                 *                   ^ binary search stops here
 733                 * In a 256k log, the scan at the end of the log will see the
 734                 * x + 1 blocks.  We need to skip past those since that is
 735                 * certainly not the head of the log.  By searching for
 736                 * last_half_cycle-1 we accomplish that.
 737                 */
 738                ASSERT(head_blk <= INT_MAX &&
 739                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 740                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 741                if ((error = xlog_find_verify_cycle(log, start_blk,
 742                                        num_scan_bblks - (int)head_blk,
 743                                        (stop_on_cycle - 1), &new_blk)))
 744                        goto bp_err;
 745                if (new_blk != -1) {
 746                        head_blk = new_blk;
 747                        goto validate_head;
 748                }
 749
 750                /*
 751                 * Scan beginning of log now.  The last part of the physical
 752                 * log is good.  This scan needs to verify that it doesn't find
 753                 * the last_half_cycle.
 754                 */
 755                start_blk = 0;
 756                ASSERT(head_blk <= INT_MAX);
 757                if ((error = xlog_find_verify_cycle(log,
 758                                        start_blk, (int)head_blk,
 759                                        stop_on_cycle, &new_blk)))
 760                        goto bp_err;
 761                if (new_blk != -1)
 762                        head_blk = new_blk;
 763        }
 764
 765validate_head:
 766        /*
 767         * Now we need to make sure head_blk is not pointing to a block in
 768         * the middle of a log record.
 769         */
 770        num_scan_bblks = XLOG_REC_SHIFT(log);
 771        if (head_blk >= num_scan_bblks) {
 772                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 773
 774                /* start ptr at last block ptr before head_blk */
 775                if ((error = xlog_find_verify_log_record(log, start_blk,
 776                                                        &head_blk, 0)) == -1) {
 777                        error = XFS_ERROR(EIO);
 778                        goto bp_err;
 779                } else if (error)
 780                        goto bp_err;
 781        } else {
 782                start_blk = 0;
 783                ASSERT(head_blk <= INT_MAX);
 784                if ((error = xlog_find_verify_log_record(log, start_blk,
 785                                                        &head_blk, 0)) == -1) {
 786                        /* We hit the beginning of the log during our search */
 787                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 788                        new_blk = log_bbnum;
 789                        ASSERT(start_blk <= INT_MAX &&
 790                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 791                        ASSERT(head_blk <= INT_MAX);
 792                        if ((error = xlog_find_verify_log_record(log,
 793                                                        start_blk, &new_blk,
 794                                                        (int)head_blk)) == -1) {
 795                                error = XFS_ERROR(EIO);
 796                                goto bp_err;
 797                        } else if (error)
 798                                goto bp_err;
 799                        if (new_blk != log_bbnum)
 800                                head_blk = new_blk;
 801                } else if (error)
 802                        goto bp_err;
 803        }
 804
 805        xlog_put_bp(bp);
 806        if (head_blk == log_bbnum)
 807                *return_head_blk = 0;
 808        else
 809                *return_head_blk = head_blk;
 810        /*
 811         * When returning here, we have a good block number.  Bad block
 812         * means that during a previous crash, we didn't have a clean break
 813         * from cycle number N to cycle number N-1.  In this case, we need
 814         * to find the first block with cycle number N-1.
 815         */
 816        return 0;
 817
 818 bp_err:
 819        xlog_put_bp(bp);
 820
 821        if (error)
 822                xfs_warn(log->l_mp, "failed to find log head");
 823        return error;
 824}
 825
 826/*
 827 * Find the sync block number or the tail of the log.
 828 *
 829 * This will be the block number of the last record to have its
 830 * associated buffers synced to disk.  Every log record header has
 831 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 832 * to get a sync block number.  The only concern is to figure out which
 833 * log record header to believe.
 834 *
 835 * The following algorithm uses the log record header with the largest
 836 * lsn.  The entire log record does not need to be valid.  We only care
 837 * that the header is valid.
 838 *
 839 * We could speed up search by using current head_blk buffer, but it is not
 840 * available.
 841 */
 842STATIC int
 843xlog_find_tail(
 844        xlog_t                  *log,
 845        xfs_daddr_t             *head_blk,
 846        xfs_daddr_t             *tail_blk)
 847{
 848        xlog_rec_header_t       *rhead;
 849        xlog_op_header_t        *op_head;
 850        xfs_caddr_t             offset = NULL;
 851        xfs_buf_t               *bp;
 852        int                     error, i, found;
 853        xfs_daddr_t             umount_data_blk;
 854        xfs_daddr_t             after_umount_blk;
 855        xfs_lsn_t               tail_lsn;
 856        int                     hblks;
 857
 858        found = 0;
 859
 860        /*
 861         * Find previous log record
 862         */
 863        if ((error = xlog_find_head(log, head_blk)))
 864                return error;
 865
 866        bp = xlog_get_bp(log, 1);
 867        if (!bp)
 868                return ENOMEM;
 869        if (*head_blk == 0) {                           /* special case */
 870                error = xlog_bread(log, 0, 1, bp, &offset);
 871                if (error)
 872                        goto done;
 873
 874                if (xlog_get_cycle(offset) == 0) {
 875                        *tail_blk = 0;
 876                        /* leave all other log inited values alone */
 877                        goto done;
 878                }
 879        }
 880
 881        /*
 882         * Search backwards looking for log record header block
 883         */
 884        ASSERT(*head_blk < INT_MAX);
 885        for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 886                error = xlog_bread(log, i, 1, bp, &offset);
 887                if (error)
 888                        goto done;
 889
 890                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
 891                        found = 1;
 892                        break;
 893                }
 894        }
 895        /*
 896         * If we haven't found the log record header block, start looking
 897         * again from the end of the physical log.  XXXmiken: There should be
 898         * a check here to make sure we didn't search more than N blocks in
 899         * the previous code.
 900         */
 901        if (!found) {
 902                for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 903                        error = xlog_bread(log, i, 1, bp, &offset);
 904                        if (error)
 905                                goto done;
 906
 907                        if (XLOG_HEADER_MAGIC_NUM ==
 908                            be32_to_cpu(*(__be32 *)offset)) {
 909                                found = 2;
 910                                break;
 911                        }
 912                }
 913        }
 914        if (!found) {
 915                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 916                ASSERT(0);
 917                return XFS_ERROR(EIO);
 918        }
 919
 920        /* find blk_no of tail of log */
 921        rhead = (xlog_rec_header_t *)offset;
 922        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 923
 924        /*
 925         * Reset log values according to the state of the log when we
 926         * crashed.  In the case where head_blk == 0, we bump curr_cycle
 927         * one because the next write starts a new cycle rather than
 928         * continuing the cycle of the last good log record.  At this
 929         * point we have guaranteed that all partial log records have been
 930         * accounted for.  Therefore, we know that the last good log record
 931         * written was complete and ended exactly on the end boundary
 932         * of the physical log.
 933         */
 934        log->l_prev_block = i;
 935        log->l_curr_block = (int)*head_blk;
 936        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 937        if (found == 2)
 938                log->l_curr_cycle++;
 939        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 940        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 941        xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
 942                                        BBTOB(log->l_curr_block));
 943        xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
 944                                        BBTOB(log->l_curr_block));
 945
 946        /*
 947         * Look for unmount record.  If we find it, then we know there
 948         * was a clean unmount.  Since 'i' could be the last block in
 949         * the physical log, we convert to a log block before comparing
 950         * to the head_blk.
 951         *
 952         * Save the current tail lsn to use to pass to
 953         * xlog_clear_stale_blocks() below.  We won't want to clear the
 954         * unmount record if there is one, so we pass the lsn of the
 955         * unmount record rather than the block after it.
 956         */
 957        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 958                int     h_size = be32_to_cpu(rhead->h_size);
 959                int     h_version = be32_to_cpu(rhead->h_version);
 960
 961                if ((h_version & XLOG_VERSION_2) &&
 962                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 963                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 964                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
 965                                hblks++;
 966                } else {
 967                        hblks = 1;
 968                }
 969        } else {
 970                hblks = 1;
 971        }
 972        after_umount_blk = (i + hblks + (int)
 973                BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
 974        tail_lsn = atomic64_read(&log->l_tail_lsn);
 975        if (*head_blk == after_umount_blk &&
 976            be32_to_cpu(rhead->h_num_logops) == 1) {
 977                umount_data_blk = (i + hblks) % log->l_logBBsize;
 978                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
 979                if (error)
 980                        goto done;
 981
 982                op_head = (xlog_op_header_t *)offset;
 983                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
 984                        /*
 985                         * Set tail and last sync so that newly written
 986                         * log records will point recovery to after the
 987                         * current unmount record.
 988                         */
 989                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
 990                                        log->l_curr_cycle, after_umount_blk);
 991                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
 992                                        log->l_curr_cycle, after_umount_blk);
 993                        *tail_blk = after_umount_blk;
 994
 995                        /*
 996                         * Note that the unmount was clean. If the unmount
 997                         * was not clean, we need to know this to rebuild the
 998                         * superblock counters from the perag headers if we
 999                         * have a filesystem using non-persistent counters.
1000                         */
1001                        log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1002                }
1003        }
1004
1005        /*
1006         * Make sure that there are no blocks in front of the head
1007         * with the same cycle number as the head.  This can happen
1008         * because we allow multiple outstanding log writes concurrently,
1009         * and the later writes might make it out before earlier ones.
1010         *
1011         * We use the lsn from before modifying it so that we'll never
1012         * overwrite the unmount record after a clean unmount.
1013         *
1014         * Do this only if we are going to recover the filesystem
1015         *
1016         * NOTE: This used to say "if (!readonly)"
1017         * However on Linux, we can & do recover a read-only filesystem.
1018         * We only skip recovery if NORECOVERY is specified on mount,
1019         * in which case we would not be here.
1020         *
1021         * But... if the -device- itself is readonly, just skip this.
1022         * We can't recover this device anyway, so it won't matter.
1023         */
1024        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1025                error = xlog_clear_stale_blocks(log, tail_lsn);
1026
1027done:
1028        xlog_put_bp(bp);
1029
1030        if (error)
1031                xfs_warn(log->l_mp, "failed to locate log tail");
1032        return error;
1033}
1034
1035/*
1036 * Is the log zeroed at all?
1037 *
1038 * The last binary search should be changed to perform an X block read
1039 * once X becomes small enough.  You can then search linearly through
1040 * the X blocks.  This will cut down on the number of reads we need to do.
1041 *
1042 * If the log is partially zeroed, this routine will pass back the blkno
1043 * of the first block with cycle number 0.  It won't have a complete LR
1044 * preceding it.
1045 *
1046 * Return:
1047 *      0  => the log is completely written to
1048 *      -1 => use *blk_no as the first block of the log
1049 *      >0 => error has occurred
1050 */
1051STATIC int
1052xlog_find_zeroed(
1053        xlog_t          *log,
1054        xfs_daddr_t     *blk_no)
1055{
1056        xfs_buf_t       *bp;
1057        xfs_caddr_t     offset;
1058        uint            first_cycle, last_cycle;
1059        xfs_daddr_t     new_blk, last_blk, start_blk;
1060        xfs_daddr_t     num_scan_bblks;
1061        int             error, log_bbnum = log->l_logBBsize;
1062
1063        *blk_no = 0;
1064
1065        /* check totally zeroed log */
1066        bp = xlog_get_bp(log, 1);
1067        if (!bp)
1068                return ENOMEM;
1069        error = xlog_bread(log, 0, 1, bp, &offset);
1070        if (error)
1071                goto bp_err;
1072
1073        first_cycle = xlog_get_cycle(offset);
1074        if (first_cycle == 0) {         /* completely zeroed log */
1075                *blk_no = 0;
1076                xlog_put_bp(bp);
1077                return -1;
1078        }
1079
1080        /* check partially zeroed log */
1081        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1082        if (error)
1083                goto bp_err;
1084
1085        last_cycle = xlog_get_cycle(offset);
1086        if (last_cycle != 0) {          /* log completely written to */
1087                xlog_put_bp(bp);
1088                return 0;
1089        } else if (first_cycle != 1) {
1090                /*
1091                 * If the cycle of the last block is zero, the cycle of
1092                 * the first block must be 1. If it's not, maybe we're
1093                 * not looking at a log... Bail out.
1094                 */
1095                xfs_warn(log->l_mp,
1096                        "Log inconsistent or not a log (last==0, first!=1)");
1097                return XFS_ERROR(EINVAL);
1098        }
1099
1100        /* we have a partially zeroed log */
1101        last_blk = log_bbnum-1;
1102        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1103                goto bp_err;
1104
1105        /*
1106         * Validate the answer.  Because there is no way to guarantee that
1107         * the entire log is made up of log records which are the same size,
1108         * we scan over the defined maximum blocks.  At this point, the maximum
1109         * is not chosen to mean anything special.   XXXmiken
1110         */
1111        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1112        ASSERT(num_scan_bblks <= INT_MAX);
1113
1114        if (last_blk < num_scan_bblks)
1115                num_scan_bblks = last_blk;
1116        start_blk = last_blk - num_scan_bblks;
1117
1118        /*
1119         * We search for any instances of cycle number 0 that occur before
1120         * our current estimate of the head.  What we're trying to detect is
1121         *        1 ... | 0 | 1 | 0...
1122         *                       ^ binary search ends here
1123         */
1124        if ((error = xlog_find_verify_cycle(log, start_blk,
1125                                         (int)num_scan_bblks, 0, &new_blk)))
1126                goto bp_err;
1127        if (new_blk != -1)
1128                last_blk = new_blk;
1129
1130        /*
1131         * Potentially backup over partial log record write.  We don't need
1132         * to search the end of the log because we know it is zero.
1133         */
1134        if ((error = xlog_find_verify_log_record(log, start_blk,
1135                                &last_blk, 0)) == -1) {
1136            error = XFS_ERROR(EIO);
1137            goto bp_err;
1138        } else if (error)
1139            goto bp_err;
1140
1141        *blk_no = last_blk;
1142bp_err:
1143        xlog_put_bp(bp);
1144        if (error)
1145                return error;
1146        return -1;
1147}
1148
1149/*
1150 * These are simple subroutines used by xlog_clear_stale_blocks() below
1151 * to initialize a buffer full of empty log record headers and write
1152 * them into the log.
1153 */
1154STATIC void
1155xlog_add_record(
1156        xlog_t                  *log,
1157        xfs_caddr_t             buf,
1158        int                     cycle,
1159        int                     block,
1160        int                     tail_cycle,
1161        int                     tail_block)
1162{
1163        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1164
1165        memset(buf, 0, BBSIZE);
1166        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1167        recp->h_cycle = cpu_to_be32(cycle);
1168        recp->h_version = cpu_to_be32(
1169                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1170        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1171        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1172        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1173        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1174}
1175
1176STATIC int
1177xlog_write_log_records(
1178        xlog_t          *log,
1179        int             cycle,
1180        int             start_block,
1181        int             blocks,
1182        int             tail_cycle,
1183        int             tail_block)
1184{
1185        xfs_caddr_t     offset;
1186        xfs_buf_t       *bp;
1187        int             balign, ealign;
1188        int             sectbb = log->l_sectBBsize;
1189        int             end_block = start_block + blocks;
1190        int             bufblks;
1191        int             error = 0;
1192        int             i, j = 0;
1193
1194        /*
1195         * Greedily allocate a buffer big enough to handle the full
1196         * range of basic blocks to be written.  If that fails, try
1197         * a smaller size.  We need to be able to write at least a
1198         * log sector, or we're out of luck.
1199         */
1200        bufblks = 1 << ffs(blocks);
1201        while (!(bp = xlog_get_bp(log, bufblks))) {
1202                bufblks >>= 1;
1203                if (bufblks < sectbb)
1204                        return ENOMEM;
1205        }
1206
1207        /* We may need to do a read at the start to fill in part of
1208         * the buffer in the starting sector not covered by the first
1209         * write below.
1210         */
1211        balign = round_down(start_block, sectbb);
1212        if (balign != start_block) {
1213                error = xlog_bread_noalign(log, start_block, 1, bp);
1214                if (error)
1215                        goto out_put_bp;
1216
1217                j = start_block - balign;
1218        }
1219
1220        for (i = start_block; i < end_block; i += bufblks) {
1221                int             bcount, endcount;
1222
1223                bcount = min(bufblks, end_block - start_block);
1224                endcount = bcount - j;
1225
1226                /* We may need to do a read at the end to fill in part of
1227                 * the buffer in the final sector not covered by the write.
1228                 * If this is the same sector as the above read, skip it.
1229                 */
1230                ealign = round_down(end_block, sectbb);
1231                if (j == 0 && (start_block + endcount > ealign)) {
1232                        offset = XFS_BUF_PTR(bp);
1233                        balign = BBTOB(ealign - start_block);
1234                        error = XFS_BUF_SET_PTR(bp, offset + balign,
1235                                                BBTOB(sectbb));
1236                        if (error)
1237                                break;
1238
1239                        error = xlog_bread_noalign(log, ealign, sectbb, bp);
1240                        if (error)
1241                                break;
1242
1243                        error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1244                        if (error)
1245                                break;
1246                }
1247
1248                offset = xlog_align(log, start_block, endcount, bp);
1249                for (; j < endcount; j++) {
1250                        xlog_add_record(log, offset, cycle, i+j,
1251                                        tail_cycle, tail_block);
1252                        offset += BBSIZE;
1253                }
1254                error = xlog_bwrite(log, start_block, endcount, bp);
1255                if (error)
1256                        break;
1257                start_block += endcount;
1258                j = 0;
1259        }
1260
1261 out_put_bp:
1262        xlog_put_bp(bp);
1263        return error;
1264}
1265
1266/*
1267 * This routine is called to blow away any incomplete log writes out
1268 * in front of the log head.  We do this so that we won't become confused
1269 * if we come up, write only a little bit more, and then crash again.
1270 * If we leave the partial log records out there, this situation could
1271 * cause us to think those partial writes are valid blocks since they
1272 * have the current cycle number.  We get rid of them by overwriting them
1273 * with empty log records with the old cycle number rather than the
1274 * current one.
1275 *
1276 * The tail lsn is passed in rather than taken from
1277 * the log so that we will not write over the unmount record after a
1278 * clean unmount in a 512 block log.  Doing so would leave the log without
1279 * any valid log records in it until a new one was written.  If we crashed
1280 * during that time we would not be able to recover.
1281 */
1282STATIC int
1283xlog_clear_stale_blocks(
1284        xlog_t          *log,
1285        xfs_lsn_t       tail_lsn)
1286{
1287        int             tail_cycle, head_cycle;
1288        int             tail_block, head_block;
1289        int             tail_distance, max_distance;
1290        int             distance;
1291        int             error;
1292
1293        tail_cycle = CYCLE_LSN(tail_lsn);
1294        tail_block = BLOCK_LSN(tail_lsn);
1295        head_cycle = log->l_curr_cycle;
1296        head_block = log->l_curr_block;
1297
1298        /*
1299         * Figure out the distance between the new head of the log
1300         * and the tail.  We want to write over any blocks beyond the
1301         * head that we may have written just before the crash, but
1302         * we don't want to overwrite the tail of the log.
1303         */
1304        if (head_cycle == tail_cycle) {
1305                /*
1306                 * The tail is behind the head in the physical log,
1307                 * so the distance from the head to the tail is the
1308                 * distance from the head to the end of the log plus
1309                 * the distance from the beginning of the log to the
1310                 * tail.
1311                 */
1312                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1313                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1314                                         XFS_ERRLEVEL_LOW, log->l_mp);
1315                        return XFS_ERROR(EFSCORRUPTED);
1316                }
1317                tail_distance = tail_block + (log->l_logBBsize - head_block);
1318        } else {
1319                /*
1320                 * The head is behind the tail in the physical log,
1321                 * so the distance from the head to the tail is just
1322                 * the tail block minus the head block.
1323                 */
1324                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1325                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1326                                         XFS_ERRLEVEL_LOW, log->l_mp);
1327                        return XFS_ERROR(EFSCORRUPTED);
1328                }
1329                tail_distance = tail_block - head_block;
1330        }
1331
1332        /*
1333         * If the head is right up against the tail, we can't clear
1334         * anything.
1335         */
1336        if (tail_distance <= 0) {
1337                ASSERT(tail_distance == 0);
1338                return 0;
1339        }
1340
1341        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1342        /*
1343         * Take the smaller of the maximum amount of outstanding I/O
1344         * we could have and the distance to the tail to clear out.
1345         * We take the smaller so that we don't overwrite the tail and
1346         * we don't waste all day writing from the head to the tail
1347         * for no reason.
1348         */
1349        max_distance = MIN(max_distance, tail_distance);
1350
1351        if ((head_block + max_distance) <= log->l_logBBsize) {
1352                /*
1353                 * We can stomp all the blocks we need to without
1354                 * wrapping around the end of the log.  Just do it
1355                 * in a single write.  Use the cycle number of the
1356                 * current cycle minus one so that the log will look like:
1357                 *     n ... | n - 1 ...
1358                 */
1359                error = xlog_write_log_records(log, (head_cycle - 1),
1360                                head_block, max_distance, tail_cycle,
1361                                tail_block);
1362                if (error)
1363                        return error;
1364        } else {
1365                /*
1366                 * We need to wrap around the end of the physical log in
1367                 * order to clear all the blocks.  Do it in two separate
1368                 * I/Os.  The first write should be from the head to the
1369                 * end of the physical log, and it should use the current
1370                 * cycle number minus one just like above.
1371                 */
1372                distance = log->l_logBBsize - head_block;
1373                error = xlog_write_log_records(log, (head_cycle - 1),
1374                                head_block, distance, tail_cycle,
1375                                tail_block);
1376
1377                if (error)
1378                        return error;
1379
1380                /*
1381                 * Now write the blocks at the start of the physical log.
1382                 * This writes the remainder of the blocks we want to clear.
1383                 * It uses the current cycle number since we're now on the
1384                 * same cycle as the head so that we get:
1385                 *    n ... n ... | n - 1 ...
1386                 *    ^^^^^ blocks we're writing
1387                 */
1388                distance = max_distance - (log->l_logBBsize - head_block);
1389                error = xlog_write_log_records(log, head_cycle, 0, distance,
1390                                tail_cycle, tail_block);
1391                if (error)
1392                        return error;
1393        }
1394
1395        return 0;
1396}
1397
1398/******************************************************************************
1399 *
1400 *              Log recover routines
1401 *
1402 ******************************************************************************
1403 */
1404
1405STATIC xlog_recover_t *
1406xlog_recover_find_tid(
1407        struct hlist_head       *head,
1408        xlog_tid_t              tid)
1409{
1410        xlog_recover_t          *trans;
1411        struct hlist_node       *n;
1412
1413        hlist_for_each_entry(trans, n, head, r_list) {
1414                if (trans->r_log_tid == tid)
1415                        return trans;
1416        }
1417        return NULL;
1418}
1419
1420STATIC void
1421xlog_recover_new_tid(
1422        struct hlist_head       *head,
1423        xlog_tid_t              tid,
1424        xfs_lsn_t               lsn)
1425{
1426        xlog_recover_t          *trans;
1427
1428        trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1429        trans->r_log_tid   = tid;
1430        trans->r_lsn       = lsn;
1431        INIT_LIST_HEAD(&trans->r_itemq);
1432
1433        INIT_HLIST_NODE(&trans->r_list);
1434        hlist_add_head(&trans->r_list, head);
1435}
1436
1437STATIC void
1438xlog_recover_add_item(
1439        struct list_head        *head)
1440{
1441        xlog_recover_item_t     *item;
1442
1443        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1444        INIT_LIST_HEAD(&item->ri_list);
1445        list_add_tail(&item->ri_list, head);
1446}
1447
1448STATIC int
1449xlog_recover_add_to_cont_trans(
1450        struct log              *log,
1451        xlog_recover_t          *trans,
1452        xfs_caddr_t             dp,
1453        int                     len)
1454{
1455        xlog_recover_item_t     *item;
1456        xfs_caddr_t             ptr, old_ptr;
1457        int                     old_len;
1458
1459        if (list_empty(&trans->r_itemq)) {
1460                /* finish copying rest of trans header */
1461                xlog_recover_add_item(&trans->r_itemq);
1462                ptr = (xfs_caddr_t) &trans->r_theader +
1463                                sizeof(xfs_trans_header_t) - len;
1464                memcpy(ptr, dp, len); /* d, s, l */
1465                return 0;
1466        }
1467        /* take the tail entry */
1468        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1469
1470        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1471        old_len = item->ri_buf[item->ri_cnt-1].i_len;
1472
1473        ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1474        memcpy(&ptr[old_len], dp, len); /* d, s, l */
1475        item->ri_buf[item->ri_cnt-1].i_len += len;
1476        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1477        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1478        return 0;
1479}
1480
1481/*
1482 * The next region to add is the start of a new region.  It could be
1483 * a whole region or it could be the first part of a new region.  Because
1484 * of this, the assumption here is that the type and size fields of all
1485 * format structures fit into the first 32 bits of the structure.
1486 *
1487 * This works because all regions must be 32 bit aligned.  Therefore, we
1488 * either have both fields or we have neither field.  In the case we have
1489 * neither field, the data part of the region is zero length.  We only have
1490 * a log_op_header and can throw away the header since a new one will appear
1491 * later.  If we have at least 4 bytes, then we can determine how many regions
1492 * will appear in the current log item.
1493 */
1494STATIC int
1495xlog_recover_add_to_trans(
1496        struct log              *log,
1497        xlog_recover_t          *trans,
1498        xfs_caddr_t             dp,
1499        int                     len)
1500{
1501        xfs_inode_log_format_t  *in_f;                  /* any will do */
1502        xlog_recover_item_t     *item;
1503        xfs_caddr_t             ptr;
1504
1505        if (!len)
1506                return 0;
1507        if (list_empty(&trans->r_itemq)) {
1508                /* we need to catch log corruptions here */
1509                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1510                        xfs_warn(log->l_mp, "%s: bad header magic number",
1511                                __func__);
1512                        ASSERT(0);
1513                        return XFS_ERROR(EIO);
1514                }
1515                if (len == sizeof(xfs_trans_header_t))
1516                        xlog_recover_add_item(&trans->r_itemq);
1517                memcpy(&trans->r_theader, dp, len); /* d, s, l */
1518                return 0;
1519        }
1520
1521        ptr = kmem_alloc(len, KM_SLEEP);
1522        memcpy(ptr, dp, len);
1523        in_f = (xfs_inode_log_format_t *)ptr;
1524
1525        /* take the tail entry */
1526        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1527        if (item->ri_total != 0 &&
1528             item->ri_total == item->ri_cnt) {
1529                /* tail item is in use, get a new one */
1530                xlog_recover_add_item(&trans->r_itemq);
1531                item = list_entry(trans->r_itemq.prev,
1532                                        xlog_recover_item_t, ri_list);
1533        }
1534
1535        if (item->ri_total == 0) {              /* first region to be added */
1536                if (in_f->ilf_size == 0 ||
1537                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1538                        xfs_warn(log->l_mp,
1539                "bad number of regions (%d) in inode log format",
1540                                  in_f->ilf_size);
1541                        ASSERT(0);
1542                        return XFS_ERROR(EIO);
1543                }
1544
1545                item->ri_total = in_f->ilf_size;
1546                item->ri_buf =
1547                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1548                                    KM_SLEEP);
1549        }
1550        ASSERT(item->ri_total > item->ri_cnt);
1551        /* Description region is ri_buf[0] */
1552        item->ri_buf[item->ri_cnt].i_addr = ptr;
1553        item->ri_buf[item->ri_cnt].i_len  = len;
1554        item->ri_cnt++;
1555        trace_xfs_log_recover_item_add(log, trans, item, 0);
1556        return 0;
1557}
1558
1559/*
1560 * Sort the log items in the transaction. Cancelled buffers need
1561 * to be put first so they are processed before any items that might
1562 * modify the buffers. If they are cancelled, then the modifications
1563 * don't need to be replayed.
1564 */
1565STATIC int
1566xlog_recover_reorder_trans(
1567        struct log              *log,
1568        xlog_recover_t          *trans,
1569        int                     pass)
1570{
1571        xlog_recover_item_t     *item, *n;
1572        LIST_HEAD(sort_list);
1573
1574        list_splice_init(&trans->r_itemq, &sort_list);
1575        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1576                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1577
1578                switch (ITEM_TYPE(item)) {
1579                case XFS_LI_BUF:
1580                        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1581                                trace_xfs_log_recover_item_reorder_head(log,
1582                                                        trans, item, pass);
1583                                list_move(&item->ri_list, &trans->r_itemq);
1584                                break;
1585                        }
1586                case XFS_LI_INODE:
1587                case XFS_LI_DQUOT:
1588                case XFS_LI_QUOTAOFF:
1589                case XFS_LI_EFD:
1590                case XFS_LI_EFI:
1591                        trace_xfs_log_recover_item_reorder_tail(log,
1592                                                        trans, item, pass);
1593                        list_move_tail(&item->ri_list, &trans->r_itemq);
1594                        break;
1595                default:
1596                        xfs_warn(log->l_mp,
1597                                "%s: unrecognized type of log operation",
1598                                __func__);
1599                        ASSERT(0);
1600                        return XFS_ERROR(EIO);
1601                }
1602        }
1603        ASSERT(list_empty(&sort_list));
1604        return 0;
1605}
1606
1607/*
1608 * Build up the table of buf cancel records so that we don't replay
1609 * cancelled data in the second pass.  For buffer records that are
1610 * not cancel records, there is nothing to do here so we just return.
1611 *
1612 * If we get a cancel record which is already in the table, this indicates
1613 * that the buffer was cancelled multiple times.  In order to ensure
1614 * that during pass 2 we keep the record in the table until we reach its
1615 * last occurrence in the log, we keep a reference count in the cancel
1616 * record in the table to tell us how many times we expect to see this
1617 * record during the second pass.
1618 */
1619STATIC int
1620xlog_recover_buffer_pass1(
1621        struct log              *log,
1622        xlog_recover_item_t     *item)
1623{
1624        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1625        struct list_head        *bucket;
1626        struct xfs_buf_cancel   *bcp;
1627
1628        /*
1629         * If this isn't a cancel buffer item, then just return.
1630         */
1631        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1632                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1633                return 0;
1634        }
1635
1636        /*
1637         * Insert an xfs_buf_cancel record into the hash table of them.
1638         * If there is already an identical record, bump its reference count.
1639         */
1640        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1641        list_for_each_entry(bcp, bucket, bc_list) {
1642                if (bcp->bc_blkno == buf_f->blf_blkno &&
1643                    bcp->bc_len == buf_f->blf_len) {
1644                        bcp->bc_refcount++;
1645                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1646                        return 0;
1647                }
1648        }
1649
1650        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1651        bcp->bc_blkno = buf_f->blf_blkno;
1652        bcp->bc_len = buf_f->blf_len;
1653        bcp->bc_refcount = 1;
1654        list_add_tail(&bcp->bc_list, bucket);
1655
1656        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1657        return 0;
1658}
1659
1660/*
1661 * Check to see whether the buffer being recovered has a corresponding
1662 * entry in the buffer cancel record table.  If it does then return 1
1663 * so that it will be cancelled, otherwise return 0.  If the buffer is
1664 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1665 * the refcount on the entry in the table and remove it from the table
1666 * if this is the last reference.
1667 *
1668 * We remove the cancel record from the table when we encounter its
1669 * last occurrence in the log so that if the same buffer is re-used
1670 * again after its last cancellation we actually replay the changes
1671 * made at that point.
1672 */
1673STATIC int
1674xlog_check_buffer_cancelled(
1675        struct log              *log,
1676        xfs_daddr_t             blkno,
1677        uint                    len,
1678        ushort                  flags)
1679{
1680        struct list_head        *bucket;
1681        struct xfs_buf_cancel   *bcp;
1682
1683        if (log->l_buf_cancel_table == NULL) {
1684                /*
1685                 * There is nothing in the table built in pass one,
1686                 * so this buffer must not be cancelled.
1687                 */
1688                ASSERT(!(flags & XFS_BLF_CANCEL));
1689                return 0;
1690        }
1691
1692        /*
1693         * Search for an entry in the  cancel table that matches our buffer.
1694         */
1695        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1696        list_for_each_entry(bcp, bucket, bc_list) {
1697                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1698                        goto found;
1699        }
1700
1701        /*
1702         * We didn't find a corresponding entry in the table, so return 0 so
1703         * that the buffer is NOT cancelled.
1704         */
1705        ASSERT(!(flags & XFS_BLF_CANCEL));
1706        return 0;
1707
1708found:
1709        /*
1710         * We've go a match, so return 1 so that the recovery of this buffer
1711         * is cancelled.  If this buffer is actually a buffer cancel log
1712         * item, then decrement the refcount on the one in the table and
1713         * remove it if this is the last reference.
1714         */
1715        if (flags & XFS_BLF_CANCEL) {
1716                if (--bcp->bc_refcount == 0) {
1717                        list_del(&bcp->bc_list);
1718                        kmem_free(bcp);
1719                }
1720        }
1721        return 1;
1722}
1723
1724/*
1725 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1726 * data which should be recovered is that which corresponds to the
1727 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1728 * data for the inodes is always logged through the inodes themselves rather
1729 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1730 *
1731 * The only time when buffers full of inodes are fully recovered is when the
1732 * buffer is full of newly allocated inodes.  In this case the buffer will
1733 * not be marked as an inode buffer and so will be sent to
1734 * xlog_recover_do_reg_buffer() below during recovery.
1735 */
1736STATIC int
1737xlog_recover_do_inode_buffer(
1738        struct xfs_mount        *mp,
1739        xlog_recover_item_t     *item,
1740        struct xfs_buf          *bp,
1741        xfs_buf_log_format_t    *buf_f)
1742{
1743        int                     i;
1744        int                     item_index = 0;
1745        int                     bit = 0;
1746        int                     nbits = 0;
1747        int                     reg_buf_offset = 0;
1748        int                     reg_buf_bytes = 0;
1749        int                     next_unlinked_offset;
1750        int                     inodes_per_buf;
1751        xfs_agino_t             *logged_nextp;
1752        xfs_agino_t             *buffer_nextp;
1753
1754        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1755
1756        inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1757        for (i = 0; i < inodes_per_buf; i++) {
1758                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1759                        offsetof(xfs_dinode_t, di_next_unlinked);
1760
1761                while (next_unlinked_offset >=
1762                       (reg_buf_offset + reg_buf_bytes)) {
1763                        /*
1764                         * The next di_next_unlinked field is beyond
1765                         * the current logged region.  Find the next
1766                         * logged region that contains or is beyond
1767                         * the current di_next_unlinked field.
1768                         */
1769                        bit += nbits;
1770                        bit = xfs_next_bit(buf_f->blf_data_map,
1771                                           buf_f->blf_map_size, bit);
1772
1773                        /*
1774                         * If there are no more logged regions in the
1775                         * buffer, then we're done.
1776                         */
1777                        if (bit == -1)
1778                                return 0;
1779
1780                        nbits = xfs_contig_bits(buf_f->blf_data_map,
1781                                                buf_f->blf_map_size, bit);
1782                        ASSERT(nbits > 0);
1783                        reg_buf_offset = bit << XFS_BLF_SHIFT;
1784                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1785                        item_index++;
1786                }
1787
1788                /*
1789                 * If the current logged region starts after the current
1790                 * di_next_unlinked field, then move on to the next
1791                 * di_next_unlinked field.
1792                 */
1793                if (next_unlinked_offset < reg_buf_offset)
1794                        continue;
1795
1796                ASSERT(item->ri_buf[item_index].i_addr != NULL);
1797                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1798                ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1799
1800                /*
1801                 * The current logged region contains a copy of the
1802                 * current di_next_unlinked field.  Extract its value
1803                 * and copy it to the buffer copy.
1804                 */
1805                logged_nextp = item->ri_buf[item_index].i_addr +
1806                                next_unlinked_offset - reg_buf_offset;
1807                if (unlikely(*logged_nextp == 0)) {
1808                        xfs_alert(mp,
1809                "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1810                "Trying to replay bad (0) inode di_next_unlinked field.",
1811                                item, bp);
1812                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1813                                         XFS_ERRLEVEL_LOW, mp);
1814                        return XFS_ERROR(EFSCORRUPTED);
1815                }
1816
1817                buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1818                                              next_unlinked_offset);
1819                *buffer_nextp = *logged_nextp;
1820        }
1821
1822        return 0;
1823}
1824
1825/*
1826 * Perform a 'normal' buffer recovery.  Each logged region of the
1827 * buffer should be copied over the corresponding region in the
1828 * given buffer.  The bitmap in the buf log format structure indicates
1829 * where to place the logged data.
1830 */
1831STATIC void
1832xlog_recover_do_reg_buffer(
1833        struct xfs_mount        *mp,
1834        xlog_recover_item_t     *item,
1835        struct xfs_buf          *bp,
1836        xfs_buf_log_format_t    *buf_f)
1837{
1838        int                     i;
1839        int                     bit;
1840        int                     nbits;
1841        int                     error;
1842
1843        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1844
1845        bit = 0;
1846        i = 1;  /* 0 is the buf format structure */
1847        while (1) {
1848                bit = xfs_next_bit(buf_f->blf_data_map,
1849                                   buf_f->blf_map_size, bit);
1850                if (bit == -1)
1851                        break;
1852                nbits = xfs_contig_bits(buf_f->blf_data_map,
1853                                        buf_f->blf_map_size, bit);
1854                ASSERT(nbits > 0);
1855                ASSERT(item->ri_buf[i].i_addr != NULL);
1856                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1857                ASSERT(XFS_BUF_COUNT(bp) >=
1858                       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1859
1860                /*
1861                 * Do a sanity check if this is a dquot buffer. Just checking
1862                 * the first dquot in the buffer should do. XXXThis is
1863                 * probably a good thing to do for other buf types also.
1864                 */
1865                error = 0;
1866                if (buf_f->blf_flags &
1867                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1868                        if (item->ri_buf[i].i_addr == NULL) {
1869                                xfs_alert(mp,
1870                                        "XFS: NULL dquot in %s.", __func__);
1871                                goto next;
1872                        }
1873                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1874                                xfs_alert(mp,
1875                                        "XFS: dquot too small (%d) in %s.",
1876                                        item->ri_buf[i].i_len, __func__);
1877                                goto next;
1878                        }
1879                        error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1880                                               -1, 0, XFS_QMOPT_DOWARN,
1881                                               "dquot_buf_recover");
1882                        if (error)
1883                                goto next;
1884                }
1885
1886                memcpy(xfs_buf_offset(bp,
1887                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
1888                        item->ri_buf[i].i_addr,         /* source */
1889                        nbits<<XFS_BLF_SHIFT);          /* length */
1890 next:
1891                i++;
1892                bit += nbits;
1893        }
1894
1895        /* Shouldn't be any more regions */
1896        ASSERT(i == item->ri_total);
1897}
1898
1899/*
1900 * Do some primitive error checking on ondisk dquot data structures.
1901 */
1902int
1903xfs_qm_dqcheck(
1904        struct xfs_mount *mp,
1905        xfs_disk_dquot_t *ddq,
1906        xfs_dqid_t       id,
1907        uint             type,    /* used only when IO_dorepair is true */
1908        uint             flags,
1909        char             *str)
1910{
1911        xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1912        int             errs = 0;
1913
1914        /*
1915         * We can encounter an uninitialized dquot buffer for 2 reasons:
1916         * 1. If we crash while deleting the quotainode(s), and those blks got
1917         *    used for user data. This is because we take the path of regular
1918         *    file deletion; however, the size field of quotainodes is never
1919         *    updated, so all the tricks that we play in itruncate_finish
1920         *    don't quite matter.
1921         *
1922         * 2. We don't play the quota buffers when there's a quotaoff logitem.
1923         *    But the allocation will be replayed so we'll end up with an
1924         *    uninitialized quota block.
1925         *
1926         * This is all fine; things are still consistent, and we haven't lost
1927         * any quota information. Just don't complain about bad dquot blks.
1928         */
1929        if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1930                if (flags & XFS_QMOPT_DOWARN)
1931                        xfs_alert(mp,
1932                        "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1933                        str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1934                errs++;
1935        }
1936        if (ddq->d_version != XFS_DQUOT_VERSION) {
1937                if (flags & XFS_QMOPT_DOWARN)
1938                        xfs_alert(mp,
1939                        "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1940                        str, id, ddq->d_version, XFS_DQUOT_VERSION);
1941                errs++;
1942        }
1943
1944        if (ddq->d_flags != XFS_DQ_USER &&
1945            ddq->d_flags != XFS_DQ_PROJ &&
1946            ddq->d_flags != XFS_DQ_GROUP) {
1947                if (flags & XFS_QMOPT_DOWARN)
1948                        xfs_alert(mp,
1949                        "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1950                        str, id, ddq->d_flags);
1951                errs++;
1952        }
1953
1954        if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1955                if (flags & XFS_QMOPT_DOWARN)
1956                        xfs_alert(mp,
1957                        "%s : ondisk-dquot 0x%p, ID mismatch: "
1958                        "0x%x expected, found id 0x%x",
1959                        str, ddq, id, be32_to_cpu(ddq->d_id));
1960                errs++;
1961        }
1962
1963        if (!errs && ddq->d_id) {
1964                if (ddq->d_blk_softlimit &&
1965                    be64_to_cpu(ddq->d_bcount) >=
1966                                be64_to_cpu(ddq->d_blk_softlimit)) {
1967                        if (!ddq->d_btimer) {
1968                                if (flags & XFS_QMOPT_DOWARN)
1969                                        xfs_alert(mp,
1970                        "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1971                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1972                                errs++;
1973                        }
1974                }
1975                if (ddq->d_ino_softlimit &&
1976                    be64_to_cpu(ddq->d_icount) >=
1977                                be64_to_cpu(ddq->d_ino_softlimit)) {
1978                        if (!ddq->d_itimer) {
1979                                if (flags & XFS_QMOPT_DOWARN)
1980                                        xfs_alert(mp,
1981                        "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1982                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1983                                errs++;
1984                        }
1985                }
1986                if (ddq->d_rtb_softlimit &&
1987                    be64_to_cpu(ddq->d_rtbcount) >=
1988                                be64_to_cpu(ddq->d_rtb_softlimit)) {
1989                        if (!ddq->d_rtbtimer) {
1990                                if (flags & XFS_QMOPT_DOWARN)
1991                                        xfs_alert(mp,
1992                        "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1993                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1994                                errs++;
1995                        }
1996                }
1997        }
1998
1999        if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2000                return errs;
2001
2002        if (flags & XFS_QMOPT_DOWARN)
2003                xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2004
2005        /*
2006         * Typically, a repair is only requested by quotacheck.
2007         */
2008        ASSERT(id != -1);
2009        ASSERT(flags & XFS_QMOPT_DQREPAIR);
2010        memset(d, 0, sizeof(xfs_dqblk_t));
2011
2012        d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2013        d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2014        d->dd_diskdq.d_flags = type;
2015        d->dd_diskdq.d_id = cpu_to_be32(id);
2016
2017        return errs;
2018}
2019
2020/*
2021 * Perform a dquot buffer recovery.
2022 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2023 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2024 * Else, treat it as a regular buffer and do recovery.
2025 */
2026STATIC void
2027xlog_recover_do_dquot_buffer(
2028        xfs_mount_t             *mp,
2029        xlog_t                  *log,
2030        xlog_recover_item_t     *item,
2031        xfs_buf_t               *bp,
2032        xfs_buf_log_format_t    *buf_f)
2033{
2034        uint                    type;
2035
2036        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2037
2038        /*
2039         * Filesystems are required to send in quota flags at mount time.
2040         */
2041        if (mp->m_qflags == 0) {
2042                return;
2043        }
2044
2045        type = 0;
2046        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2047                type |= XFS_DQ_USER;
2048        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2049                type |= XFS_DQ_PROJ;
2050        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2051                type |= XFS_DQ_GROUP;
2052        /*
2053         * This type of quotas was turned off, so ignore this buffer
2054         */
2055        if (log->l_quotaoffs_flag & type)
2056                return;
2057
2058        xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2059}
2060
2061/*
2062 * This routine replays a modification made to a buffer at runtime.
2063 * There are actually two types of buffer, regular and inode, which
2064 * are handled differently.  Inode buffers are handled differently
2065 * in that we only recover a specific set of data from them, namely
2066 * the inode di_next_unlinked fields.  This is because all other inode
2067 * data is actually logged via inode records and any data we replay
2068 * here which overlaps that may be stale.
2069 *
2070 * When meta-data buffers are freed at run time we log a buffer item
2071 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2072 * of the buffer in the log should not be replayed at recovery time.
2073 * This is so that if the blocks covered by the buffer are reused for
2074 * file data before we crash we don't end up replaying old, freed
2075 * meta-data into a user's file.
2076 *
2077 * To handle the cancellation of buffer log items, we make two passes
2078 * over the log during recovery.  During the first we build a table of
2079 * those buffers which have been cancelled, and during the second we
2080 * only replay those buffers which do not have corresponding cancel
2081 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2082 * for more details on the implementation of the table of cancel records.
2083 */
2084STATIC int
2085xlog_recover_buffer_pass2(
2086        xlog_t                  *log,
2087        xlog_recover_item_t     *item)
2088{
2089        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2090        xfs_mount_t             *mp = log->l_mp;
2091        xfs_buf_t               *bp;
2092        int                     error;
2093        uint                    buf_flags;
2094
2095        /*
2096         * In this pass we only want to recover all the buffers which have
2097         * not been cancelled and are not cancellation buffers themselves.
2098         */
2099        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2100                        buf_f->blf_len, buf_f->blf_flags)) {
2101                trace_xfs_log_recover_buf_cancel(log, buf_f);
2102                return 0;
2103        }
2104
2105        trace_xfs_log_recover_buf_recover(log, buf_f);
2106
2107        buf_flags = XBF_LOCK;
2108        if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2109                buf_flags |= XBF_MAPPED;
2110
2111        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2112                          buf_flags);
2113        if (XFS_BUF_ISERROR(bp)) {
2114                xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2115                                  bp, buf_f->blf_blkno);
2116                error = XFS_BUF_GETERROR(bp);
2117                xfs_buf_relse(bp);
2118                return error;
2119        }
2120
2121        error = 0;
2122        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2123                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2124        } else if (buf_f->blf_flags &
2125                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2126                xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2127        } else {
2128                xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2129        }
2130        if (error)
2131                return XFS_ERROR(error);
2132
2133        /*
2134         * Perform delayed write on the buffer.  Asynchronous writes will be
2135         * slower when taking into account all the buffers to be flushed.
2136         *
2137         * Also make sure that only inode buffers with good sizes stay in
2138         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2139         * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2140         * buffers in the log can be a different size if the log was generated
2141         * by an older kernel using unclustered inode buffers or a newer kernel
2142         * running with a different inode cluster size.  Regardless, if the
2143         * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2144         * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2145         * the buffer out of the buffer cache so that the buffer won't
2146         * overlap with future reads of those inodes.
2147         */
2148        if (XFS_DINODE_MAGIC ==
2149            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2150            (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2151                        (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2152                XFS_BUF_STALE(bp);
2153                error = xfs_bwrite(mp, bp);
2154        } else {
2155                ASSERT(bp->b_target->bt_mount == mp);
2156                XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2157                xfs_bdwrite(mp, bp);
2158        }
2159
2160        return (error);
2161}
2162
2163STATIC int
2164xlog_recover_inode_pass2(
2165        xlog_t                  *log,
2166        xlog_recover_item_t     *item)
2167{
2168        xfs_inode_log_format_t  *in_f;
2169        xfs_mount_t             *mp = log->l_mp;
2170        xfs_buf_t               *bp;
2171        xfs_dinode_t            *dip;
2172        int                     len;
2173        xfs_caddr_t             src;
2174        xfs_caddr_t             dest;
2175        int                     error;
2176        int                     attr_index;
2177        uint                    fields;
2178        xfs_icdinode_t          *dicp;
2179        int                     need_free = 0;
2180
2181        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2182                in_f = item->ri_buf[0].i_addr;
2183        } else {
2184                in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2185                need_free = 1;
2186                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2187                if (error)
2188                        goto error;
2189        }
2190
2191        /*
2192         * Inode buffers can be freed, look out for it,
2193         * and do not replay the inode.
2194         */
2195        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2196                                        in_f->ilf_len, 0)) {
2197                error = 0;
2198                trace_xfs_log_recover_inode_cancel(log, in_f);
2199                goto error;
2200        }
2201        trace_xfs_log_recover_inode_recover(log, in_f);
2202
2203        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2204                          XBF_LOCK);
2205        if (XFS_BUF_ISERROR(bp)) {
2206                xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2207                                  bp, in_f->ilf_blkno);
2208                error = XFS_BUF_GETERROR(bp);
2209                xfs_buf_relse(bp);
2210                goto error;
2211        }
2212        error = 0;
2213        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2214        dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2215
2216        /*
2217         * Make sure the place we're flushing out to really looks
2218         * like an inode!
2219         */
2220        if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2221                xfs_buf_relse(bp);
2222                xfs_alert(mp,
2223        "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2224                        __func__, dip, bp, in_f->ilf_ino);
2225                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2226                                 XFS_ERRLEVEL_LOW, mp);
2227                error = EFSCORRUPTED;
2228                goto error;
2229        }
2230        dicp = item->ri_buf[1].i_addr;
2231        if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2232                xfs_buf_relse(bp);
2233                xfs_alert(mp,
2234                        "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2235                        __func__, item, in_f->ilf_ino);
2236                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2237                                 XFS_ERRLEVEL_LOW, mp);
2238                error = EFSCORRUPTED;
2239                goto error;
2240        }
2241
2242        /* Skip replay when the on disk inode is newer than the log one */
2243        if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2244                /*
2245                 * Deal with the wrap case, DI_MAX_FLUSH is less
2246                 * than smaller numbers
2247                 */
2248                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2249                    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2250                        /* do nothing */
2251                } else {
2252                        xfs_buf_relse(bp);
2253                        trace_xfs_log_recover_inode_skip(log, in_f);
2254                        error = 0;
2255                        goto error;
2256                }
2257        }
2258        /* Take the opportunity to reset the flush iteration count */
2259        dicp->di_flushiter = 0;
2260
2261        if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2262                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2263                    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2264                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2265                                         XFS_ERRLEVEL_LOW, mp, dicp);
2266                        xfs_buf_relse(bp);
2267                        xfs_alert(mp,
2268                "%s: Bad regular inode log record, rec ptr 0x%p, "
2269                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2270                                __func__, item, dip, bp, in_f->ilf_ino);
2271                        error = EFSCORRUPTED;
2272                        goto error;
2273                }
2274        } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2275                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2276                    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2277                    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2278                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2279                                             XFS_ERRLEVEL_LOW, mp, dicp);
2280                        xfs_buf_relse(bp);
2281                        xfs_alert(mp,
2282                "%s: Bad dir inode log record, rec ptr 0x%p, "
2283                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2284                                __func__, item, dip, bp, in_f->ilf_ino);
2285                        error = EFSCORRUPTED;
2286                        goto error;
2287                }
2288        }
2289        if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2290                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2291                                     XFS_ERRLEVEL_LOW, mp, dicp);
2292                xfs_buf_relse(bp);
2293                xfs_alert(mp,
2294        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2295        "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2296                        __func__, item, dip, bp, in_f->ilf_ino,
2297                        dicp->di_nextents + dicp->di_anextents,
2298                        dicp->di_nblocks);
2299                error = EFSCORRUPTED;
2300                goto error;
2301        }
2302        if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2303                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2304                                     XFS_ERRLEVEL_LOW, mp, dicp);
2305                xfs_buf_relse(bp);
2306                xfs_alert(mp,
2307        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2308        "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2309                        item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2310                error = EFSCORRUPTED;
2311                goto error;
2312        }
2313        if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2314                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2315                                     XFS_ERRLEVEL_LOW, mp, dicp);
2316                xfs_buf_relse(bp);
2317                xfs_alert(mp,
2318                        "%s: Bad inode log record length %d, rec ptr 0x%p",
2319                        __func__, item->ri_buf[1].i_len, item);
2320                error = EFSCORRUPTED;
2321                goto error;
2322        }
2323
2324        /* The core is in in-core format */
2325        xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2326
2327        /* the rest is in on-disk format */
2328        if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2329                memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2330                        item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2331                        item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2332        }
2333
2334        fields = in_f->ilf_fields;
2335        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2336        case XFS_ILOG_DEV:
2337                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2338                break;
2339        case XFS_ILOG_UUID:
2340                memcpy(XFS_DFORK_DPTR(dip),
2341                       &in_f->ilf_u.ilfu_uuid,
2342                       sizeof(uuid_t));
2343                break;
2344        }
2345
2346        if (in_f->ilf_size == 2)
2347                goto write_inode_buffer;
2348        len = item->ri_buf[2].i_len;
2349        src = item->ri_buf[2].i_addr;
2350        ASSERT(in_f->ilf_size <= 4);
2351        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2352        ASSERT(!(fields & XFS_ILOG_DFORK) ||
2353               (len == in_f->ilf_dsize));
2354
2355        switch (fields & XFS_ILOG_DFORK) {
2356        case XFS_ILOG_DDATA:
2357        case XFS_ILOG_DEXT:
2358                memcpy(XFS_DFORK_DPTR(dip), src, len);
2359                break;
2360
2361        case XFS_ILOG_DBROOT:
2362                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2363                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2364                                 XFS_DFORK_DSIZE(dip, mp));
2365                break;
2366
2367        default:
2368                /*
2369                 * There are no data fork flags set.
2370                 */
2371                ASSERT((fields & XFS_ILOG_DFORK) == 0);
2372                break;
2373        }
2374
2375        /*
2376         * If we logged any attribute data, recover it.  There may or
2377         * may not have been any other non-core data logged in this
2378         * transaction.
2379         */
2380        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2381                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2382                        attr_index = 3;
2383                } else {
2384                        attr_index = 2;
2385                }
2386                len = item->ri_buf[attr_index].i_len;
2387                src = item->ri_buf[attr_index].i_addr;
2388                ASSERT(len == in_f->ilf_asize);
2389
2390                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2391                case XFS_ILOG_ADATA:
2392                case XFS_ILOG_AEXT:
2393                        dest = XFS_DFORK_APTR(dip);
2394                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2395                        memcpy(dest, src, len);
2396                        break;
2397
2398                case XFS_ILOG_ABROOT:
2399                        dest = XFS_DFORK_APTR(dip);
2400                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2401                                         len, (xfs_bmdr_block_t*)dest,
2402                                         XFS_DFORK_ASIZE(dip, mp));
2403                        break;
2404
2405                default:
2406                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2407                        ASSERT(0);
2408                        xfs_buf_relse(bp);
2409                        error = EIO;
2410                        goto error;
2411                }
2412        }
2413
2414write_inode_buffer:
2415        ASSERT(bp->b_target->bt_mount == mp);
2416        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2417        xfs_bdwrite(mp, bp);
2418error:
2419        if (need_free)
2420                kmem_free(in_f);
2421        return XFS_ERROR(error);
2422}
2423
2424/*
2425 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2426 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2427 * of that type.
2428 */
2429STATIC int
2430xlog_recover_quotaoff_pass1(
2431        xlog_t                  *log,
2432        xlog_recover_item_t     *item)
2433{
2434        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
2435        ASSERT(qoff_f);
2436
2437        /*
2438         * The logitem format's flag tells us if this was user quotaoff,
2439         * group/project quotaoff or both.
2440         */
2441        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2442                log->l_quotaoffs_flag |= XFS_DQ_USER;
2443        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2444                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2445        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2446                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2447
2448        return (0);
2449}
2450
2451/*
2452 * Recover a dquot record
2453 */
2454STATIC int
2455xlog_recover_dquot_pass2(
2456        xlog_t                  *log,
2457        xlog_recover_item_t     *item)
2458{
2459        xfs_mount_t             *mp = log->l_mp;
2460        xfs_buf_t               *bp;
2461        struct xfs_disk_dquot   *ddq, *recddq;
2462        int                     error;
2463        xfs_dq_logformat_t      *dq_f;
2464        uint                    type;
2465
2466
2467        /*
2468         * Filesystems are required to send in quota flags at mount time.
2469         */
2470        if (mp->m_qflags == 0)
2471                return (0);
2472
2473        recddq = item->ri_buf[1].i_addr;
2474        if (recddq == NULL) {
2475                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2476                return XFS_ERROR(EIO);
2477        }
2478        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2479                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2480                        item->ri_buf[1].i_len, __func__);
2481                return XFS_ERROR(EIO);
2482        }
2483
2484        /*
2485         * This type of quotas was turned off, so ignore this record.
2486         */
2487        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2488        ASSERT(type);
2489        if (log->l_quotaoffs_flag & type)
2490                return (0);
2491
2492        /*
2493         * At this point we know that quota was _not_ turned off.
2494         * Since the mount flags are not indicating to us otherwise, this
2495         * must mean that quota is on, and the dquot needs to be replayed.
2496         * Remember that we may not have fully recovered the superblock yet,
2497         * so we can't do the usual trick of looking at the SB quota bits.
2498         *
2499         * The other possibility, of course, is that the quota subsystem was
2500         * removed since the last mount - ENOSYS.
2501         */
2502        dq_f = item->ri_buf[0].i_addr;
2503        ASSERT(dq_f);
2504        error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2505                           "xlog_recover_dquot_pass2 (log copy)");
2506        if (error)
2507                return XFS_ERROR(EIO);
2508        ASSERT(dq_f->qlf_len == 1);
2509
2510        error = xfs_read_buf(mp, mp->m_ddev_targp,
2511                             dq_f->qlf_blkno,
2512                             XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2513                             0, &bp);
2514        if (error) {
2515                xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2516                                  bp, dq_f->qlf_blkno);
2517                return error;
2518        }
2519        ASSERT(bp);
2520        ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2521
2522        /*
2523         * At least the magic num portion should be on disk because this
2524         * was among a chunk of dquots created earlier, and we did some
2525         * minimal initialization then.
2526         */
2527        error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2528                           "xlog_recover_dquot_pass2");
2529        if (error) {
2530                xfs_buf_relse(bp);
2531                return XFS_ERROR(EIO);
2532        }
2533
2534        memcpy(ddq, recddq, item->ri_buf[1].i_len);
2535
2536        ASSERT(dq_f->qlf_size == 2);
2537        ASSERT(bp->b_target->bt_mount == mp);
2538        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2539        xfs_bdwrite(mp, bp);
2540
2541        return (0);
2542}
2543
2544/*
2545 * This routine is called to create an in-core extent free intent
2546 * item from the efi format structure which was logged on disk.
2547 * It allocates an in-core efi, copies the extents from the format
2548 * structure into it, and adds the efi to the AIL with the given
2549 * LSN.
2550 */
2551STATIC int
2552xlog_recover_efi_pass2(
2553        xlog_t                  *log,
2554        xlog_recover_item_t     *item,
2555        xfs_lsn_t               lsn)
2556{
2557        int                     error;
2558        xfs_mount_t             *mp = log->l_mp;
2559        xfs_efi_log_item_t      *efip;
2560        xfs_efi_log_format_t    *efi_formatp;
2561
2562        efi_formatp = item->ri_buf[0].i_addr;
2563
2564        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2565        if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2566                                         &(efip->efi_format)))) {
2567                xfs_efi_item_free(efip);
2568                return error;
2569        }
2570        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2571
2572        spin_lock(&log->l_ailp->xa_lock);
2573        /*
2574         * xfs_trans_ail_update() drops the AIL lock.
2575         */
2576        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2577        return 0;
2578}
2579
2580
2581/*
2582 * This routine is called when an efd format structure is found in
2583 * a committed transaction in the log.  It's purpose is to cancel
2584 * the corresponding efi if it was still in the log.  To do this
2585 * it searches the AIL for the efi with an id equal to that in the
2586 * efd format structure.  If we find it, we remove the efi from the
2587 * AIL and free it.
2588 */
2589STATIC int
2590xlog_recover_efd_pass2(
2591        xlog_t                  *log,
2592        xlog_recover_item_t     *item)
2593{
2594        xfs_efd_log_format_t    *efd_formatp;
2595        xfs_efi_log_item_t      *efip = NULL;
2596        xfs_log_item_t          *lip;
2597        __uint64_t              efi_id;
2598        struct xfs_ail_cursor   cur;
2599        struct xfs_ail          *ailp = log->l_ailp;
2600
2601        efd_formatp = item->ri_buf[0].i_addr;
2602        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2603                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2604               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2605                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2606        efi_id = efd_formatp->efd_efi_id;
2607
2608        /*
2609         * Search for the efi with the id in the efd format structure
2610         * in the AIL.
2611         */
2612        spin_lock(&ailp->xa_lock);
2613        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2614        while (lip != NULL) {
2615                if (lip->li_type == XFS_LI_EFI) {
2616                        efip = (xfs_efi_log_item_t *)lip;
2617                        if (efip->efi_format.efi_id == efi_id) {
2618                                /*
2619                                 * xfs_trans_ail_delete() drops the
2620                                 * AIL lock.
2621                                 */
2622                                xfs_trans_ail_delete(ailp, lip);
2623                                xfs_efi_item_free(efip);
2624                                spin_lock(&ailp->xa_lock);
2625                                break;
2626                        }
2627                }
2628                lip = xfs_trans_ail_cursor_next(ailp, &cur);
2629        }
2630        xfs_trans_ail_cursor_done(ailp, &cur);
2631        spin_unlock(&ailp->xa_lock);
2632
2633        return 0;
2634}
2635
2636/*
2637 * Free up any resources allocated by the transaction
2638 *
2639 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2640 */
2641STATIC void
2642xlog_recover_free_trans(
2643        struct xlog_recover     *trans)
2644{
2645        xlog_recover_item_t     *item, *n;
2646        int                     i;
2647
2648        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2649                /* Free the regions in the item. */
2650                list_del(&item->ri_list);
2651                for (i = 0; i < item->ri_cnt; i++)
2652                        kmem_free(item->ri_buf[i].i_addr);
2653                /* Free the item itself */
2654                kmem_free(item->ri_buf);
2655                kmem_free(item);
2656        }
2657        /* Free the transaction recover structure */
2658        kmem_free(trans);
2659}
2660
2661STATIC int
2662xlog_recover_commit_pass1(
2663        struct log              *log,
2664        struct xlog_recover     *trans,
2665        xlog_recover_item_t     *item)
2666{
2667        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2668
2669        switch (ITEM_TYPE(item)) {
2670        case XFS_LI_BUF:
2671                return xlog_recover_buffer_pass1(log, item);
2672        case XFS_LI_QUOTAOFF:
2673                return xlog_recover_quotaoff_pass1(log, item);
2674        case XFS_LI_INODE:
2675        case XFS_LI_EFI:
2676        case XFS_LI_EFD:
2677        case XFS_LI_DQUOT:
2678                /* nothing to do in pass 1 */
2679                return 0;
2680        default:
2681                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2682                        __func__, ITEM_TYPE(item));
2683                ASSERT(0);
2684                return XFS_ERROR(EIO);
2685        }
2686}
2687
2688STATIC int
2689xlog_recover_commit_pass2(
2690        struct log              *log,
2691        struct xlog_recover     *trans,
2692        xlog_recover_item_t     *item)
2693{
2694        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2695
2696        switch (ITEM_TYPE(item)) {
2697        case XFS_LI_BUF:
2698                return xlog_recover_buffer_pass2(log, item);
2699        case XFS_LI_INODE:
2700                return xlog_recover_inode_pass2(log, item);
2701        case XFS_LI_EFI:
2702                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2703        case XFS_LI_EFD:
2704                return xlog_recover_efd_pass2(log, item);
2705        case XFS_LI_DQUOT:
2706                return xlog_recover_dquot_pass2(log, item);
2707        case XFS_LI_QUOTAOFF:
2708                /* nothing to do in pass2 */
2709                return 0;
2710        default:
2711                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2712                        __func__, ITEM_TYPE(item));
2713                ASSERT(0);
2714                return XFS_ERROR(EIO);
2715        }
2716}
2717
2718/*
2719 * Perform the transaction.
2720 *
2721 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2722 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2723 */
2724STATIC int
2725xlog_recover_commit_trans(
2726        struct log              *log,
2727        struct xlog_recover     *trans,
2728        int                     pass)
2729{
2730        int                     error = 0;
2731        xlog_recover_item_t     *item;
2732
2733        hlist_del(&trans->r_list);
2734
2735        error = xlog_recover_reorder_trans(log, trans, pass);
2736        if (error)
2737                return error;
2738
2739        list_for_each_entry(item, &trans->r_itemq, ri_list) {
2740                if (pass == XLOG_RECOVER_PASS1)
2741                        error = xlog_recover_commit_pass1(log, trans, item);
2742                else
2743                        error = xlog_recover_commit_pass2(log, trans, item);
2744                if (error)
2745                        return error;
2746        }
2747
2748        xlog_recover_free_trans(trans);
2749        return 0;
2750}
2751
2752STATIC int
2753xlog_recover_unmount_trans(
2754        struct log              *log,
2755        xlog_recover_t          *trans)
2756{
2757        /* Do nothing now */
2758        xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2759        return 0;
2760}
2761
2762/*
2763 * There are two valid states of the r_state field.  0 indicates that the
2764 * transaction structure is in a normal state.  We have either seen the
2765 * start of the transaction or the last operation we added was not a partial
2766 * operation.  If the last operation we added to the transaction was a
2767 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2768 *
2769 * NOTE: skip LRs with 0 data length.
2770 */
2771STATIC int
2772xlog_recover_process_data(
2773        xlog_t                  *log,
2774        struct hlist_head       rhash[],
2775        xlog_rec_header_t       *rhead,
2776        xfs_caddr_t             dp,
2777        int                     pass)
2778{
2779        xfs_caddr_t             lp;
2780        int                     num_logops;
2781        xlog_op_header_t        *ohead;
2782        xlog_recover_t          *trans;
2783        xlog_tid_t              tid;
2784        int                     error;
2785        unsigned long           hash;
2786        uint                    flags;
2787
2788        lp = dp + be32_to_cpu(rhead->h_len);
2789        num_logops = be32_to_cpu(rhead->h_num_logops);
2790
2791        /* check the log format matches our own - else we can't recover */
2792        if (xlog_header_check_recover(log->l_mp, rhead))
2793                return (XFS_ERROR(EIO));
2794
2795        while ((dp < lp) && num_logops) {
2796                ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2797                ohead = (xlog_op_header_t *)dp;
2798                dp += sizeof(xlog_op_header_t);
2799                if (ohead->oh_clientid != XFS_TRANSACTION &&
2800                    ohead->oh_clientid != XFS_LOG) {
2801                        xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2802                                        __func__, ohead->oh_clientid);
2803                        ASSERT(0);
2804                        return (XFS_ERROR(EIO));
2805                }
2806                tid = be32_to_cpu(ohead->oh_tid);
2807                hash = XLOG_RHASH(tid);
2808                trans = xlog_recover_find_tid(&rhash[hash], tid);
2809                if (trans == NULL) {               /* not found; add new tid */
2810                        if (ohead->oh_flags & XLOG_START_TRANS)
2811                                xlog_recover_new_tid(&rhash[hash], tid,
2812                                        be64_to_cpu(rhead->h_lsn));
2813                } else {
2814                        if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2815                                xfs_warn(log->l_mp, "%s: bad length 0x%x",
2816                                        __func__, be32_to_cpu(ohead->oh_len));
2817                                WARN_ON(1);
2818                                return (XFS_ERROR(EIO));
2819                        }
2820                        flags = ohead->oh_flags & ~XLOG_END_TRANS;
2821                        if (flags & XLOG_WAS_CONT_TRANS)
2822                                flags &= ~XLOG_CONTINUE_TRANS;
2823                        switch (flags) {
2824                        case XLOG_COMMIT_TRANS:
2825                                error = xlog_recover_commit_trans(log,
2826                                                                trans, pass);
2827                                break;
2828                        case XLOG_UNMOUNT_TRANS:
2829                                error = xlog_recover_unmount_trans(log, trans);
2830                                break;
2831                        case XLOG_WAS_CONT_TRANS:
2832                                error = xlog_recover_add_to_cont_trans(log,
2833                                                trans, dp,
2834                                                be32_to_cpu(ohead->oh_len));
2835                                break;
2836                        case XLOG_START_TRANS:
2837                                xfs_warn(log->l_mp, "%s: bad transaction",
2838                                        __func__);
2839                                ASSERT(0);
2840                                error = XFS_ERROR(EIO);
2841                                break;
2842                        case 0:
2843                        case XLOG_CONTINUE_TRANS:
2844                                error = xlog_recover_add_to_trans(log, trans,
2845                                                dp, be32_to_cpu(ohead->oh_len));
2846                                break;
2847                        default:
2848                                xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2849                                        __func__, flags);
2850                                ASSERT(0);
2851                                error = XFS_ERROR(EIO);
2852                                break;
2853                        }
2854                        if (error)
2855                                return error;
2856                }
2857                dp += be32_to_cpu(ohead->oh_len);
2858                num_logops--;
2859        }
2860        return 0;
2861}
2862
2863/*
2864 * Process an extent free intent item that was recovered from
2865 * the log.  We need to free the extents that it describes.
2866 */
2867STATIC int
2868xlog_recover_process_efi(
2869        xfs_mount_t             *mp,
2870        xfs_efi_log_item_t      *efip)
2871{
2872        xfs_efd_log_item_t      *efdp;
2873        xfs_trans_t             *tp;
2874        int                     i;
2875        int                     error = 0;
2876        xfs_extent_t            *extp;
2877        xfs_fsblock_t           startblock_fsb;
2878
2879        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2880
2881        /*
2882         * First check the validity of the extents described by the
2883         * EFI.  If any are bad, then assume that all are bad and
2884         * just toss the EFI.
2885         */
2886        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2887                extp = &(efip->efi_format.efi_extents[i]);
2888                startblock_fsb = XFS_BB_TO_FSB(mp,
2889                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2890                if ((startblock_fsb == 0) ||
2891                    (extp->ext_len == 0) ||
2892                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2893                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2894                        /*
2895                         * This will pull the EFI from the AIL and
2896                         * free the memory associated with it.
2897                         */
2898                        xfs_efi_release(efip, efip->efi_format.efi_nextents);
2899                        return XFS_ERROR(EIO);
2900                }
2901        }
2902
2903        tp = xfs_trans_alloc(mp, 0);
2904        error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2905        if (error)
2906                goto abort_error;
2907        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2908
2909        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2910                extp = &(efip->efi_format.efi_extents[i]);
2911                error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2912                if (error)
2913                        goto abort_error;
2914                xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2915                                         extp->ext_len);
2916        }
2917
2918        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2919        error = xfs_trans_commit(tp, 0);
2920        return error;
2921
2922abort_error:
2923        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2924        return error;
2925}
2926
2927/*
2928 * When this is called, all of the EFIs which did not have
2929 * corresponding EFDs should be in the AIL.  What we do now
2930 * is free the extents associated with each one.
2931 *
2932 * Since we process the EFIs in normal transactions, they
2933 * will be removed at some point after the commit.  This prevents
2934 * us from just walking down the list processing each one.
2935 * We'll use a flag in the EFI to skip those that we've already
2936 * processed and use the AIL iteration mechanism's generation
2937 * count to try to speed this up at least a bit.
2938 *
2939 * When we start, we know that the EFIs are the only things in
2940 * the AIL.  As we process them, however, other items are added
2941 * to the AIL.  Since everything added to the AIL must come after
2942 * everything already in the AIL, we stop processing as soon as
2943 * we see something other than an EFI in the AIL.
2944 */
2945STATIC int
2946xlog_recover_process_efis(
2947        xlog_t                  *log)
2948{
2949        xfs_log_item_t          *lip;
2950        xfs_efi_log_item_t      *efip;
2951        int                     error = 0;
2952        struct xfs_ail_cursor   cur;
2953        struct xfs_ail          *ailp;
2954
2955        ailp = log->l_ailp;
2956        spin_lock(&ailp->xa_lock);
2957        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2958        while (lip != NULL) {
2959                /*
2960                 * We're done when we see something other than an EFI.
2961                 * There should be no EFIs left in the AIL now.
2962                 */
2963                if (lip->li_type != XFS_LI_EFI) {
2964#ifdef DEBUG
2965                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2966                                ASSERT(lip->li_type != XFS_LI_EFI);
2967#endif
2968                        break;
2969                }
2970
2971                /*
2972                 * Skip EFIs that we've already processed.
2973                 */
2974                efip = (xfs_efi_log_item_t *)lip;
2975                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
2976                        lip = xfs_trans_ail_cursor_next(ailp, &cur);
2977                        continue;
2978                }
2979
2980                spin_unlock(&ailp->xa_lock);
2981                error = xlog_recover_process_efi(log->l_mp, efip);
2982                spin_lock(&ailp->xa_lock);
2983                if (error)
2984                        goto out;
2985                lip = xfs_trans_ail_cursor_next(ailp, &cur);
2986        }
2987out:
2988        xfs_trans_ail_cursor_done(ailp, &cur);
2989        spin_unlock(&ailp->xa_lock);
2990        return error;
2991}
2992
2993/*
2994 * This routine performs a transaction to null out a bad inode pointer
2995 * in an agi unlinked inode hash bucket.
2996 */
2997STATIC void
2998xlog_recover_clear_agi_bucket(
2999        xfs_mount_t     *mp,
3000        xfs_agnumber_t  agno,
3001        int             bucket)
3002{
3003        xfs_trans_t     *tp;
3004        xfs_agi_t       *agi;
3005        xfs_buf_t       *agibp;
3006        int             offset;
3007        int             error;
3008
3009        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3010        error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3011                                  0, 0, 0);
3012        if (error)
3013                goto out_abort;
3014
3015        error = xfs_read_agi(mp, tp, agno, &agibp);
3016        if (error)
3017                goto out_abort;
3018
3019        agi = XFS_BUF_TO_AGI(agibp);
3020        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3021        offset = offsetof(xfs_agi_t, agi_unlinked) +
3022                 (sizeof(xfs_agino_t) * bucket);
3023        xfs_trans_log_buf(tp, agibp, offset,
3024                          (offset + sizeof(xfs_agino_t) - 1));
3025
3026        error = xfs_trans_commit(tp, 0);
3027        if (error)
3028                goto out_error;
3029        return;
3030
3031out_abort:
3032        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3033out_error:
3034        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3035        return;
3036}
3037
3038STATIC xfs_agino_t
3039xlog_recover_process_one_iunlink(
3040        struct xfs_mount                *mp,
3041        xfs_agnumber_t                  agno,
3042        xfs_agino_t                     agino,
3043        int                             bucket)
3044{
3045        struct xfs_buf                  *ibp;
3046        struct xfs_dinode               *dip;
3047        struct xfs_inode                *ip;
3048        xfs_ino_t                       ino;
3049        int                             error;
3050
3051        ino = XFS_AGINO_TO_INO(mp, agno, agino);
3052        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3053        if (error)
3054                goto fail;
3055
3056        /*
3057         * Get the on disk inode to find the next inode in the bucket.
3058         */
3059        error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3060        if (error)
3061                goto fail_iput;
3062
3063        ASSERT(ip->i_d.di_nlink == 0);
3064        ASSERT(ip->i_d.di_mode != 0);
3065
3066        /* setup for the next pass */
3067        agino = be32_to_cpu(dip->di_next_unlinked);
3068        xfs_buf_relse(ibp);
3069
3070        /*
3071         * Prevent any DMAPI event from being sent when the reference on
3072         * the inode is dropped.
3073         */
3074        ip->i_d.di_dmevmask = 0;
3075
3076        IRELE(ip);
3077        return agino;
3078
3079 fail_iput:
3080        IRELE(ip);
3081 fail:
3082        /*
3083         * We can't read in the inode this bucket points to, or this inode
3084         * is messed up.  Just ditch this bucket of inodes.  We will lose
3085         * some inodes and space, but at least we won't hang.
3086         *
3087         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3088         * clear the inode pointer in the bucket.
3089         */
3090        xlog_recover_clear_agi_bucket(mp, agno, bucket);
3091        return NULLAGINO;
3092}
3093
3094/*
3095 * xlog_iunlink_recover
3096 *
3097 * This is called during recovery to process any inodes which
3098 * we unlinked but not freed when the system crashed.  These
3099 * inodes will be on the lists in the AGI blocks.  What we do
3100 * here is scan all the AGIs and fully truncate and free any
3101 * inodes found on the lists.  Each inode is removed from the
3102 * lists when it has been fully truncated and is freed.  The
3103 * freeing of the inode and its removal from the list must be
3104 * atomic.
3105 */
3106STATIC void
3107xlog_recover_process_iunlinks(
3108        xlog_t          *log)
3109{
3110        xfs_mount_t     *mp;
3111        xfs_agnumber_t  agno;
3112        xfs_agi_t       *agi;
3113        xfs_buf_t       *agibp;
3114        xfs_agino_t     agino;
3115        int             bucket;
3116        int             error;
3117        uint            mp_dmevmask;
3118
3119        mp = log->l_mp;
3120
3121        /*
3122         * Prevent any DMAPI event from being sent while in this function.
3123         */
3124        mp_dmevmask = mp->m_dmevmask;
3125        mp->m_dmevmask = 0;
3126
3127        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3128                /*
3129                 * Find the agi for this ag.
3130                 */
3131                error = xfs_read_agi(mp, NULL, agno, &agibp);
3132                if (error) {
3133                        /*
3134                         * AGI is b0rked. Don't process it.
3135                         *
3136                         * We should probably mark the filesystem as corrupt
3137                         * after we've recovered all the ag's we can....
3138                         */
3139                        continue;
3140                }
3141                agi = XFS_BUF_TO_AGI(agibp);
3142
3143                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3144                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3145                        while (agino != NULLAGINO) {
3146                                /*
3147                                 * Release the agi buffer so that it can
3148                                 * be acquired in the normal course of the
3149                                 * transaction to truncate and free the inode.
3150                                 */
3151                                xfs_buf_relse(agibp);
3152
3153                                agino = xlog_recover_process_one_iunlink(mp,
3154                                                        agno, agino, bucket);
3155
3156                                /*
3157                                 * Reacquire the agibuffer and continue around
3158                                 * the loop. This should never fail as we know
3159                                 * the buffer was good earlier on.
3160                                 */
3161                                error = xfs_read_agi(mp, NULL, agno, &agibp);
3162                                ASSERT(error == 0);
3163                                agi = XFS_BUF_TO_AGI(agibp);
3164                        }
3165                }
3166
3167                /*
3168                 * Release the buffer for the current agi so we can
3169                 * go on to the next one.
3170                 */
3171                xfs_buf_relse(agibp);
3172        }
3173
3174        mp->m_dmevmask = mp_dmevmask;
3175}
3176
3177
3178#ifdef DEBUG
3179STATIC void
3180xlog_pack_data_checksum(
3181        xlog_t          *log,
3182        xlog_in_core_t  *iclog,
3183        int             size)
3184{
3185        int             i;
3186        __be32          *up;
3187        uint            chksum = 0;
3188
3189        up = (__be32 *)iclog->ic_datap;
3190        /* divide length by 4 to get # words */
3191        for (i = 0; i < (size >> 2); i++) {
3192                chksum ^= be32_to_cpu(*up);
3193                up++;
3194        }
3195        iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3196}
3197#else
3198#define xlog_pack_data_checksum(log, iclog, size)
3199#endif
3200
3201/*
3202 * Stamp cycle number in every block
3203 */
3204void
3205xlog_pack_data(
3206        xlog_t                  *log,
3207        xlog_in_core_t          *iclog,
3208        int                     roundoff)
3209{
3210        int                     i, j, k;
3211        int                     size = iclog->ic_offset + roundoff;
3212        __be32                  cycle_lsn;
3213        xfs_caddr_t             dp;
3214
3215        xlog_pack_data_checksum(log, iclog, size);
3216
3217        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3218
3219        dp = iclog->ic_datap;
3220        for (i = 0; i < BTOBB(size) &&
3221                i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3222                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3223                *(__be32 *)dp = cycle_lsn;
3224                dp += BBSIZE;
3225        }
3226
3227        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3228                xlog_in_core_2_t *xhdr = iclog->ic_data;
3229
3230                for ( ; i < BTOBB(size); i++) {
3231                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3232                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3233                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3234                        *(__be32 *)dp = cycle_lsn;
3235                        dp += BBSIZE;
3236                }
3237
3238                for (i = 1; i < log->l_iclog_heads; i++) {
3239                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3240                }
3241        }
3242}
3243
3244STATIC void
3245xlog_unpack_data(
3246        xlog_rec_header_t       *rhead,
3247        xfs_caddr_t             dp,
3248        xlog_t                  *log)
3249{
3250        int                     i, j, k;
3251
3252        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3253                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3254                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3255                dp += BBSIZE;
3256        }
3257
3258        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3259                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3260                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3261                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3262                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3263                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3264                        dp += BBSIZE;
3265                }
3266        }
3267}
3268
3269STATIC int
3270xlog_valid_rec_header(
3271        xlog_t                  *log,
3272        xlog_rec_header_t       *rhead,
3273        xfs_daddr_t             blkno)
3274{
3275        int                     hlen;
3276
3277        if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3278                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3279                                XFS_ERRLEVEL_LOW, log->l_mp);
3280                return XFS_ERROR(EFSCORRUPTED);
3281        }
3282        if (unlikely(
3283            (!rhead->h_version ||
3284            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3285                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3286                        __func__, be32_to_cpu(rhead->h_version));
3287                return XFS_ERROR(EIO);
3288        }
3289
3290        /* LR body must have data or it wouldn't have been written */
3291        hlen = be32_to_cpu(rhead->h_len);
3292        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3293                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3294                                XFS_ERRLEVEL_LOW, log->l_mp);
3295                return XFS_ERROR(EFSCORRUPTED);
3296        }
3297        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3298                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3299                                XFS_ERRLEVEL_LOW, log->l_mp);
3300                return XFS_ERROR(EFSCORRUPTED);
3301        }
3302        return 0;
3303}
3304
3305/*
3306 * Read the log from tail to head and process the log records found.
3307 * Handle the two cases where the tail and head are in the same cycle
3308 * and where the active portion of the log wraps around the end of
3309 * the physical log separately.  The pass parameter is passed through
3310 * to the routines called to process the data and is not looked at
3311 * here.
3312 */
3313STATIC int
3314xlog_do_recovery_pass(
3315        xlog_t                  *log,
3316        xfs_daddr_t             head_blk,
3317        xfs_daddr_t             tail_blk,
3318        int                     pass)
3319{
3320        xlog_rec_header_t       *rhead;
3321        xfs_daddr_t             blk_no;
3322        xfs_caddr_t             offset;
3323        xfs_buf_t               *hbp, *dbp;
3324        int                     error = 0, h_size;
3325        int                     bblks, split_bblks;
3326        int                     hblks, split_hblks, wrapped_hblks;
3327        struct hlist_head       rhash[XLOG_RHASH_SIZE];
3328
3329        ASSERT(head_blk != tail_blk);
3330
3331        /*
3332         * Read the header of the tail block and get the iclog buffer size from
3333         * h_size.  Use this to tell how many sectors make up the log header.
3334         */
3335        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3336                /*
3337                 * When using variable length iclogs, read first sector of
3338                 * iclog header and extract the header size from it.  Get a
3339                 * new hbp that is the correct size.
3340                 */
3341                hbp = xlog_get_bp(log, 1);
3342                if (!hbp)
3343                        return ENOMEM;
3344
3345                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3346                if (error)
3347                        goto bread_err1;
3348
3349                rhead = (xlog_rec_header_t *)offset;
3350                error = xlog_valid_rec_header(log, rhead, tail_blk);
3351                if (error)
3352                        goto bread_err1;
3353                h_size = be32_to_cpu(rhead->h_size);
3354                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3355                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3356                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3357                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
3358                                hblks++;
3359                        xlog_put_bp(hbp);
3360                        hbp = xlog_get_bp(log, hblks);
3361                } else {
3362                        hblks = 1;
3363                }
3364        } else {
3365                ASSERT(log->l_sectBBsize == 1);
3366                hblks = 1;
3367                hbp = xlog_get_bp(log, 1);
3368                h_size = XLOG_BIG_RECORD_BSIZE;
3369        }
3370
3371        if (!hbp)
3372                return ENOMEM;
3373        dbp = xlog_get_bp(log, BTOBB(h_size));
3374        if (!dbp) {
3375                xlog_put_bp(hbp);
3376                return ENOMEM;
3377        }
3378
3379        memset(rhash, 0, sizeof(rhash));
3380        if (tail_blk <= head_blk) {
3381                for (blk_no = tail_blk; blk_no < head_blk; ) {
3382                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3383                        if (error)
3384                                goto bread_err2;
3385
3386                        rhead = (xlog_rec_header_t *)offset;
3387                        error = xlog_valid_rec_header(log, rhead, blk_no);
3388                        if (error)
3389                                goto bread_err2;
3390
3391                        /* blocks in data section */
3392                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3393                        error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3394                                           &offset);
3395                        if (error)
3396                                goto bread_err2;
3397
3398                        xlog_unpack_data(rhead, offset, log);
3399                        if ((error = xlog_recover_process_data(log,
3400                                                rhash, rhead, offset, pass)))
3401                                goto bread_err2;
3402                        blk_no += bblks + hblks;
3403                }
3404        } else {
3405                /*
3406                 * Perform recovery around the end of the physical log.
3407                 * When the head is not on the same cycle number as the tail,
3408                 * we can't do a sequential recovery as above.
3409                 */
3410                blk_no = tail_blk;
3411                while (blk_no < log->l_logBBsize) {
3412                        /*
3413                         * Check for header wrapping around physical end-of-log
3414                         */
3415                        offset = XFS_BUF_PTR(hbp);
3416                        split_hblks = 0;
3417                        wrapped_hblks = 0;
3418                        if (blk_no + hblks <= log->l_logBBsize) {
3419                                /* Read header in one read */
3420                                error = xlog_bread(log, blk_no, hblks, hbp,
3421                                                   &offset);
3422                                if (error)
3423                                        goto bread_err2;
3424                        } else {
3425                                /* This LR is split across physical log end */
3426                                if (blk_no != log->l_logBBsize) {
3427                                        /* some data before physical log end */
3428                                        ASSERT(blk_no <= INT_MAX);
3429                                        split_hblks = log->l_logBBsize - (int)blk_no;
3430                                        ASSERT(split_hblks > 0);
3431                                        error = xlog_bread(log, blk_no,
3432                                                           split_hblks, hbp,
3433                                                           &offset);
3434                                        if (error)
3435                                                goto bread_err2;
3436                                }
3437
3438                                /*
3439                                 * Note: this black magic still works with
3440                                 * large sector sizes (non-512) only because:
3441                                 * - we increased the buffer size originally
3442                                 *   by 1 sector giving us enough extra space
3443                                 *   for the second read;
3444                                 * - the log start is guaranteed to be sector
3445                                 *   aligned;
3446                                 * - we read the log end (LR header start)
3447                                 *   _first_, then the log start (LR header end)
3448                                 *   - order is important.
3449                                 */
3450                                wrapped_hblks = hblks - split_hblks;
3451                                error = XFS_BUF_SET_PTR(hbp,
3452                                                offset + BBTOB(split_hblks),
3453                                                BBTOB(hblks - split_hblks));
3454                                if (error)
3455                                        goto bread_err2;
3456
3457                                error = xlog_bread_noalign(log, 0,
3458                                                           wrapped_hblks, hbp);
3459                                if (error)
3460                                        goto bread_err2;
3461
3462                                error = XFS_BUF_SET_PTR(hbp, offset,
3463                                                        BBTOB(hblks));
3464                                if (error)
3465                                        goto bread_err2;
3466                        }
3467                        rhead = (xlog_rec_header_t *)offset;
3468                        error = xlog_valid_rec_header(log, rhead,
3469                                                split_hblks ? blk_no : 0);
3470                        if (error)
3471                                goto bread_err2;
3472
3473                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3474                        blk_no += hblks;
3475
3476                        /* Read in data for log record */
3477                        if (blk_no + bblks <= log->l_logBBsize) {
3478                                error = xlog_bread(log, blk_no, bblks, dbp,
3479                                                   &offset);
3480                                if (error)
3481                                        goto bread_err2;
3482                        } else {
3483                                /* This log record is split across the
3484                                 * physical end of log */
3485                                offset = XFS_BUF_PTR(dbp);
3486                                split_bblks = 0;
3487                                if (blk_no != log->l_logBBsize) {
3488                                        /* some data is before the physical
3489                                         * end of log */
3490                                        ASSERT(!wrapped_hblks);
3491                                        ASSERT(blk_no <= INT_MAX);
3492                                        split_bblks =
3493                                                log->l_logBBsize - (int)blk_no;
3494                                        ASSERT(split_bblks > 0);
3495                                        error = xlog_bread(log, blk_no,
3496                                                        split_bblks, dbp,
3497                                                        &offset);
3498                                        if (error)
3499                                                goto bread_err2;
3500                                }
3501
3502                                /*
3503                                 * Note: this black magic still works with
3504                                 * large sector sizes (non-512) only because:
3505                                 * - we increased the buffer size originally
3506                                 *   by 1 sector giving us enough extra space
3507                                 *   for the second read;
3508                                 * - the log start is guaranteed to be sector
3509                                 *   aligned;
3510                                 * - we read the log end (LR header start)
3511                                 *   _first_, then the log start (LR header end)
3512                                 *   - order is important.
3513                                 */
3514                                error = XFS_BUF_SET_PTR(dbp,
3515                                                offset + BBTOB(split_bblks),
3516                                                BBTOB(bblks - split_bblks));
3517                                if (error)
3518                                        goto bread_err2;
3519
3520                                error = xlog_bread_noalign(log, wrapped_hblks,
3521                                                bblks - split_bblks,
3522                                                dbp);
3523                                if (error)
3524                                        goto bread_err2;
3525
3526                                error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3527                                if (error)
3528                                        goto bread_err2;
3529                        }
3530                        xlog_unpack_data(rhead, offset, log);
3531                        if ((error = xlog_recover_process_data(log, rhash,
3532                                                        rhead, offset, pass)))
3533                                goto bread_err2;
3534                        blk_no += bblks;
3535                }
3536
3537                ASSERT(blk_no >= log->l_logBBsize);
3538                blk_no -= log->l_logBBsize;
3539
3540                /* read first part of physical log */
3541                while (blk_no < head_blk) {
3542                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3543                        if (error)
3544                                goto bread_err2;
3545
3546                        rhead = (xlog_rec_header_t *)offset;
3547                        error = xlog_valid_rec_header(log, rhead, blk_no);
3548                        if (error)
3549                                goto bread_err2;
3550
3551                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3552                        error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3553                                           &offset);
3554                        if (error)
3555                                goto bread_err2;
3556
3557                        xlog_unpack_data(rhead, offset, log);
3558                        if ((error = xlog_recover_process_data(log, rhash,
3559                                                        rhead, offset, pass)))
3560                                goto bread_err2;
3561                        blk_no += bblks + hblks;
3562                }
3563        }
3564
3565 bread_err2:
3566        xlog_put_bp(dbp);
3567 bread_err1:
3568        xlog_put_bp(hbp);
3569        return error;
3570}
3571
3572/*
3573 * Do the recovery of the log.  We actually do this in two phases.
3574 * The two passes are necessary in order to implement the function
3575 * of cancelling a record written into the log.  The first pass
3576 * determines those things which have been cancelled, and the
3577 * second pass replays log items normally except for those which
3578 * have been cancelled.  The handling of the replay and cancellations
3579 * takes place in the log item type specific routines.
3580 *
3581 * The table of items which have cancel records in the log is allocated
3582 * and freed at this level, since only here do we know when all of
3583 * the log recovery has been completed.
3584 */
3585STATIC int
3586xlog_do_log_recovery(
3587        xlog_t          *log,
3588        xfs_daddr_t     head_blk,
3589        xfs_daddr_t     tail_blk)
3590{
3591        int             error, i;
3592
3593        ASSERT(head_blk != tail_blk);
3594
3595        /*
3596         * First do a pass to find all of the cancelled buf log items.
3597         * Store them in the buf_cancel_table for use in the second pass.
3598         */
3599        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3600                                                 sizeof(struct list_head),
3601                                                 KM_SLEEP);
3602        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3603                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3604
3605        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3606                                      XLOG_RECOVER_PASS1);
3607        if (error != 0) {
3608                kmem_free(log->l_buf_cancel_table);
3609                log->l_buf_cancel_table = NULL;
3610                return error;
3611        }
3612        /*
3613         * Then do a second pass to actually recover the items in the log.
3614         * When it is complete free the table of buf cancel items.
3615         */
3616        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3617                                      XLOG_RECOVER_PASS2);
3618#ifdef DEBUG
3619        if (!error) {
3620                int     i;
3621
3622                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3623                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3624        }
3625#endif  /* DEBUG */
3626
3627        kmem_free(log->l_buf_cancel_table);
3628        log->l_buf_cancel_table = NULL;
3629
3630        return error;
3631}
3632
3633/*
3634 * Do the actual recovery
3635 */
3636STATIC int
3637xlog_do_recover(
3638        xlog_t          *log,
3639        xfs_daddr_t     head_blk,
3640        xfs_daddr_t     tail_blk)
3641{
3642        int             error;
3643        xfs_buf_t       *bp;
3644        xfs_sb_t        *sbp;
3645
3646        /*
3647         * First replay the images in the log.
3648         */
3649        error = xlog_do_log_recovery(log, head_blk, tail_blk);
3650        if (error) {
3651                return error;
3652        }
3653
3654        XFS_bflush(log->l_mp->m_ddev_targp);
3655
3656        /*
3657         * If IO errors happened during recovery, bail out.
3658         */
3659        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3660                return (EIO);
3661        }
3662
3663        /*
3664         * We now update the tail_lsn since much of the recovery has completed
3665         * and there may be space available to use.  If there were no extent
3666         * or iunlinks, we can free up the entire log and set the tail_lsn to
3667         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3668         * lsn of the last known good LR on disk.  If there are extent frees
3669         * or iunlinks they will have some entries in the AIL; so we look at
3670         * the AIL to determine how to set the tail_lsn.
3671         */
3672        xlog_assign_tail_lsn(log->l_mp);
3673
3674        /*
3675         * Now that we've finished replaying all buffer and inode
3676         * updates, re-read in the superblock.
3677         */
3678        bp = xfs_getsb(log->l_mp, 0);
3679        XFS_BUF_UNDONE(bp);
3680        ASSERT(!(XFS_BUF_ISWRITE(bp)));
3681        ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3682        XFS_BUF_READ(bp);
3683        XFS_BUF_UNASYNC(bp);
3684        xfsbdstrat(log->l_mp, bp);
3685        error = xfs_buf_iowait(bp);
3686        if (error) {
3687                xfs_ioerror_alert("xlog_do_recover",
3688                                  log->l_mp, bp, XFS_BUF_ADDR(bp));
3689                ASSERT(0);
3690                xfs_buf_relse(bp);
3691                return error;
3692        }
3693
3694        /* Convert superblock from on-disk format */
3695        sbp = &log->l_mp->m_sb;
3696        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3697        ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3698        ASSERT(xfs_sb_good_version(sbp));
3699        xfs_buf_relse(bp);
3700
3701        /* We've re-read the superblock so re-initialize per-cpu counters */
3702        xfs_icsb_reinit_counters(log->l_mp);
3703
3704        xlog_recover_check_summary(log);
3705
3706        /* Normal transactions can now occur */
3707        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3708        return 0;
3709}
3710
3711/*
3712 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3713 *
3714 * Return error or zero.
3715 */
3716int
3717xlog_recover(
3718        xlog_t          *log)
3719{
3720        xfs_daddr_t     head_blk, tail_blk;
3721        int             error;
3722
3723        /* find the tail of the log */
3724        if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3725                return error;
3726
3727        if (tail_blk != head_blk) {
3728                /* There used to be a comment here:
3729                 *
3730                 * disallow recovery on read-only mounts.  note -- mount
3731                 * checks for ENOSPC and turns it into an intelligent
3732                 * error message.
3733                 * ...but this is no longer true.  Now, unless you specify
3734                 * NORECOVERY (in which case this function would never be
3735                 * called), we just go ahead and recover.  We do this all
3736                 * under the vfs layer, so we can get away with it unless
3737                 * the device itself is read-only, in which case we fail.
3738                 */
3739                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3740                        return error;
3741                }
3742
3743                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3744                                log->l_mp->m_logname ? log->l_mp->m_logname
3745                                                     : "internal");
3746
3747                error = xlog_do_recover(log, head_blk, tail_blk);
3748                log->l_flags |= XLOG_RECOVERY_NEEDED;
3749        }
3750        return error;
3751}
3752
3753/*
3754 * In the first part of recovery we replay inodes and buffers and build
3755 * up the list of extent free items which need to be processed.  Here
3756 * we process the extent free items and clean up the on disk unlinked
3757 * inode lists.  This is separated from the first part of recovery so
3758 * that the root and real-time bitmap inodes can be read in from disk in
3759 * between the two stages.  This is necessary so that we can free space
3760 * in the real-time portion of the file system.
3761 */
3762int
3763xlog_recover_finish(
3764        xlog_t          *log)
3765{
3766        /*
3767         * Now we're ready to do the transactions needed for the
3768         * rest of recovery.  Start with completing all the extent
3769         * free intent records and then process the unlinked inode
3770         * lists.  At this point, we essentially run in normal mode
3771         * except that we're still performing recovery actions
3772         * rather than accepting new requests.
3773         */
3774        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3775                int     error;
3776                error = xlog_recover_process_efis(log);
3777                if (error) {
3778                        xfs_alert(log->l_mp, "Failed to recover EFIs");
3779                        return error;
3780                }
3781                /*
3782                 * Sync the log to get all the EFIs out of the AIL.
3783                 * This isn't absolutely necessary, but it helps in
3784                 * case the unlink transactions would have problems
3785                 * pushing the EFIs out of the way.
3786                 */
3787                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3788
3789                xlog_recover_process_iunlinks(log);
3790
3791                xlog_recover_check_summary(log);
3792
3793                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3794                                log->l_mp->m_logname ? log->l_mp->m_logname
3795                                                     : "internal");
3796                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3797        } else {
3798                xfs_info(log->l_mp, "Ending clean mount");
3799        }
3800        return 0;
3801}
3802
3803
3804#if defined(DEBUG)
3805/*
3806 * Read all of the agf and agi counters and check that they
3807 * are consistent with the superblock counters.
3808 */
3809void
3810xlog_recover_check_summary(
3811        xlog_t          *log)
3812{
3813        xfs_mount_t     *mp;
3814        xfs_agf_t       *agfp;
3815        xfs_buf_t       *agfbp;
3816        xfs_buf_t       *agibp;
3817        xfs_agnumber_t  agno;
3818        __uint64_t      freeblks;
3819        __uint64_t      itotal;
3820        __uint64_t      ifree;
3821        int             error;
3822
3823        mp = log->l_mp;
3824
3825        freeblks = 0LL;
3826        itotal = 0LL;
3827        ifree = 0LL;
3828        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3829                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3830                if (error) {
3831                        xfs_alert(mp, "%s agf read failed agno %d error %d",
3832                                                __func__, agno, error);
3833                } else {
3834                        agfp = XFS_BUF_TO_AGF(agfbp);
3835                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
3836                                    be32_to_cpu(agfp->agf_flcount);
3837                        xfs_buf_relse(agfbp);
3838                }
3839
3840                error = xfs_read_agi(mp, NULL, agno, &agibp);
3841                if (error) {
3842                        xfs_alert(mp, "%s agi read failed agno %d error %d",
3843                                                __func__, agno, error);
3844                } else {
3845                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
3846
3847                        itotal += be32_to_cpu(agi->agi_count);
3848                        ifree += be32_to_cpu(agi->agi_freecount);
3849                        xfs_buf_relse(agibp);
3850                }
3851        }
3852}
3853#endif /* DEBUG */
3854